Science.gov

Sample records for ablation deposition technique

  1. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    SciTech Connect

    Fasano, V.; Lorusso, A.; Perrone, A.; De Rosa, H.; Cultrera, L.

    2010-11-10

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature.Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10{sup -7} Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  2. Studies of aluminum oxide thin films deposited by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A.

    2016-06-01

    This paper presents the structural and optical investigations of the aluminum oxide nanocrystalline thin films. Investigated films were fabricated by laser ablation technique in high vacuum onto quartz substrates. The films were deposited at two different temperatures of the substrates equal to room temperature and 900 K. X-ray Diffraction spectra proved nanocrystalline character and the corundum phase of the film regardless on the substrate temperature during the deposition process. Values of the refractive indices, extinction and absorption coefficients were calculated by using Transmission and Reflection Spectroscopy in the UV-VIS-NIR range of the wavelength. Coupling Prism Method was used for films thickness estimations. Experimental measurements and theoretical calculations of the Third Harmonic Generation were also reported. Obtained results show that the lattice strain may affect obtained values of the third order nonlinear optical susceptibility.

  3. Hybrid nanocomposite coatings from metal (Mg alloy)-drug deposited onto medical implant by laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir; Serbezov, Svetlin

    2013-03-01

    Drug-eluting medical implants are active implants whose function is to create healing effects. The current requirements for active medical coatings for Drug-eluting medical implants are to be biocompatible, biodegradable, polymer free, mechanically stable and enable a controlled release of one or more drugs and defined degradation. This brings hybrid nanocomposite coatings into focus especially in the field of cardiovascular implants. We studied the properties of Metal (Mg alloy)-Paclitaxel coatings obtained by novel Laser Adaptive Ablation Deposition Technique (LAAD) onto cardiovascular stents from 316 LVM stainless steel material. The morphology and topology of coatings were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Comparative measurements were made of the morphology and topology of hybrid, polymer free nanocomposite coatings deposited by LAAD and polymerdrug coatings deposited by classical spray technique. The coatings obtained by LAAD are homogeneous without damages and cracks. Metal nanoparticles with sizes from 40 nm to 230 nm were obtained in drug matrixes. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of metal nanoparticles presence in hybrid nanocomposites coatings. The new technology opens up possibilities to obtain new hybrid nanocomposite coatings with applications in medicine, pharmacy and biochemistry.

  4. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  5. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  6. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  7. Lung cancer ablation: technologies and techniques.

    PubMed

    Alexander, Erica S; Dupuy, Damian E

    2013-06-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies.

  8. Thermal therapy, Part III: ablation techniques.

    PubMed

    Habash, Riadh W Y; Bansal, Rajeev; Krewski, Daniel; Alhafid, Hafid T

    2007-01-01

    Ablative treatments are gaining increasing attention as an alternative to standard surgical therapies, especially for patients with contraindication or those who refuse open surgery. Thermal ablation is used in clinical applications mainly for treating heart arrhythmias, benign prostate hyperplasia, and nonoperable liver tumors; there is also increasing application to other organ sites, including the kidney, lung, and brain. Potential benefits of thermal ablation include reduced morbidity and mortality in comparison with standard surgical resection and the ability to treat nonsurgical patients. The purpose of this review is to outline and discuss the engineering principles and biological responses by which thermal ablation techniques can provide elevation of temperature in organs within the human body. Because of the individual problems associated with each type of treatment, a wide range of ablation techniques have evolved including cryoablation as well as ultrasound, radiofrequency (RF), microwave, and laser ablation. Aspects of each ablation technique, including mechanisms of action, equipment required, selection of eligible patients, treatment techniques, and patient outcomes are presented, along with a discussion of limitations of the techniques and future research directions.

  9. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  10. Deposition of superconducting thin films by laser ablation processing

    SciTech Connect

    Kim, B.F.; Bohandy, J.; Moorjani, K.; Adrian, F.J.

    1988-02-25

    Superconducting thin films, approximately 1 ..mu..m thick and 1 cm/sup 2/ in area, have been deposited on fused silica by ablation of the bulk material, YBa/sub 2/Cu/sub 3/O/sub 7-y/, using a pulsed excimer laser. The presence of superconductivity in as-deposited films was established by a novel variation of the technique of microwave absorption, in which the superconducting transition appears as a peak in the temperature dependence of the microwave response. The method is sensitive enough to allow detection of superconductivity in small (approx.0.1 mg) samples and is capable of resolving multiple superconducting phases with slight differences in T/sub c/. As-deposited films have essentially the same value of T/sub c/ (94K) as the bulk material.

  11. New tumor ablation techniques for cancer treatment (microwave, electroporation).

    PubMed

    de Baere, T; Deschamps, F

    2014-01-01

    Since the introduction of radiofrequency ablation (RFA) for the treatment of liver tumors at the end of the 1990s, indications for local ablation techniques have been extended to other organs, in particular, the lungs, kidneys and bones. These techniques have also been improved, in particular to try and overcome the limitations of radiofrequency techniques, especially the significant decrease in complete ablation rates for tumors larger than 3cm and tumors that are contiguous to vessels larger than 3mm. Microwave ablation is a rapidly developing thermal ablation technique similar to RFA but with numerous differences. Electroporation, a non-thermal ablation technique with other possibilities, is in earlier stages of clinical development.

  12. Solution Based Deposition of Polyimide Ablators for NIF Capsules

    SciTech Connect

    Cook, R

    2002-07-11

    Between June 1997 and March 2002 Luxel Corporation was contracted to explore the possibility of preparing NIF scale capsules with polyimide ablators using solution-based techniques. This work offered a potential alternative to a vapor deposition approach talking place at LLNL. The motivation for pursuing the solution-based approach was primarily two-fold. First, it was expected that much higher strength capsules (relative to vapor deposition) could be prepared since the solution precursors were known to produce high strength films. Second, in applying the ablator as a fluid it was expected that surface tension effects would lead to very smooth surfaces. These potential advantages were offset by expected difficulties, primary among them that the capsules would need to be levitated in some fashion (for example acoustically) during coating and processing, and that application of the coating uniformly to thicknesses of 150 pm on levitated capsules would be difficult. Because of the expected problems with the coupling of levitation and coating, most of the initial effort was to develop coating and processing techniques on stalk-mounted capsules. The program had some success. Using atomizer spray techniques in which application of {approx}5 {micro}m fluid coatings were alternated with heating to remove solvent resulted in up to 70 {micro}m thick coatings that were reasonably smooth at short wavelengths, and showed only about a 1 {micro}m thickness variation over long wavelengths. More controlled deposition with an inkjet devise was also developed. However difficult technical problems remained, and these problems coupled with the relative success of the vapor deposition approach led to the termination of the solution-based work in 2002. What follows is a compilation of the progress reports submitted by Luxel for this work which spanned a number of separate contracts. The reports are arranged chronologically, the last report in the collection has a modest summary of what

  13. Ablation techniques for primary and metastatic liver tumors

    PubMed Central

    Ryan, Michael J; Willatt, Jonathon; Majdalany, Bill S; Kielar, Ania Z; Chong, Suzanne; Ruma, Julie A; Pandya, Amit

    2016-01-01

    Ablative treatment methods have emerged as safe and effective therapies for patients with primary and secondary liver tumors who are not surgical candidates at the time of diagnosis. This article reviews the current literature and describes the techniques, complications and results for radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation. PMID:26839642

  14. Electromagnetic measurement and modeling techniques for microwave ablation probes.

    PubMed

    Brannan, Joseph D

    2009-01-01

    Broadband scattering parameter measurement of a commercially available microwave ablation probe over the course of a 10 minute 45 Watt ablation cycle within ex-vivo bovine liver tissue is performed. Measurement results are compared to finite difference time domain simulation of the probe in non-ablated and fully ablated tissue geometries. Measurement and simulation results agree well from 0-3 GHz demonstrating the accuracy of a multi-compartmental ablation geometry modeling technique. The electromagnetic modeling technique presented in this paper introduces a useful design tool for optimizing microwave ablation probes without the need for multi-physics simulation packages. The relevance of tissue complex permittivity change with temperature to microwave ablation probe performance is discussed.

  15. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  16. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  17. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, K.H.

    1996-04-16

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.

  18. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

  19. Laser Ablative Deposition of Polymer Films: A Promise for Sensor Fabrication

    NASA Astrophysics Data System (ADS)

    Blazevska-Gilev, Jadranka; Kupčík, Jaroslav; Šubrt, Jan; Pola, Josef

    There is a continuing interest in the use of polymer films as insulating components of sensors; a number of such films have been prepared by polymer sputtering or vacuum deposition processes involving gas phase pyrolysis/photolysis and by plasma decomposition of monomers. An attractive and rather new technique for the deposition of novel polymer films is IR laser ablation of polymers containing polar groups. We have recently studied this process with poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVAc) and poly(vinyl chloride-co-vinyl acetate) P(VC/VAc) to establish its specific features and differences to conventional pyrolysis.

  20. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (λ=193 nm, ν=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup −2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  1. Sputter-deposited Be ablators for NIF target capsules

    SciTech Connect

    McEachern, R.; Clford, C.; Cook, R.; Makowiecki, E.; Wallace, R.

    1997-03-26

    We have performed a series of preliminary experiments to determine whether sputter deposition of doped Be is a practical route to producing NIF target capsules with Be ablators. Films ranging in thickness from 7 to {approximately} 120 {micro}m have been deposited on spherical polymer mandrels using a bounce pan to ensure uniform coating. With no voltage bias applied to the pan, relatively porous coatings were formed that were highly permeable to hydrogen. The surface finish of these films ranged from {approximately}250 nm rms for 13-{micro}m-thick films to a minimum of {approximately}75 nm rms for an 80-{micro}m-thick film. Application of a voltage bias was found to significantly modify the film morphology. At a bias of 120 V, 7-{micro}m-thick films with a dense, fine-grained microstructure were produced. These capsules had a reflective surface with a 50 nm rms roughness. Finally, to demonstrate the ability to produce a graded dopant profile, a coating was produced in which the concentration of added Cu was varied from 2.5 atom % at the beginning to zero after 40 {micro}m of deposition.

  2. Ablation and carbon deposition induced by UV laser irradiation of polyimide: Application to the metallization of VIAs in high density printed circuit boards

    NASA Astrophysics Data System (ADS)

    Metayer, P.; Davenas, J.; Bureau, J. M.

    2001-12-01

    Polyimides are known to exhibit large ablation rates upon irradiation with excimer laser due to their high absorbance in the UV and low fluorescence yield. We have studied different regimes of laser ablation according to the fluence and studied the structures resulting from carbon products deposition. For fluences larger than the polyimide ablation threshold, but lower than the carbon one, the development of one structure is the dominant process, whereas large ablation rates lead to polyimide etching above the carbon ablation threshold. The deposition of a carbon layer on the walls of ablated slits has in particular been investigated using an original experimental technique. Optical microscopy and MEB have shown that this carbon layer covered the main height of the ablated holes whereas a threshold (bare polyimide) for carbon condensation was evidenced at the bottom of the ablated hole. Raman spectroscopy and conductivity measurements have shown that the carbon phase is mainly graphitic. A dependence of the carbon condensation threshold on the slit width has been evidenced and discussed in relation with the angle of ejection of ablation debris. A procedure has been developed to render the bare polyimide of the threshold region conductive. At last the conductive properties of the walls of the ablated holes have been exploited to perform an electrolytic metallization. Implications for the production of interconnection vertical interconnections (VIAs) in high density printed circuits are addressed.

  3. Modeling of laser ablation processes for thin film deposition of materials^

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel G.

    1996-05-01

    The laser ablation technique for pulsed laser deposition of thin films has proven extremely successful at growing high-quality films of very complex and novel materials, such as high temperature superconducting compounds and diamond-like carbon. The physics ingredients involved are quite complicated given that they include laser-solid interactions at the target, plasma formation off the target, vapor/plasma plume transport towards the deposition substrate, and plume-solid interactions at the substrate. A global physics and computational approach to the laser ablation process has been taken which relies on thermal models to describe laser-solid interactions; on kinetic models of plasma formation in the ablated plume; on an assorted variety of hydrodynamic, gas dynamic and collisional models of plume transport in near vacuum and in a higher pressure background gas; and on molecular dynamics methods to treat plume-substrate interactions. We have chosen to concentrate mostly on silicon to validate our models against experiments. The application of our physics results does however go beyond silicon, given the universality of many experimental observations, such as plume splitting for instance, for a wide variety of laser-ablated materials, be it carbon, copper, yttrium or YBCO. ^* In collaboration with K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. Puretzky and R. F. Wood, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8071 ^ Work supported by Oak Ridge National Laboratory Directed Research and Development (LDRD) Fund under U.S Department of Energy contract No. DE-AC05-96OR22464 with Lockheed Martin Energy Systems, Inc.

  4. [Image-guided ablation of bone tumors: review of current techniques].

    PubMed

    Moser, T; Buy, X; Goyault, G; Tok, C H; Irani, F; Gangi, A

    2008-04-01

    Multiple interventional radiology techniques are available for percutaneous ablation of bone tumors: alcohol, laser, radiofrequency, microwave, ultrasound, and cryogenic ablation. Several indications have already been validated, including radiofrequency ablation of osteoid osteoma and bone metastases, with results superior to conventional treatment. More indications should be added over the coming years. The purpose of this article is to review the principles of the different ablation techniques, summarize their respective indications and results and discuss their implementation and the eventual combination with cementoplasty techniques.

  5. Surgical ablation for atrial fibrillation: techniques, indications, and results

    PubMed Central

    Lawrance, Christopher P.; Henn, Matthew C.; Damiano, Ralph J.

    2015-01-01

    Purpose of review The aim of this review is to focus specifically on the indications, evolution of technique, and results of surgical ablation for atrial fibrillation. Recent findings With the introduction of the Cox-Maze IV procedure utilizing bipolar radiofrequency ablation and cryoablation, long-term studies have demonstrated a significant decrease in aortic cross-clamp times and major complications with a comparable rate of restoration of sinus rhythm. New hybrid approaches utilizing both catheter-based ablation and minimally invasive surgical approaches have been developed, but have not been standardized. Early studies have demonstrated reasonable success rates of hybrid procedures, with advantages that include confirmation of conduction block, decreased surgical morbidity, and possibly reduced morbidity. However, hybrid approaches have the disadvantage of significantly increased operative times. Summary The Cox-Maze IV is currently the gold standard for surgical treatment of atrial fibrillation. New hybrid approaches have potential advantages with promising early results, but a standard lesion set, improvement in operative times, and long-term results still need to be evaluated. PMID:25389650

  6. Vaporization and deposition of an intact polyimide precursor by resonant infrared pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Schriver, K. E.; Haglund, R. F., Jr.

    2006-02-01

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent N-methyl pyrrolidinone (NMP). RIR-PLD transferred material showed two distinct geometries, droplets and string-like moieties. The unaltered nature of the deposited PAA was confirmed by Fourier transform infrared spectroscopy (FTIR). Thermal curing was achieved by heating for one hour on a 250°C hotplate, and the transformation to polyimide was demonstrated from changes in the FTIR spectrum following curing. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, with additional contrast shown between the various resonant frequencies used.

  7. In situ electron spectroscopic identification of carbon species deposited by laser ablation

    SciTech Connect

    Samano, E.C.; Gamietea, A.; Cota, L.; Soto, G. |

    1997-05-01

    Thin carbon films were grown on Si (111) substrates by ablating a graphite target utilizing an excimer pulsed laser in a UHV Riber {copyright} LDM-32 system. Two kinds of films were produced, a highly oriented pyrolytic graphite (HOPG) type and a diamond-like carbon (DLC) type. A relationship of the films microstructure with laser power density and substrate conditions was observed. The HOPG films were homogeneous but the DLC films were heterogeneous, as shown by micrographs. The thin films are monitored and analyzed in situ during the first stages of the deposition process. The monitoring was done by RHEED and the characterization by several surface spectroscopic techniques, AES, XPS and EELS. The formation of a SiC interface was observed for both films due to the reaction of the first carbon species with the substrate surface.

  8. Review of asian experience of thermal ablation techniques and clinical practice.

    PubMed

    Rhim, H

    2004-11-01

    The field of image-guided tumour ablation has gained great attention from Asian physicians because it represents a safe and effective technique for many commonly seen tumours in this population, showing minimal morbidity and excellent local control rates. Based on the current survey data from Asian physicians who are currently performing image-guided tumour ablation, thermal ablation has been mainly performed for patients with unresectable liver tumours. Radiofrequency ablation has replaced many other local ablation techniques such as microwave or ethanol ablation in treating small focal hepatic tumours for the last 5 years. Surgery and transcatheter arterial chemoembolization also have a unique role as curative and palliative treatment options for patients with more extensive tumour burden. Although radiofrequency ablation represents a paradigm shift in local therapy, more sophisticated strategies to enhance the therapeutic efficacy are necessary and more randomized and controlled investigations to estimate its clinical benefit are warranted.

  9. Pulsed laser ablation and deposition of bioactive glass as coating material for biomedical applications

    NASA Astrophysics Data System (ADS)

    D'Alessio, L.; Teghil, R.; Zaccagnino, M.; Zaccardo, I.; Ferro, D.; Marotta, V.

    1999-01-01

    A study of the laser ablation and deposition, on Ti-Al substrates, of a biologically active glass (Bioglass®) suitable for bone implants is reported. The analysis of the gaseous phase by emission spectroscopy and the characterisation of the films from a compositional and morphological point of view have been carried out. The mean chemical composition of the deposits obtained from Bioglass ablation is very close to the target composition and the morphology indicates that different mechanisms of material ejection are present.

  10. Ion plating technique improves thin film deposition

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1968-01-01

    Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.

  11. Hyperthermal Pulsed-Laser Ablation Beams for Film Deposition and Surface Microstructural Engineering

    SciTech Connect

    Lowndes, D.H.

    1999-11-08

    This paper presents an overview of pulsed-laser ablation for film deposition and surface microstructure formation. By changing the ambient gas pressure from high vacuum to several Torr (several hundred Pa) and by selecting the pulsed-laser wavelength, the kinetic energy of ablated atoms/ions can be varied from several hundred eV down to {approximately}0.1 eV and films ranging from superhard to nanocrystalline may be deposited. Furthermore, cumulative (multi-pulse) irradiation of a semiconductor surface (e.g. silicon) in an oxidizing gas (0{sub 2}, SF{sub 6}) et atmospheric pressure can produce dense, self-organized arrays of high-aspect-ratio microcolumns or microcones. Thus, a wide range of materials synthesis and processing opportunities result from the hyperthermal flux and reactive growth conditions provided by pulsed-laser ablation.

  12. Deposition of hydroxyapatite thin films by Nd:YAG laser ablation: a microstructural study

    SciTech Connect

    Nistor, L.C.; Ghica, C.; Teodorescu, V.S.; Nistor, S.V. . E-mail: snistor@alpha1.infim.ro; Dinescu, M.; Matei, D.; Frangis, N.; Vouroutzis, N.; Liutas, C.

    2004-11-02

    Hydroxyapatite (HA) thin films has been successfully deposited by Nd:YAG laser ablation at {lambda} = 532 nm. The morphology and microstructure of the deposited layers was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). Polycrystalline HA films were directly obtained with the substrate at 300 deg. C and without introducing water vapors in the deposition chamber. Electron paramagnetic resonance (EPR) measurements show that the oxygen stoichiometry in the HA films is also maintained. Depositions performed at {lambda} = 335 nm laser wavelength and 300 deg. C substrate temperature resulted in polycrystalline layers of mixed composition of HA and tricalciumphosphate (TCP)

  13. MediGuide-impact on catheter ablation techniques and workflow.

    PubMed

    Pillarisetti, Jayasree; Kanmanthareddy, Arun; Reddy, Yeruva Madhu; Lakkireddy, Dhanunjaya

    2014-09-01

    Since the introduction of percutaneous intervention in modern medical science, specifically cardiovascular medicine fluoroscopy has remained the gold standard for navigation inside the cardiac structures. As the complexity of the procedures continue to increase with advances in interventional electrophysiology, the procedural times and fluoroscopy times have proportionately increased and the risks of radiation exposure both to the patients as well as the operator continue to rise. 3D electroanatomic mapping systems have to some extent complemented fluoroscopic imaging in improving catheter navigation and forming a solid platform for exploring the electroanatomic details of the target substrate. The 3D mapping systems are still limited as they continue to be static representations of a dynamic heart without being completely integrated with fluoroscopy. The field needed a technological solution that could add a dynamic positioning system that can be successfully incorporated into fluoroscopic imaging as well as electroanatomic imaging modalities. MediGuide is one such innovative technology that exploits the geo-positioning system principles. It employs a transmitter mounted on the X-ray panel that emits an electromagnetic field within which sensor-equipped diagnostic and ablation catheters are tracked within prerecorded fluoroscopic images. MediGuide is also integrated with NavX mapping system and helps in developing better 3D images by field scaling-a process that reduces field distortions that occur from impedance mapping alone. In this review, we discuss about the principle of MediGuide technology, the catheter ablation techniques, and the workflow in the EP lab for different procedures.

  14. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  15. Thin films deposited by femtosecond pulsed laser ablation of tungsten carbide

    NASA Astrophysics Data System (ADS)

    De Bonis, A.; Teghil, R.; Santagata, A.; Galasso, A.; Rau, J. V.

    2012-09-01

    Ultra-short Pulsed Laser Deposition has been applied to the production of thin films from a tungsten carbide target. The gaseous phase obtained by the laser ablation shows a very weak primary plume, in contrast with a very strong secondary one. The deposited films, investigated by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Photoelectron Spectroscopy and X-Ray Diffraction, present a mixture of WC and other phases with lower carbon content. All films are amorphous, independently from the substrate temperature. The characteristics of the deposits have been explained in terms of thermal evaporation and cooling rate of molten particles ejected from the target.

  16. Plume behavior and thin film deposition by laser ablation using a hellicoidal shadow mask

    NASA Astrophysics Data System (ADS)

    Marcu, Aurelian; Grigoriu, Constantin; Jang, W.; Yatsui, Kiyoshi

    2000-02-01

    The laser ablation is one of the best ways to obtain smooth thin film deposited on various substrates. However, to obtain a 'droplets-free' surface some special experimental setups are necessary.ONe of them is the 'eclipse' method, using a plane shadow mask. Based on studies on the plume behavior in a 'standard' deposition and in a plane shadow mask eclipse deposition, we prose a new shadow mask having a an helicoidal shape, which permit to obtain a abetter film quality - maximum droplets size about 10 times smaller than for the plane shadow mask. The plume behavior and thin film quality are presented and discussed.

  17. New endometrial ablation techniques for treatment of menorrhagia.

    PubMed

    Bradley, Linda D

    2004-01-01

    Endometrial ablation is an excellent alternative to hysterectomy in women with menorrhagia and small intramural fibroids. Preoperative evaluation, which includes office hysteroscopy or saline infusion sonography, is critical to patient management and choice of procedure. A vast array of endometrial ablation technology is available currently that includes balloon therapy, cryosurgery hot circulating saline, bipolar impedance technology, and microwave: (1) ThermaChoice UTB System (Gynecare, Inc., Somerville, NJ, USA), (2) Uterine Balloon Therapy (UBT) System, HerOption Uterine Cryoblation Therapy System (American Medical Systems, Inc., Minnetonka, MN, USA), (3) Hydro ThermAblator HTA System (BEI Medical/Boston Scientific, Natick, MA), (4) NovaSure System (Novacept, Palo Alto, CA, USA), and (5) Microsulis Microwave Endometrial Ablation (MEA) System (Microsulis Medical Ltd., Pompano Beach, FL, USA). Each method is described herein, and Summary of Safety and Effectiveness Data (SSED) data for each product are reviewed.

  18. Ablation of the locally advanced pancreatic cancer: An introduction and brief summary of techniques.

    PubMed

    Petrou, Athanasios; Moris, Demetrios; Paul Tabet, Patrick; David Wensley Richards, Brian; Kourounis, Georgios

    2016-01-01

    Pancreatic ductal adenocarcinoma is a lethal and late presenting malignancy with dismal survival rates. An estimated total of 330,000 people died from this malignancy in 2012. Although there have been improvements in diagnostic and treatment methods, the survival of late stage pancreatic cancer has not shown significant improvement in the past 4 decades. Multiple treatment approaches are available including chemotherapy, radiotherapy, and immunotherapy, but to this day surgical resection remains the only curative treatment option. Ablative techniques use various forms of energy to cause local tissue destruction through necrosis or apoptosis. They are relevant in pancreatic ductal adenocarcinoma as they are a treatment option in non-resectable tumors where their use ranges from symptom control to reducing tumor size for resection. In this narrative review we have grouped and outlined the various ablative methods, classifying them into thermal (Radiofrequency ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, Cryoablation), and non-thermal ablative methods (Irreversible Electroporation (NanoKnife®), Photodynamic Therapy). This is followed by a description and review of the available evidence on survival and complications for each of these ablative methods. According to the literature, thermal ablative methods appear to be more accessible but are implicated with more complications than non thermal ablative methods which show the most promise.

  19. Deposition of superconducting YBaCuO thin films by pseudospark ablation

    SciTech Connect

    Hoebel, M.; Geerk, J.; Linker, G.; Schultheiss, C. , P.O. Box 3640, D-7500 Karlsruhe, Federal Republic of Germany )

    1990-03-05

    Thin YBaCuO films have been deposited on ZrO{sub 2}(Y) and SrTiO{sub 3} substrates by a novel ablation method, using a pulsed intense electron beam generated by a pseudospark source. Films with zero resistance around 85 K were grown at substrate temperatures of 820 {degree}C with high reproducibility. X-ray analysis indicates highly textured growth on both substrates. {ital J}{sub {ital c}} values were 6{times}10{sup 6} A/cm{sup 2} at 4.2 K and 1.1{times}10{sup 5} A/cm{sup 2} at 77 K. Because of the high simplicity of the deposition system and the variety of changeable parameters it represents an interesting alternative to existing laser ablation methods.

  20. Laser ablation deposition of superconducting Bi-Sr-Ca-Cu-O thin films on zirconia-buffered crystalline quartz

    SciTech Connect

    Bohandy, J.; Agostinelli, E.; Kim, B.F.; Green, W.J.; Phillips, T.E.; Adrian, F.J.; Moorjani, K.

    1989-06-01

    Thin films of Bi-Sr-Ca-Cu-O have been deposited on crystalline quartz substrates by laser ablation. Without a buffer layer, superconducting regions exist in the films as detected by magnetically modulated microwave absorption. However, with a 1000-A zirconia buffer layer, also deposited by laser ablation, continuous, superconducting thin films were obtained. It is shown that both annealing temperature and annealing time greatly affect the film quality.

  1. Laser ablation of liver tumors: An ancillary technique, or an alternative to radiofrequency and microwave?

    PubMed Central

    Sartori, Sergio; Di Vece, Francesca; Ermili, Francesca; Tombesi, Paola

    2017-01-01

    Radiofrequency ablation (RFA) is currently the most popular and used ablation modality for the treatment of non surgical patients with primary and secondary liver tumors, but in the last years microwave ablation (MWA) is being technically improved and widely rediscovered for clinical use. Laser thermal ablation (LTA) is by far less investigated and used than RFA and MWA, but the available data on its effectiveness and safety are quite good and comparable to those of RFA and MWA. All the three hyperthermia-based ablative techniques, when performed by skilled operators, can successfully treat all liver tumors eligible for thermal ablation, and to date in most centers of interventional oncology or interventional radiology the choice of the technique usually depends on the physician’s preference and experience, or technical availability. However, RFA, MWA, and LTA have peculiar advantages and limitations that can make each of them more suitable than the other ones to treat patients and tumors with different characteristics. When all the three thermal ablation techniques are available, the choice among RFA, MWA, and LTA should be guided by their advantages and disadvantages, number, size, and location of the liver nodules, and cost-saving considerations, in order to give patients the best treatment option.

  2. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances.

    PubMed

    Smith, S L; Jennings, P E

    2015-02-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances.

  3. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances

    PubMed Central

    Jennings, P E

    2015-01-01

    Lung ablation can be used to treat both primary and secondary thoracic malignancies. Evidence to support its use, particularly for metastases from colonic primary tumours, is now strong, with survival data in selected cases approaching that seen after surgery. Because of this, the use of ablative techniques (particularly thermal ablation) is growing and the Royal College of Radiologists predict that the number of patients who could benefit from such treatment may reach in excess of 5000 per year in the UK. Treatment is often limited to larger regional centres, and general radiologists often have limited awareness of the current indications and the techniques involved. Furthermore, radiologists without any prior experience are frequently expected to interpret post-treatment imaging, often performed in the context of acute complications, which have occurred after discharge. This review aims to provide an overview of the current indications for pulmonary ablation, together with the techniques involved and the range of post-procedural appearances. PMID:25465192

  4. Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films

    NASA Astrophysics Data System (ADS)

    Bubb, Daniel M.; Papantonakis, M. R.; Toftmann, B.; Horwitz, J. S.; McGill, R. A.; Chrisey, D. B.; Haglund, R. F., Jr.

    2002-06-01

    Polymer thin films were deposited by laser ablation using infrared radiation both resonant (2.90, 3.40, 3.45, and 8.96 mum) and nonresonant (3.30, 3.92, and 4.17 mum) with vibrational modes in the starting material, polyethylene glycol. The chemical structure of the films was characterized by Fourier transform infrared spectroscopy, while the molecular weight distribution was investigated using gel permeation chromatography. The films deposited by resonant irradiation are superior to those deposited with nonresonant radiation with respect to both the chemical structure and the molecular weight distribution of the films. However, the molecular-weight distributions of films deposited at nonresonant infrared wavelengths show marked polymer fragmentation. Fluence and wavelength dependence studies show that the effects may be related to the degree of thermal confinement, and hence to the relative absorption strengths of the targeted vibrational modes.

  5. Sputtering. [as deposition technique in mechanical engineering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  6. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  7. "How we do it" - a practical approach to hepatic metastases ablation techniques.

    PubMed

    Sofocleous, Constantinos T; Sideras, Panagiotis; Petre, Elena N

    2013-12-01

    Secondary liver malignancies are associated with significant mortality and morbidity if left untreated. Colorectal cancer is the most frequent origin of hepatic metastases. A multidisciplinary approach to the treatment of hepatic metastases includes medical, surgical, radiation and interventional oncology. The role of interventional oncology in the management of hepatic malignancies continues to evolve and applies to a large and continuous spectrum of metastatic disease, from the relatively small solitary metastasis to larger tumors and multifocal liver disease. Within the past 10 years, several publications of percutaneous image-guided ablation indicated the effectiveness and safety of this minimally invasive therapy for selected patients with limited number (arguably up to 4 metastases) of relatively small (less than 5cm) hepatic metastases. Different image-guided procedures such radiofrequency, microwave, and laser cause thermal ablation and coagulation necrosis or cell death of the target tumor. Cryoablation, causing cell death via cellular freezing, has also been used. Recently, irreversible electroporation, a nonthermal modality, has also been used for liver tumor ablation. In the following section, we review the different liver ablation techniques, as well as indications for ablation, specific patient preparations, and different "tricks of the trade" that we use to achieve safe and effective liver tumor ablation. We also discuss appropriate imaging and clinical patient follow-up and potential complications of liver tumor ablation.

  8. Laser ablation and deposition of Bioglass ® 45S5 thin films

    NASA Astrophysics Data System (ADS)

    D'Alessio, L.; Ferro, D.; Marotta, V.; Santagata, A.; Teghil, R.; Zaccagnino, M.

    2001-11-01

    A study of the laser ablation and deposition, on Ti6Al4V substrates, of a biological active glass (Bioglass ® 45S5) is reported. The gaseous phase composition has been determined by laser ablation inductively coupled plasma mass spectrometry, optical imaging and emission spectroscopy. The deposited films were studied by scanning electron microscopy coupled with energy and wavelength dispersive X-ray analysis and X-ray diffraction. The adhesion of films to the substrates has been studied by scratch tests. Moreover, after exposing the coatings to a simulating body fluid solution, their bioactivity has been monitored by X-ray diffraction analysis of the hydroxylapatite growth. This procedure has been followed for different time scales up to a maximum of 24 days. The deposition mechanism seems to be related mainly to the mechanical transport of the target material in form of droplets, while the gaseous phase, having a very different composition, plays a marginal role. The overall film retains the target stoichiometry and bioactivity in a large range of experimental conditions.

  9. Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition

    SciTech Connect

    Sorescu, Monica; Diamandescu, L.; Swaminathan, R.; McHenry, M.E.; Feder, M.

    2005-05-15

    Laser ablation deposition has been used to synthesize nanoscale ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon(100) substrates. Films produced by laser ablation at room temperature were annealed at 550 deg. C for 1 h. Other films were deposited directly at a 550 deg. C substrate temperature without subsequent annealing. Complementary x-ray diffraction and superconducting quantum interference device magnetometry measurements helped identify the optimum laser ablation deposition conditions for obtaining the desired nanoferrite structures. From the hysteresis loops at 300 and 10 K we identified the paramagnetic or ferromagnetic behavior of the films. The zero field cooled-field cooled (ZFC-FC) magnetization, M(T), curves yielded the value of the blocking temperature in both NiZn and Zn ferrite systems.

  10. New technique using laser ablation blasts into geochemical labs

    NASA Astrophysics Data System (ADS)

    Sylvester, Paul J.

    Geochemists have long sought a low-cost, reliable instrument for analyzing trace elements in situ. After a quiet start in the mid-1980s, laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) has steadily captured the imagination of geochemists all over the world and is now becoming “standard equipment” in the modern geochemical laboratory. In recognition of this phenomenon, a special session on “Analytical methodologies and geochemical applications of LA-ICPMS” was held at the Fall AGU meeting in San Francisco.

  11. Controlled growth of ZnO nanowires by nanoparticle-assisted laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Okada, T.; Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.

    2008-02-01

    Vertically aligned ZnO nanowires have been successfully synthesized on c-cut sapphire substrates by a catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD) in Ar and N II background gases. In NAPLD, the nanoparticles formed in a background gas by laser ablation are used as a starting material for the growth of the nanowires. The surface density of the nanowires can be controlled by varying the density of nanoparticles, which are accomplished by changing the energy of the ablation laser, the repetition rate of the laser and so on. When single ZnO nanowire synthesized in a N II background gas was excited by 355 nm laser-pulse with a pulse-width of 8 ns, stimulated emission was clearly observed, indicating high quality of the nanowire. These nanowires were used as building blocks for an ultraviolet light emitting diode with a structure of n-ZnO/ZnO nanowire/p-GaN.

  12. Long term results of fast pathway ablation in atrioventricular nodal reentry tachycardia using a modified technique.

    PubMed Central

    Mehta, D.; Gomes, J. A.

    1995-01-01

    OBJECTIVE--To assess immediate and long term success of "fast" pathway catheter ablation with graded use of radiofrequency energy in patients with classic atrioventricular nodal reentrant tachycardia (AVNRT) and evaluate clinical, procedure related, and electrophysiological features affecting long term results. DESIGN--31 consecutive patients with classic AVNRT at electrophysiological study, who were candidates for radiofrequency ablation. Patients were followed for an average of 24 months after ablation. SETTING--All studies and ablations were performed in an electrophysiological laboratory under fluoroscopic guidance using standard electrophysiological techniques. INTERVENTION--Radiofrequency application was performed at the site of proximal His bundle electrogram with A:V ratio of > 1. It was started at 10 W with increment of 5 W to a maximum of 25 W at 60 s. With the onset of junctional rhythm, atrial pacing was begun in order to monitor the PR interval. Application was terminated prematurely with a non-conducted P wave, continued prolongation of the PR interval beyond 50% of the baseline, or a threefold rise in impedance. RESULTS--Successful ablation was possible in 30/31 patients (97%) with an average of seven applications (range 1-10). It was associated with significant prolongation of PR interval (P < 0.001) and AV Wenckebach cycle length (P = 0.01). Ventriculo-atrial conduction was abolished in 24/30 patients (82%) with successful ablation. Two patients developed transient complete heart block (3 and 12 min) and one persistent right branch block. Four patients had late recurrence. Presence of ventriculo-atrial block was the only electrophysiological index predictive of long term success (P = 0.01). CONCLUSIONS--Graded use of radiofrequency energy and atrial pacing to monitor PR interval decreases the risk of atrioventricular block in patients undergoing fast pathway ablation for AVNRT. Ventriculo-atrial block is predictive of long term success and should

  13. Deposition of high quality YBa2Cu3O(7-delta) thin films over large areas by pulsed laser ablation with substrate scanning

    NASA Technical Reports Server (NTRS)

    Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.

    1991-01-01

    The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.

  14. Treatment of Neuroendocrine Cancer Metastatic to the Liver: The Role of Ablative Techniques

    SciTech Connect

    Atwell, T.D. Charboneau, J.W.; Que, F.G.; Rubin, J.; Lewis, B.D.; Nagorney, D.M.; Callstrom, M.R.; Farrell, M.A.; Pitot, H.C.; Hobday, T.J.

    2005-05-15

    Carcinoid tumors and islet cell neoplasms are neuroendocrine neoplasms with indolent patterns of growth and association with bizarre hormone syndromes. These tumors behave in a relatively protracted and predictable manner, which allows for multiple therapeutic options. Even in the presence of hepatic metastases, the standard of treatment for neuroendocrine malignancy is surgery, either with curative intent or for tumor cytoreduction, i.e., resection of 90% or more of the tumor volume. Image-guided ablation, as either an adjunct to surgery or a primary treatment modality, can be used to treat neuroendocrine cancer metastatic to the liver. Image-guided ablative techniques, including radiofrequency ablation, alcohol injection, and cryoablation, can be used in selected patients to debulk hepatic tumors and improve patient symptoms. Although long-term follow-up data are not available, the surgical literature indicates that significant ablative debulking may improve patient survival. In this review, we discuss metastatic neuroendocrine disease and its treatment options, especially image-guided ablative techniques.

  15. Deposition of epitaxial Cu 2O films on (100) MgO by laser ablation and their processing using ion beams

    NASA Astrophysics Data System (ADS)

    Ogale, S. B.; Bilurkar, P. G.; Mate, Nitant; Parikh, Nalin; Patnaik, B.

    1993-03-01

    Epitaxial thin films of Cu2O have been deposited on (100) MgO substrates by pulsed excimer laser ablation technique. Chemical polishing of the substrates by etching them in hot phosphoric acid prior to film deposition is found to be a critical step in realizing epitaxy. A KrF excimer laser operating at 248 nm wavelengths was used for ablation. The depositions were carried out at the laser energy density of 2 J/cm2 and the pulse repetition rate of 5 Hz. The substrate temperature was held at 700°C and the oxygen partial pressure during deposition and cooling was 10-3 Torr. The epitaxial nature of the deposited films was established via X-ray diffraction (XRD) and Rutherford back-scattering (RBS) channelling measurements. The epitaxial films thus obtained were then subjected to ion bombardment for studies of damage formation. Implantations were carried out using 110 keV Ar+ ions over a dose range between 5 x 1014 and 1.5 x 1016 ions/cmz. The as-grown and implanted samples were subjected to resistivity versus temperature measurements in view of the importance of the Cu-O system in the context of the phenomenon of high temperature superconductivity.

  16. Comparison of the efficacy of four endobronchial ablation techniques in dogs

    PubMed Central

    Tong, Linrong; Zhang, Koudong; Huang, Haidong; Zhang, Wei; Zhang, Xingxing; Wang, Qin; Li, Qiang; Bai, Chong

    2017-01-01

    The present study aimed to evaluate the safety and efficacy of four commonly used ablation techniques, namely neodymium-doped yttrium aluminium garnet (Nd:YAG) laser therapy, argon plasma coagulation (APC), high-frequency electrocautery and CO2 cryotherapy. The techniques were performed at various powers or impedance settings, and for various durations, on the trachea of beagle dogs. Pathological changes of the tracheal wall were assessed by bronchoscopy. The endoscopic gross appearance of lesions induced by ablation treatments was consistent with the histopathological changes. The results suggested that cryotherapy was relatively safe, whereas APC induced superficial tissue coagulative necrosis. Furthermore, Nd:YAG laser therapy was the most efficient technique and showed the greatest penetration potential. In general, tissue injury was exacerbated with extended application time, at constant power or impedance. The safest application parameters were 20 W for ≤1 sec for Nd:YAG laser therapy, 40 W for ≤3 sec for electrocautery, 40 W for ≤5 sec for APC and 100 Ω for ≤120 sec for cryotherapy. At the maximum times, these settings resulted in identical pathological changes. Healing of the lesions following ablation was achieved within 3 weeks. The Nd:YAG laser, APC, electrocautery and cryotherapy endobronchial ablation techniques differed according to their potential and limitations for application on the trachea. However, when applied at specific combinations of power or impedance and duration, they exhibited similar efficacies. PMID:28123486

  17. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  18. RAPID COMMUNICATION: ? thin film bilayers grown by pulsed laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Palmer, S. B.; McK Paul, D.; Lees, M. R.

    1996-09-01

    We have grown superconducting thin films of 0022-3727/29/9/044/img2 (Y-123) on 0022-3727/29/9/044/img3 (PCMO) buffer layers and PCMO overlayers on Y-123 thin films using pulsed laser ablation deposition. For both sets of films below 50 K, the Y-123 layer is superconducting and the zero-field cooled PCMO layer is insulating. The application of a magnetic field of 8 T results in an insulator - metal transition in the PCMO layer. This field-induced conducting state is stable in zero magnetic field at low temperature. The PCMO layer can be returned to an insulating state by annealing above 100 K. This opens the way for the construction of devices incorporating these oxide materials in which the electronic properties of key components such as the substrate or the barrier layer can be switched in a controlled way by the application of a magnetic field.

  19. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation

    SciTech Connect

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio S.

    2009-09-30

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In2Se3. In-vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  20. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    SciTech Connect

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  1. Preparation and characterization of LiCoO2 thin films by laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Antaya, M.; Dahn, J. R.; Preston, J. S.; Rossen, E.; Reimers, J. N.

    1993-03-01

    Thin films of LiCoO2 are obtained by laser ablation from sintered LiCoO2 targets. The films were deposited on stainless steel or tantalum foil substrates so they could be used as cathodes in rechargeable thin-film lithium batteries. The films are amorphous when deposited on unheated substrates but crystallize readily when heated in air above 500 C. Using X-ray diffraction, we show that the films are basically stoichiometric and have no impurity phases present. They consist partly of the normal bulk LiCoO2 phase which can be prepared by reacting Li2CO3 and CoCO3 at 850 C. However, the films also contain some of the new, low temperature LiCoO2 phase. We have synthesized bulk low temperature LiCoO2 from LiNO3 and CO(NO3)2 at 400 C to measure its structure and electrochemical properties. Electrochemical measurements can distinguish between the high and low temperature phases.

  2. Femtosecond And Picosecond Laser Ablation Of Intraocular Lenses: An Advanced Technique For Their Surface Modification

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Spyratou, E.; Bacharis, C.; Barberoglou, M.; Englezis, A.; Kalpouzos, C.; Loukakos, P.; Pouli, P.

    2011-09-01

    Ophthalmology is entering a very interesting period with new diffractive multifocals, improved refractive multifocals, and accommodative lenses, all coming out at the same time. A new diffractive-refractive design for providing intermediated vision is apodization. In an apodized pattern, physical diffractive step heights are reduced in height, in an almost continuously varying manner. This study is aimed to investigate the use of ultrashort laser pulses to ablate the surface of intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were performed on hydrophilic and hydrophobic intraocular lenses (IOLs). The samples were irradiated with a Ti:Sapphire laser at λ = 0.785 μm, pulse duration 150 fs, repetition rate 1 kHz and with a Nd:YAG 4ω laser at λ = 0.266 μm, pulse duration 155 ps, repetition rate 10 Hz. We investigated the ablation efficiency and the surface modification with a Scanning Electron Microscope (SEM). The experimental results and the theoretical assumptions on the relevant ablation mechanism are discussed.

  3. Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyan, V. I.; Borisyuk, P. V.; Khalitov, R. R.; Krasavin, A. V.; Lebedinskii, Yu Yu; Palchikov, V. G.; Poteshin, S. S.; Sysoev, A. A.; Yakovlev, V. P.

    2013-10-01

    Single- and double-charged 232Th and 229Th ions were produced by laser ablation of solid-state thorium compounds and by inductively coupled plasma techniques with mass-spectrometry analysis from liquid solutions of thorium. The latter method was found to be more applicable for producing ions of radioactive 229Th for laser experiments when searching for the energy value of the isomeric nuclear transition.

  4. Structure of diamondlike carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Garrelie, F.; Donnet, C.; Loir, A. S.; Fontaine, J.; Sanchez-Lopez, J. C.; Rojas, T. C.

    2010-12-01

    The characterization of diamondlike carbon (DLC) films is a challenging subject, considering the diversity of carbon-based nanostructures depending on the deposition process. We propose to combine multiwavelength (MW) Raman spectroscopy and electron energy-loss spectroscopy (EELS) to probe the structural disorder and the carbon hybridizations of DLC films deposited by pulsed laser ablation performed either with a nanosecond laser (film labeled ns-DLC), either with a femtosecond laser (film labeled fs-DLC). Such deposition methods allow to reach a rather high carbon sp3 hybridization but with some significant differences in terms of structural disorder and carbonaceous chain configurations. MW Raman investigations, both in the UV and visible range, is a popular and nondestructive way to probe the structural disorder and the carbon hybridizations. EELS allows the determination of the carbon plasmon energy in the low-loss energy region of the spectra, as well as the fine structure of the ionization threshold in the high-loss energy region. The paper shows that the combination of MW Raman and EELS is a powerful way to elucidate the nanostructure of DLC films. Complementary nanoindentation investigations allow to correlate the analytical results with the mechanical properties of the films. The ns-DLC film presents a stronger sp3-bonded C character (74%-85%) with a significant content of sp2 chains, whereas the fs-DLC contains less sp3 bonds (35%-50%) with a significant content of sp2-bonded C rings. The ns-DLC film exhibits a higher proportion of disordered sp2 C mainly in the form of chains. Comparatively, the fs-DLC exhibits a predominance of more ordered sp2 C structures in the form of graphitic aggregates whose size has been estimated near three aromatic rings. The film characteristics are in agreement with their mechanical properties. We also propose a correlation between the nanostructure and composition of the films with the deposition mechanisms. The difference

  5. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  6. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  7. Two-Pulsed Technique for Ablative Laser Propulsion: Force Measurement in Vacuum

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Cohen, Timothy; Lin, Jun; Pakhomov, Andrew V.

    2004-01-01

    This is a continuation of studies using a two-pulsed technique for Ablative Laser Propulsion (ALP) extended to force measurements in vacuum. Aluminum samples were ablated using pairs of laser pulses, each of 100 ps width, 532 nm wavelength and 5 mJ energy. The pulses were temporally separated in the 0 - 0.67 ns range. The force imparted on Al targets was measured in situ by means of a piezoelectric force gauge. The preliminary results confirm the previously reported oscillatory behavior of ion velocity and number density observed by means of a time-of-flight energy analyzer. The uncertainties of presented measurements and future directions for the study are discussed.

  8. Reactive impulse plasma ablation deposited barium titanate thin films on silicon

    NASA Astrophysics Data System (ADS)

    Werbowy, A.; Firek, P.; Kwietniewski, N.; Olszyna, A.

    2013-07-01

    Thin (100 nm) nanocrystalline dielectric films of lanthanum doped barium titanate were produced on Si substrates by means of reactive impulse plasma ablation deposition (IPD) from BaTiO3 + La2O3 (2 wt.%) target. Scanning electron microcopy and atomic force microscopy showed that the obtained layers were dense ceramics of uniform thickness with average roughness Ra = 2.045 nm and the average grain size of the order of 15 nm. Measurements of current-voltage (IV) characteristics of metal-insulator-semiconductor (MIS) structures, produced by evaporation of metal (Al) electrodes on top of barium titanate films, allowed to determine that the leakage current density and critical electric field intensity (EBR) of investigated layers ranged from 10-12 to 10-6 A cm-2 and from 0.2 to 0.5 MV cm-1, respectively. Capacitance-voltage (C-V) measurements of the same structures were performed in accumulation state showing that the dielectric constant value (ɛri) of films is of the order of 20.

  9. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Hong, M. H.; Zhou, Y.; Chen, G. X.; Saw, M. M.; Hor, A. T. S.

    2007-12-01

    Ag deposited TiO2 (Ag/TiO2) particles were synthesized by laser ablation of silver and titanium targets in de-ionized (DI) water. Post-annealing makes the structure stable and the materials change to crystalline state. It is a new approach to form Ag/TiO2 particles with a simple system and non-toxic materials. TiO2 particles with size from 20 to 30 nm coated with silver nano-clusters were observed. The silver nano-clusters can enhance the absorption capability of TiO2 photocatalysts. UV-vis spectrum analysis shows that there is a strong absorption peak at around 400 nm. It is attributed to Ag nanoparticles surface plasmon resonance (SPR) effect. This effect helps to improve the spectral characteristics of TiO2 nanoparticles with its absorption spectra shifted to a longer wavelength region. From the above properties, Ag/TiO2 nanoparticles would have new potential applications in photocatalyst and photo-anode.

  10. [Techniques of thermal ablation in primary hepatic carcinoma and metastatic tumors of colorectal cancer].

    PubMed

    Rudzki, Sławomir; Jamroz, Adam

    2004-01-01

    Liver metastases develop in 30-50 per cent of patients with colorectal cancer. Without treatment, the median survival is approximately 7 months. Recent results from multiple investigations indicate that several minimally invasive treatment techniques are very effective for treating primary and secondary malignant hepatic tumors and they may replace surgical resection in the near future. Thermal ablation techniques for the treatment of primary and secondary malignant hepatic tumors include both freezing (cryoablation) and heating (microwave, laser, and high-intensity focused ultrasound) are characterized in this article.

  11. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    NASA Astrophysics Data System (ADS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  12. Dependence of millimeter wave surface resistance on the deposition parameters of laser ablated YBa2Cu3O(x) thin films

    NASA Technical Reports Server (NTRS)

    Wosik, J.; Robin, T.; Davis, M.; Wolfe, J. C.; Forster, K.; Deshmukh, S.; Bensaoula, A.; Sega, R.; Economou, D.; Ignatiev, A.

    1990-01-01

    Measurements of millimeter-wave surface resistance versus temperature have been performed for YBa2Cu3O(x) thin films on 100 line-type SrTiO(3) substrates using a TE(011) cylindrical copper cavity at 80 GHz. The 0.6-micron thick films were grown at several deposition temperatures in the range 690 C to 810 C by means of a pulsed excimer laser ablation technique. A surface resistance minimum (60 milliohm at 77 K) near 770 C is shown to correlate with a minimum in c-axis lattice parameter (11.72 A). The highest value of Tc also occurs near this temperature. The surface resistance of films deposited at 790 C on 110 line-type LaAlO3 subtrates is lower, reaching 8 milliohm at 98 GHz and 80 K, demonstrating the influence of substate material on film quality.

  13. Nd:YVO4 laser direct ablation of indium tin oxide films deposited on glass and polyethylene terephthalate substrates.

    PubMed

    Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2013-09-01

    A Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser was applied to obtain the indium tin oxide (ITO) patterns on flexible polyethylene terephthalate (PET) substrate by a direct etching method. After the ITO films were deposited on a soda-lime glass and PET substrate, laser ablations were carried out on the ITO films for various conditions and the laser ablated results on the ITO films were investigated and analyzed considering the effects of substrates on the laser etching. The laser ablated widths on ITO deposited on glass were found to be much narrower than those on ITO deposited on PET substrate, especially, at a higher scanning speed of laser beam such as 1000 mm/s and 2000 mm/s. As the thermal conductivity of glass substrate is about 7.5 times higher than that of PET, more thermal energy would be spread and transferred to lateral direction in the ITO film in case of PET substrate.

  14. Deposition of epitaxially oriented films of cubic silicon carbide on silicon by laser ablation: Microstructure of the silicon-silicon- carbide interface

    NASA Astrophysics Data System (ADS)

    Rimai, L.; Ager, R.; Weber, W. H.; Hangas, J.; Samman, A.; Zhu, W.

    1995-06-01

    Excimer laser ablation has been used to deposit epitaxial films of β-SiC on single-crystal Si wafers, in a vacuum, at substrate temperatures between 1050 and 1250 °C. Such films can be grown by ablating ceramic SiC, carbon, or alternating silicon and carbon targets at a range of growth rates. X-ray θ-2θ diffraction shows the presence of strong, sharp reflections from crystal planes parallel to the substrate, 200 and 400 for [100] substrates and 111 and 222 for [111] oriented substrates. Wrong reflections, such as 111 for [100] substrates, are extremely weak or absent, indicating alignment with the substrates. The characterization of these films by a number of techniques is discussed. In all cases the film-substrate interface shows a characteristic microstructure of cavities in the Si substrate, similar to that observed for the carbonization layer initially formed as a precursor for chemical-vapor deposition of SiC films on Si. This implies that the initial film growth, for all cases, involves chemical reaction of the Si substrate with the carbon in the plume as well as transport through the growing film.

  15. Efficacy of needle-placement technique in radiofrequency ablation for treatment of lumbar facet arthropathy

    PubMed Central

    Loh, Jeffrey T; Nicol, Andrea L; Elashoff, David; Ferrante, F Michael

    2015-01-01

    Background Many studies have assessed the efficacy of radiofrequency ablation to denervate the facet joint as an interventional means of treating axial low-back pain. In these studies, varying procedural techniques were utilized to ablate the nerves that innervate the facet joints. To date, no comparison studies have been performed to suggest superiority of one technique or even compare the prevalence of side effects and complications. Materials and methods A retrospective chart review was performed on patients who underwent a lumbar facet denervation procedure. Each patient’s chart was analyzed for treatment technique (early versus advanced Australian), preprocedural visual numeric scale (VNS) score, postprocedural VNS score, duration of pain relief, and complications. Results Pre- and postprocedural VNS scores and change in VNS score between the two groups showed no significant differences. Patient-reported benefit and duration of relief was greater in the advanced Australian technique group (P=0.012 and 0.022, respectively). The advanced Australian technique group demonstrated a significantly greater median duration of relief (4 months versus 1.5 months, P=0.022). Male sex and no pain-medication use at baseline were associated with decreased postablation VNS scores, while increasing age and higher preablation VNS scores were associated with increased postablation VNS scores. Despite increasing age being associated with increased postablation VNS scores, age and the advanced Australian technique were found to confer greater patient self-reported treatment benefit. Conclusion The advanced Australian technique provides a significant benefit over the early Australian technique for the treatment of lumbar facet pain, both in magnitude and duration of pain relief. PMID:26504407

  16. [Interventions on facet joints. Techniques of facet joint injection, medial branch block and radiofrequency ablation].

    PubMed

    Artner, J; Klessinger, S

    2015-10-01

    Fluoroscopy-guided interventions on facet joints have been used for decades for the symptomatic management of pain in spinal disorders. A large number of imaging techniques are used to achieve a precise and safe needle placement in interventional procedures. Pulsed fluoroscopy is one of the most widely used and well-accepted tools for these procedures. This article presents a technical overview of commonly used fluoroscopy-guided interventions on the facet joints of the cervical and lumbar spine, such as facet joint injection, blockade of the medial nerve branches and radiofrequency ablation.

  17. Stereotactic Radiofrequency Ablation (SRFA) of Liver Lesions: Technique Effectiveness, Safety, and Interoperator Performance

    SciTech Connect

    Widmann, Gerlig Schullian, Peter Haidu, Marion Bale, Reto

    2012-06-15

    Purpose: To evaluate technique effectiveness, safety, and interoperator performance of stereotactic radiofrequency ablation (SRFA) of liver lesions. Methods: Retrospective review including 90 consecutive patients from January 2008 to January 2010 with 106 computed tomography-guided SRFA sessions using both single and multiple electrodes for the treatment of 177 lesions: 72 hepatocellular carcinoma (HCC) and 105 metastases with a mean size of 2.9 cm (range 0.5-11 cm). Technique effectiveness and 1-year local recurrence were evaluated by computed tomographic scans. Complications, mortality, and hospital days were recorded. The performance between an experienced and inexperienced interventional radiologist was compared. Results: The overall technique effectiveness after a single SRFA was 95.5% (93.1% for HCC and 97.1% for metastases). Four of the eight unsuccessfully treated lesions could be retreated (secondary technique effectiveness of 97.7%). Local recurrence at 1 year was 2.9%. Technique effectiveness was significantly different for lesions <5 cm (96.7%) and >5 cm (87.5%) (P = 0.044) but not for lesions <3 cm (95.9%) and 3-5 cm (100%). Compared to clear parenchymal property (97.3%), vessel vicinity (93.3%) (P = 0.349) and subcapsular (95.2%) (P = 0.532) had no, but hollow viscera vicinity (83.3%) had a significantly lower technique effectiveness (P = 0.020). Mortality rate was 0.9%. Major complications and hospital days were higher for cirrhosis Child-Pugh B (20%, 7.2 days) than Child-Pugh A (3.1%, 4.7 days) patients and for metastases (5.1%, 4.3 days). There was no significant difference in interoperator performance. Conclusions: RFA allowed for efficient, reliable, and safe ablation of large-volume liver disease.

  18. TECHNIQUES AND OUTCOMES OF MINIMALLY-INVASIVE TRABECULAR ABLATION AND BYPASS SURGERY

    PubMed Central

    Kaplowitz, Kevin; Schuman, Joel S.; Loewen, Nils A.

    2014-01-01

    Minimally invasive glaucoma surgeries (MIGS) can improve the conventional, pressure dependent outflow by bypassing or ablating the trabecular meshwork or create alternative drainage routes into the suprachoroidal or subconjunctival space. They have a highly favorable risk profile compared to penetrating surgeries and lower intraocular pressure with variable efficacy that may depend on the extent of outflow segments accessed. Since they are highly standardized procedures that use clear corneal incisions, they can elegantly be combined with cataract and refractive procedures to improve vision in the same session. There is a growing need for surgeons to become proficient in MIGS to address the increasing prevalence of glaucoma and cataracts in a well-informed, aging population. Techniques of visualization and instrumentation in an anatomically highly confined space with semi-transparent tissues are fundamentally different from other anterior segment surgeries and present even experienced surgeons with a substantial learning curve. Here, we provide practical tips and review techniques and outcomes of TM bypass and ablation MIGS. PMID:24338085

  19. “Edgeboost”: A Novel Technique to Extend the Ablation Zone Lateral to a Two-Probe Bipolar Radiofrequency Device

    SciTech Connect

    Huo, Ya Ruth Pillai, Krishna Akhter, Javed Morris, David L.

    2016-01-15

    BackgroundThe dual-electrode bipolar-RFA (B-RFA) is increasingly used to ablate large liver tumours (3–7 cm). However, the challenging aspect of B-RFA is the placement of the two electrodes around the tumour. Realignment often requires the electrodes to be extracted and reinserted.AimThe aim of this study is to examine “Edgeboost”, a novel technique to increase the lateral ablation dimension without requiring any realignment of the electrodes.Methods and MaterialsAn egg-white model and an ex vivo calf liver model were used compare the standard bipolar mode ablation to Edgeboost-1 (reaching full impedance in bipolar mode initially, then cycling in unipolar mode between left and right probes) and Edgeboost-2 (similar to Edgeboost-1 but not reaching full impedance initially in bipolar mode in order to minimize charring and, thus, to increase total ablation time).ResultsA significantly larger outer lateral ablation dimension to the probe was achieved with Edgeboost-1 compared to the standard method in the liver model (1.14 cm, SD: 0.16 vs. 0.44 cm, SD: 0.24, p = 0.04). Edgeboost-2 achieved the largest outer lateral ablation dimension of 1.75 cm (SD: 0.35). A similar association was seen in the egg model. Edgeboost-2 almost doubled the mass ablated with standard bipolar alone (mass ratio: 1:1.94 in egg white and 1:1.84 in liver).ConclusionThis study demonstrates that the novel “Edgeboost” technique can increase the outer lateral ablation dimension without requiring the two inserted electrodes to be reinserted. This would be beneficial for interventionists who use the dual B-RFA.

  20. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  1. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  2. Voltage-guided ablation technique for cavotricuspid isthmus-dependent atrial flutter: refining the continuous line.

    PubMed

    Jacobsen, Peter K; Klein, George J; Gula, Lorne J; Krahn, Andrew D; Yee, Raymond; Leong-Sit, Peter; Mechulan, Alexis; Skanes, Allan C

    2012-06-01

    Ablation of the cavotricuspid isthmus has become first-line therapy for "isthmus-dependent" atrial flutter. The goal of ablation is to produce bidirectional cavotricuspid isthmus block. Traditionally, this has been obtained by creation of a complete ablation line across the isthmus from the ventricular end to the inferior vena cava. This article describes an alternative method used in our laboratory. There is substantial evidence that conduction across the isthmus occurs preferentially over discrete separate bundles of tissue. Consequently, voltage-guided ablation targeting only these bundles with large amplitude atrial electrograms results in a highly efficient alternate method for the interruption of conduction across the cavotricuspid isthmus. Understanding the bundle structure of conduction over the isthmus facilitates more flexible approaches to its ablation and targeting maximum voltages in our hands has resulted in reduction of ablation time and fewer recurrences.

  3. MICROWAVE INSPECTION TECHNIQUES FOR DETERMINING ABLATIVE SHIELD THICKNESS AND CERAMIC MATERIALS PROPERTIES.

    DTIC Science & Technology

    CERAMIC MATERIALS , NONDESTRUCTIVE TESTING, MICROWAVES, HEAT SHIELDS, ABLATION, THICKNESS, REENTRY VEHICLES, MICROWAVE EQUIPMENT, DIELECTRIC PROPERTIES, ATTENUATION, WAVE PROPAGATION, REFLECTION, X BAND, COATINGS.

  4. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  5. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  6. Structural and electrical characterization of boron-containing diamond-like carbon films deposited by femtosecond pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Berkesse, A.; Bourgeois, O.; Garden, J.-L.; Guerret-Piécourt, C.; Rouzaud, J.-N.; Loir, A.-S.; Garrelie, F.; Donnet, C.

    2009-10-01

    The present study investigates the influence of the incorporation of boron in Diamond-Like Carbon (DLC) films deposited by femtosecond laser ablation, on the structure and electrical properties of the coatings within the temperature range 70-300 K. Doping with boron has been performed by ablating alternatively graphite and boron targets. The film structure and composition have been highlighted by coupling Atomic Force Microscopy (AFM), Scanning Electron Microscopy equipped with a field emission gun (SEM-FEG) and High Resolution Transmission Electron Microscopy (HRTEM). Boron dilution ranges between 2 and 8% and appears as nanometer size clusters embedded in the DLC matrix. Typical resistivity values are 100 W cm for pure a-C films, down to few W cm for a-C:B films at room temperature. The resistance decreases exponentially when the temperature increases in the range 70-300 K. The results are discussed considering the classical model of hopping conduction in thin films. Some coatings show temperature coefficients of resistance (TCR) as high as 3.85%. TCRs decrease when the doping increases. Such high values of TCR may have interests in the use of these films as thermometer elements in micro and nanodevices.

  7. Studies on the Surface Morphology and Orientation of CeO2 Films Deposited by Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Develos, Katherine; Kusunoki, Masanobu; Ohshima, Shigetoshi

    1998-11-01

    We studied the surface morphology and orientation of CeO2 films grown by pulsed laser ablation (PLA) on r-cut (1\\=102) Al2O3 substrates and evaluated the effects of predeposition annealing conditions of Al2O3 and film thickness of CeO2. The annealing of Al2O3 substrates improves the smoothness of the surface and performing this in high vacuum leads to better crystallinity and orientation of deposited CeO2 films compared to those annealed in oxygen. A critical value of the film thickness was found beyond which the surface roughness increases abruptly. Atomic force microscopy (AFM) study showed that the surface of CeO2 films is characterized by a mazelike pattern. Increasing the film thickness leads to the formation of larger islands which cause the increase in the surface roughness of the films. The areal density and height of these islands increased with film thickness.

  8. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2016-12-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  9. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  10. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin; Zhou, Yan; Yan, Longwen; Duan, Xuru

    2014-05-15

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ∼20 nm in depth and ∼500 μm or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  11. Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up.

    PubMed

    Kohlhase, Konstantin David; Korkusuz, Yücel; Gröner, Daniel; Erbelding, Christian; Happel, Christian; Luboldt, Wolfgang; Grünwald, Frank

    2016-08-01

    Purpose The aim of this study was to evaluate the decrease of benign thyroid nodules after bipolar radiofrequency ablation (RFA) in a 3-month follow-up using a multiple overlapping shot technique ('MOST'). Methods A total of 18 patients with 20 symptomatic benign thyroid nodules (17 cold nodules, 3 hyperfunctioning nodules) were treated in one single session by bipolar RFA. Bipolar ablation was performed using MOST. The nodule volumes were measured prior to ablation and 3 months after the procedure using ultrasound. The population consisted of either solid (>80% solid tissue within the volume of interest), complex, or cystic nodules (<20% solid tissue within the volume of interest). Results Bipolar RFA resulted in a highly significant (p < 0.0001) decrease of nodule volume (ΔV), median 5.3 mL (range 0.13-43.1 mL), corresponding to a relative reduction in mean of 56 ± 17.9%. Median initial volume was 8 mL (range 0.48-62 mL); 3 months after ablation a median volume of 2.3 mL (range 0.3-32 mL) was measured. Nodule growth ≥50% occurred in 70% (14 nodules). At the follow-up no complications such as infections, persisting pain, nerve injuries or immunogen stimulation occurred. Patients with cold nodules (15) remained euthyroid, with hyperfunctioning nodules either euthyroid (2) or latent hypofunctional (1). Conclusion The use of bipolar RFA is an effective, safe and suitable thermoablative technique to treat benign thyroid nodules. Combined with the multiple overlapping shot technique it allows sufficient ablation.

  12. Endoscopic resection techniques and ablative therapies for Barrett’s neoplasia

    PubMed Central

    Ortiz-Fernández-Sordo, Jacobo; Parra-Blanco, Adolfo; García-Varona, Alejandro; Rodríguez-Peláez, María; Madrigal-Hoyos, Erika; Waxman, Irving; Rodrigo, Luis

    2011-01-01

    Esophageal adenocarcinoma is the most rapidly increasing cancer in western countries. High-grade dysplasia (HGD) arising from Barrett’s esophagus (BE) is the most important risk factor for its development, and when it is present the reported incidence is up to 10% per patient-year. Adenocarcinoma in the setting of BE develops through a well known histological sequence, from non-dysplastic Barrett’s to low grade dysplasia and then HGD and cancer. Endoscopic surveillance programs have been established to detect the presence of neoplasia at a potentially curative stage. Newly developed endoscopic treatments have dramatically changed the therapeutic approach of BE. When neoplasia is confined to the mucosal layer the risk for developing lymph node metastasis is negligible and can be successfully eradicated by an endoscopic approach, offering a curative intention treatment with minimal invasiveness. Endoscopic therapies include resection techniques, also known as tissue-acquiring modalities, and ablation therapies or non-tissue acquiring modalities. The aim of endoscopic treatment is to eradicate the whole Barrett’s segment, since the risk of developing synchronous and metachronous lesions due to the persistence of molecular aberrations in the residual epithelium is well established. PMID:21954414

  13. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  14. Room-temperature deposition of nanocrystalline PbWO 4 thin films by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Yoon, J.-W.; Shim, K. B.; Koshizaki, N.

    2006-07-01

    Pulsed laser ablation (PLA) was applied to synthesize nanocrystalline PbWO4 thin films onto glass substrates. The effects of Ar background gas pressure on phase evolution, microstructures and optical characteristics of PbWO4 thin films were investigated in detail. The PLA processes were carried out at room temperature without substrate heating or post-annealing treatment. XRD and HR-TEM results revealed that the PbWO4 thin films are composed of nanocrystalline and amorphous phases. Moreover, the films contained a high density of lattice defects such as twin boundaries and edge dislocations. The crystallite size and crystallinity increased, which were associated with a change in surface morphology as the Ar pressure increased. Reduced tungsten states W5+ or W4+ induced by oxygen vacancies were observed at 10 Pa and the atomic concentration of all constituent element was almost stoichiometric, especially the [Pb]/[W] ratio, which was nearly unity above 50 Pa. The optical energy band-gap was 3.03 eV at 50 Pa and increased to 3.35 eV at 100 Pa, which are narrower than the reported value (4.20 eV). This optical band-gap narrowing could be attributed to localized band-tail states and new energy levels induced by the amorphous structure and inherent lattice defects.

  15. Thermal ablation for hepatocellular carcinoma.

    PubMed

    Head, Hayden W; Dodd, Gerald D

    2004-11-01

    Thermal ablation, as a form of minimally invasive therapy for hepatocellular carcinoma (HCC), has become an important treatment modality. Because of the limitations of surgery, the techniques of thermal ablation have become standard therapies for HCC in some situations. This article reviews 4 thermal ablation techniques-radiofrequency (RF) ablation, microwave ablation, laser ablation, and cryoablation. Each of these techniques may have a role in treating HCC, and the mechanisms, equipment, patient selection, results, and complications of each are considered. Furthermore, combined therapies consisting of thermal ablation and adjuvant chemotherapy also show promise for enhancing these techniques. Important areas of research into thermal ablation remain, including improving the ability of ablation to treat larger tumors, determining the indications for each thermal ablation modality, optimizing image guidance, and obtaining good outcome data on the efficacy of these techniques.

  16. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    NASA Astrophysics Data System (ADS)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  17. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  18. Effect of Ablation Rate on the Microstructure and Electrochromic Properties of Pulsed-Laser-Deposited Molybdenum Oxide Thin Films.

    PubMed

    Santhosh, S; Mathankumar, M; Selva Chandrasekaran, S; Nanda Kumar, A K; Murugan, P; Subramanian, B

    2017-01-10

    Molybdenum trioxide (MoO3) is a well-known electrochromic material. In the present work, n-type α-MoO3 thin films with both direct and indirect band gaps were fabricated by varying the laser repetition (ablation) rate in a pulsed laser deposition (PLD) system at a constant reactive O2 pressure. The electrochromic properties of the films are compared and correlated to the microstructure and molecular-level coordination. Mixed amorphous and textured crystallites evolve at the microstructural level. At the molecular level, using NMR and EPR, we show that the change in the repetition rate results in a variation of the molybdenum coordination with oxygen: at low repetition rates (2 Hz), the larger the octahedral coordination, and greater the texture, whereas at 10 Hz, tetrahedral coordination is significant. The anion vacancies also introduce a large density of defect states into the band gap, as evidenced by XPS studies of the valence band and supported by DFT calculations. The electrochromic contrast improved remarkably by almost 100% at higher repetition rates whereas the switching speed decreased by almost 6-fold. Although the electrochromic contrast and coloration efficiency were better at higher repetition rates, the switching speed, reversibility, and stability were better at low repetition rates. This difference in the electrochromic properties of the two MoO3 films is attributed to the variation in the defect and molecular coordination states of the Mo cation.

  19. Influence of oxygen pressure on the expansion dynamics of Ba-hexaferrite ablation plumes and on the properties of deposited thin films

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; O'Neill, M. C.; Atkinson, R.; Al-Wazzan, R.; Morrow, T.; Salter, I. W.

    1998-10-01

    Using the pulsed laser deposition (PLD) technique to prepare Ba, Sr-hexaferrite films from stoichiometric targets, it has been found that the degree of perpendicular anisotropy of the films is sensitive to, among other parameters, the background oxygen ambient. In an effort to better understand the ablated material transport under Ba-hexaferrite film growth conditions, an emission spectroscopy study was initiated. Temporally integrated spectra were collected as a function of distance above the target surface and as a function of oxygen pressure ( PO 2). Only emission lines from Ba, Fe neutrals and singly ionised Ba species were observed. However, emission features from oxide molecules were not identified even in the presence of oxygen. The plasma appeared highly ionised close to the target and, during its propagation towards the substrate, expanded to a low density weakly ionised vapour, mostly populated with Ba and Fe neutrals. High local equilibrated gas temperatures (of the order of 0.8 eV) in the deposition region are thought to facilitate film crystallisation and oriented growth. The emission signal was found to depend on oxygen pressure and the distance from the target. Generally, it decreased with distance and increased with PO 2. It was deduced that the optical emission is excited by electron impact excitation. Moreover, both temporal profiles of the constituent line intensities and time-resolved images of the overall optical plasma emission consistently demonstrated that the oxygen pressure confines the plasma, slows its expansion and enhances the emission particularly at its expanding front. The change observed in the quality of Ba ferrite films with oxygen pressure is discussed in terms of the behaviour of the expanding plume with increasing PO 2.

  20. Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications

    NASA Astrophysics Data System (ADS)

    Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.

    2014-09-01

    A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).

  1. Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications

    SciTech Connect

    Horprathum, M. Eiamchai, P. Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.; Kaewkhao, J.; Chananonnawathorn, C.

    2014-09-25

    A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO{sub 3}), titanium dioxide (TiO{sub 2}), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO)

  2. Raman spectroscopic studies of thin film carbon nanostructures deposited using electro deposition technique

    NASA Astrophysics Data System (ADS)

    Dayal, Saurabh; Sasi, Arshali; Jhariya, Sapna; Sasikumar, C.

    2016-05-01

    In the present work our focus is to synthesize carbon nanostructures (CNS) by electro deposition technique without using any surface pretreatment or catalyst preparation before CNS formation. The process were carried out at significantly low voltage and at low temperature as reported elsewhere. Further the samples were characterized using different characterization tools such as SEM and Raman spectroscopy. The SEM results showed the fibres or tubular like morphology. Raman spectra shows strong finger print at 1600 cm-1 (G peak), 1350 cm-1 (D peak) along with the radial breathing mode (RBM) between 150cm-1 to 300 cm-1. This confirms the formation of tubular carbon nanostructures.

  3. Role of target-substrate distance on the growth of CuInSe2 thin films by pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Rawat, Kusum; Dhruvashi, Shishodia, P. K.

    2016-05-01

    CuInSe2 thin films have been deposited on corning glass substrates by pulsed laser ablation technique. The chamber pressure and substrate temperature was maintained at 1 × 10-6 torr and 550°C respectively during deposition of the films. The influence of target to substrate (T-S) distance on the structural and optical properties of thin films have been investigated by grazing incidence x-ray diffraction, Raman spectroscopy, scanning electron microscope and UV-Vis-NIR spectroscopy. The study reveals that thin films crystallized in a chalcopyrite structure with highly preferential orientation along (112) plane. Optimum T-S distance has been attained for the growth of thin films with large grain size. An intense Raman peak at 174 cm-1 corresponding to dominant A1 vibration mode is gradually shifted to smaller wavenumber with the increase in T-S distance. The optical bandgap energy of the films was evaluated and found to vary with the T-S distance. The bandgap tailing was observed to obey the Urbach rule and the Urbach energy was also calculated for the films. Scanning electron micrographs depicts uniform densely packed grains and EDAX studies revealed the elemental composition of CuInSe2 thin films.

  4. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique.

    PubMed

    Boyd, A R; Rutledge, L; Randolph, L D; Meenan, B J

    2015-01-01

    The bioactivity of hydroxyapatite (HA) coatings can be modified by the addition of different ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HA lattice. Of the ions listed here, strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as Sr has been shown to promote osteoblast proliferation and differentiation, and reduce osteoclast activity. In this study, SrHA coatings were deposited onto titanium substrates using radio frequency (RF) magnetron co-sputtering (and compared to those surfaces deposited from HA alone). FTIR, XPS, XRD, and SEM techniques were used to analyse the different coatings produced, whereby different combinations of pure HA and 13% Sr-substituted HA targets were investigated. The results highlight that Sr could be successfully incorporated into the HA lattice to form SrHA coatings. It was observed that as the number of SrHA sputtering targets in the study were increased (increasing Sr content), the deposition rate decreased. It was also shown that as the Sr content of the coatings increased, so did the degree of preferred 002 orientation of the coating (along with obvious changes in the surface morphology). This study has shown that RF magnetron sputtering (specifically co-sputtering), offers an appropriate methodology to control the surface properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface morphology.

  5. Deposition of Nanocomposite Coatings Employing a Hybrid APS + SPPS Technique

    NASA Astrophysics Data System (ADS)

    Lohia, A.; Sivakumar, G.; Ramakrishna, M.; Joshi, S. V.

    2014-10-01

    A novel approach hybridizing the conventional atmospheric plasma spraying and the solution precursor plasma spraying techniques has been explored to develop nanocomposite coatings. The above hybrid processing route involves simultaneous feeding of an appropriate solution precursor and commercially available spray-grade powder feedstock to realize microstructures comprising nanostructured and micron-sized features, which are unique in thermal spraying. The attractive prospects offered by this hybrid technique for deposition of nanocomposite coatings are specifically highlighted in this paper through a case study. Plasma sprayed Mo-alloy coatings are known for their good tribological characteristics and widely used in many applications. Further augmentation in performance of these coatings is expected through incorporation of distributed nanostructured oxide phases in the microstructure. Successful development of such coatings using a spray-grade Mo-alloy powder and a suitable oxide-forming solution precursor has been demonstrated. Splat formation under varied processing conditions has been comprehensively investigated and related to microstructure and tribological behavior of the coatings to assess the efficacy of the above nanocomposite coatings for wear resistant applications.

  6. Dependence of the critical temperature of laser-ablated YBa2Cu3O(7-delta) thin films on LaAlO3 substrate growth technique

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.

    1991-01-01

    Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.

  7. Tactile Electrosurgical Ablation: A Technique for the Treatment of Intractable Heavy and Prolonged Menstrual Bleeding

    PubMed Central

    El Saman, Ali M.; AbdelHafez, Faten F.; Zahran, Kamal M.; Saad, Hazem; Khalaf, Mohamed; Hussein, Mostafa; Hassanin, Ibrahim M. A.; Shugaa Al Deen, Saba M.

    2015-01-01

    Objective. To study the efficacy and safety of tactile electrosurgical ablation (TEA) in stopping a persistent attack of abnormal uterine bleeding not responding to medical and hormonal therapy. Methods. This is a case series of 19 cases with intractable abnormal uterine bleeding, who underwent TEA at the Women's Health Center of Assiut University. The outcomes measured were; patient's acceptability, operative time, complications, menstrual outcomes, and reintervention. Results. None of the 19 counseled cases refused the TEA procedure which took 6–10 minutes without intraoperative complications. The procedure was successful in the immediate cessation of bleeding in 18 out of 19 cases. During the 24-month follow-up period, 9 cases developed amenorrhea, 5 had scanty menstrual bleeding, 3 were regularly menstruating, 1 case underwent repeat TEA ablation, and one underwent a hysterectomy. Conclusions. TEA represents a safe, inexpensive, and successful method for management of uterine bleeding emergencies with additional long-term beneficial effects. However, more studies with more cases and longer follow-up periods are warranted. PMID:26294969

  8. Synthesis of GaN nanowires on gold-coated SiC substrates by novel pulsed electron deposition technique

    NASA Astrophysics Data System (ADS)

    Lei, M.; Yang, H.; Li, P. G.; Tang, W. H.

    2008-01-01

    A two-step approach for macro-synthesis of GaN nanowires was developed in this study. GaN nanoparticles were firstly synthesized through a facile solid-state reaction using an organic reagent dicyandiamide (C 2N 4H 4) and Ga 2O 3 as precursors. Subsequently, single-crystalline wurtzite GaN nanowires were grown on gold-coated 6H-SiC substrates via novel pulsed electron deposition (PED) technique using the as-prepared GaN nanoparticles as target, which provides a new route employing nanoparticles as precursors to fabricate GaN nanowires. It is found that pulsed electron ablation induced Ga and N plasma directly towards the gold-coated substrate to initialize the vapor-liquid-solid (VLS) growth processes. The morphological and structural properties were investigated in detail and Raman scattering spectrum of these nanowires presented some new features.

  9. XPS analysis and luminescence properties of thin films deposited by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Dolo, J. J.; Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Dejene, B. F.

    2010-04-01

    This paper presents the effect of substrate temperature and oxygen partial pressure on the photoluminescence (PL) intensity of the Gd2O2S:Tb3 + thin films that were grown by using pulsed laser deposition (PLD). The PL intensity increased with an increase in the oxygen partial pressure and substrate temperature. The thin film deposited at an oxygen pressure of 900 mTorr and substrate temperature of 900°C was found to be the best in terms of the PL intensity of the Gd2O2S:Tb3 + emission. The main emission peak due to the 5D4-7F5 transition of Tb was measured at a wavelength of 545 nm. The stability of these thin films under prolonged electron bombardment was tested with a combination of techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Cathodoluminescence (CL) spectroscopy. It was shown that the main reason for the degradation in luminescence intensity under electron bombardment is the formation of a non-luminescent Gd2O3 layer, with small amounts of Gd2S3, on the surface.

  10. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique

    SciTech Connect

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    This paper describes a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. Since ash deposit thermal conductivity is thought to be strongly dependent on deposit microstructure, the technique is designed to minimize the disturbance of the natural deposit microstructure. Traditional techniques for measuring deposit thermal conductivity generally do not preserve the sample microstructure. Experiments are described that demonstrate the technique, quantify experimental uncertainty, and determine the thermal conductivity of highly porous, unsintered deposits. The average measured conductivity of loose, unsintered deposits is 0.14 {+-} 0.03 W/(m K), approximately midway between rational theoretical limits for deposit thermal conductivity.

  11. Pulmonary ablation: a primer.

    PubMed

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up.

  12. Comparison of Two Techniques for Radio-frequency Hepatic Tumor Ablation through Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Kosturski, N.; Margenov, S.; Vutov, Y.

    2011-11-01

    We simulate the thermal and electrical processes, involved in the radio-frequency ablation procedure. In this study, we take into account the observed fact, that the electrical conductivity of the hepatic tissue varies during the procedure. With the increase of the tissue temperature to a certain level, a sudden drop of the electrical conductivity is observed. This variation was neglected in some previous studies. The mathematical model consists of two parts—electrical and thermal. The energy from the applied AC voltage is determined first, by solving the Laplace equation to find the potential distribution. After that, the electric field intensity and the current density are directly calculated. Finally, the heat transfer equation is solved to determine the temperature distribution. Heat loss due to blood perfusion is also accounted for. The simulations were performed on the IBM Blue Gene/P massively parallel computer.

  13. Influence of plasma parameters and substrate temperature on the structural and optical properties of CdTe thin films deposited on glass by laser ablation

    SciTech Connect

    Quiñones-Galván, J. G.; Santana-Aranda, M. A.; Pérez-Centeno, A.; Camps, Enrique; Campos-González, E.; Guillén-Cervantes, A.; Santoyo-Salazar, J.; Zelaya-Angel, O.; Hernández-Hernández, A.

    2015-09-28

    In the pulsed laser deposition of thin films, plasma parameters such as energy and density of ions play an important role in the properties of materials. In the present work, cadmium telluride thin films were obtained by laser ablation of a stoichiometric CdTe target in vacuum, using two different values for: substrate temperature (RT and 200 °C) and plasma energy (120 and 200 eV). Structural characterization revealed that the crystalline phase can be changed by controlling both plasma energy and substrate temperature; which affects the corresponding band gap energy. All the thin films showed smooth surfaces and a Te rich composition.

  14. Nanolaminates with Novel Properties Fabricated Using Atomic Layer Deposition Techniques

    DTIC Science & Technology

    2006-07-01

    ALD can be deposited on the A120 3 ALD layer to form a conducting layer . Subsequently, an...additional A120 3 ALD layer can be deposited on the W ALD layer to form an additional insulating layer . This A120 3/W/ A120 3 layer on the carbon nanotube...NOTES 14. ABSTRACT This AFOSR grant worked on the development, understanding and applications of atomic layer deposition ( ALD ) for nanolaminates. ALD

  15. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  16. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  17. Sn 1-x VxOy thin films deposited by pulsed laser ablation for gas sensing devices

    NASA Astrophysics Data System (ADS)

    Duhalde, Stella; Vignolo, M. F.; Quintana, G.; Mercader, R.; Lamagna, Antonino

    2000-02-01

    Polycrystalline pure and V-doped SnO2 thin films have been prepare by pulsed laser deposition (PLD) on Si substrates, with a Si3Ni4 buffered layer. PLD technique, under proper conditions, has probed to produce nanocrystalline-structured materials, which are suitable for gas sensing. In this work we analyze the role of V doping in the structural properties and in the electrical conductivity of the films. The deposition temperature was fixed at 600 degrees C and the films were grown in oxygen atmosphere. The films resulted nanocrystalline with 50 to 120 nm average grain size connected by necks with high surface areas. The microstructural and electronic properties of all the films were analyzed using scanning-electron microscopy, x-ray diffraction and conversion electron Moessbauer spectroscopy. Electrical conductance in a dynamic regime in dry synthetic air has been evaluated as a function of temperature. Moessbauer spectra reveal the presence of 15 percent of Sn2+ in the 5at. percent V-doped films. At about 340 degrees C, a strong increase in the conductivity of the films occurs. Possible explanations are that thermal energy could excite electrons from the vanadium ions into the crystal's conduction band or promotes the diffusion of surface oxygen vacancies towards the bulk, increasing strongly the conductivity of the film.

  18. Radiofrequency ablation for oral and maxillofacial pathologies: A description of the technique

    NASA Astrophysics Data System (ADS)

    Tandon, Rahul; Stevens, Timothy W.; Herford, Alan S.

    2014-03-01

    Introduction: Radiofrequency ablation (RFA) refers to a high-frequency current that heats and coagulates tissue. In the standard RFA setup, three components are used: a generator, an active electrode, and a dispersive electrode. RFA has garnered support in many of the surgical fields as an alternative to traditional procedures used in tumor removal. Other methods can prove to be more invasive and disfiguring to the patient, in addition to the unwarranted side effects; however, RFA provides a more localized treatment, resulting in decreased co-morbidity to the patient. Currently, its use in the field of oral and maxillofacial surgery is limited, as its technology has not reached our field. By describing its limited use to the optics community, we hope to expand its uses and provide patients with one more alternative treatment option. Methods and Uses: We will describe the use of RFA on three types of pathology: lymphangioma, rhabdomyoscarcoma, oral squamous cell carcinoma, and neoplastic osseous metastasis. The majority of treatments geared towards these pathologies involve surgical resection, followed by reconstruction. However, damage to vital structures coupled with esthetic disfigurement makes RFA a more valuable alternative. In many of the cases, the tumors were successfully removed without recurrence. Conclusion: While the use of RFA has been scarce in our field, we believe that with more exposure it can gain momentum as an alternative to current treatment options. However, there are improvements that we feel can be made, helping to maximize its effectiveness.

  19. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect

    Purandare, Yashodhan Ehiasarian, Arutiun; Hovsepian, Papken; Santana, Antonio

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  20. The indications for and techniques and outcomes of ablative procedures of the distal ulna. The Darrach resection, hemiresection, matched resection, and Sauvé-Kapandji procedure.

    PubMed

    Lichtman, D M; Ganocy, T K; Kim, D C

    1998-05-01

    Several ablative procedures exist for the treatment of distal radio-ulnar joint arthritis. This article describes the indications, techniques, pitfalls, and outcomes for the four most popular procedures: Darrach, hemiresection-interposition, Sauvé-Kapandji, and matched ulnar resection. The authors explain their personal algorithm for treatment selection, emphasizing patient requirements versus the physiologic characteristics of each procedure.

  1. Alternate deposition and hydrogen doping technique for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Myong, Seung Yeop; Lim, Koeng Su

    2006-08-01

    We propose an alternate deposition and hydrogen doping (ADHD) technique for polycrystalline hydrogen-doped ZnO thin films, which is a sublayer-by-sublayer deposition based on metalorganic chemical vapor deposition and mercury-sensitized photodecomposition of hydrogen doping gas. Compared to conventional post-deposition hydrogen doping, the ADHD process provides superior electrical conductivity, stability, and surface roughness. Photoluminescence spectra measured at 10 K reveal that the ADHD technique improves ultraviolet and violet emissions by suppressing the green and yellow emissions. Therefore, the ADHD technique is shown to be very promising aid to the manufacture of improved transparent conducting electrodes and light emitting materials.

  2. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation.

  3. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  4. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  5. DEVELOPMENT OF LiCo0.90Mg0.05Al0.05O2 THIN FILMS BY PULSED LASER DEPOSITION TECHNIQUE

    NASA Astrophysics Data System (ADS)

    Vasanthi, R.; Ruthmangani, I.; Manoravi, P.; Joseph, M.; Kesavamoorthy, R.; Sundar, C.; Selladurai, S.

    LiCo0.90Mg0.05Al0.05O2 bulk powders are synthesized using combustion process and made into a thin film by depositing on silicon wafer using a pulsed laser ablation technique. A comparative study by SEM (Scanning Electron Microscope) XRD (X-ray diffraction), Infrared spectroscopy and Raman Spectroscopy is performed on both bulk and PLD thin films.

  6. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  7. Monitoring radiofrequency ablation using real-time ultrasound Nakagami imaging combined with frequency and temporal compounding techniques.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Wang, Chiao-Yin; Ma, Hsiang-Yang; Lin, Chung-Chih; Tsui, Po-Hsiang

    2015-01-01

    Gas bubbles induced during the radiofrequency ablation (RFA) of tissues can affect the detection of ablation zones (necrosis zone or thermal lesion) during ultrasound elastography. To resolve this problem, our previous study proposed ultrasound Nakagami imaging for detecting thermal-induced bubble formation to evaluate ablation zones. To prepare for future applications, this study (i) created a novel algorithmic scheme based on the frequency and temporal compounding of Nakagami imaging for enhanced ablation zone visualization, (ii) integrated the proposed algorithm into a clinical scanner to develop a real-time Nakagami imaging system for monitoring RFA, and (iii) investigated the applicability of Nakagami imaging to various types of tissues. The performance of the real-time Nakagami imaging system in visualizing RFA-induced ablation zones was validated by measuring porcine liver (n = 18) and muscle tissues (n = 6). The experimental results showed that the proposed algorithm can operate on a standard clinical ultrasound scanner to monitor RFA in real time. The Nakagami imaging system effectively monitors RFA-induced ablation zones in liver tissues. However, because tissue properties differ, the system cannot visualize ablation zones in muscle fibers. In the future, real-time Nakagami imaging should be focused on the RFA of the liver and is suggested as an alternative monitoring tool when advanced elastography is unavailable or substantial bubbles exist in the ablation zone.

  8. Monitoring Radiofrequency Ablation Using Real-Time Ultrasound Nakagami Imaging Combined with Frequency and Temporal Compounding Techniques

    PubMed Central

    Zhou, Zhuhuang; Wu, Shuicai; Wang, Chiao-Yin; Ma, Hsiang-Yang; Lin, Chung-Chih; Tsui, Po-Hsiang

    2015-01-01

    Gas bubbles induced during the radiofrequency ablation (RFA) of tissues can affect the detection of ablation zones (necrosis zone or thermal lesion) during ultrasound elastography. To resolve this problem, our previous study proposed ultrasound Nakagami imaging for detecting thermal-induced bubble formation to evaluate ablation zones. To prepare for future applications, this study (i) created a novel algorithmic scheme based on the frequency and temporal compounding of Nakagami imaging for enhanced ablation zone visualization, (ii) integrated the proposed algorithm into a clinical scanner to develop a real-time Nakagami imaging system for monitoring RFA, and (iii) investigated the applicability of Nakagami imaging to various types of tissues. The performance of the real-time Nakagami imaging system in visualizing RFA-induced ablation zones was validated by measuring porcine liver (n = 18) and muscle tissues (n = 6). The experimental results showed that the proposed algorithm can operate on a standard clinical ultrasound scanner to monitor RFA in real time. The Nakagami imaging system effectively monitors RFA-induced ablation zones in liver tissues. However, because tissue properties differ, the system cannot visualize ablation zones in muscle fibers. In the future, real-time Nakagami imaging should be focused on the RFA of the liver and is suggested as an alternative monitoring tool when advanced elastography is unavailable or substantial bubbles exist in the ablation zone. PMID:25658424

  9. Midsubstance Tendinopathy, Percutaneous Techniques (Platelet-Rich Plasma, Extracorporeal Shock Wave Therapy, Prolotherapy, Radiofrequency Ablation).

    PubMed

    Smith, William Bret; Melton, Will; Davies, James

    2017-04-01

    The focus of this article is to present the current options available for noninvasive and percutaneous treatment options for noninsertional Achilles tendinopathy. An attempt is made to offer recommendations for both the treatment techniques as well as postprocedure protocols to be considered. Additionally, because there are numerous treatment options in this category, the different techniques are summarized in a chart format with a short list of pros and cons as well as the levels of evidence in the literature to support the different modalities.

  10. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  11. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    PubMed

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast, for the application of crystalline HA coatings. To-date, reports on the CoBlast technique have been limited to titanium alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing.

  12. Study of WSi{sub 2} and CoSi{sub 2} thin films deposited by laser ablation

    SciTech Connect

    Glebovsky, V.G.; Ermolov, S.N.; Oganyan, R.A.; Stinov, E.D.

    1995-12-31

    It has been shown that pure massive targets of tungsten and cobalt disilicide can be obtained from the liquid state by means of a set of metallurgical methods. The conditions of laser ablation of the targets ensuring the preparation of tungsten and cobalt silicide films of the specific electric resistance 50 and 30 {micro}{Omega} cm respectively have been studied. The grazing beam X-ray diffractometry were used to investigate their phase and elemental composition of the films. The method in question has been shown to be promising for the preparation of films of other refractory-metal silicides.

  13. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect

    Devloo-Casier, Kilian Detavernier, Christophe; Dendooven, Jolien

    2014-01-15

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  14. Effectiveness of various thermal ablation techniques for the treatment of nodular thyroid disease--comparison of laser-induced thermotherapy and bipolar radiofrequency ablation.

    PubMed

    Ritz, Jörg-Peter; Lehmann, Kai S; Schumann, Thomas; Knappe, Verena; Zurbuchen, Urte; Buhr, Heinz J; Holmer, Christoph

    2011-07-01

    Alternative minimally invasive treatment options such as radiofrequency ablation (RFA) or laser-induced thermotherapy (LITT) are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. So far, studies have not been able to show a secure advantage for neither LITT nor RFA. The aim of this study was to compare the two ablation procedures in terms of their effectiveness. Thermal lesions were induced in porcine thyroid glands either by LITT or bipolar RFA ex vivo (n = 110 each) and in vivo (n = 10 each) using power settings between 10 and 20 W. Temperature spread during application was documented in 5- and 10-mm distance of the applicator. Postinterventional lesion diameters were measured and lesion size was calculated. Furthermore, enzyme histochemical analysis of the thyroid tissue was performed in vivo. Lesion volumes induced by LITT ranged between 0.74 ± 0.18 cm(3) (10 W) and 3.80 ± 0.41 cm(3) (20 W) with a maximum of 5.13 ± 0.16 cm(3) at 18 W. The inducible lesion volumes by RFA were between 2.43 ± 0.68 cm(3) (10 W) and 0.91 ± 0.71 cm(3) (20 W) with a maximum of 2.80 ± 0.85 cm(3) at 14 W. The maximum temperatures were 112.9 ± 9.2°C (LITT) and 61.6 ± 13.9°C (RFA) at a distance of 5 mm and 73.2 ± 6.7°C (LITT) and 53.5 ± 8.6°C (RFA) at a distance of 10 mm. The histochemical analysis demonstrates a complete loss of NADPH dehydrogenase activity in thermal lesions as a sign of irreversible cell damage both for LITT and RFA. This study is the first to compare the effectiveness of laser-induced thermotherapy and radiofrequency ablation of thyroid tissue. LITT as well as RFA are suitable for singular thyroid nodules and induces reproducible clinically relevant lesions in an appropriate application time. The maximum inducible lesion volumes by LITT are significantly larger than by RFA with the devices used herein.

  15. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  16. Technique for Evaluating the Erosive Properties of Ablative Internal Insulation Materials

    NASA Technical Reports Server (NTRS)

    McComb, J. C.; Hitner, J. M.

    1989-01-01

    A technique for determining the average erosion rate versus Mach number of candidate internal insulation materials was developed for flight motor applications in 12 inch I.D. test firing hardware. The method involved the precision mounting of a mechanical measuring tool within a conical test cartridge fabricated from either a single insulation material or two non-identical materials each of which constituted one half of the test cartridge cone. Comparison of the internal radii measured at nine longitudinal locations and between eight to thirty two azimuths, depending on the regularity of the erosion pattern before and after test firing, permitted calculation of the average erosion rate and Mach number. Systematic criteria were established for identifying erosion anomalies such as the formation of localized ridges and for excluding such anomalies from the calculations. The method is discussed and results presented for several asbestos-free materials developed in-house for the internal motor case insulation in solid propellant rocket motors.

  17. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    DTIC Science & Technology

    2010-06-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The operational parameters of the automated Spray- LbL technique for thin film deposition have been investigated in...order to-identify their effects on film thickness and roughness. We use the automated Spray- LbL system developed at MIT by the Hammond lab to build...This interdiffusion is investigated using both the conventional dipped LbL and Spray- LbL deposition techniques. Interdiffusion is shown to be dependent

  18. Laser ablation ICP-MS and traditional micromorphological techniques applied to the study of different genetic horizons in thin sections: soil genesis and trace element distribution

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Barca, Donatella; de Rosa, Rosanna; Pulice, Iolanda; Vacca, Andrea

    2010-05-01

    This work focuses on an innovative methodological approach to investigate in situ chemical composition of trace and rare earth (REE) elements in discrete soil features from different soil horizons: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to clay coatings, pedogenic matrix and skeletal parent rock fragments in thin sections, coupled with traditional pedological investigations, specially clay mineralogy and micromorphology. Analyses were performed on 80 μm-thick sections obtained from undisturbed soil samples, which represent three reddish argillic (Bt) horizons from an Alfisol developed on late Pleistocene slope deposits and three brown organic-mineral (A) horizons from an Entisol formed on Holocene aggrading fluvial sediments in the Muravera area (southeast Sardinia, Italy). Validation of the LA-ICP-MS technique provides in situ accurate and reproducible (RSD 13-18%) analysis of low concentration trace elements in the studied soil samples (0.001-0.1 ppm). Our results showed a high reliability of this method on soil thin sections and revealed that concentrations of trace and rare earth elements in the different portions of a soil profile can be used to investigate their distribution, as a response to soil-forming processes. A general trend of increase of most trace elements from rock fragments to (both clayey and organic-rich) soil matrix, to clay coatings in argillic horizons is clearly highlighted. On this basis a prominent role of pedogenetic processes in element fractionation and distribution during weathering can be supposed. In particular, element adsorption onto reactive sites of organic matter and clay particles (and possibly Fe-oxyhydroxides) and clay illuviation appear the main pedogenetic processes able to promote element enrichment after their release from the weathering of primary minerals. As clay coatings exhibit the highest concentration of trace elements, and specifically of REEs, and represent the most

  19. Thermoluminescent response of C-modified Al2O3 thin films deposited by parallel laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Garcés, J.; Escobar-Alarcón, L.; Gonzalez-Martinez, P. R.; Solís-Casados, D. A.; Romero, S.; Gonzalez-ZAvala, F.; Haro-Poniatowski, E.

    2017-01-01

    Aluminium oxide thin films modified with different amounts of carbon were prepared using a parallel laser ablation plasmas configuration. The effect of the amount of carbon incorporated in the films on their compositional, morphological, structural, and thermoluminescent properties was studied. The results showed that films with different C content, from 11 to 33 at. %, were obtained. The structural characterization revealed the growth of an amorphous material. Surface morphology of the obtained thin films showed smooth surfaces. The films were exposed to UV and gamma radiation (Co-60) in order to study their thermoluminescence response. The results tend to indicate that carbon incorporation into the alumina favours the increase of a high temperature TL peak.

  20. A hybrid sequential deposition fabrication technique for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Stanley, Kevin G.; Czyzewska, Eva K.; Vanderhoek, Tom P. K.; Fan, Lilian L. Y.; Abel, Keith A.; Wu, Q. M. Jonathan; Parameswaran, M. Ash

    2005-10-01

    Micro fuel cell systems have elicited significant interest due to their promise for instantly rechargeable, longer duration and portable power. Most micro fuel cell systems are either built as miniaturized plate-and-frame or silicon-based microelectromechanical systems (MEMS). Plate-and-frame systems are difficult to fabricate smaller than 20 cm3. Existing micro fuel cell designs cannot meet the cost, scale and power requirements of some portable power markets. Traditional MEMS scaling advantages do not apply to fuel cells because the minimum area for the fuel cell is fixed by the catalyst area required for a given power output, and minimum volume set by mass transport limitations. We have developed a new hybrid technique that borrows from both micro and macro machining techniques to create fuel cells in the 1-20 cm3 range, suitable for cell phones, PDAs and smaller devices.

  1. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  2. Ablation-cooled material removal with ultrafast bursts of pulses.

    PubMed

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  3. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.

    PubMed

    Maleke, C; Konofagou, E E

    2008-03-21

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, p<.005). After sustained heating, the tissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, p<0.001). Repeated

  4. Development of differential deposition technique for figure corrections in grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2009-08-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter-type grazing-incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of optics by limiting the achievable angular resolution. In the differential deposition technique, material is selectively deposited in varying thickness along the length of the optic to minimize these deviations, thereby improving the overall figure. The process is being tested on focusing X-ray optics being developed at MSFC for small-animal radionuclide imaging. The required spatial resolution for these optics is 100 μm (30 arc secs), which can be achieved with the electroformnickel- replication fabrication technique regularly employed at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim to significantly improve the resolution beyond this value.

  5. A technique for eliminating white phosphorus deposits in vapor phase epitaxy systems

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Hoffman, R. W.

    1993-01-01

    A technique of heating the exhaust lines is described whereby phosphorus in the exhaust portion of an organometallic vapor phase epitaxy reactor is encouraged to deposit in the red form rather than the pyrophoric white form. This technique is simple, effective, and does not hinder or limit the conditions under which the reactor may be operated.

  6. Optimizing the sputter deposition process of polymers for the Storing Matter technique using PMMA.

    PubMed

    Turgut, Canan; Sinha, Godhuli; Lahtinen, Jouko; Nordlund, Kai; Belmahi, Mohammed; Philipp, Patrick

    2016-10-01

    Quantitative analyses in secondary ion mass spectrometry (SIMS) become possible only if ionization processes are controlled. The Storing Matter technique has been developed to circumvent this so-called matrix effect, primarily for inorganic samples, but has also been extended to organic samples. For the latter, it has been applied to polystyrene in order to investigate the extent of damage in the polymer, its fragmentation during the sputter deposition process and the effect of the deposition process on the spectra taken by Time-of-Flight SIMS (ToF-SIMS). In this work, a multi-technique approach, which employs the Storing Matter technique for deposition and ToF-SIMS and X-ray photoelectron spectroscopy for characterization, is used to enhance the control of the deposition process, including the thickness of the deposit, the alteration of the source film and the influence of polymer composition on the Storing Matter process. Poly (methyl methacrylate) (PMMA) is used for this work. More detailed information about the sticking of polymer fragments on the metal collector is obtained by density functional theory calculations. This work allows for the conclusion that a part of the fragments deposited on the collector surface diffuses on the latter, reacts and recombines to form larger fragments. The behaviour observed for PMMA is similar to polystyrene, showing that oxygen has no major influence on the processes occurring during the sputter deposition process. Additionally, we have developed a new methodology using 2D ToF-SIMS images of the deposit to monitor the deposit thickness and to identify surface contaminations. The latter are not only located at the position of the deposit but all over the collector surface. Copyright © 2016 John Wiley & Sons, Ltd.

  7. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  8. Percutaneous ablation of adrenal tumors.

    PubMed

    Venkatesan, Aradhana M; Locklin, Julia; Dupuy, Damian E; Wood, Bradford J

    2010-06-01

    Adrenal tumors comprise a broad spectrum of benign and malignant neoplasms and include functional adrenal adenomas, pheochromocytomas, primary adrenocortical carcinoma, and adrenal metastases. Percutaneous ablative approaches that have been described and used in the treatment of adrenal tumors include percutaneous radiofrequency ablation, cryoablation, microwave ablation, and chemical ablation. Local tumor ablation in the adrenal gland presents unique challenges, secondary to the adrenal gland's unique anatomic and physiological features. The results of clinical series employing percutaneous ablative techniques in the treatment of adrenal tumors are reviewed in this article. Clinical and technical considerations unique to ablation in the adrenal gland are presented, including approaches commonly used in our practices, and risks and potential complications are discussed.

  9. Laser ablation sample transfer for mass spectrometry imaging.

    PubMed

    Park, Sung-Gun; Murray, Kermit K

    2015-01-01

    Infrared laser ablation sample transfer (IR-LAST) is a novel ambient sampling technique for mass spectrometry. In this technique, a pulsed mid-IR laser is used to ablate materials that are collected for mass spectrometry analysis; the material can be a solid sample or deposited on a sample target. After collection, the sample can be further separated or analyzed directly by mass spectrometry. For IR-LAST sample transfer tissue imaging using MALDI mass spectrometry, a tissue section is placed on a sample slide and material transferred to a target slide by scanning the tissue sample under a focused laser beam using transmission-mode (back side) IR laser ablation. After transfer, the target slide is analyzed using MALDI imaging. The spatial resolution is approximately 400 μm and limited by the spread of the laser desorption plume. IR-LAST for MALDI imaging provides several new capabilities including ambient sampling, area to spot concentration of ablated material, multiple ablation and analysis from a single section, and direct deposition on matrix-free nanostructured targets.

  10. Structural characterization of SrBi_2Ta_2O9 ferroelectric thin films deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Moret, Mona P.; Zallen, Richard; Vijay, Dilip P.; Desu, Seshu B.

    1996-03-01

    Thin films of the Aurivillius phase layered structure ferroelectric SrBi_2Ta_2O9 have potential applications for data storage. For such applications, the films need to exhibit good hysteresis properties as well as good endurance against fatigue over many switching cycles. Thin films of this material were prepared by pulsed laser deposition footnote S.B.Desu, D.P.Vijay, Mater. Sci. Eng. B32, 75 (1995). The film properties depend on the deposition parameters. We have studied the structure of the films using x-ray diffraction, Raman scattering, and infrared absorption. Pressed pellets and small single crystals footnote R.E Newnham & al., Mat. Res. Bul. 8, 1183 (1973) have also been studied. The Cmc21 structure reported by Newnham & al. has been confirmed as the main phase in the films. The Raman and infrared results have been analyzed in terms of lattice fundamentals.

  11. Technique, Efficiency and Safety of Different Nerve Blocks for Analgesia in Laser Ablation and Sclerotherapy for Lower Limb Superficial Venous Insufficiency – A Multicentre Experience

    PubMed Central

    Joy, Binu; Sandhyala, Abhilash; Naiknaware, Kiran; Ray, Brijesh; Vijayakumar

    2016-01-01

    Introduction Laser ablation and sclerotherapy, as minimally invasive alternatives to surgery for varicose veins, have good efficacy, safety and cosmetic result. Some form of anaesthesia is generally used for pain control. Aim To describe the technique and evaluate the efficacy and safety of femoral, saphenous and sciatic nerve blocks in isolation or in combination for analgesia during laser ablation and sclerotherapy for lower limb varicose veins. Materials and Methods In this prospective observational study, over a period of 33 months, in 856 limbs of 681 patients with varicose veins, ultrasound guided femoral, saphenous and sciatic nerve blocks for analgesia were performed in 769, 808 and 52 instances respectively; following which, endovenous laser ablation, sclerotherapy or combination of both were carried out using standard practice. After completion of the procedure, Visual Analogue Pain Scale (VAS) was used for pain assessment, and muscle weakness was assessed clinically. Results Nerve blocks could be successfully performed in all patients. Observed pain scores were 0 or 1 in 591 (69%), 2 or 3 in 214 (25%) and 4 in 51 (9%) legs with no score more than 4. Higher grades of pain were noted in femoral blocks during early stages of our learning curve. Mild to moderate muscle weakness was observed in 163 (2%) and 7 (13%) patients who underwent femoral and sciatic block respectively, which persisted for an average of two and a half hours and none beyond four and a half hours; saphenous nerve being a pure sensory nerve, did not cause motor weakness. Conclusion For analgesia during laser ablation and/or sclerotherapy of varicose veins, ultrasound guided nerve blocks can be easily and quickly performed. They provide excellent pain relief and comfort to the patient and to the operator; and they do not cause any additional complication. PMID:28050474

  12. Effect of Growth Temperature on the Magnetic, Microwave, and Cation Inversion Properties on NiFe2O4 Thin Films Deposited by Pulsed Laser Ablation Deposition

    SciTech Connect

    Chinnasamy,C.; Yoon, S.; Yang, A.; Baraskar, A.; Vittoria, C.; Harris, V.

    2007-01-01

    First principles band structure calculations suggest that the preferential occupation of Ni{sup 2+} ions on the tetrahedral sites in NiFe{sub 2}O{sub 4} would lead to an enhancement of the exchange integral and subsequently the Neel temperature and magnetization. To this end, we have deposited NiFe{sub 2}O{sub 4} films on MgO substrates by pulsed laser deposition. The substrate temperature was varied from 700 to 900 {sup o}C at 5 mTorr of O2 pressure. The films were annealed at 1000 {sup o}C for different times prior to their characterization. X-ray diffraction spectra showed either (100) or (111) orientation with the spinel structure dependent on the substrate orientation. Magnetic studies showed a magnetization value of 2.7 kG at 300 K. The magnetic moment was increased to the bulk value as a result of postdeposition annealing at 1000 {sup o}C. The as produced films show that the ferromagnetic resonance linewidth at 9.61 GHz was 1.5 kOe, and it was reduced to 0.34 kOe after postannealing at 1000 {sup o}C. This suggests that the annealing led to the redistribution of Ni{sup 2+} ions to their equilibrium octahedral sites. Further, it is shown that the magnetically preferred direction of H{sub a} can be aligned perpendicular to the film plane when films are grown with a fixed oxygen pressure of 5 mTorr for films deposited at 700 and 900 {sup o}C.

  13. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences.

    PubMed

    Carrafiello, Gianpaolo; Laganà, Domenico; Mangini, Monica; Fontana, Federico; Dionigi, Gianlorenzo; Boni, Luigi; Rovera, Francesca; Cuffari, Salvatore; Fugazzola, Carlo

    2008-01-01

    Local ablative techniques have been developed to enable local control of unresectable tumors. Ablation has been performed with several modalities including ethanol ablation, laser ablation, cryoablation, and radiofrequency ablation. Microwave technology is a new thermal ablation technique for different types of tumors, providing all the benefits of radiofrequency and substantial advantages. Microwave ablation has been applied to liver, lung, kidney and more rarely to bone, pancreas and adrenal glands. Preliminary works show that microwave ablation may be a viable alternative to other ablation techniques in selected patients. However further studies are necessary to confirm short- and long-term effectiveness of the methods and to compare it with other ablative techniques, especially RF.

  14. Growth of cluster assembled ZnO film by nanocluster beam deposition technique

    SciTech Connect

    Halder, Nilanjan

    2015-06-24

    ZnO is considered as one of the most promising material for optoelectronic devices. The present work emphasizes production of cluster assembled ZnO films by a UHV nanocluster beam deposition technique where the nanoclusters were produced in a laser vaporization cluster source. The microstructural and the optical properties of the ZnO nanocluster film deposited were investigated. As the wet chemical processes are not compatible with current solid state methods of device fabrication, therefore alternative UHV technique described in the paper is the need of the hour.

  15. Catheter ablation.

    PubMed

    Fromer, M; Shenasa, M

    1991-02-01

    Catheter ablation is gaining increasing interest for the therapy of symptomatic, sustained arrhythmias of various origins. The scope of this review is to give an overview of the biophysical aspects and major characteristics of some of the most widely used energy sources in catheter ablation, e.g., the discharge of conventional defibrillators, modified defibrillators, laser light, and radiofrequency current application. Results from animal studies are considered to explain the basic mechanisms of catheter ablation. The recent achievements with the use of radiofrequency current to modify or ablate cardiac conduction properties are outlined in more detail.

  16. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    PubMed

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  17. Properties of all YBa sub 2 Cu sub 3 O sub 7 Josephson edge junctions prepared by in situ laser ablation deposition

    SciTech Connect

    Koren, G.; Aharoni, E.; Polturak, E.; Cohen, D. )

    1991-02-11

    Thin-film YBa{sub 2}Cu{sub 3}O{sub 7}-YBa{sub 2}Cu{sub 3}O{sub 7} edge junctions of 0.4{times}10 {mu}m{sup 2} cross section were prepared {ital in} {ital situ} by a multistep laser ablation deposition process. The fabrication time was about 3 h and the yield of good devices was 50%. Typical junctions reached zero resistance at 72 K and had a critical current density {ital J}{sub {ital c}} of 300 A/cm{sup 2} at 70 K. Their {ital J}{sub {ital c}} as a function of temperature increased slowly with decreasing temperature down to 65 K and much faster below it. In the region of low {ital J}{sub {ital c}} we observed suppression of the critical current by a magnetic field. Under microwave radiation clear Shapiro steps were observed whose magnitude versus the microwave field agreed qualitatively with the resistively shunted junction model of a current biased junction.

  18. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks

    NASA Astrophysics Data System (ADS)

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL- 1 with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  19. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    SciTech Connect

    Perkins, W.T.; Pearce, N.J.G.; Jeffries, T.E. )

    1993-01-01

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs.

  20. Influence of solution deposition rate on properties of V2O5 thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-07-01

    Vanadium oxide (V2O5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films' crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V2O5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  1. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review.

    PubMed

    Löndahl, Jakob; Möller, Winfried; Pagels, Joakim H; Kreyling, Wolfgang G; Swietlicki, Erik; Schmid, Otmar

    2014-08-01

    Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30-70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data.

  2. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review

    PubMed Central

    Möller, Winfried; Pagels, Joakim H.; Kreyling, Wolfgang G.; Swietlicki, Erik; Schmid, Otmar

    2014-01-01

    Abstract Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30–70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data. PMID:24151837

  3. Exploring the potential of Multiphoton Laser Ablation Lithography (MP-LAL) as a reliable technique for sub-50nm patterning

    NASA Astrophysics Data System (ADS)

    Manouras, Theodoros; Angelakos, Evangelos; Vamvakaki, Maria; Argitis, Panagiotis

    2016-03-01

    In this work, direct-write, high-resolution multiphoton photolithography using doped random methacrylic co-polymer thin films is demonstrated, using a continuous wave ultraviolet (UV) 375 nm diode laser source. The random copolymers are specifically designed for enhancing resolution and addressing issues arising from laser ablation processes, such as the berm-formation around the created holes in the film, which can be accessed by tuning the polymeric material properties including Tg, surface adhesion etc. The methacrylic copolymer is composed of monomers, each of them especially selected to improve individual properties. The material formulations comprise perylene molecules absorbing at the exposure wavelength where the polymeric matrix is transparent. It was found that if the radiation intensity exceeds a certain threshold, the perylene molecules transfer the absorbed light energy to the acrylate polymer matrix leading to polymer degradation and ablation of the exposed areas. The non-linear nature of the light absorption and energy transfer processes resulted in the creation of holes with critical dimensions well below the used wavelength reaching the sub 50 nm domain. Arrays of holes having various dimensions were fabricated in the laser ablation experiments using a directwrite laser system developed specifically for the purposes of this project.

  4. Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits

    PubMed Central

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Watanabe, Takahiro; Ogawa, Yasumasa; Komai, Takeshi; Tsuchiya, Noriyoshi

    2014-01-01

    Geochemical discrimination has recently been recognised as a potentially useful proxy for identifying tsunami deposits in addition to classical proxies such as sedimentological and micropalaeontological evidence. However, difficulties remain because it is unclear which elements best discriminate between tsunami and non-tsunami deposits. Herein, we propose a mathematical methodology for the geochemical discrimination of tsunami deposits using machine-learning techniques. The proposed method can determine the appropriate combinations of elements and the precise discrimination plane that best discerns tsunami deposits from non-tsunami deposits in high-dimensional compositional space through the use of data sets of bulk composition that have been categorised as tsunami or non-tsunami sediments. We applied this method to the 2011 Tohoku tsunami and to background marine sedimentary rocks. After an exhaustive search of all 262,144 (= 218) combinations of the 18 analysed elements, we observed several tens of combinations with discrimination rates higher than 99.0%. The analytical results show that elements such as Ca and several heavy-metal elements are important for discriminating tsunami deposits from marine sedimentary rocks. These elements are considered to reflect the formation mechanism and origin of the tsunami deposits. The proposed methodology has the potential to aid in the identification of past tsunamis by using other tsunami proxies. PMID:25399750

  5. Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.

    PubMed

    Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun

    2012-02-28

    While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

  6. Preliminary Evaluation of Techniques to Fabricate Beryllium, Polyimide, and Ge-doped CH/CD Ablator Materials

    SciTech Connect

    Cook, B; Letts, S; Nikroo, A; Nobile, A; McElfresh, M; Cooley, J; Alexander, D

    2004-11-08

    This report including appendices provides information to complete this deliverable. It summarizes the important features of each ablator material, with particular focus to its usefulness for ignition capsules. More detailed discussions of each ablator type are in the Appendix. Included at the end of each separate discussion in the Appendix is a list of all published work with an ICF focus on that ablator type. This report is organized into Be based and polymer (C) based ablators. We summarize status, outstanding issues, and how we plan to address them. Details are in the Appendix. For Be there are two fabrication routes, one by machining bulk pieces into hemi-shells which are then bonded together, and the other by sputtering Be with Cu dopant onto spherical plastic mandrels to build up a wall. This method allows for radial variation in the Cu dopant concentration, while the machining approach is best suited to a uniform doping level. For plastic, we have already made a down select, eliminating polyimide because its performance as an ablator has been seen to be significantly different from that predicted by simulations. The other polymer, GDP (glow discharge polymer or sometimes called plasma polymer) comes in both a normal (hydrogenated) and deuterated form. There are differences between them (besides the H or D) and these will be detailed. The choice between them will be determined in part by cryogenic measurement of the IR absorption spectrum of DT scheduled to occur in the next few months. An initial list of specifications for ignition targets exists. However these specifications are continuing to evolve. This is due to evolving plans for NIF's deliverable energy and to more refined design simulations. Many requirements are not well specified due to lack of knowledge of the effect on the implosion. These requirements include: grain size and texture, fill hole size, fill tube size, bond joint thickness, allowable porosity (size and number), diameter and wall

  7. Radiofrequency Ablation for Liver Cancer.

    PubMed

    Jacobs, Amy

    2015-01-01

    Interventional ablative technologies aided by imaging techniques such as ultrasonography, computed tomography, and magnetic resonance imaging have been crucial in managing patients with primary liver cancer and liver metastases over the past 20 years. Several ablative technologies have been used to treat liver cancer; however, radiofrequency ablation (RFA) has emerged as the most common ablative therapy for hepatic lesions, both in the United States and globally. RFA is the treatment of choice for patients who cannot have surgical resection of the liver. This article focuses on the role of imaging in RFA treatment of primary and metastatic hepatic lesions.

  8. A lithium depth-marker technique for rapid erosion and deposition measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. M.; Pang, A.; Martinez-Sanchez, M.; Whyte, D. G.

    2014-01-01

    A novel, high-resolution technique has been developed for the measurement of erosion and deposition in solid material surfaces. The technique uses a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) to determine the change in depth of a previously implanted marker layer consisting of 7Li. A scoping study shows that 7Li is an ideal marker candidate due to a high Q (∼18 MeV) nuclear reaction, 7Li(p,α)4He. Net erosion or deposition is measured by NRA of modified alpha energy passing through the bulk material. The reaction's high cross-section provides for the fast time resolution needed to measure erosion from high flux plasmas, and a highly penetrating proton beam provides for a large range of erosion/deposition measurements. Additionally, the implantation of low-Z Li leads to relatively low vacancy concentrations in the solid material due to implantation. This technique thus provides greater assurance that the measured erosion rate is indicative of the solid material: due to both the low vacancy production and the fact that no films or deposits are involved. Validation was performed by comparing the measured and predicted amount of erosion based on previously measured sputtering yields; the two were found to agree, within the uncertainty of the experiment. The depth resolution of the techniques is ∼60 nm at a net erosion depth of about 1 μm. The benefits of this technique are summarized as: short time scales (minutes) to obtain results, the marker layer can be used in any solid material, greater assurance that the measured erosion is indicative of the unperturbed solid material, and the continuous monitoring of the surface composition for contaminants and/or identification of deposited species using RBS simultaneous with the NRA.

  9. Catheter Ablation for Ventricular Arrhythmias

    PubMed Central

    Nof, Eyal; Stevenson, William G; John, Roy M

    2013-01-01

    Catheter ablation has emerged as an important and effective treatment option for many recurrent ventricular arrhythmias. The approach to ablation and the risks and outcomes are largely determined by the nature of the severity and type of underlying heart disease. In patients with structural heart disease, catheter ablation can effectively reduce ventricular tachycardia (VT) episodes and implantable cardioverter defibrillator (ICD) shocks. For VT and symptomatic premature ventricular beats that occur in the absence of structural heart disease, catheter ablation is often effective as the sole therapy. Advances in catheter technology, imaging and mapping techniques have improved success rates for ablation. This review discusses current approaches to mapping and ablation for ventricular arrhythmias. PMID:26835040

  10. Differential deposition technique for figure corrections in grazing-incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.; Gregory, Don A.

    2011-10-01

    A differential deposition technique was investigated as a way to minimize axial figure errors in full-shell, grazing-incidence, reflective x-ray optics. These types of optics use a combination of off-axis conic segments--hyperbolic, parabolic, and/or elliptical, to reflect and image x-rays. Several such mirrors or ``shells'' of decreasing diameter are typically concentrically nested to form a single focusing unit. Individual mirrors are currently produced at Marshall Space Flight Center using an electroforming technique, in which the shells are replicated off figured and superpolished mandrels. Several factors in this fabrication process lead to low- and mid-spatial frequency deviations in the surface profile of the shell that degrade the imaging quality of the optics. A differential deposition technique, discussed in this paper, seeks to improve the achievable resolution of the optics by correcting the surface profile deviations of the shells after fabrication. As a proof of concept, the technique was implemented on small-animal radionuclide-imaging x-ray optics being considered for medical applications. This paper discusses the deposition technique, its implementation, and the experimental results obtained to date.

  11. A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.

  12. Achieving Bidirectional Long Delays In Pulmonary Vein Antral Lines Prior To Bidirectional Block In Patients With Paroxysmal Atrial Fibrillation (The Bi-Bi Technique For Atrial Fibrillation Ablation).

    PubMed

    Mina Md Facc Fhrs, Adel F; L Warnecke Pa-C, Nicholas

    2016-01-01

    Background: Pulmonary Vein Antral isolation (PVAI) is currently the standard of care for both paroxysmal and persistent atrial fibrillation ablation. Reconnection to the pulmonary vein is the most common cause of recurrence of atrial fibrillation. Achieving the endpoint of bidirectional block (BDB) for cavotricuspid isthmus dependant flutter has improved our outcomes for atrial flutter ablation. With this we tried to achieve long delays in the pulmonary veins antral lines prior to complete isolation comparable to those delays found in patient with bidirectional block of atrial flutter lines. Study Objective:The objective of this paper was to evaluate feasibility and efficacy of achieving Bidirectional long delays in pulmonary vein antral lines prior to Bidirectional Block in patient with paroxysmal atrial fibrillation. Method: A retrospective analysis was performed on patients who had paroxysmal atrial fibrillation procedures at Unity Point Methodist from January 2015 to January 2016. 20 consecutive patients with paroxysmal atrial fibrillation who had AF ablation using the Bi-Bi technique were evaluated. Result: Mean age was 63, number of antiarrhythmic used prior to ablation was 1.4, mean left atrial size was 38 mm. Mean chads score was 1.3. Mean EF was 53%. Long delays in the left antral circumferential lines were achieved with mean delay of 142 milliseconds +/-100. Also long delays in the right antral circumferential lines were achieved with mean delay of 150 milliseconds +/-80. 95 % (19/20) of patients were free of any atrial arrhythmias and were off antiarrhythmic medications for AF post procedure. There was only one transient complication in one patient who developed a moderate pericardial effusion that was successfully drained with no hemodynamic changes. The only patient who had recurrence was found to have asymptomatic AF with burden on his device <1%, this patient was also found to have non PV triggers for his AF. In patients with only PV triggered AF

  13. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  14. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10(-3) Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq(-1) and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  15. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  16. Thermal ablation.

    PubMed

    Webb, Heather; Lubner, Meghan G; Hinshaw, J Louis

    2011-04-01

    Image-guided tumor ablation refers to a group of treatment modalities that have emerged during the past 2 decades as important tools in the treatment of a wide range of tumors throughout the body. Although most widely recognized in the treatment of hepatic and renal malignancies, the role of thermal ablation has expanded to include lesions of the lung, breast, prostate, bone, as well as other organs and its clinical applications continue to increase. In the following article, we discuss the major thermal ablation modalities, their respective strengths and weaknesses, potential complications and how to avoid them, as well as possible future applications.

  17. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks☆

    PubMed Central

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-01-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL− 1 with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  18. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks.

    PubMed

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL(- 1) with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with

  19. A clinical study of thermal monitoring techniques of ultrasound-guided microwave ablation for hepatocellular carcinoma in high-risk locations

    PubMed Central

    Zhi-yu, Han; Ping, Liang; Xiao-ling, Yu; Zhi-gang, Cheng; Fang-yi, Liu; Jie, Yu

    2017-01-01

    To confirm the safety and effectiveness of the minimally invasive thermal monitor technique on percutaneous ultrasound-guided microwave ablation (MWA) for hepatocellular carcinoma (HCC) in high-risk locations, a total of 189 patients with 226 HCC nodules in high-risk locations were treated with MWA. The real-time temperature of the tissue between the lesion margin and the vital structures was monitored by inserting a 21G thermal monitoring needle. The major indexes of technical success, technique effectiveness, local tumour progression and complications were observed during the follow-up period. Technical success was acquired in all patients. Technique effectiveness was achieved with one session in 119 lesions based on contrast-enhanced ultrasound (CEUS) 3–5 days after treatment. An additional 95 lesions achieved technique effectiveness at the second session. Within the follow–up period of 6–58 months (median 38 months), the 1-, 2-, 3-, and 4-year local tumour progression rate was 11.1%, 18.1%, 19.1%, and 19.9%, respectively. There were no major complications in all the patients except for the common side effects. These results indicate that the thermal monitor technique can be applied to prevent major complications in vulnerable structures and allow percutaneous MWA to achieve satisfactory technique effectiveness in the treatment of HCC in high-risk locations. PMID:28112263

  20. Catheter Ablation

    MedlinePlus

    ... you during the procedure. Machines will measure your heart’s activity. All types of ablation require cardiac catheterization to place flexible tubes, or catheters, inside your heart to make the scars. Your doctor will clean ...

  1. Lipase immobilization for catalytic applications obtained using fumed silica deposited with MAPLE technique

    NASA Astrophysics Data System (ADS)

    Bloisi, Francesco; Califano, Valeria; Perretta, Giuseppe; Nasti, Libera; Aronne, Antonio; Di Girolamo, Rocco; Auriemma, Finizia; De Rosa, Claudio; Vicari, Luciano R. M.

    2016-06-01

    Lipases are enzymes used for catalyzing reactions of acylglycerides in biodiesel production from lipids, where enzyme immobilization on a substrate is required. Silica nanoparticles in different morphologies and configurations are currently used in conjunction with biological molecules for drug delivery and catalysis applications, but up to date their use for triglycerides has been limited by the large size of long-chain lipid molecules. Matrix assisted pulsed laser evaporation (MAPLE), a laser deposition technique using a frozen solution/suspension as a target, is widely used for deposition of biomaterials and other delicate molecules. We have carried out a MAPLE deposition starting from a frozen mixture containing fumed silica and lipase in water. Deposition parameters were chosen in order to increase surface roughness and to promote the formation of complex structures. Both the target (a frozen thickened mixture of nanoparticles/catalyst in water) and the deposition configuration (a small target to substrate distance) are unusual and have been adopted in order to increase surface contact of catalyst and to facilitate access to long-chain molecules. The resulting innovative film morphology (fumed silica/lipase cluster level aggregation) and the lipase functionality (for catalytic biodiesel production) have been studied by FESEM, FTIR and transesterification tests.

  2. Endoscopic Radiofrequency Ablation of the Sacroiliac Joint Complex in the Treatment of Chronic Low Back Pain: A Preliminary Study of Feasibility and Efficacy of a Novel Technique.

    PubMed

    Choi, Won-Suh; Kim, Jin-Sung; Ryu, Kyeong-Sik; Hur, Jung-Woo; Seong, Ji-Hoon; Cho, Hyun-Jin

    2016-01-01

    Background. Radiofrequency ablation (RFA) is a less invasive technique for treatment of sacroiliac joint (SIJ) pain. Objective. To evaluate the feasibility and efficacy of endoscope-guided RFA for the treatment of CLBP from the SIJ complex. Methods. In this retrospective study, the medical records of 17 patients who underwent endoscope-guided RFA of the SIJ complex were reviewed. A bipolar radiofrequency probe was used to lesion the posterior capsule of the SIJ as well as the lateral branches of S1, S2, S3, and the L5 dorsal ramus in multiple locations. We visualized the ablation area using endoscope. We assessed visual analogue scale (VAS) and the Oswestry disability index (ODI) preoperatively, immediately postop, and at 1-, 3-, and 6-month postop outpatient clinic visits. Patient satisfaction of the procedure was assessed in percentages. Results. The mean duration of operation was 20 to 50 minutes. The mean VAS and the ODI scores decreased significantly immediately after the procedure and were kept significantly lower than baseline levels during the follow-up periods. No complications occurred perioperatively and during the follow-up periods. 88.6% of patients were satisfied with the procedure. Conclusions. Our preliminary results suggest that endoscope-guided RFA may be alternative option to treat CLBP secondary to SIJ complex.

  3. Endoscopic Radiofrequency Ablation of the Sacroiliac Joint Complex in the Treatment of Chronic Low Back Pain: A Preliminary Study of Feasibility and Efficacy of a Novel Technique

    PubMed Central

    Ryu, Kyeong-Sik; Hur, Jung-Woo; Seong, Ji-Hoon; Cho, Hyun-Jin

    2016-01-01

    Background. Radiofrequency ablation (RFA) is a less invasive technique for treatment of sacroiliac joint (SIJ) pain. Objective. To evaluate the feasibility and efficacy of endoscope-guided RFA for the treatment of CLBP from the SIJ complex. Methods. In this retrospective study, the medical records of 17 patients who underwent endoscope-guided RFA of the SIJ complex were reviewed. A bipolar radiofrequency probe was used to lesion the posterior capsule of the SIJ as well as the lateral branches of S1, S2, S3, and the L5 dorsal ramus in multiple locations. We visualized the ablation area using endoscope. We assessed visual analogue scale (VAS) and the Oswestry disability index (ODI) preoperatively, immediately postop, and at 1-, 3-, and 6-month postop outpatient clinic visits. Patient satisfaction of the procedure was assessed in percentages. Results. The mean duration of operation was 20 to 50 minutes. The mean VAS and the ODI scores decreased significantly immediately after the procedure and were kept significantly lower than baseline levels during the follow-up periods. No complications occurred perioperatively and during the follow-up periods. 88.6% of patients were satisfied with the procedure. Conclusions. Our preliminary results suggest that endoscope-guided RFA may be alternative option to treat CLBP secondary to SIJ complex. PMID:28105414

  4. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  5. Preparation and internal stress estimation of BN films by ion mixing and vapour deposition technique

    NASA Astrophysics Data System (ADS)

    Hanaki, S.; Leng, B.; Uchida, H.

    2010-07-01

    Boron Nitride (BN) films were synthesized onto silicone wafer by depositing B metal vapour under simultaneous irradiation of N ions. Here, film thickness, ion beam energy and transport ratio (B/N) were selected as a preparation parameter and they were controlled in the range of 0.2-1μm, 0.2~2keV and 1~5, respectively. The BN films prepared were characterized using several analytical techniques and their internal stresses were estimated using Stoney's equation. From Fourier transform infrared spectroscopy, it was found that use of low energy N ions is effective for the formation of cubic BN (cBN) phase using ion mixing and vapour deposition (IVD) technique. At this condition, high compressive stress is measured and strong correlations were found among crystal structure, internal stress and Knoop hardness of BN films.

  6. Synthesis and characterization of GaN thin films deposited on different substrates using a low-cost electrochemical deposition technique

    SciTech Connect

    Al-Heuseen, K.; Hashim, M. R.

    2012-09-06

    Gallium nitride GaN thin films were deposited on three different substrates; Si (111), Si (100) and ITO coated glass using electrochemical deposition technique at 20 Degree-Sign C. A mixture of gallium nitrate, ammonium nitrate was used as electrolyte. The deposited films were investigated at room temperature by a series of material characterization techniques, namely; scanning electron microscopy (SEM), EDX and X-ray diffraction (XRD). SEM images and EDX results indicated that the growth of GaN films varies according to the substrates. XRD analyses showed the presence of hexagonal wurtzite and cubic zinc blende GaN phases with the crystallite size around 18-29 nm.

  7. Technique for creation of artificial pneumothorax for pain relief during radiofrequency ablation of peripheral lung tumors: report of seven cases.

    PubMed

    Hiraki, Takao; Gobara, Hideo; Shibamoto, Kentaro; Mimura, Hidefumi; Soda, Yuko; Uka, Mayu; Masaoka, Yoshihisa; Toyooka, Shinichi; Kanazawa, Susumu

    2011-04-01

    This report describes seven cases in which a pneumothorax was artificially created for relief from severe pain that occurred during radiofrequency (RF) ablation of peripheral lung tumors. In this procedure, the multitined probe surrounding the lesion was advanced into the chest, displacing the tines and the peripheral tumor away from the parietal pleura and the chest wall and resulting in pain relief in one patient; in the remaining patients, an intravenous catheter was also introduced, followed by the administration of carbon dioxide (CO(2)) into the space between the tumor and the parietal pleura. The pain decreased considerably immediately after this procedure. No complication related to the creation of the artificial pneumothorax was observed. Creation of an artificial pneumothorax is a safe and effective method for pain relief.

  8. Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics.

    PubMed

    Emam, Hossam E; Saleh, N H; Nagy, Khaled S; Zahran, M K

    2016-03-01

    Nowadays, functional clothes are employed for human body protection in addition to be fashionable clothes. Hence functionalization of clothes increases the attention of scientists and business. In the current study, poly-functional cotton fabric was carried out by instantly deposition of AgNPs using two solventless techniques namely; sorption and padding. Sorption technique was exhibited extremely high efficiency than padding one by ca. 10 times. By using the same concentrations of AgNO3, Ag content was ranged 69.3-6094.8 mg/kg and 33.8-609.3 mg/kg for sorption and padding, respectively. After AgNPs deposition, fabrics color was turned to gray-reddish yellow. By applying 5912.3 mgAg/kg fabric, bacterial reduction and UPF value were reached 99% and 12.59. Bacterial reduction and UPF were lessened to 90% and 10.19 after 20 washings. These findings proved that the direct AgNPs deposition into cotton using solventless/sorption technique is applicable in manufacturing of antibacterial/UV resistant fabrics with acquired decorative color.

  9. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  10. HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications

    SciTech Connect

    Valente-Feliciano, Anne-Marie

    2013-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

  11. Use of a circular mapping and ablation catheter for ablation of atypical right ventricular outflow tract arrhythmia.

    PubMed

    Katritsis, Demosthenes G; Giazitzoglou, Eleftherios; Paxinos, George

    2010-02-01

    A new technique for ablation of persistent ectopic activity with atypical electrocardiographic characteristics at the vicinity of the right ventricular outflow tract is described. A new circular mapping and ablation catheter initially designed for pulmonary vein ablation was used. Abolition of ectopic activity was achieved with minimal fluoroscopy and ablation times.

  12. Characterization and performance of carbon films deposited by plasma and ion beam based techniques

    SciTech Connect

    Walter, K C; Kung, H; Levine, T

    1994-12-31

    Plasma and ion beam based techniques have been used to deposit carbon-based films. The ion beam based method, a cathodic arc process, used a magnetically mass analyzed beam and is inherently a line-of-sight process. Two hydrocarbon plasma-based, non-line-of-sight techniques were also used and have the advantage of being capable of coating complicated geometries. The self-bias technique can produce hard carbon films, but is dependent on rf power and the surface area of the target. The pulsed-bias technique can also produce hard carbon films but has the additional advantage of being independent of rf power and target surface area. Tribological results indicated the coefficient of friction is nearly the same for carbon films from each deposition process, but the wear rate of the cathodic arc film was five times less than for the self-bias or pulsed-bias films. Although the cathodic arc film was the hardest, contained the highest fraction of sp{sup 3} bonds and exhibited the lowest wear rate, the cathodic arc film also produced the highest wear on the 440C stainless steel counterface during tribological testing. Thus, for tribological applications requiring low wear rates for both counterfaces, coating one surface with a very hard, wear resistant film may detrimentally affect the tribological behavior of the counterface.

  13. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  14. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    PubMed

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior.

  15. Percutaneous ablation of benign bone tumors.

    PubMed

    Welch, Brian T; Welch, Timothy J

    2011-09-01

    Percutaneous image-guided ablation has become a standard of practice and one of the primary modalities for treatment of benign bone tumors. Ablation is most commonly used to treat osteoid osteomas but may also be used in the treatment of chondroblastomas, osteoblastomas, and giant cell tumors. Percutaneous image-guided ablation of benign bone tumors carries a high success rate (>90% in case series) and results in decreased morbidity, mortality, and expense compared with traditional surgical methods. The ablation technique most often applied to benign bone lesions is radiofrequency ablation. Because the ablation technique has been extensively applied to osteoid osteomas and because of the uncommon nature of other benign bone tumors, we will primarily focus this discussion on the percutaneous ablation of osteoid osteomas.

  16. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  17. New deposition technique for metal films containing inorganic fullerene-like (IF) nanoparticles.

    PubMed

    Goldbart, Ohad; Yoffe, Alexander; Cohen, Sidney R; Rosentsveig, Rita; Feldman, Yishay; Rapoport, Lev; Tenne, Reshef

    2013-07-22

    This study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head. This process results in IF-WS2 nanoparticles embedded in a Ti matrix. The layers were characterized by various techniques, which confirm the composition and structure of the hybrid film. The Ti/IF-WS2 shows better wear resistance and a lower friction coefficient when compared to the Ti layer or Ti substrate. The Ti/IF films show very good antireflective properties in the visible and near-IR region. Such films may find numerous applications, for example, in the aerospace and medical technology.

  18. Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces

    PubMed Central

    LIANG, YONGQIANG; XU, JUAN; CHEN, JING; QI, MENGCHUN; XIE, XUEHONG; HU, MIN

    2015-01-01

    The plasma immersion ion implantation and deposition (PIIID) technique was used to implant zinc (Zn) ions into smooth surfaces of pure titanium (Ti) disks for investigation of tooth implant surface modification. The aim of the present study was to evaluate the surface structure and chemical composition of a modified Ti surface following Zn ion implantation and deposition and to examine the effect of such modification on osteoblast biocompatibility. Using the PIIID technique, Zn ions were deposited onto the smooth surface of pure Ti disks. The physical structure and chemical composition of the modified surface layers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. In vitro culture assays using the MG-63 bone cell line were performed to determine the effects of Zn-modified Ti surfaces following PIIID on cellular function. Acridine orange staining was used to detect cell attachment to the surfaces and cell cycle analysis was performed using flow cytometry. SEM revealed a rough ‘honeycomb’ structure on the Zn-modified Ti surfaces following PIIID processing and XPS data indicated that Zn and oxygen concentrations in the modified Ti surfaces increased with PIIID processing time. SEM also revealed significantly greater MG-63 cell growth on Zn-modified Ti surfaces than on pure Ti surfaces (P<0.05). Flow cytometric analysis revealed increasing percentages of MG-63 cells in S phase with increasing Zn implantation and deposition, suggesting that MG-63 apoptosis was inhibited and MG-63 proliferation was promoted on Zn-PIIID-Ti surfaces. The present results suggest that modification with Zn-PIIID may be used to improve the osteoblast biocompatibility of Ti implant surfaces. PMID:25673139

  19. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  20. High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique

    NASA Astrophysics Data System (ADS)

    Kuai, Su-Lan; Hu, Xing-Fang; Haché, Alain; Truong, Vo-Van

    2004-06-01

    High-quality polystyrene colloidal crystals were fabricated from aqueous solutions with a vertical deposition technique. The role of sphere size, volume fraction, relative humidity (RH), evaporation temperature and the final drying conditions on the film quality were investigated. We found that all those parameters must be taken into account in order to achieve highest quality for a given particle size. With particles of 300 nm in diameter, the optimal conditions were found to be a 0.1-0.2% volume fraction, an RH between 80% and 90%, an evaporation temperature near 60°C and a quasi-equilibrium drying process.

  1. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-25

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  2. High T(sub c) superconductors fabricated by plasma aerosol mist deposition technique

    NASA Technical Reports Server (NTRS)

    Wang, X. W.; Vuong, K. D.; Leone, A.; Shen, C. Q.; Williams, J.; Coy, M.

    1995-01-01

    We report new results on high T(sub c) superconductors fabricated by a plasma aerosol mist deposition technique, in atmospheric environment. Materials fabricated are YBaCuO, BiPbSrCaCuO, BaCaCuO precursor films for TlBaCaCuO, and other buffers such as YSZ. Depending on processing conditions, sizes of crystallites and/or particles are between dozens of nano-meters and several micrometers. Superconductive properties and other material characteristics can also be tailored.

  3. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique

    DTIC Science & Technology

    2010-01-01

    Miller, R.R. Foster, S.H. Jen, J.A. Bertrand, D. Seghete, B.H. Yoon, Y.C. Lee, S.M. George, M.L. Dunn, Thermo-mechanical properties of aluminum ...homepage: www.e lsev ier .com/ locate /sna Thermo-mechanical properties of alumina films created using the atomic layer deposition technique David C...form 11 September 2010 Accepted 22 September 2010 Available online 29 September 2010 Keywords: Thin film Mechanical properties Reliability Robustness a

  4. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique

    NASA Astrophysics Data System (ADS)

    Potočnik, J.; Nenadović, M.; Bundaleski, N.; Popović, M.; Rakočević, Z.

    2016-12-01

    Nickel (Ni) thin films of different thicknesses (25 nm to 150 nm) were deposited on glass substrates using Glancing Angle Deposition technique. Characterization of obtained Ni films was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and by four-point probe method. Variations in optical parameters with thickness correlated with structural, chemical and electrical properties of nanostructured nickel thin films were studied. The results showed that deposit is porous and consists of nano-scaled columns, which grow perpendicular to the substrate. It was found that the size of the columns and the surface roughness change with film thickness. Spectroscopic ellipsometry revealed that the refractive index and extinction coefficient varied with thickness, which can be correlated with changes in microstructure of Ni films. Additionally, the relationship between the film microstructure and its resistivity was also analyzed. It was found that the variations in Ni films resistivity could be attributed to the changes in the width of the columns. The increasing of layer thickness leads to overall decrease of optical resistivity of nickel thin films.

  5. Investigation on vanadium oxide thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Margoni, Mudaliar Mahesh; Mathuri, S.; Ramamurthi, K.; Babu, R. Ramesh; Sethuraman, K.

    2016-05-01

    Vanadium oxide thin films were deposited at 400 °C by spray pyrolysis technique using 0.1 M aqueous precursor solution of ammonium meta vanadate (AMV) with two different pH values. X-ray diffraction results showed that the film prepared using aqueous precursor AMV solution (solution A; pH 7) is amorphous in nature and the film prepared by adding HNO3 in the AMV aqua solution A (solution B; pH 3) is polycrystalline in nature. Vanadium oxide film prepared from the precursor solution B is in the mixed phases of V2O5 and V4O7. Crystallinity is improved for the film prepared using solution B when compared to film prepared from solution A. Crystallite size, strain and dislocation density calculated for the film prepared from solution B is respectively 72.1 nm, 0.4554 × 10-3 lin.-2m-4 and 1.7263 × 1014 lin.m-2. Morphology study revealed that the size of the flakes formed on the surface of the films is influenced by the pH of the precursor solution. Average Visible Transmittance and maximum transmittance of the deposited films exceed 70% and the direct optical band gap value calculated for the films deposited from A and B solution is 1.91 eV and 2.08 eV respectively.

  6. Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat

    NASA Astrophysics Data System (ADS)

    Cao Dao, Tran; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Kieu, Ngoc Minh; Le, Van Vu

    2016-03-01

    In order to detect trace concentrations of organic or biological molecules by surface-enhanced Raman scattering (SERS) technique, the SERS-active substrates with high enhancement factor are required. The silver nanodendrites (AgNDs) are a growing class of such SERS-active substrates. This report presents the preliminary results of the trace detection of paraquat (PQ), a commonly used herbicide, with the use of SERS-active substrates, which have been made from AgNDs deposited on silicon. The AgNDs were produced either by electroless deposition, or by electrodeposition onto a silicon wafer, using aqueous solution of HF and AgNO3. It was observed that the silver dendrites are formed only when AgNO3 concentration is high enough. Next, it was found that with the additional assistance of an electric potential in the electrodeposition, the dendrites have grown up with the more perfect ramification. The AgNDs with more perfect branching gave the Raman spectrum of PQ with higher enhancement factor. More specifically, while the SERS-active substrates prepared from electrodeposited AgNDs were able to detect PQ with concentration as low as 0.01 ppm, the ones made from electroless deposited AgNDs could only detect PQ at concentration of hundreds times higher.

  7. Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.

    2013-07-01

    The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.

  8. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique

    PubMed Central

    Belter, Joseph T.; Dollar, Aaron M.

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications. PMID:25880807

  9. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

  10. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  11. Application of different techniques to obtain spatial estimates of debris flows erosion and deposition depths

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    In Alpine regions, debris flows endanger settlements and human life. Danger mitigation strategies based on the preparation of hazard maps are necessary tools for the current land planning. To date, hazard maps are obtained by using one- or two-dimensional numerical models that are able to forecast the potential inundated areas, after careful calibration of those input parameters that directly affect the flow motion and its interaction with the ground surface (sediments entrainment or deposition). In principle, the reliability of these numerical models can be tested by flume experiments in laboratory using, for example, particles and water mixtures. However, for more realistic materials including coarse particles, the scaling effects are still difficult to account for. In some cases, where there are enough data (for example, point measures of flow depths and velocities or spatial estimation of erosion and deposition depths), these models can be tested against field observations. As it regards the spatial estimates of debris flows erosion and deposition depths, different approaches can be followed to obtain them, mainly depending on both the type and accuracy of the available initial data. In this work, we explain the methods that have been employed to obtain the maps of erosion and deposition depths for three occurred debris flows in the Dolomites area (North-Eastern Italian Alps). The three events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006 and at Rio Val Molinara (Trento) on the 15th of August 2010. For each case study, we present the available initial data and the related problems, the techniques that have been used to overcome them and finally the results obtained.

  12. Designed nanostructured pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques.

    PubMed

    Huang, Minghua; Jin, Yongdong; Jiang, Heqing; Sun, Xuping; Chen, Hongjun; Liu, Baifeng; Wang, Erkang; Dong, Shaojun

    2005-08-18

    Multiple-deposited Pt overlayer modified Pt nanoparticle (MD-Pt overlayer/PtNPs) films were deliberately constructed on glassy carbon electrodes through alternately multiple underpotential deposition (UPD) of Ag followed redox replacement reaction by Pt (II) cations. The linear and regular growth of the films characterized by cyclic voltammetry was observed. Atomic force spectroscopy (AFM) provides the surface morphology of the nanostructured Pt films. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry demonstrate that the MD-Pt overlayer/PtNPs films can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated 0.1 M H(2)SO(4). Thus-prepared Pt films behave as novel nanostructured electrocatalysts for dioxygen reduction and hydrogen evolution reaction (HER) with enhanced electrocatalytic activities, in terms of both reduction peak potential and peak current, when compared to that of the bulk polycrystalline Pt electrode. Additionally, it is noted that after multiple replacement cycles, the electrocatalytic activities improved remarkably, although the increased amount of Pt is very low in comparison to that of pre-modified PtNPs due to the intrinsic feature of the UPD-redox replacement technique. In other words, the electrocatalytic activities could be improved markedly without using very much Pt by the technique of tailoring the catalytic surface. These features may provide an interesting way to produce Pt catalysts with a reliable catalytic performance as well as a reduction in cost.

  13. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  14. Microwave Ablation Compared to Radiofrequency Ablation for Hepatic Lesions: A Meta-Analysis.

    PubMed

    Huo, Ya Ruth; Eslick, Guy D

    2015-08-01

    To evaluate the efficacy and safety of microwave (MW) ablation compared with radiofrequency (RF) ablation for hepatic lesions by using meta-analytic techniques. Overall, 16 studies involving 2,062 patients were included. MW ablation was found to have significantly better 6-year overall survival than RF ablation (odds ratio, 1.64, 95% confidence interval, 1.15-2.35), but this was based on a few articles (n = 3 of 16). MW ablation and RF ablation had similar 1-5-year overall survival, disease-free survival, local recurrence rate, and adverse events. Based on similar safety and efficacy outcomes, either MW ablation or RF ablation may be used for effective local hepatic therapy.

  15. Usefulness of modified BRB technique in treatment to ablate uterine fibroids with magnetic resonance image-guided high-intensity focused ultrasound

    PubMed Central

    Jeong, Jae-Heok; Hong, Kil-Pyo; Kim, Yu-Ri; Ha, Jae-Eun

    2017-01-01

    Objective If bowels and other structures are in the pathway of high-intensity focused ultrasound (HIFU) beam during magnetic resonance image-guided HIFU (MRgFUS) therapy, filling to the bladder and the rectum and then emptying the bladder (i.e., the BRB technique) is used to avoid them. A modified BRB technique might be useful method to using a uterine elevator method or by inducing uterus downward traction to lower the position of the uterus. Methods A total of 156 patients who had undergone MRgFUS surgery treatment for uterine fibroids from March 2015 to February 2016 were included in this retrospective study. Of the 156 patients, 40 were treated using a uterine elevator while 29 were treated using downward traction of uterus. HIFU was performed using Philips Achieva 1.5 Tesla MR and Sonalleve HIFU system. Results MRgFUS surgery was feasible with modified BRB technique in 69 cases. Using uterine elevator method, the intensity of HIFU for group with antefletxio uteri was significantly lower than that for the group without antefletxio uteri (105.37±17.62 vs. 118.71±26.88 W). The group with downward traction of uterus induced was found to have significantly lower intensity of HIFU compared to the group without downward traction of uterus induced (110.26±22.60 vs. 130.51±27.81 W). Conclusion Modified BRB technique was useful in avoiding bowels and other structures located in HIFU beam pathway during MRgFUS treatment to ablate uterine fibroids. PMID:28217678

  16. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  17. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  18. Erbium oxide thin films on Si(100) obtained by laser ablation and electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Queralt, X.; Ferrater, C.; Sánchez, F.; Aguiar, R.; Palau, J.; Varela, M.

    1995-02-01

    Erbium oxide thin films have been obtained by laser ablation and electron beam evaporation techniques on Si(100) substrates. The samples were grown under different conditions of oxygen atmosphere and substrate temperature without any oxidation process after deposition. The crystal structure has been studied by X-ray diffraction. Films obtained by laser ablation are highly textured in the [ hhh] direction, although this depends on the conditions of oxygen pressure and substrate temperature. In order to study the depth composition profile of the thin films and the interdiffusion of erbium metal and oxygen towards the silicon substrates, X-ray photoelectron spectroscopy analyses have been carried out.

  19. Percutaneous thermal ablation of primary lung cancer.

    PubMed

    de Baere, T; Tselikas, L; Catena, V; Buy, X; Deschamps, F; Palussière, J

    2016-10-01

    Percutaneous ablation of small-size non-small-cell lung cancer (NSCLC) has demonstrated feasibility and safety in nonsurgical candidates. Radiofrequency ablation (RFA), the most commonly used technique, has an 80-90% reported rate of complete ablation, with the best results obtained in tumors less than 2-3cm in diameter. The highest one-, three-, and five-year overall survival rates reported in NSCLC following RFA are 97.7%, 72.9%, and 55.7% respectively. Tumor size, tumor stage, and underlying comorbidities are the main predictors of survival. Other ablation techniques such as microwave or cryoablation may help overcome the limitations of RFA in the future, particularly for large tumors or those close to large vessels. Stereotactic ablative radiotherapy (SABR) has its own complications and carries the risk of fiducial placement requiring multiple lung punctures. SABR has also demonstrated significant efficacy in treating small-size lung tumors and should be compared to percutaneous ablation.

  20. Image-guided ablation for hepatocellular carcinoma.

    PubMed

    Lencioni, Riccardo; Crocetti, Laura

    2013-01-01

    Image-guided ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma (HCC) when surgical options-including resection and transplantation-are precluded. The term image-guided tumor ablation is defined as the direct application of chemical substances or sources of energy to a focal tumor in an attempt to achieve eradication or substantial tumor destruction. Over the past 25 years, several methods for local tumor destruction have been developed and clinically tested. Radiofrequency ablation (RFA) has shown superior anticancer effect and greater survival benefit with respect to the seminal percutaneous technique, ethanol injection, in meta-analyses of randomized controlled trials, and is currently established as the standard ablative modality. Nevertheless, novel thermal and nonthermal techniques for tumor ablation-including microwave ablation and irreversible electroporation-seem to have potential to improve the efficacy of RFA and are currently undergoing clinical investigation.

  1. Magnetic- and particle-based techniques to investigate metal deposition on urban green.

    PubMed

    Castanheiro, Ana; Samson, Roeland; De Wael, Karolien

    2016-11-15

    Urban green works as a recorder of atmospheric PM. This paper reports on the utility of combining magnetic- and particle-based techniques to investigate PM leaf deposition as a bio-indicator of metal pollution. Ivy (Hedera helix) leaves were collected from five different land use classes, i.e. forest, rural, roadside, industrial, train. Leaf magnetic measurements were done in terms of saturation isothermal remanent magnetization (leaf SIRM), while ca. 40,000 leaf-deposited particles were analyzed through SEM/EDX to estimate the elemental composition. The influence of the different land use classes was registered both magnetically and in terms of metal content. Leaf area-normalized SIRM values ranged from 19.9 to 444.0μA, in the following order forestdeposited particles showed to be mainly due to industrial activity. While SEM/EDX is a suitable approach for detailed particle analysis, leaf SIRM of ivy can be used as a rapid discriminatory tool for metal pollution. Their complementary use delivers further knowledge on land use classes reflecting different PM conditions and/or sources.

  2. Effect of deposition technique of Ni on the perpendicular magnetic anisotropy in Co/Ni multilayers

    NASA Astrophysics Data System (ADS)

    Akbulut, S.; Akbulut, A.; Özdemir, M.; Yildiz, F.

    2015-09-01

    The perpendicular magnetic anisotropy (PMA) of Si/Pt 3.5/(Co 0.3/Ni 0.6)n /Co 0.3/ Pt 3 (all thicknesses are nm) multilayers were investigated for two different sample sets by using ferromagnetic resonance (FMR) and magnetooptic Kerr effect (MOKE) techniques. In the first sample set all layers (buffer, cap, Co and Ni) were grown by magnetron sputtering technique while in the second sample set Ni sub-layers were grown by molecular beam epitaxy (MBE) at high vacuum. Apart from deposition technique of Ni, all other parameters like thicknesses and growth rates of each layers are same for both sample sets. Multilayers in these two sample sets display PMA in the as grown state until a certain value of bilayer repetition (n) and the strength of PMA decreases with increasing n. Magnetic easy axis's of the multilayered samples switched from film normal to the film plane when n is 9 and 5 for the first and second sample sets, respectively. The reason for that, PMA was decreased due to increasing roughness with increasing n. This was confirmed by X Ray Reflectivity (XRR) measurements for both sample sets. Moreover, in the first sample set coercive field values are smaller than the second sample set, which means magnetic anisotropy is lower than the latter one. This stronger PMA is arising due to existence of stronger Pt (111) and Co/Ni (111) textures in the second sample set.

  3. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  4. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    PubMed

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  5. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  6. The performances photodiode and diode of ZnO thin film by atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Orak, İkram

    2016-12-01

    In this study, the photodiode and diode characterizations of Al/n-ZnO/p type Si heterostructure have been investigated with current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements. ZnO thin film has been deposited on p type Si by using atomic layer deposition technique. Some photodiode and diode parameters such as open circuit voltage (Voc), short circuit current (Isc), power efficiency(ηP), fill factor (FF), ideality factor (n) and barrier height (Φb) have calculated with I-V and C-V characteristics. Voc and Isc was found to be 0.094 V and 0.24 mA, respectively at 50 mW/cm2. n and Φb have been calculated 0.41 eV and 2.36, respectively. Especially, Negative capacitance has explained in the forward bias regions at room temperature and in dark condition. The C-V characterization of the Al/ZnO/p type Si heterostructure has been investigated under illumination condition. It can be said that the capacitance of device has been affected under illumination condition.

  7. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  8. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Kumar, G. Anil Reddy, M. V. Ramana; Reddy, Katta Narasimha

    2014-04-24

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 2×10{sup −2} mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  9. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    SciTech Connect

    Sadananda Kumar, N. Bangera, Kasturi V.; Shivakumar, G. K.

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  10. Diameter Tuning of β -Ga2O3 Nanowires Using Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Vikram; Singh, R.

    2017-03-01

    Diameter tuning of β -Ga2O3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown β -Ga2O3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  11. Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties

    NASA Astrophysics Data System (ADS)

    Arakelyan, S. M.; Veiko, V. P.; Kutrovskaya, S. V.; Kucherik, A. O.; Osipov, A. V.; Vartanyan, T. A.; Itina, T. E.

    2016-06-01

    We report the results of continuous wave laser interactions with both gold and silver targets in the presence of different liquids (deionized water, ethanol, and glycerol). Upon moderate laser irradiation at wavelength of 1.06 nm during 30 min, nanoparticle colloids are shown to be formed with surprisingly narrow size distributions and average dispersion as small as 15-20 nm. The average particle sizes range between 8 and 52 nm for gold and between 20 and 107 nm for silver. This parameter is shown to be stable and well-controlled by such laser parameters as intensity and effective irradiation time, as well as by the choice of the liquid phase. The possibilities of an efficient control over the proposed synthesis techniques are discussed, and the results of a bimetallic Au-Ag structure deposition from the obtained colloids are presented. The formation of the extended arrays of gold and silver nanoparticles with controlled morphology is examined. The changes in the optical properties of the obtained thin films are found to depend on their morphology, in particular, on the particle size, and distance between them.

  12. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  13. Fabrication of Metal Oxide Thin Films Using the Langmuir-Blodgett Deposition Technique.

    NASA Astrophysics Data System (ADS)

    Johnson, David John

    The Langmuir Blodgett (LB) deposition of metal arachidates was investigated as a technique for fabrication of metal oxides with emphasis placed on the lanthanide arachidates. Traditionally, these materials are difficult to deposit via the LB process, due to the rigidity of the floating monolayer. Studies on yttrium arachidate have shown that the quality of deposition of these materials is highly dependent on the concentration of the metal salt and the pH of the subphase. Yttrium arachidate was thus deposited at 10^{-5} M YCl_3 over a pH range of 4.0 to 6.9. Uniform multilayer films were produced with films at the higher pH's showing 100% yttrium arachidate. A pK_{rm a} value of 4.9 +/- 0.2 was obtained under these conditions. Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy data indicate that the metal is being incorporated into the arachidic acid predominantly as Y(OH) ^{2+}. A saturation areal density of (2.0 +/- 0.1) times 10^{14} Y/cm ^2 was measured for one layer of yttrium arachidate. Ellipsometric measurements were performed on films of yttrium arachidate to study order-disorder transitions. Upon heating the films were observed to undergo two transitions at 65^circC and 100 ^circC. At room temperature, the as -deposited films were found to be anisotropic with indices of refraction of N_{rm x} = 1.503 +/- 0.005 and N _{rm z} = 1.554 +/- 0.005 and a monolayer spacing of 2.73 +/- 0.03 nm. Above 100^ circC the films were isotropic with N = 1.440 +/- 0.005 and a thickness of 3.13 +/- 0.03 nm per original layer. The films showed no desorption below 100^circ C. In contrast to films of cadium arachidate, the yttrium arachidate films were observed to undergo supercooling by 35^circC. This may point to a lack of nucleation sites in the yttrium arachidate films explaining why they maintain areal integrity at high temperature while cadmium arachidate films do not. The decomposition of LB films was

  14. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Ilday, F. Ömer; Kerse, C.; Kalaycioglu, H.; Elahi, P.; Yavas, S.; Kesim, D.; Akçaalan, Ö.; Çetin, B.; Öktem, B.; Asik, M.; Hoogland, H.; Holzwarth, R.

    Use of femtosecond pulses allows precise and thermal-damage-free material removal with broad applications. However, its potential is limited by low material removal speeds and complexity of the required lasers. The laser complexity arises from the high pulse energy threshold for ablation. Physics of the laser-material interaction precludes a straightforward scaling up of the removal rate by using more powerful lasers due to shielding and collateral damage from heat accumulation. Here, we exploit ablation cooling, a technique used in aerospace engineering since 1950's, to circumvent this limitation. We apply rapid successions of pulses from specially developed lasers to ablate the target material before the residual heat deposited by previous pulses diffuse away from the interaction region. This constitutes a new physical regime of laser-material interactions, where heat removal due to ablation is comparable to conduction. Proof-of-principle experiments demonstrate reduction of required pulse energies by 1000x, while simultaneously increasing efficiency and speed by 10x.

  15. Superconducting thin films of Bi-Sr-Ca-Cu-O obtained by laser ablation processing

    SciTech Connect

    Kim, B.F.; Bohandy, J.; Phillips, T.E.; Green, W.J.; Agostinelli, E.; Adrian, F.J.; Moorjani, K.; Swartzendruber, L.J.; Shull, R.D.; Bennett, L.H.; and others

    1988-07-25

    Thin films of Bi-Sr-Ca-Cu-O, deposited on (100) cubic zirconia by laser ablation from a bulk superconducting target of nominal composition BiSrCaCu/sub 2/ O/sub x/ , have been investigated by dc resistance and magnetically modulated microwave absorption measurements. The latter technique reveals important features regarding the phase purity of superconducting samples that are masked in the dc resistance measurements. The superconducting behavior of the films, as a function of the substrate temperature during deposition and the post-deposition annealing conditions, is discussed.

  16. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOEpatents

    Vernon, Stephen P.; Ceglio, Natale M.

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  17. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue

    NASA Astrophysics Data System (ADS)

    Donnarumma, Fabrizio; Cao, Fan; Murray, Kermit K.

    2016-01-01

    We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.

  18. Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue.

    PubMed

    Donnarumma, Fabrizio; Cao, Fan; Murray, Kermit K

    2016-01-01

    We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue.

  19. A Comparative Study of Three Different Chemical Vapor Deposition (CVD) Techniques of Carbon Nanotube Growth on Diamond Films

    DTIC Science & Technology

    2013-01-01

    microwave plasma enhanced CVD (MPE-CVD), and floating catalyst thermal CVD (FCT-CVD). The first two approaches require pre-deposition of catalyst...CVD) with pre-sputtered metal catalyst, microwave plasma enhanced CVD (MPE-CVD) with pre-sputtered metal catalyst and floating catalyst thermal CVD...iii) FCT-CVD. The first two techniques involved pre-deposition of seed catalysts prior to CNT growth, and were optimized first on an electronic grade

  20. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.

    PubMed

    Yuan, Dajun; Lin, Wei; Guo, Rui; Wong, C P; Das, Suman

    2012-06-01

    Scalable fabrication of carbon nanotube (CNT) bundles is essential to future advances in several applications. Here, we report on the development of a simple, two-step method for fabricating vertically aligned and periodically distributed CNT bundles and periodically porous CNT films at the sub-micron scale. The method involves laser interference ablation (LIA) of an iron film followed by CNT growth via iron-catalyzed chemical vapor deposition. CNT bundles with square widths ranging from 0.5 to 1.5 µm in width, and 50-200 µm in length, are grown atop the patterned catalyst over areas spanning 8 cm(2). The CNT bundles exhibit a high degree of control over square width, orientation, uniformity, and periodicity. This simple scalable method of producing well-placed and oriented CNT bundles demonstrates a high application potential for wafer-scale integration of CNT structures into various device applications, including IC interconnects, field emitters, sensors, batteries, and optoelectronics, etc.

  1. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    PubMed

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted.

  2. Comparison of laser-ablation and solution-mode ICP-MS techniques for measuring speleothem 87Sr/86Sr values

    NASA Astrophysics Data System (ADS)

    Wortham, B. E.; Wong, C. I.; Montanez, I. P.; Silva, L. C. R.; Rasbury, T.; Glessner, J. J.

    2015-12-01

    Reconstructing past changes in precipitation amount is critical to delineating controls on paleovegetation dynamics in South America. Although speleothem, lake, and ice core δ18O records from the region serve as a proxy of monsoon intensity, δ18O values do not serve as a direct proxy of local precipitation amount. To address this, we are developing a reconstruction of past moisture conditions using 87Sr/86Sr values measured in a fast growing speleothem (~2 mm/yr) from the central Brazilian savanna for which a late Holocene (0-1.8 ka) δ18O record has previously been developed. Speleothem 87Sr/86Sr values reflect the degree of water-rock interaction, as dictated by water residence time, and are used to interpret relative moisture conditions. In this study, we explore the potential of developing a high-resolution speleothem 87Sr/86Sr record using laser-ablation multi-collector ICP-MS by comparing analyses generated using both laser- and solution-mode techniques. Laser-mode techniques allow for sampling of individual speleothem lamina, which provides a higher resolution record than solution-mode techniques and eliminates the potential of contamination from conventional drilling. Preliminary results from a younger portion of the speleothem yield a laser-mode (averaged) value of 0.72294 ± 0.00046 (reproduced with parallel scans) and a solution mode value of 0.72338 ± 0.00002 suggesting that these methods provide analogous 87Sr/86Sr values. However, the preliminary results on an older portion of this speleothem have solution- mode derived values of 0.72239 ± 0.00001 and 0.72166 ± 0.00001, with corresponding laser-mode values of 0.72188 ± 0.00029 and 0.72102 ± 0.00037, respectively. Suggesting that in the older portion of the speleothem, laser-mode techniques do not yield analogous solution-mode 87Sr/86Sr values. These differences in different areas of the speleothem highlight the need for method development and further testing.

  3. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  4. Percutaneous ablation of hepatocellular carcinoma: current status.

    PubMed

    McWilliams, Justin P; Yamamoto, Shota; Raman, Steven S; Loh, Christopher T; Lee, Edward W; Liu, David M; Kee, Stephen T

    2010-08-01

    Hepatocellular carcinoma (HCC) is an increasingly common disease with dismal long-term survival. Percutaneous ablation has gained popularity as a minimally invasive, potentially curative therapy for HCC in nonoperative candidates. The seminal technique of percutaneous ethanol injection has been largely supplanted by newer modalities, including radiofrequency ablation, microwave ablation, cryoablation, and high-intensity focused ultrasound ablation. A review of these modalities, including technical success, survival rates, and complications, will be presented, as well as considerations for treatment planning and follow-up.

  5. Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques.

    PubMed

    Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G

    2017-02-01

    Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDFdry and NDFwet) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDFdry is about one order of magnitude lower than daily NDFwet. Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDFdry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10(10)#m(-2)yr(-1) for sediment particles with 1-20μm diameter and 6.1-11×10(10)#m(-2)yr(-1) for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed.

  6. Tumor Thermal Ablation Enhancement by Micromaterials.

    PubMed

    Zhao, Fan; Su, Hongying; Han, Xiangjun; Bao, Han; Qi, Ji

    2016-01-07

    Thermal ablation is a minimally invasive therapeutic technique that has shown remarkable potential in treating un resectable tumors. However, clinical applications have stalled, due to safety ambiguities, slow heat induction, lengthy ablation times, and post-therapeutic monitoring issues. To further improve treatment efficacy, an assortment of micro materials (eg, nano particulates of gold, silica, or iron oxide and single-walled carbon nanotubes) are under study as thermal ablative adjuncts.In recent years, the micro material domain has become especially interesting.In vivo and in vitro animal studies have validated the use of microspheres as embolic agents in liver tumors, in advance of radiofrequency ablation. Microcapsules and micro bubbles serving as ultrasound contrast and ablation sensibilizers are strong prospects for clinical applications. This review was conducted to explore benefits of the three aforementioned micro scale technologies, in conjunction with tumor thermal ablation.

  7. Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, Ram

    2014-01-01

    Iron oxide (Fe2O3) bulk powder have been ablated/fragmented in different liquid medium by Nd:YAG laser beam using 1064 nm wavelength. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB) and double distilled water (DDW) are used as liquid medium. Crystalline size, lattice strain, phase and structure of ablated particles have been investigated using synchrotron X-ray diffraction. Optical band gap energy of as purchased Fe2O3 found 1.92 eV that increased to 2.03 eV after ablation in CTAB determined by UV-vis absorption spectroscopy. Magnetic properties have been analyzed by hysteresis loops using vibrating sample magnetometer (VSM). Crystalline sizes have been found in the range of 29.23-16.54 nm and coercivity tailored in the range of 206.91-298.36 Oe using laser ablation. Saturation magnetization and remanence have been found in the range of 0.013-3.41 emu/g and 0.0023-.0.51 emu/g respectively. Particle shape and size have been examined by scanning electron microscopy (SEM). CTAB (cationic) and SDS (anionic) surfactants are used as capping agent. CTAB produces phase transformation in ablated iron oxide (Fe2O3). Crystallinity and crystalline size of ablated particles in DDW increased due to presence of rich oxygen in it due to oxidation. Ablated Fe2O3 nanoparticles have been widely used experimentally for numerous in vivo applications such as MRI contrast enhancement agent, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and cell separation.

  8. Pellet ablation and ablation model development

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs.

  9. Surface studies, structural characterization and quantity determination of PbSe nanocrystals deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Ghobadi, Nader; Hatam, Ebrahim Gholami

    2015-05-01

    High quality PbSe nanostructural films are prepared by a chemical bath deposition (CBD) method. The experimental surface studies including scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been used to analyze PbSe nanostructure indicated high purity of sample without cracks or holes in nanostructure scale. Quantity of material is relatively hard to measure accurately for thin films. Rutherford Backscattering Spectroscopy (RBS) was used to obtain stoichiometry as well as thin film thickness. For all nanoparticles size (50-250 nm) we found that the Pb to Se ratio (Pb:Se) variation in depth is approximately constant value of 0.42±0.06 until near to the substrate where it's value diminishes.

  10. Current status of thermal ablation treatments for lung malignancies.

    PubMed

    Dupuy, Damian E; Shulman, Maria

    2010-09-01

    About 75% of lung cancer patients are not surgical candidates, either due to advanced disease or medical comorbidities. Furthermore, conventional treatments that can be offered to these patients are beneficial only to a small percentage of them. Thermal ablation is a minimally invasive treatment that is commonly used in this group of patients, and which has shown promising results. Currently, the most widely used ablation techniques in the treatment of lung malignancies are radiofrequency ablation (RFA), microwave ablation, and cryoablation. Although the most studied technique is RFA, recent studies with microwave ablation and cryoablation have shown some advantages over RFA. This article reviews the application of thermal ablation in the thorax, including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparison of ablation techniques.

  11. MOS solar cells with oxides deposited by sol-gel spin-coating techniques

    SciTech Connect

    Huang, Chia-Hong; Chang, Chung-Cheng; Tsai, Jung-Hui

    2013-06-15

    The metal-oxide-semiconductor (MOS) solar cells with sol-gel derived silicon dioxides (SiO{sub 2}) deposited by spin coating are proposed in this study. The sol-gel derived SiO{sub 2} layer is prepared at low temperature of 450 Degree-Sign C. Such processes are simple and low-cost. These techniques are, therefore, useful for largescale and large-amount manufacturing in MOS solar cells. It is observed that the short-circuit current (I{sub sc}) of 2.48 mA, the open-circuit voltage (V{sub os}) of 0.44 V, the fill factor (FF) of 0.46 and the conversion efficiency ({eta}%) of 2.01% were obtained by means of the current-voltage (I-V) measurements under AM 1.5 (100 mW/cm{sup 2}) irradiance at 25 Degree-Sign C in the MOS solar cell with sol-gel derived SiO{sub 2}.

  12. Organo-layered double hydroxides composite thin films deposited by laser techniques

    NASA Astrophysics Data System (ADS)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  13. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Bhatti, K. A.; Qindeel, Rabia; Alonizan, Norah; Althobaiti, Hayat Saeed

    In this work, zinc oxide (ZnO) multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD) confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM) showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV-Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications.

  14. Characterization of excimer laser ablation generated pepsin particles using multi-wavelength photoacoustic instrument

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kecskeméti, G.; Smausz, T.; Ajtai, T.; Filep, A.; Utry, N.; Kohut, A.; Bozóki, Z.; Szabó, G.

    2012-05-01

    Preparation of organic thin layers on various special substrates using the pulsed laser deposition (PLD) technique is an important task from the point of view of bioengineering and biosensor technologies. Earlier studies demonstrated that particle ejection starts during the ablating laser pulse resulting in significant shielding effects which can influence the real fluence on the target surface and consequently the efficiency of layer preparation. In this study, we introduce a photoacoustic absorption measurement technique for in-situ characterization of ablated particles during PLD experiments. A KrF excimer laser beam ( λ=248 nm, FWHM=18 ns) was focused onto pepsin targets in a PLD chamber; the applied laser fluences were 440 and 660 mJ/cm2. We determined the wavelength dependence of optical absorption and mass specific absorption coefficient of laser ablation generated pepsin aerosols in the UV-VIS-NIR range. On the basis of our measurements, we calculated the absorbance at the ablating laser wavelength, too. We demonstrated that when the laser ablation generated pepsin aerosols spread through the whole PLD chamber the effect of absorptivity is negligible for the subsequent pulses. However, the interaction of the laser pulse and the just formed particle cloud generated by the same pulse is more significant.

  15. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  16. Nanosecond laser ablation of gold nanoparticle films

    SciTech Connect

    Ko, Seung H.; Choi, Yeonho; Hwang, David J.; Grigoropoulos, Costas P.; Chung, Jaewon; Poulikakos, Dimos

    2006-10-02

    Ablation of self-assembled monolayer protected gold nanoparticle films on polyimide was explored using a nanosecond laser. When the nanoparticle film was ablated and subsequently thermally sintered to a continuous film, the elevated rim structure by the expulsion of molten pool could be avoided and the ablation threshold fluence was reduced to a value at least ten times lower than the reported threshold for the gold film. This could be explained by the unusual properties of nanoparticle film such as low melting temperature, weak bonding between nanoparticles, efficient laser energy deposition, and reduced heat loss. Finally, submicron lines were demonstrated.

  17. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  18. Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells

    SciTech Connect

    Pederson, Larry R.; Singh, Prabhakar; Zhou, Xiao Dong

    2006-07-01

    The application of vacuum deposition techniques to the fabrication of solid oxide fuel cell materials and structures are reviewed, focusing on magnetron sputtering, vacuum plasma methods, laser ablation, and electrochemical vapor deposition. A description of each method and examples of use to produce electrolyte, electrode, and/or electrical interconnects are given. Generally high equipment costs and relatively low deposition rates have limited the use of vacuum deposition methods in solid oxide fuel cell manufacture, with a few notable exceptions. Vacuum methods are particularly promising in the fabrication of micro fuel cells, where thin films of high quality and unusual configuration are desired.

  19. A comparative analysis of chemical vapor deposition techniques for the growth of 3-5 epitaxial films

    NASA Astrophysics Data System (ADS)

    Anderson, Timothy J.; Quinlan, Kenneth P.

    1988-04-01

    A program to compare the chloride, hydride and metal organic chemical vapor deposition techniques is described. A deposition system capable of depositing films by all three techniques was constructed and equipped with a modulated molecular beam mass spectrometer and, more recently, a Raman spectrometer. The thermal decomposition kinetics of NH3, PH3 and AsH3 were measured and the results applied to reactor operation. The hydride source region was analyzed and design procedure established. The unintentional incorporation of Si in GaAs and InP with the MOCVD process was investigated and methods of reducing these levels suggested. Substrates preparation procedures were compared using UHV surface analysis tools. A significant amount of hydrogen was found in GaAs (100) substrates.

  20. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery.

    PubMed

    Quan, Kimmen; Xu, Karen M; Lalonde, Ron; Horne, Zachary D; Bernard, Mark E; McCoy, Chuck; Clump, David A; Burton, Steven A; Heron, Dwight E

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80-86%). The median maximum dose was 57.1 Gy (range: 35.7-65.1 Gy). The mean combined PTV was 49.57 cm(3) (range: 14.90-87.38 cm(3)). For single-isocenter plans, the median CI was 1.15 (range: 0.97-1.53). The median HI was 1.19 (range: 1.16-1.28). The median GI was 4.60 (range: 4.16-7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7-62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1-9.3 Gy). The median lung V5 was 18.7% (range: 3.8-41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10

  1. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI

    PubMed Central

    Bartels, Benjamin; Svatoš, Aleš

    2015-01-01

    This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques–namely, laser ablation of biological samples and electrospray ionization–as well as variations of the LAESI ion source for specific targets of interest are described. PMID:26217345

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effect of Temperature on Structural and Magnetic Properties of Laser Ablated Iron Oxide Deposited on Si(100)

    NASA Astrophysics Data System (ADS)

    Shahid, Ramay M.; Saadat, Siddiqi A.; M. Sabieh, Anwar; Shin C., S.

    2009-11-01

    We fabricate Fe3O4 thin films on Si(100) substrates at different temperatures using pulsed laser deposition, and study the effect of annealing and deposition temperature on the structural and magnetic properties of Fe3O4 thin films. Subsequently, the films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometery (VSM). The XRD results of these films confirm the presence of the Fe3O4 phase and show room-temperature ferromagnetism, as observed with VSM. We demonstrate the optimized deposition and annealing conditions for an enhanced magnetization of 854 emu/cm3 that is very high when compared to the bulk sample.

  3. Parametric investigation of substrate temperatures on the properties of Zinc oxide deposited over a flexible polymeric substrate via spray technique

    NASA Astrophysics Data System (ADS)

    Rajagopalan, P.; Gagrani, Rohit; Nakamura, Daisuke; Okada, Tatsuo; Singh, Vipul; Palani, I. A.

    2016-09-01

    Here we report the influence of substrate temperature (300-500 °C) on the deposition and growth of ZnO over a Flexible polyimide film. Owing to its simplicity, large area deposition capability and Cost effectivity Spray Pyrolysis technique was used. We have modified the conventional process of Spray pyrolysis by spraying for shorter durations and repeating the process which in turn reduced the Island formation of ZnO. Moreover, this technique helped in maintaining the constant temperature and uniformity during the deposition as prolonged spraying reduces the temperature of the heating plate drastically. Photoluminescence (PL) reveals that at 350 and 400° C the defect have reduced. XRD reveals the crystallinity and Impurities present. FE-SEM reveals the structure morphology changes with the change in the substrate temperature. TGA was done to ensure that substrate does not undergoes dissociation at high temperature. It was observed at the film deposited at 400 °C was found to be more uniform, defect free and crystalline. Hence, IV characterization of the film deposited at 400 °C was done which showed good rectification behaviour of the Schottky diodes.

  4. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  5. Indications and options for endometrial ablation.

    PubMed

    2008-11-01

    Endometrial ablation is an effective therapeutic option for the management of menorrhagia in properly selected patients. Hysteroscopic and non-hysteroscopic techniques offer similar rates of symptom relief and patient satisfaction.

  6. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    SciTech Connect

    Pham, Daniel; Thompson, Ann; Kron, Tomas; Foroudi, Farshad; Kolsky, Michal Schneider; Devereux, Thomas; Lim, Andrew; Siva, Shankar

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  7. Hg1-xCdxTe vapor deposition on CdZnTe substrates by Closed Space Sublimation technique

    NASA Astrophysics Data System (ADS)

    Rubio, Sandra; Sochinskii, Nikolai V.; Repiso, Eva; Tsybrii, Zinoviia; Sizov, Fiodor; Plaza, Jose Luis; Diéguez, Ernesto

    2017-01-01

    Closed Space Sublimation (CSS) technique has been studied to deposit Hg1-xCdxTe polycrystalline films on CdZnTe substrates at the improved pressure-temperature conditions. The experimental results on film characterization suggest that the CSS optimal conditions are the argon atmospheric pressure (1013 mbar) and the deposition temperature in the range of 500-550 °C. These conditions provide macro-defect free Hg1-xCdxTe films with the uniform size and surface distribution of polycrystals.

  8. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  9. Imaging Intratumoral Nanoparticle Uptake after Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors

    PubMed Central

    Tam, Alda L; Melancon, Marites P.; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-01-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (64Cu-PEG-HAuNS-DOX); (ii) NE+RFA; (iii) NE+IRE; (iv) NE+LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE+IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE+LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  10. Radiofrequency Ablation of Liver Tumors

    MedlinePlus

    ... Site Index A-Z Radiofrequency Ablation (RFA) of Liver Tumors Radiofrequency ablation (RFA) is a treatment that ... of Liver Tumors? What is Radiofrequency Ablation of Liver Tumors? Radiofrequency ablation, sometimes referred to as RFA, ...

  11. Study of anisotropy of spin cast and vapor deposited polyimide films using internal reflection techniques

    SciTech Connect

    Liberman, V.

    1996-11-01

    We have compared anisotropy of spin cast and vapor deposited polyimide (VDP) films, using internal reflection infrared spectroscopy. The films were deposited directly on the internal reflection element. We find that spin cast films are more anisotropic than their VDP counterparts, with the polyimide chains tending to align parallel to the substrate. Both films are found to contain more and less ordered regions. Within the ordered regions, the plane of the phenyl ring tends to align parallel to the substrate.

  12. Carbon nanocrystals produced by pulsed laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Mangione, A.; Torrisi, L.; Picciotto, A.; Caridi, F.; Margarone, D.; Fazio, E.; La Mantia, A.; di Marco, G.

    2005-10-01

    Plasma laser ablation experiments were performed irradiating glassy-carbon targets placed in vacuum through a pulsed Nd:YAG laser operating at the second harmonic (532 nm), 9 ns pulse width and 10(9) W/cm(2) density power. Thin films of ablated carbon were deposited on silicon oxide substrates placed at different distances and angles with respect to the target. The analysis of the deposited material was carried out by using surface profiler, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and Raman spectroscopy. Results show the evidence of carbon nanocrystals and nanostructures with dimension of the order of 100 nm deposited on the substrates together with a large amount of amorphous phase. The spectroscopic investigations and the SEM images indicate the formation of nanodiamond seeds as a nucleation process induced on the substrate surface. Nanostructures were investigated as a function of the laser intensity and angle distribution. Experimental results were compared with the literature data coming from nanodiamonds growth with different techniques. Experiments performed at Instituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) of Catania (Italy) and data analysis conducted at Dipartimento di Fisica and DFMTA of the Universita of Messina (Italy), CNR-ITIS of Messina and ST-Microelectronics of Catania will be presented and discussed.

  13. Continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films

    NASA Astrophysics Data System (ADS)

    Christen, H. M.; Silliman, S. D.; Harshavardhan, K. S.

    2001-06-01

    A novel continuous-compositional-spread (CCS) technique based on the nonuniformity of the deposition rate typically observed in pulsed-laser deposition (PLD) is introduced. Using rapid (submonolayer) sequential deposition of the phase spread's constituents, intermixing of the constituents occurs on the atomic scale during the growth process. Therefore, a pseudobinary or pseudoternary phase diagram is deposited without the requirement of a postanneal. The approach uses the spatial variations in the deposition rate naturally occurring in PLD; therefore, there is no need for the masks typically used in combinatorial techniques. Consequently, combinatorial materials synthesis can be carried out under optimized film growth conditions (for example, complex oxides can be grown at high temperature). Additionally, lifting the need for postannealing renders this method applicable to heat-sensitive materials and substrates (e.g., films of transparent oxides on polymer substrates). PLD CCS thus offers an interesting alternative to traditional "combi" for situations where the number of constituents is limited, but the process variables are of critical importance. Additionally, the approach benefits from all the advantages of PLD, particularly the flexibility and the possibility to work with targets of relatively small size. Composition determination across the sample and mapping of physical properties onto the ternary phase diagram is achieved via a simple algorithm using the parameters that describe the deposition-rate profiles. Experimental verification using energy-dispersive x-ray spectroscopy and Rutherford backscattering spectroscopy measurements demonstrates the excellent agreement between the predicted and the calculated composition values. Results are shown for the high-temperature growth of crystalline perovskites [including (Ba,Sr)TiO3 and the formation of a metastable alloy between SrRuO3 and SrSnO3] and the room-temperature growth of transparent conducting oxides.

  14. Effect of technique parameters on characteristics of hydrogen-free DLC films deposited by surface wave-sustained plasma

    NASA Astrophysics Data System (ADS)

    Xu, Junqi; Kousaka, Hiroyuki; Umehara, Noritsugu; Diao, Dongfeng

    2006-01-01

    Hydrogen-free diamond-like carbon (DLC) films were deposited by a new-type surface wave-sustained plasma physical vapor deposition (SWP-PVD) system under various technique conditions. Electron density was measured by a Langmuir probe, while the film thickness and hardness were characterized using a surface profilometer and a nanoindenter, respectively. Surface morphology was investigated by an atomic force microscope (AFM). It was found that the electron density and deposition rate increased following the increase in microwave power, target voltage, or gas pressure. The typical electron density and deposition rate were about 1.87-2.04×10 11 cm -3 and 1.61-14.32 nm/min respectively. AFM images indicated that the grains of films changes as the technique parameters vary. The optical constants, refractive index n and extinction coefficient k, were obtained using an optical ellipsometry. With the increase in microwave power from 150 to 270 W, the extinction coefficient of DLC films increased from 0.05 to 0.27 while the refractive index decreased from 2.31 to 2.18.

  15. Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Salgaonkar, Vasant A.; Burdette, E. Clif; Diederich, Chris J.

    2011-03-01

    Radiofrequency (RF) ablation has emerged as an effective method for treating liver tumors under 3 cm in diameter. Multiple applicator devices and techniques - using RF, microwave and other modalities - are under development for thermal ablation of large and irregularly-shaped liver tumors. Interstitial ultrasound (IUS) applicators, comprised of linear arrays of independently powered tubular transducers, enable 3D control of the spatial power deposition profile and simultaneous ablation with multiple applicators. We evaluated IUS applicator configurations (parallel, converging and diverging implants) suitable for percutaneous and laparascopic placement with experiments in ex vivo bovine tissue and computational models. Ex vivo ablation zones measured 4.6+/-0.5 x 4.2+/-0.5 × 3.3+/-0.5 cm3 and 5.6+/-0.5 × 4.9+/-0.5 x 2.8+/-0.3 cm3 using three parallel applicators spaced 2 and 3 cm apart, respectively, and 4.0+/-0.3 × 3.2+/-0.4 × 2.9+/-0.2 cm3 using two parallel applicators spaced 2 cm apart. Computational models indicate in vivo ablation zones up to 4.5 × 4.4 × 5.5 cm3 and 5.7 × 4.8 × 5.2 cm3, using three applicators spaced 2 and 3 cm apart, respectively. Converging and diverging implant patterns can also be employed for conformal ablation of irregularly-shaped tumor margins by tailoring power levels along each device. Simultaneously powered interstitial ultrasound devices can create tailored ablation zones comparable to currently available RF devices and similarly sized microwave antennas.

  16. Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Kawaharamura, Toshiyuki; Dang, Giang T.; Nitta, Noriko

    2016-10-01

    A multiple quantum well α-Fe2O3/α-Ga2O3 with parallel and coherent formation of uniform and highly single-crystalline layers on a sapphire substrate has been fabricated by open-air atmospheric-pressure solution-processed mist chemical vapor deposition (Mist CVD). This report demonstrates that complicated structures with atomic-level control can be fabricated even in non-vacuum conditions by the Mist CVD. This can be achieved via the precise control of the precursor flow and ambient temperature combined with the formation of mist droplets of the special Leidenfrost state, which increased the atomic migration length by 108 times more than that of traditional vacuum techniques. This work could be a milestone in the transformation from vacuum to non-vacuum thin film deposition techniques towards a green and sustainable industry.

  17. Ablative skin resurfacing.

    PubMed

    Chwalek, Jennifer; Goldberg, David J

    2011-01-01

    Ablative skin resurfacing has remained the gold standard for treating photodamage and acne scars since the development of the first CO(2) lasers. CO(2) and Er:YAG lasers emit infrared light, which targets water resulting in tissue contraction and collagen formation. The first ablative laser systems created significant thermal damage resulting in unacceptably high rates of scarring and prolonged healing. Newer devices, such as high-energy pulsed lasers and fractional ablative lasers, are capable of achieving significant improvements with fewer side effects and shorter recovery times. While ablative resurfacing has become safer, careful patient selection is still important to avoid post-treatment scarring, dyspigmentation, and infections. Clinicians utilizing ablative devices need to be aware of possible side effects in order to maximize results and patient satisfaction. This chapter reviews the background of ablative lasers including the types of ablative lasers, mechanism of action, indications for ablative resurfacing, and possible side effects.

  18. Optical Characterization of Pulse Laser Deposition of Thin Film of Hard Materials Using RHEED and AFM Techniques (DURIP)

    DTIC Science & Technology

    2011-09-26

    Ferrite (BaFeO3) have been fabricated by the pulsed laser deposition technique on a Si substrate. The magnetic parameters were measured using vibrating...presented. 1. INTRODUCTION Barium ferrite powder was selected in this study because of its suitable coercive force (HC) and large remnant...was studied in the case of six fine- powder samples of barium ferrite . Then the selected BaFeO3 materials were used to produce a doped PLD thin film

  19. Demonstration of Logic Operations in High-Performance RRAM Crossbar Array Fabricated by Atomic Layer Deposition Technique

    NASA Astrophysics Data System (ADS)

    Han, Runze; Huang, Peng; Zhao, Yudi; Chen, Zhe; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-01-01

    In this paper, resistive random access memory (RRAM)-based crossbar arrays with the cell structure of Pt/[AlO y /HfO x ] m /TiN were fabricated by using atomic layer deposition (ALD) technique. The RRAM devices in the arrays show excellent performances such as good uniformity and high reliability. Based on the fabricated RRAM array, a complete set of basic logic operations including NOR and XNOR were successfully demonstrated.

  20. Local Ablation for Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Lin, Shi-Ming

    2013-01-01

    Hepatocellular carcinoma (HCC) is the second commonest cancer in Taiwan. The national surveillance program can detect HCC in its early stages, and various curative modalities (including surgical resection, orthotopic liver transplantation, and local ablation) are employed for the treatment of small HCC. Local ablation therapies are currently advocated for early-stage HCC that is unresectable because of co-morbidities, the need to preserve liver function, or refusal of resection. Among the various local ablation therapies, the most commonly used modalities include percutaneous ethanol injection and radiofrequency ablation (RFA); percutaneous acetic acid injection and microwave ablation are used less often. RFA is more commonly employed than other local ablative modalities in Taiwan because the technique is highly effective, minimally invasive, and requires fewer sessions. RFA is therefore advocated in Taiwan as the first-line curative therapy for unresectable HCC or even for resectable HCC. However, current RFA procedures are less effective against tumors that are in high-risk or difficult-to-ablate locations, are poorly visualized on ultrasonography (US), or are large. Recent advancements in RFA in Taiwan can resolve these issues by the creation of artificial ascites or pleural effusion, application of real-time virtual US assistance, use of combination therapy before RFA, or use of switching RF controllers with multiple electrodes. This review article provides updates on the clinical outcomes and advances in local ablative modalities (mostly RFA) for HCC in Taiwan. PMID:24159599

  1. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    USGS Publications Warehouse

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  2. Higher lung deposition with Respimat Soft Mist inhaler than HFA-MDI in COPD patients with poor technique.

    PubMed

    Brand, Peter; Hederer, Bettina; Austen, George; Dewberry, Helen; Meyer, Thomas

    2008-01-01

    Aerosols delivered by Respimat Soft Mist Inhaler (SMI) are slower-moving and longer-lasting than those from pressurized metered-dose inhalers (pMDIs), improving the efficiency of pulmonary drug delivery to patients. In this four-way cross-over study, adults with chronic obstructive pulmonary disease (COPD) and with poor pMDI technique received radiolabelled Berodual (fenoterol hydrobromide 50 microg/ipratropium bromide 20 microg) via Respimat SMI or hydrofluoroalkane (HFA)-MDI (randomized order) on test days 1 and 2, with no inhaler technique training. The procedure was repeated on test days 3 and 4 after training. Deposition was measured by gamma scintigraphy. All 13 patients entered (9 males, mean age 62 years; FEV1 46% of predicted) inhaled too fast at screening (peak inspiratory flow rate [IF]: 69-161 L/min). Whole lung deposition was higher with Respimat SMI than with pMDI for untrained (37% of delivered dose vs 21% of metered dose) and trained patients (53% of delivered vs 21% of metered dose) (P(Sign-Test) = 0.15; P(ANOVA) < 0.05). Training also improved inhalation profiles (slower average and peak IF as well as longer breath-hold time). Drug delivery to the lungs with Respimat SMI is more efficient than with pMDI, even with poor inhaler technique. Teaching patients to hold their breath as well as to inhale slowly and deeply increased further lung deposition using Respimat SMI.

  3. Contemporary Status of Percutaneous Ablation for the Small Renal Mass.

    PubMed

    Shin, Benjamin J; Chick, Jeffrey Forris Beecham; Stavropoulos, S William

    2016-03-01

    Renal cell carcinoma is the tenth most common malignancy in the USA, with upwards of 61,000 new cases and resulting in more than 14,000 deaths annually. Although partial nephrectomy remains the standard treatment, image-guided nephron-sparing ablative techniques including cryoablation, radiofrequency ablation, and microwave ablation have emerged as treatment options in certain patient populations. Ablative therapies have high technical successes, low tumor recurrence rates, and preserve renal parenchymal volume. The purpose of this article is to provide an update on ablation therapies for small renal masses.

  4. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    PubMed

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.

  5. Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Marcov, D. A.; Pasuk, I.; Miculescu, F.; Pina, S.; Tulyaganov, D. U.; Ferreira, J. M. F.

    2010-09-01

    Bioglass coatings were prepared by radio frequency magnetron sputtering deposition at low temperature (150 °C) onto silicon substrates. The influence of argon pressure values used during deposition (0.2 Pa, 0.3 Pa and 0.4 Pa) on the short-range structure and biomineralization potential of the bioglass coatings was studied. The biomineralization capability was evaluated after 30 days of immersion in simulated body fluid. SEM-EDS, XRD and FTIR measurements were performed. The tests clearly showed strong biomineralization features for the bioglass films. The thickness of the chemically grown hydroxyapatite layers was more than twice greater for the BG films deposited at the highest working pressure, in comparison to those grown on the films obtained at lower working pressures. The paper attempts to explain this experimental fact based on structural and compositional considerations.

  6. Electro-spark deposition: A technique for producing wear resistant coatings

    SciTech Connect

    Sheldon, G.L. ); Johnson, R.N. )

    1984-12-01

    Electro-spark deposition (ESD) is a coating process using short duration, high current electrical pulses to deposit an electrode material on a metallic substrate. A principal attribute of the process is its ability to apply metallurgically bonded coatings with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. A review of the process is briefly given, then current research using WC-TiC and Cr{sub 3}C{sub 2} electrodes to deposit coatings on Type 316 stainless steel and other substrates is presented. The ESD carbide coatings were found to be exceptionally hard, wear-resistant and spalling-resistant in high-stress rubbing tests. Several applications for nuclear reactor components are described. 17 refs., 18 figs., 1 tab.

  7. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    NASA Astrophysics Data System (ADS)

    Mohd Zaheruddin, K.; Rahmat, A.; Shamsul, J. B.; Mohd Nazree, B. D.; Aimi Noorliyana, H.

    2016-07-01

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  8. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  9. Novel ways of depositing ZnTe films by a solution growth technique

    SciTech Connect

    Birkmire, R.W.; McCandless, B.E.; Yokimcus, T.A.; Mondal, A. . Inst. of Energy Conversion)

    1992-10-01

    An electrochemical process has been successfully developed for the reproducible deposition of ZnTe and copper-doped ZnTe films suitable as transparent ohmic contacts for CdS/CdTe solar cells. The development of this method and optimization of key processing steps in the fabrication of CdS/CdTe/ZnTe:Cu devices has allowed IEC to achieve cell performance results of FF>70% and {eta} {approximately}10%. Preliminary efforts have indicated that the deposition methods investigated are potentially feasible for the formation of other II-VI compounds for use in polycrystalline thin film solar devices and should be the focus of future work.

  10. Simultaneous deposition of diamondlike carbon films on both surfaces of aluminum substrate by electrochemical technique

    NASA Astrophysics Data System (ADS)

    Li, R. S.; Zhou, M.; Pan, X. J.; Zhang, Z. X.; Lu, B. A.; Wang, T.; Xie, E. Q.

    2009-03-01

    By electrolysis of the N ,N-dimethylformamide solution, an attempt was made to simultaneously deposit diamondlike carbon (DLC) films on both surfaces of an aluminum (Al) substrate. Raman spectra showed that the structures of the DLC film were uniform. The thickness distribution of the film was 260-300 nm. A simple model of the sustaining mechanism was proposed for simultaneous electrodeposition of the DLC film on both surfaces of conductive substrates. The simultaneous formation of the DLC film on both surfaces of the Al substrate showed a possibility in the three-dimensional deposition of DLC films on complex conductive substrates.

  11. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  12. Laser Ablation for Medical Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  13. Geological Modeling of Gold Deposit Based on Grade Domaining Using Plurigaussian Simulation Technique

    SciTech Connect

    Yunsel, Tayfun Y.; Ersoy, Adem

    2011-12-15

    Mineral resource evaluation requires defining grade domains of an ore deposit. Common practice in mineral resource estimation consists of partitioning the ore body into several grade domains before the geostatistical modeling and estimation at unsampled locations. Many ore deposits are made up of different mineralogical ensembles such as oxide and sulfide zone: being able to model the spatial layout of the different grades is vital to good mine planning and management. This study addresses the application of the plurigaussian simulation to Sivas (Turkey) gold deposits for constructing grade domain models that reproduce the contacts between different grade domains in accordance with geologist's interpretation. The method is based on the relationship between indicator variables from grade distributions on the Gaussian random functions chosen to represent them. Geological knowledge is incorporated into the model by the definition of the indicator variables, their truncation strategy, and the grade domain proportions. The advantages of the plurigaussian simulation are exhibited through the case study. The results indicated that the processes are seen to respect reproducing complex geometrical grades of an ore deposit by means of simulating several grade domains with different spatial structure and taking into account their global proportions. The proposed proportion model proves as simple to use in resource estimation, to account for spatial variations of the grade characteristics and their distribution across the studied area, and for the uncertainty in the grade domain proportions. The simulated models can also be incorporated into mine planning and scheduling.

  14. Effect of annealing temperature on the optical spectra of CdS thin films deposited at low solution concentrations by Chemical Bath Deposition (CBD) Technique.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Mohd Ghazali, Mohd Sabri; Jafari, Atefeh; Din, Fasih Ud; Zamiri, Reza

    2011-02-22

    Two different concentrations of CdCl(2) and (NH(2))(2)CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl(2) (0.000312 M and 0.000625 M) was employed as a source of Cd(2+) while (NH(2))(2)CS (0.00125 M and 0.000625 M) for S(2-) at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl(2) (0.000312 M). Optical energy band gap (E(g)), Urbach energy (E(u)) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl(2) (0.000312 M).

  15. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  16. Band offsets of Al{sub 2}O{sub 3} and HfO{sub 2} oxides deposited by atomic layer deposition technique on hydrogenated diamond

    SciTech Connect

    Liu, J. W.; Liao, M. Y.; Imura, M.; Koide, Y.

    2012-12-17

    High-k oxide insulators (Al{sub 2}O{sub 3} and HfO{sub 2}) have been deposited on a single crystalline hydrogenated diamond (H-diamond) epilayer by an atomic layer deposition technique at temperature as low as 120 Degree-Sign C. Interfacial electronic band structures are characterized by X-ray photoelectron spectroscopy. Based on core-level binding energies and valence band maximum values, valence band offsets are found to be 2.9 {+-} 0.2 and 2.6 {+-} 0.2 eV for Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions, respectively. Band gaps of the Al{sub 2}O{sub 3} and HfO{sub 2} have been determined to be 7.2 {+-} 0.2 and 5.4 {+-} 0.2 eV by measuring O 1s energy loss spectra, respectively. Both the Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions are concluded to be type-II staggered band configurations with conduction band offsets of 1.2 {+-} 0.2 and 2.7 {+-} 0.2 eV, respectively.

  17. Multi-technique x-ray and optical characterization of crystalline phase, texture, and electronic structure of atomic layer deposited Hf1-xZrxO2 gate dielectrics deposited by a cyclical deposition and annealing scheme

    NASA Astrophysics Data System (ADS)

    Vasić, Relja; Consiglio, Steven; Clark, Robert D.; Tapily, Kandabara; Sallis, Shawn; Chen, Bo; Newby, David; Medikonda, Manasa; Raja Muthinti, Gangadhara; Bersch, Eric; Jordan-Sweet, Jean; Lavoie, Christian; Leusink, Gert J.; Diebold, Alain C.

    2013-06-01

    A multi-technique approach was used to determine the crystalline phase, texture, and electronic structure of Hf1-xZrxO2 (x = 0-1) high-k gate dielectric thin films grown by atomic layer deposition using a cyclical deposition and annealing method. X-ray diffraction (XRD) analysis performed in both grazing incidence and pole figure configurations identified the tetragonal phase for Zr/(Zr + Hf)% = 58% and a concomitant increase in tetragonal phase for further increase in Zr content. X-ray absorption spectroscopy (XAS) was used to determine the local atomic structure and metal oxide bond orientation. Polarization dependent XAS in normal and grazing incidence showed preferential metal-oxygen bond orientation consistent with the texturing observed by XRD. X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry (SE) were also performed with special focus on spectral features which arise as a consequence of atomic ordering and specific crystalline phase. The combination of XAS, XPS, SE, and XRD enabled the determination of the effects of the deposition scheme and compositional alloying on the electronic structure, crystal field effects, optical properties, crystal phase, and texture for the mixed oxide alloy series. The multi-technique approach revealed the martensitic-like transformation of crystalline phase from monoclinic to tetragonal as the majority metal oxide concentration in the alloy mixture changed from HfO2 to ZrO2.

  18. Method for continuous control of composition and doping of pulsed laser deposited films

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  19. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  20. Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique

    SciTech Connect

    Krajewski, Tomasz A. Dybko, Krzysztof; Luka, Grzegorz; Wachnicki, Lukasz; Kopalko, Krzysztof; Paszkowicz, Wojciech; Guziewicz, Elzbieta

    2015-07-21

    In this work, the analysis of the temperature-dependent electrical conductivity of highly crystalline zinc oxide (ZnO) thin films obtained by the Atomic Layer Deposition (ALD) method is performed. It is deduced that the most important scattering mechanisms are: scattering by ionized defects (at low temperatures) as well as by phonons (mainly optical ones) at higher temperatures. Nevertheless, the role of grain boundaries in the carrier mobility limitation ought to be included as well. These conclusions are based on theoretical analysis and temperature-dependent Hall mobility measurements. The presented results prove that existing models can explain the mobility behavior in the ALD-ZnO films, being helpful for understanding their transport properties, which are strongly related both to the crystalline quality of deposited ZnO material and defects in its lattice.

  1. Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Yamamoto, Hiroki; Ueno, Yuichiro; Tsuruoka, Subaru; Shibuya, Takazo; Sawaki, Yusuke; Yamamoto, Shinji; Kon, Yoshiaki; Kitajima, Kouki; Komiya, Tsuyoshi; Maruyama, Shigenori; Hirata, Takafumi

    2010-05-01

    The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth's surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS). We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ 56Fe values (-1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ 56Fe value (1‰) and a rim with a crustal δ 56Fe value (0‰). The observed isotopic zoning suggests that the positive δ 56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis. The positive δ 56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8

  2. Applications of Ion-Beam Milling and Deposition Techniques to HEL (High Energy Laser) Optics.

    DTIC Science & Technology

    1981-11-23

    using a Twyman -Green interferometer with one leg in the vacuum deposition chamber ........ ...................... .. 14 Figure 3. Deomonstration of...of beam current and voltage. 13 b) I Figure 2. Photographs of interference pattern produced using a Twyman -Green interferometer with one leg in the...Measurements of optical surface roughness were made versus milling depth for various ion beam conditions and geometry arrangements. A Twyman -Green

  3. Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Ke, Peiling; Li, Xiaowei; Zou, Yousheng; Wang, Aiying

    2015-02-01

    Nitrogen-doped diamond-like carbon (N-DLC) films were synthesized by glow discharge plasma enhanced chemical vapor deposition (PECVD) using a hybrid ion beam system. The influence of nitrogen incorporation on the microstructure and electrochemical properties of N-DLC films was investigated by scanning probe microscopy, Raman spectroscopy, X-ray photoemission spectroscopy and cycle voltammetry. Regardless of the deposition parameters, the surface of all the deposited films is very smooth. Raman spectra show that ID/IG increases from 0.6 to 1.04 with the substrate bias voltage increases. XPS results identify that carbon is bonded with nitrogen and the substrate bias makes no distinct contribution to the N content in the films, even the N-DLC film at bias of -550 V has the lowest N-O bonds concentration and the highest C-N bonds concentration. The film electrodes show the wide potential windows range over 4 V, lower background currents in strong acid media. At the bias of -550 V, the N-DLC film electrode not only exhibits the ΔEp at 209 mV and Ipox / Ipred at 0.8778 in K3Fe(CN)6 solution, respectively, but also illustrates a nearly reversible electrode reaction. The mechanism of electroproperties is discussed in terms of the atomic bond structures and diffusion process.

  4. Adhesion improvement of carbon-based coatings through a high ionization deposition technique

    NASA Astrophysics Data System (ADS)

    Broitman, E.; Hultman, L.

    2012-06-01

    The deposition of highly adherent carbon nitride (CNx) films using a pretreatment with two high power impulse magnetron sputtering (HIPIMS) power supplies in a master-slave configuration is reviewed. SKF3 (AISI 52100) steel substrates were pretreated in the environment of a high ionized Cr+Ar plasma in order to sputter clean the surface and implant Cr metal ions. CNx films were subsequently deposited at room temperature by DC magnetron sputtering from a high purity C target in a N2/Ar plasma discharge. All processing was done in an industrial-scale CemeCon CC800 coating system. A series of depositions were obtained with samples pretreated at different bias voltages (DC and pulsed). The adhesion of CNx films, evaluated by the Daimler-Benz Rockwell-C test, reaches strength quality HF1. Adhesion results are correlated to high resolution transmission electron microscopy observations confirming the formation of an optimal interfacial mixing layer of Cr and steel. The throwing power increase for HIPIMS coatings is associated to the higher ionization in the plasma discharge.

  5. HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique

    SciTech Connect

    Aji, A. S. Darma, Y.

    2014-03-24

    Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si without HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.

  6. Percutaneous ablation of colorectal lung metastases

    PubMed Central

    Solomon, Stephen B.

    2015-01-01

    Lung metastasectomy can prolong survival in patients with metastatic colorectal carcinoma. Thermal ablation offers a potential solution with similar reported survival outcomes. It has minimal effect on pulmonary function, or quality of life, can be repeated, and may be considered more acceptable to patients because of the associated shorter hospital stay and recovery. This review describes the indications, technique, reported outcomes, complications and radiologic appearances after thermal ablation of colorectal lung metastases. PMID:26697202

  7. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide.

    PubMed

    Melisi, Domenico; Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current-voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  8. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature.

    PubMed

    Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Beche, Eric; Esvan, Jérôme; Collière, Vincent; Chaudret, Bruno; Fau, Pierre

    2016-02-24

    With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal-organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal-organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state (29) Si MAS NMR, XPS, SIMS, and HRTEM.

  9. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    NASA Astrophysics Data System (ADS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R. D.

    2013-01-01

    Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  10. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  11. Noninvasive radioisotopic technique for detection of platelet deposition in mitral valve prostheses and quantitation of visceral microembolism in dogs

    SciTech Connect

    Dewanjee, M.K.; Fuster, V.; Rao, S.A.; Forshaw, P.L.; Kaye, M.P.

    1983-05-01

    A noninvasive technique has been developed in the dog model for imaging, with a gamma camera, the platelet deposition on Bjoerk-Shiley mitral valve prostheses early postoperatively. At 25 hours after implantation of the prosthesis and 24 hours after intravenous administration of 400 to 500 microCi of platelets labeled with indium-111, the platelet deposition in the sewing ring and perivalvular cardiac tissue can be clearly delineated in a scintiphotograph. An in vitro technique was also developed for quantitation of visceral microemboli in brain, lungs, kidneys, and other tissues. Biodistribution of the labeled platelets was quantitated, and the tissue/blood radioactivity ratio was determined in 22 dogs in four groups: unoperated normal dogs, sham-operated dogs, prosthesis-implanted dogs, and prosthesis-implanted dogs treated with dipyridamole before and aspirin and dipyridamole immediately after operation. Fifteen to 20% of total platelets were consumed as a consequence of the surgical procedure. On quantitation, we found that platelet deposition on the components of the prostheses was significantly reduced in prosthesis-implanted animals treated with dipyridamole and aspirin when compared with prosthesis-implanted, untreated dogs. All prosthesis-implanted animals considered together had a twofold to fourfold increase in tissue/blood radioactivity ratio in comparison with unoperated and sham-operated animals, an indication that the viscera work as filters and trap platelet microemboli that are presumably produced in the region of the mitral valve prostheses. In the dog model, indium-111-labeled platelets thus provide a sensitive marker for noninvasive imaging of platelet deposition on mechanical mitral valve prostheses, in vitro evaluation of platelet microembolism in viscera, in vitro quantitation of surgical consumption of platelets, and evaluation of platelet-inhibitor drugs.

  12. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  13. Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Jakubéczyová, D.; Hvizdoš, P.; Selecká, M.

    2012-04-01

    This study was intended to investigate the properties and cutting performance with thin layers applied by two PVD techniques. PVD techniques ARC and LARC were used for the deposition of thin coatings onto cutting tools prepared by powder metallurgy. Advanced types of layers - monolayer AlTiCrN and nanocomposite type of nc-AlTiN/Si3N4 layer - were analyzed by standard techniques for surface status and quality assessment - roughness, hardness, layer thickness, chemical composition by GDOES, tribological properties at room and elevated temperature. Durability testing of the cutting tools was carried out according to the standard ISO 3685-1999. The nanocomposite nc-AlTiN/Si3N4 layer achieved lower roughness when compared to monolayer AlTiCrN which leads to the achievement of higher hardness and better layer quality. The HV0.5 hardness values were ∼26 GPa. The results showed a 2-3-times longer durability of the cutting tools in comparison with equivalent uncoated PM and traditional materials. The deposited coatings contributed to the improvement of their durability.

  14. Streaked radiography measurements of convergent ablator performance (invited)

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other ablator rocket parameters have been measured using a single streaked x-ray radiograph. A regularization technique has been used to determine the ablator density profile {rho}(r) at each time step; moments of {rho}(r) then provide the areal density, average radius, and mass of the unablated, or remaining, ablator material, with the velocity determined from the time derivative of the average radius. The technique has been implemented on experiments at the OMEGA laser facility.

  15. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  16. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  17. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; Kippelen, Bernard; Creatore, Mariadriana; Graham, Samuel

    2017-01-01

    Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma-assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as a function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.

  18. Analysis of infrared laser tissue ablation

    NASA Astrophysics Data System (ADS)

    McKenzie, Gordon P.; Timmerman, Brenda H.; Bryanston-Cross, Peter J.

    2005-04-01

    The mechanisms involved in infrared laser tissue ablation are studied using a free electron laser (FELIX) in order to clarify whether the increased ablation efficiency reported in literature for certain infrared wavelengths is due to a wavelength effect or to the specific pulse structure of the lasers that are generally used in these studies. Investigations are presented of ablation of vitreous from pigs" eyes using several techniques including protein gel electrophoresis and ablation plume visualization. The ablation effects of three different infrared wavelengths are compared: 3 mm, which is currently in clinical surgical use, and the wavelengths associated with the amide I and amide II bands, i.e. 6.2 mm and 6.45mm, respectively. The results suggest a different ablation mechanism to be in operation for each studied wavelength, thus indicating that the generally reported increased ablation efficiency in the 6-6.5 micron range is due to the wavelength rather than the typical free electron laser pulse structure.

  19. Gold in the Brunswick No. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.; Lentz, David R.; Martin, Jillian; Diegor, Wilfredo G.

    2009-07-01

    The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn-Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu-Co-Bi-Se), contains generally low Au contents averaging 0.39 ppm ( n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au ( n = 21), and is associated with an exhalative suite of elements (Zn-Pb-As-Sb-Ag-Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm ( n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of

  20. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    NASA Astrophysics Data System (ADS)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2016-12-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  1. Structural and Optical Properties Thin Film Copper Oxides Formed by Chemical Solution Deposition Process Technique

    SciTech Connect

    Lockman, Zainovia; Abidin, Noor Rehan Zainal; Hutagalung, Sabar Derita

    2007-05-09

    Cu2O films were prepared by chemical deposition process (CSD) using solutions of copper nitrate, dip-coated onto glass substrates. The precursor solutions were altered in an effort to seek the best solution for successful deposition. Organic additive of ethanolamine (EA) and (poly)ethylene glycol (PEG, H(OCH2CH2)nOH) was added to the solution and had shown positive effect in terms of the wetability and hence homogenous films resulted. Most films characterised by XRD gave (002) Cu2O, cuprite structure. To avoid films cracking and inhomogeneous coverage, multiple coatings were done with drying in between the successive coatings. Five to eight coatings were carried out for better coverage to ensure surface homogeneity. The microstructure of the surface oxides consisted of nanostructured oxides with uniform size distribution of 60-80nm. The optical transmittance of optimized Cu2O film reaches around 80% at wavelength of {approx} 700nm and the calculated direct optical band gaps were {approx} 2eV for the Cu2O films.

  2. Diagnostic Techniques Used to Study Chemical-Vapor-Deposited Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2000-01-01

    The advantages and utility of chemical-vapor-deposited (CVD) diamond as an industrial ceramic can only be realized if the price and quality are right. Until recently, this technology was of interest only to the academic and basic research community. However, interest has grown because of advances made by leading CVD diamond suppliers: 1) Reduction of the cost of CVD polycrystalline diamond deposition below $5/carat ($8/sq cm); 2) Installation of production capacity; 3) Epitaxial growth of CVD single-crystal diamond. Thus, CVD diamond applications and business are an industrial reality. At present, CVD diamond is produced in the form of coatings or wafers. CVD diamond film technology offers a broader technological potential than do natural and high-pressure synthetic diamonds because size, geometry, and eventually cost will not be as limiting. Now that they are cost effective, diamond coatings - with their extreme properties - can be used in a variety of applications. Diamond coatings can improve many of the surface properties of engineering substrate materials, including erosion, corrosion, and wear resistance. Examples of actual and potential applications, from microelectromechanical systems to the wear parts of diamond coatings and related superhard coatings are described. For example, diamond coatings can be used as a chemical and mechanical barrier for the space shuttles check valves, particularly on the guide pins and seat assemblies.

  3. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    NASA Astrophysics Data System (ADS)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  4. Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    SciTech Connect

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Baek, S. G.; Chilenksi, M. A.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Shiraiwa, S.; Walk, J. R.; Wallace, G. M.; Whyte, D. G.; Edlund, E.

    2015-12-10

    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m{sup −3}]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n{sub ||}-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS.

  5. Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques

    NASA Astrophysics Data System (ADS)

    Abdulagatov, Aziz Ilmutdinovich

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately

  6. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  7. Industrially scaled pulsed laser deposition based coating techniques for the realization of hemocompatible surfaces for blood contact applications

    NASA Astrophysics Data System (ADS)

    Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Czarnowska, Elzbieta; Bruckert, Franz

    2008-05-01

    Non-thrombogenic blood contacting surfaces and appropriate blood flow characteristics are essential for clinical application. State-of-the-art coatings are based on heparin and struggle with the problem of bleeding. Thus, there is increasing demand for developing new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low due to the applied substrate materials of low temperature resistance (mostly polymers). Under these circumstances, adequate film structure and high adhesion can be reached by the Pulsed Laser Deposition at room temperature (RT-PLD), which was developed to an industrial-scaled process at Laser Center Leoben. This process was applied to deposit Ti, TiN, TiCN and diamond-like carbon (DLC) on polyurethane, titanium and silicon substrates to study the biological interactions to blood cells and the kinetic mechanism of eukaryote cell attachment. Besides high biological acceptance, distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents.

  8. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    NASA Astrophysics Data System (ADS)

    Goffin, N. J.; Higginson, R. L.; Tyrer, J. R.

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  9. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    PubMed

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  10. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    PubMed Central

    Higginson, R. L.; Tyrer, J. R.

    2016-01-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550

  11. Spatially-offset double-pulse laser-induced breakdown spectroscopy: A novel technique for analysis of thin deposited layers

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Hollmann, E. M.; Doerner, R. P.

    2016-10-01

    A novel technique, spatially-offset double-pulse laser-induced breakdown spectroscopy (SODP-LIBS), is invented for analysis of thin layers. In this technique, two laser spots are spatially offset by a few mm, while there is no spatial gap for the standard collinear DP-LIBS. It is demonstrated from analysis of thin W layers (∼30-250 nm thickness) deposited on Mo substrates at a reduced ambient pressure of ∼ 5 × 10-3 Torr that (1) the W I signal intensity is enhanced with SODP-LIBS and (2) a clearer transition between W and Mo is obtained with SODP-LIBS, compared to the standard DP-LIBS.

  12. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  13. Microstructure and wear properties of Al-20Si alloy prepared by spray deposition with following continuous extrusion forming technique

    NASA Astrophysics Data System (ADS)

    Liu, Yingli; Yin, Jiancheng; Zhong, Yi

    2016-10-01

    Spray deposition with following continuous extrusion forming technique (SD-CE) is an innovative manufacturing technique to produce high alloy net-shape products. Al-20Si alloy rods have been fabricated by SD-CE at different extrusion ratio. Microstructure, hardness and wear resistance of the alloy have been investigated in details. The results show that Al-20Si alloy can be refined effectively by SD-CE, and the size and shape of Si particles become fine and spherical with the increasing extrusion ratio. When the extrusion ratio reaches 20:1, fully dense material with uniform distribution of Si particles can be obtained. The Al-20Si alloys fabricated by SD-CE exhibit excellent wear resistance, which can be further improved by large extrusion ratio, due to increasing hardness and density. A mechanically mixed layer containing a considerable amount of oxygen and iron was formed on the worn surface.

  14. Resonant Infrared Matrix Assisted Pulsed Laser Deposition of Polymers: Improving the Morphology of As-Deposited Films

    NASA Astrophysics Data System (ADS)

    Bubb, Daniel; Papantonakis, Michael; Collins, Brian; Brookes, Elijah; Wood, Joshua; Gurudas, Ullas

    2008-03-01

    Resonant infrared matrix assisted pulsed laser deposition has been used to deposit thin films of PMMA, a widely used industrial polymer. This technique is similar to conventional pulsed laser deposition, except that the polymer to be deposited is dissolved in a solvent and the solution is frozen before ablation in a vacuum chamber. The laser wavelength is absorbed by a vibrational band in the frozen matrix. The polymer lands on the substrate to form a film, while the solvent is pumped away. Our preliminary results show that the surface roughness of the as-deposited films depends strongly on the differential solubility radius, as defined by Hansen solubility parameters of the solvent and the solubility radius of the polymer. Our results will be compared with computational and experimental studies of the same polymer using a KrF (248 nm) laser. The ejection mechanism will be discussed as well as the implications of these results for the deposition of smooth high quality films.

  15. Characteristics of hydroxyapatite film formed on human enamel with the powder jet deposition technique.

    PubMed

    Akatsuka, Ryo; Sasaki, Keiichi; Zahmaty, Mohammed Saeed Sepasy; Noji, Miyoko; Anada, Takahisa; Suzuki, Osamu; Kuriyagawa, Tsunemoto

    2011-08-01

    This study aimed to create hydroxyapatite (HAp) film by powder jet deposition with manipulating the blasting nozzle above human enamel and to examine the microstructural and mechanical properties of the HAp film and the bonding strength at the interface between the HAp film and the enamel substrate. HAp particles calcinated at 1200°C with an average size of 4.7 μm were used. The HAp particles were mixed with carrier gas (N₂) to form an aerosol flow and was accelerated and blasted from the nozzle onto the enamel substrate at room temperature and atmospheric pressure. To evaluate the microstructure, scanning electron microscope (SEM) images of the surface and cross section of the HAp films and a three-dimensional profile of the HAp films were observed. To evaluate the mechanical properties, the micro-Vickers hardness and the bonding strength of the HAp films to the enamel substrate were measured. The deposition area of the HAp film was over 3 × 4 mm. The average and maximum thickness were about 30 and 40 μm, respectively. No significant difference was observed between the hardness of the HAp film and the enamel (p > 0.05). The bonding strength of the HAp film was the same as the bonding strength between composite resin and enamel. Compared with previous reports, wider and thicker HAp film was created on the enamel substrate successfully. The HAp film, which has same hardness with enamel and same bonding strength to the enamel with composite resin, would be a candidate as dental restorative materials.

  16. Sequential extraction techniques applied to a porphyry copper deposit in the basin and range province

    USGS Publications Warehouse

    Filipek, L.H.; Theobald, P.K.

    1981-01-01

    Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting

  17. Nanoscale ablation through optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  18. Evolving Ablative Therapies for Hepatic Malignancy

    PubMed Central

    Hochwald, Steven N.

    2014-01-01

    The liver is a common site for both primary and secondary malignancy. Hepatic resection and transplantation are the two treatment modalities that have been shown to achieve complete cure, but only 10 to 20% of patients are candidates for these treatments. For the remaining patients, tumor ablation has emerged as the most promising alternative modality. In addition to providing local control and improving survival outcomes, tumor ablation also helps to down stage patients for potential curative treatments, both alone as well as in combination with other treatments. While tumor ablation can be achieved in multiple ways, the introduction of newer ablative techniques has shifted the focus from palliation to potentially curative treatment. Because the long-term safety and survival benefits are not substantive at present, it is important that we strive to evaluate the results from these studies using appropriate comparative outcome methodologies. PMID:24877069

  19. Percutaneous ablation of malignant thoracic tumors.

    PubMed

    Ghaye, B

    2013-01-01

    Lung cancer is the leading cause of death related to cancer. Fifteen to thirty percent of patients with a localized lung cancer are actually inoperable as they present with poor general condition, limited cardiopulmonary function, or a too high surgical risk. Therefore, minimally invasive treatments are needed and percutaneous ablation seems an attractive option. Thermal ablation can be performed by delivering heat (radiofrequency, microwave, laser) or cold (cryotherapy) through a needle inserted into the tumor under CT guidance. The ideal lesion is less than 2 or 3 cm in diameter. Success of percutaneous thermal ablation appears to be close to those of surgery for localized lung cancer. Nevertheless studies are still needed to definitely assess the role of ablation compared to other emerging techniques, as stereotactic radiotherapy as well as potential synergy with other treatments.

  20. Dry deposition of acidic air pollutants to tree leaves, determined by a modified leaf-washing technique

    NASA Astrophysics Data System (ADS)

    Watanabe, Mirai; Takamatsu, Takejiro; Koshikawa, Masami K.; Yamamura, Shigeki; Inubushi, Kazuyuki

    Dry deposition fluxes ( FL) of NO 3- and SO 42- to leaf surfaces were measured for Japanese red pine ( Pinus densiflora), Japanese cedar ( Cryptomeria japonica), Japanese cypress ( Chamaecyparis obtusa), and Japanese white oak ( Quercus myrsinaefolia), together with atmospheric concentrations ( CL) of NO x (NO + NO 2), T-NO 3 (gaseous HNO 3 + particulate NO 3-) and SO x (gaseous SO 2 + particulate SO 42-) around the leaves in a suburban area of Japan, using a modified leaf-washing technique. FL of NO 3- and SO 42- decreased as follows: pine >> cedar > cypress ≥ oak and pine >> cedar > oak ≥ cypress, respectively. FL of NO 3- for all tree species fluctuated synchronously with CL of T-NO 3. FL of SO 42- fluctuated with CL of SO x, but the dominant pollutant deposited (SO 2 or SO 42-) appeared to differ for different tree species. Dry deposition conductance ( KL) of T-NO 3 and SO x was derived as an FL/ CL ratio. Seasonal variations of KL likely reflect the gas/particle ratios of T-NO 3 and SO x, which were affected by meteorological conditions such as temperature. Dry deposition velocities ( Vd) of T-NO 3 and SO x were obtained as the mathematical product of annual mean KL and the total leaf surface areas in the forests. The comparison of Vd among tree species indicated that the loads of acidic air pollutants were higher to coniferous forests than broad-leaved forest because of the higher KL and/or larger leaf surface areas.

  1. Percutaneous ablation therapies of inoperable pancreatic cancer: a systematic review

    PubMed Central

    Ierardi, Anna Maria; Lucchina, Natalie; Bacuzzi, Alessandro; Marco, De Chiara; Bracchi, Elena; Cocozza, Eugenio; Dionigi, Gianlorenzo; Tsetis, Dimitrios; Floridi, Chiara; Carrafiello, Gianpaolo

    2015-01-01

    Initial studies about ablation therapies of the pancreas were associated with significant morbidity and mortality, which limited widespread adoption. Development of techniques with high quality imaging used as guidance improve outcomes reducing complications. Moreover, only few experiences of percutaneous pancreatic ablations are reported. They are performed by very skilled operators in highly specialized centers. This review presents the current status of percutaneous local ablative therapies in the treatment of advanced pancreatic cancer. PMID:26424487

  2. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  3. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production.

    PubMed

    De Giacomo, A; Dell'Aglio, M; Santagata, A; Gaudiuso, R; De Pascale, O; Wagener, P; Messina, G C; Compagnini, G; Barcikowski, S

    2013-03-07

    Although the first nanoseconds to microseconds rule the resulting process yield of laser ablation in liquid, a comprehensive view involving combination of time-resolved measurement techniques is still lacking. In this paper, fundamental aspects of laser ablation of metals in water during the production of nanoparticles are discussed. Three fast diagnostic methods have been applied simultaneously. These are Optical Emission Spectroscopy for the plasma characterization, fast shadowgraph for plasma and cavitation bubble dynamics and laser scattering for the mechanisms of delivery of the produced materials in the liquid. Moreover, in order to validate the discussion, the effect on cavitation dynamics of the ablation of bulk and wire-shaped targets has been investigated together with the relative nanoparticles production yield. Unusual arrow-bow ejection phenomena between the cavitation bubble and the wire result in suppressed material back-deposition, causing efficient ejection of ablated matter into the liquid. The presented nanosecond and microsecond-resolved analysis allows estimating the timescale and role of the basic mechanisms involved in laser ablation in liquids as well as the thermodynamic characteristics of the processes.

  4. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  5. Percutaneous ablation of pancreatic cancer.

    PubMed

    D'Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-11-28

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review.

  6. Preparation of GaN Nanostructures by Laser Ablation of ga Metal

    NASA Astrophysics Data System (ADS)

    El Nadi, Lotfia; Omar, Magdy M.; Mehena, Galila A.; Moniem, Hussien M. A.

    2011-06-01

    In the present study, GaN nanodots (0D) and nanowires (1D) nanostructures were prepared on stainless steal substrates applying laser ablation technique. The target of Ga metal mixed with NaNO2 was introduced in a central bore of a graphite rod of a confined geometry set up. The laser beam was normally focused onto the central bore and the ablated plume of Ga metal was deposited on stainless steal substrate lying below the graphite rod in an atmosphere of slow flow of nitrogen gas with or without ammonia vapor. The pulsed N2 laser beam having a wavelength of 337± 2 nm, pulse duration 15±1 ns and energy per pulse of 15±1 m J, could be focused on the central bore by a cylindrical quartz lens to a spot of dimensions 500 × 700 μm2 t providing target irradiance of 0.2-0.3 GW/cm2 per pulse. The ablated plum was collected after several thousand laser shots. The morphology and structure of the formed nanostructures were investigated by Scanning electron microscope and Energy Dispersive X-Ray Spectroscopy. The growth mechanism is most likely by Solid-Liquid-Vapor phase during the laser ablation processes. The role of the carbon, the NaNO2 and the flowing gas on the growth of Nanostructures of GaN are discussed.

  7. Edge isolation of transparent conductive polymer (TCP) thin films on flexible substrates using UV laser ablation.

    PubMed

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau; Chen, Ming-Fei

    2012-06-01

    The purpose of this study was to directly use the writing techniques for the complex electrode edge isolation of transparent conductive polymer (TCP) thin films by a nanosecond pulsed UV laser processing system. The processing parameters including the laser pulse energy, the pulse repetition frequency, and the scan speed of galvanometers were examined to ablate the TCP films deposited on polyethylene terephtalate substrates of 188 microm thick. The thickness of TCP films was approximately 20 nm. The laser pulse repetition frequency and the scan speed of galvanometers were applied to calculate the overlapping rate of laser spots and to discuss the patterning region quality. Surface morphology, edge quality, and width and depth of edge isolated patterning structures after laser ablation process were measured by a three-dimensional confocal laser scanning microscope. In addition, the electrical conductivity of ablated TCP films was measured by a four-point probes instrument. After isolated line patterning was formed, the ablated TCP films with a better edge quality were obtained directly when the overlapping rate of laser spots, the scan speed, and the pulse repetition rate were 83.3%, 200 mm/s, and 40 kHz, respectively. The better surface morphology of electrode pattern structures was also obtained when the scan speed and the pulse repetition rate were 500 mm/s and 40 kHz, respectively.

  8. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    NASA Astrophysics Data System (ADS)

    Ahumada-Lazo, R.; Torres-Martínez, L. M.; Ruíz-Gómez, M. A.; Vega-Becerra, O. E.; Figueroa-Torres, M. Z.

    2014-12-01

    The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy (UV-Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  9. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO2: anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO2 nanoparticles.

  10. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-10-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO2: anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO2 nanoparticles.

  11. Matrix-assisted resonant infrared pulsed laser ablation of electroluminescent dendrimers

    NASA Astrophysics Data System (ADS)

    Torres-Pagan, Ricardo Daniel

    The deposition techniques for polymer thin films in organic light emitting diodes are limited to wet methods since molecular pyrolysis prevents the use of dry vacuum thermal evaporation methods. Wet methods have critical limitations such as poor thickness control, drying patterns and re-dissolution of previous layers. In this work, a novel approach, Matrix-Assisted Resonant Infrared Pulsed Laser Ablation (RIM-PLA) has been studied as an alternative deposition method for electroluminescent polymer films. RIM-PLA was successfully used for the deposition of two model dendrimers: fluorescent and phosphorescent Ir-cored. A free-electron laser was tuned to resonance frequencies for the vibrational modes of two solid matrix solvents: chloroform (C-H stretch; C-H bending) and toluene (C-H stretch; C=C stretch). The temperature-dependent absorption coefficients for each resonance mode were measured. Targets made from flash-frozen, low-concentration solutions of the dendrimers were irradiated at each frequency while varying fluence and exposure times. The molecular structure integrity of the targets was characterized. The deposited films were characterized to assess structure fidelity, roughness and topography, and luminance. All RIM-PLA deposited films were compared with spin-coated films. The ablation characteristics for each mode were found to be dependent on the solvent and not the dendrimer. Calculations from a temperature-rise model show that FEL pulsed-irradiation results in heating rates on the order of 108--109 K/s, resulting in metastable condensed targets. Thermodynamic and kinetic relations were used to calculate the relevance of three ablation mechanisms: normal vaporization, normal boiling and phase explosion. The latter mechanism has a critical threshold (> 0.8 Tc) for each solvent, and proceeds through spinodal decay followed by rapid homogeneous nucleation of vapor bubbles within the focal volume. For both chloroform modes, the primary ablation mechanism was

  12. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  13. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  14. GaN Nanowire Functionalized with Atomic Layer Deposition Techniques for Enhanced Immobilization of Biomolecules

    DTIC Science & Technology

    2010-01-01

    GaN NW chips were fabricated using the molecular beam epitaxy technique under the condition of a high substrate temperature (∼800 C) and a high N2...18382 DOI: 10.1021/la103337a Langmuir 2010, 26(23), 18382–18391Published on Web 11/01/2010 pubs.acs.org/Langmuir © 2010 American Chemical Society...detection sensitivity. Three kinds of ALD coating films, Al2O3, TiO2, and SiO2, were grown on the gallium nitride nanowire (GaNNW) surfaces and

  15. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  16. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  17. thin films by an hybrid deposition configuration: pulsed laser deposition and thermal evaporation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Solís-Casados, D. A.; Perez-Alvarez, J.; Romero, S.; Morales-Mendez, J. G.; Haro-Poniatowski, E.

    2014-10-01

    The aim of this work was to report the application of an hybrid deposition configuration to deposit Titanium dioxide (TiO2) thin films modified with different amounts of bismuth (Bi:TiO2). The samples were synthesized combining a TiO2 laser ablation plasma with a flux of vapor of bismuth produced by thermal evaporation. By varying the deposition rate of Bi it was possible to control the amount of Bi incorporated in the film and consequently the film properties. A detailed compositional, structural, and optical characterization by XPS, RBS, Raman spectroscopy, and UV-Vis spectrometry techniques is discussed. Photocatalytic response of the deposited thin films was studied through the degradation of a malachite green solution.

  18. Band-pass filters for THz spectral range fabricated by laser ablation

    NASA Astrophysics Data System (ADS)

    Voisiat, B.; Bičiūnas, A.; Kašalynas, I.; Račiukaitis, G.

    2011-09-01

    The terahertz resonant metal-mesh filters were fabricated using the laser direct writing technique. UV picosecond laser was employed to cut matrixes of cross-shaped holes in stainless steel foil and molybdenum layer deposited on polyimide substrate. Different laser processing strategies were developed: holes were cut through in the metal foil and the molybdenum film was removed from the polyimide by laser ablation. Band-pass filters with a different center frequency were designed and fabricated. The regular shape, smoothness of edges and sharpness of corners of the cross-shaped holes in the metal were the main attributes for quality assessment for the laser ablation process. Spectral characteristics of the filters, determined by the mesh period, cross-arm length, and its width, were investigated by terahertz time-domain spectroscopy and conventional space-domain Fourier transform spectroscopy. Experimental data were supported by three-dimensional finite-difference time-domain simulations.

  19. Investigation of nanoparticle formation in a plasma produced by femtosecond laser ablation of gold

    SciTech Connect

    Spiga, P.; Hermann, J.; Itina, T.; Grojo, D.; Neamtu, D.; Pailharey, D.; Marine, W.

    2005-10-31

    The formation of nanoparticles in a plasma produced by the interaction of ultrashort laser pulses with gold has been investigated. Three different experimental techniques were employed. (i) The plume expansion was characterized using fast imaging with the aid of an intensified charge-coupled device. (ii) The plasma composition was analyzed using time- and space-resolved optical emission spectroscopy. (iii) The ablated material was deposited on mica substrates and analyzed by means of atomic force microscopy. As a result, the size-distribution and the overall number of nanoparticles were determined as a function of the laser energy density incident on the target surface. The detection of particles with sizes in the nanometer range supports theoretical modeling according to which phase explosion is the dominant mechanism of metal ablation by ultrashort laser pulses.

  20. Broadband optical absorption enhancement of N719 dye in ethanol by gold-silver alloy nanoparticles fabricated under laser ablation technique

    NASA Astrophysics Data System (ADS)

    Al-Azawi, Mohammed A.; Bidin, Noriah; Abbas, Khaldoon N.; Bououdina, Mohamed; Azzez, Shrook A.

    2016-04-01

    The formation of gold-silver alloy nanoparticles (Au-Ag alloy NPs) by a two-step process with a pulsed Nd:YAG laser without any additives is presented. Mixtures of Au and Ag colloidal suspensions were separately obtained by 1064-nm laser ablation of metallic targets immersed in ethanol. Subsequently, the as-mixed colloidal suspensions were reirradiated by laser-induced heating at the second-harmonic generation (532 nm) for different irradiation periods of time. The absorption spectra and morphology of the colloidal alloys were studied as a function of exposure time to laser irradiation. Transmission electron microscopy revealed the formation of monodispersed spherical nanoparticles with a homogeneous size distribution in all the synthesized samples. UV-vis and photoluminescence spectroscopy measurements were also employed to characterize the changes in the light absorption and emission of N719 dye solution with different concentrations of Au-Ag colloidal alloys, respectively. The localized surface plasmon resonance (LSPR) of Au-Ag alloy NPs enhanced the absorption and fluorescence peak of the dye solution. The mixture of dye molecules with a higher concentration of alloy NPs exhibited an additional coupling of dipole moments with the LSPR, thereby contributing to the improvement of the optical properties of the mixture.

  1. Catheter Ablation of Idiopathic Ventricular Arrhythmias Arising From the Cardiac Outflow Tracts - Recent Insights and Techniques for the Successful Treatment of Common and Challenging Cases.

    PubMed

    Heeger, Christian-Hendrik; Hayashi, Kentaro; Kuck, Karl-Heinz; Ouyang, Feifan

    2016-04-25

    Ventricular arrhythmias (VA), like premature ventricular contractions (PVC) and ventricular tachycardia (VT) in patients without structural heart disease (idiopathic VA), mainly arise from the right and left ventricular outflow tracts (RVOT/LVOT). The prognosis for OT VA is generally good in the majority of patients, but there is potential for developing dilated cardiomyopathies from the high burden of VA, as well as a certain risk for sudden cardiac death because of fast monomorphic VT or polymorphic VT triggered by short-coupling PVC. Radiofrequency catheter ablation (RFCA) has evolved into a widely accepted treatment strategy for patients suffering from VAs. A detailed knowledge of surface ECGs and complex cardiac anatomy, especially within the ventricular OTs, is essential for the understanding of cardiac OT-VAs and highly related to safe and successful RFCA procedures. This review article focuses on RFCA of idiopathic VA arising from the cardiac OT as well as adjacent regions and will illustrate recent insights and technical issues. (Circ J 2016; 80: 1073-1086).

  2. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials.

    PubMed

    Das, Saptarshi; Bera, Mrinal K; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P; Antonio, Mark R; Sankaranarayanan, Subramanian K R S; Roelofs, Andreas K

    2016-06-21

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.

  3. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-06-01

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.

  4. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    PubMed Central

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-01-01

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877

  5. Image-guided ablative therapies for lung cancer.

    PubMed

    Sharma, Amita; Abtin, Fereidoun; Shepard, Jo-Anne O

    2012-09-01

    Lung cancer is the commonest cause of death in adults. Although the treatment of choice is surgical resection with lobectomy, many patients are nonsurgical candidates because of medical comorbidities. Patients may also have recurrent disease after resection or radiotherapy and some patients refuse surgical options. Image-guided ablation has been recently introduced as a safe, alternative treatment of localized disease in carefully selected patients. This article discusses the principles, technique, and follow-up of the 3 main ablative therapies currently used in the lung, radiofrequency ablation, microwave ablation, and percutaneous cryotherapy.

  6. GaN nanowire functionalized with atomic layer deposition techniques for enhanced immobilization of biomolecules.

    PubMed

    Guo, D J; Abdulagatov, A I; Rourke, D M; Bertness, K A; George, S M; Lee, Y C; Tan, W

    2010-12-07

    We report the use of atomic layer deposition (ALD) coating as a nanobiosensor functionalization strategy for enhanced surface immobilization that may enable higher detection sensitivity. Three kinds of ALD coating films, Al(2)O(3), TiO(2), and SiO(2), were grown on the gallium nitride nanowire (GaN NW) surfaces and characterized with high-resolution transmission electron microscopy (HRTEM) and vacuum Fourier transform infrared spectroscopy (FTIR). Results from HRTEM showed that the thicknesses of ALD-Al(2)O(3), ALD-TiO(2) and ALD-SiO(2) coatings were 4-5 nm, 5-6 nm, and 12-14 nm, respectively. Results from FTIR showed that the OH contents of these coatings were, respectively, ∼6.9, ∼7.4, and ∼9.3 times that of piranha-treated GaN NW. Furthermore, to compare protein attachments on the different surfaces, poly(ethylene glycol) (PEG)-biotin was grafted on the OH-functionalized GaN NW surfaces through active Si-Cl functional groups. Streptavidin protein molecules were then attached to the biotin ends via specific binding. The immobilized streptavidin molecules were examined with scanning electron microscopy, HRTEM, and fluorescent imaging. Results from HRTEM and energy-dispersive X-ray revealed that the nitrogen concentrations on the three ALD coatings were significantly higher than that on the piranha-treated surface. Results from fluorescent imaging further showed that the protein attachments on the Al(2)O(3), TiO(2), and SiO(2) ALD coatings were, respectively, 6.4, 7.8, and 9.8 times that of piranha-treated surface. This study demonstrates that ALD coating can be used as a functionalization strategy for nanobiosensors because it is capable of creating functional groups with much higher density compared to widely used acid modifications, and among the three ALD coatings, ALD-SiO(2) yielded the most promising results in OH content and protein attachment.

  7. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-01-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  8. Copper phthalocyanine films deposited by liquid-liquid interface recrystallization technique (LLIRCT).

    PubMed

    Patil, K R; Sathaye, S D; Hawaldar, R; Sathe, B R; Mandale, A B; Mitra, A

    2007-11-15

    The simple recrystallization process is innovatively used to obtain the nanoparticles of copper phthalocyanine by a simple method. Liquid-liquid interface recrystallization technique (LLIRCT) has been employed successfully to produce small sized copper phthalocyanine nanoparticles with diameter between 3-5 nm. The TEM-SAED studies revealed the formation of 3-5 nm sized with beta-phase dominated mixture of alpha and beta copper phthalocyanine nanoparticles. The XRD, SEM, and the UV-vis studies were further carried out to confirm the formation of copper phthalocyanine thin films. The cyclic voltametry (CV) studies conclude that redox reaction is totally reversible one electron transfer process. The process is attributed to Cu(II)/Cu(I) redox reaction.

  9. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  10. Influence of the Liquid on Femtosecond Laser Ablation of Iron

    NASA Astrophysics Data System (ADS)

    Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.

    Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.

  11. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    SciTech Connect

    Broitman, Esteban; Flores-Ruiz, Francisco J.; Di Giulio, Massimo; Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  12. Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment

    SciTech Connect

    Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun

    2012-12-15

    An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H{sub 2}O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

  13. CHAP III- CHARRING ABLATOR PROGRAM FOR ADVANCED INVESTIGATION OF THERMAL PROTECTION SYSTEMS FOR ENTRY

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.

    1994-01-01

    The transient response of a thermal protection material to heat applied to the surface can be calculated using the CHAP III computer program. CHAP III can be used to analyze pyrolysis gas chemical kinetics in detail and examine pyrolysis reactions-indepth. The analysis includes the deposition of solid products produced by chemical reactions in the gas phase. CHAP III uses a modelling technique which can approximate a wide range of ablation problems. The energy equation used in CHAP III incorporates pyrolysis (both solid and gas reactions), convection, conduction, storage, work, kinetic energy, and viscous dissipation. The chemically reacting components of the solid are allowed to vary as a function of position and time. CHAP III employs a finite difference method to approximate the energy equations. Input values include specific heat, thermal conductivity, thermocouple locations, enthalpy, heating rates, and a description of the chemical reactions expected. The output tabulates the temperature at locations throughout the ablator, gas flow within the solid, density of the solid, weight of pyrolysis gases, and rate of carbon deposition. A sample case is included, which analyzes an ablator material containing several pyrolysis reactions subjected to an environment typical of entry at lunar return velocity. CHAP III is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer operating under NOS with a central memory requirement of approximately 102K (octal) of 60 bit words. This program was developed in 1985.

  14. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    PubMed

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens.

  15. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  16. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  17. Diameter Tuning of [Formula: see text]-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique.

    PubMed

    Kumar, Mukesh; Kumar, Vikram; Singh, R

    2017-12-01

    Diameter tuning of [Formula: see text]-Ga2O3 nanowires using chemical vapor deposition technique have been investigated under various experimental conditions. Diameter of root grown [Formula: see text]-Ga2O3 nanowires having monoclinic crystal structure is tuned by varying separation distance between metal source and substrate. Effect of gas flow rate and mixer ratio on the morphology and diameter of nanowires has been studied. Nanowire diameter depends on growth temperature, and it is independent of catalyst nanoparticle size at higher growth temperature (850-900 °C) as compared to lower growth temperature (800 °C). These nanowires show changes in structural strain value with change in diameter. Band-gap of nanowires increases with decrease in the diameter.

  18. Novel Optical Diagnostic Techniques for Studying Particle Contact and Deposition Upon a Large Cylinder in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser (Technical Monitor); Yoda, Minami

    2004-01-01

    The objectives of this research project were: 1) To study the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia; 2) To develop new techniques for observing suspension particle contact and deposition upon solid surfaces. Dr. Yoda was supported by the NASA Office of Biological and Physical Research on a four-year grant from March 2000 through November 2004 for a ground-based study on the fluid dynamics of sheared particle-liquid suspensions and the impact of differential particle-fluid inertia on such flows. Such inertial effects can only be observed in reduced-gravity environments since they are overwhelmed by buoyancy effects on Earth. Moreover, these inertial effects will have a significant impact upon suspension flows in microgravity. Suspension dynamics are of importance in a wide variety of advanced life systems applications, including water reclamation and dust mitigation in confined habitats.

  19. Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique

    NASA Astrophysics Data System (ADS)

    Banerjee, A. N.; Krishna, R.; Das, B.

    2008-02-01

    In this paper we have reported the syntheses of copper and silicon nano-clusters by a sputtering-gas-aggregation type growth technique. The process involves typical magnetron sputtering vaporization of target materials followed by an inert gas condensation to form clusters of varying sizes. The size-distributions of the clusters typically follow a normal-distribution and the peak cluster sizes of the distributions depends on several factors, which include gas-flow rate, length of the growth region, deposition pressure etc. We have observed a variation in the peak cluster size with the variation of the gas (argon) flow rates. The experimental values are compared with the existing models and the results are found to be in good agreement. The results are significant since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster-size distributions.

  20. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.

    PubMed

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M

    2015-10-01

    Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.

  1. Microwave ablation versus laser ablation in occluding lateral veins in goats.

    PubMed

    Wang, Xu-hong; Wang, Xiao-ping; Su, Wen-juan; Yuan, Yuan

    2016-02-01

    Increasing number of endovenous techniques are available for the treatment of saphenous vein reflux and endovenous laser ablation (EVLA) is a frequently used method. A newly developed alternative, based on thermal therapy, is endovenous microwave ablation (EMA). This study evaluated the effect of the two procedures, in terms of coagulation and histological changes, in occluding lateral veins in goats. Twelve animals were randomized into two group, with 6 treated with EMA (EMA group), and the rest 6 with EVLA (EVLA group). Results of coagulation, including coagulation, fibrinolysis and platelet activation, were assessed at three or four different time points: before, immediately after, 24 h (and 48 h) after ablation. The diameter change, a measure of efficacy, was ultrasonographically measured before and 1 month after the ablation. Histological changes were grossly and microscopically evaluated immediately, 1 and 3 month(s) after the ablation. The length of the ablated vein and preoperative average diameter were comparable between the two groups. In both EMA and EVLA groups, several coagulation parameters, fibrinolysis and platelet activation parameters only underwent slight changes. Ultrasound imaging displayed that the diameter reduction of the veins treated by EMA was significantly larger than by EVLA, in consistent with the results of macroscopic examination. Microscopic examination revealed necrosis and thickening of the vein wall, and occlusion of the lumen within 3 months after ablation in both EMA and EVLA groups. It is concluded that EMA is a minimally invasive therapy, which appears to be safe and effective for treatment of lateral veins in goats.

  2. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  3. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    PubMed

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  4. An in-situ K-Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Sugita, Seiji; Miura, Yayoi N.; Okazaki, Ryuji; Iwata, Naoyoshi; Morota, Tomokatsu; Kameda, Shingo

    2016-09-01

    Age is essential information for interpreting the geologic record on planetary surfaces. Although crater counting has been widely used to estimate the planetary surface ages, crater chronology in the inner solar system is largely built on radiometric age data from limited sites on the Moon. This has resulted in major uncertainty in planetary chronology. Because opportunities for sample-return missions are limited, in-situ geochronology measurements from one-way lander/rover missions are extremely valuable. Here we developed an in-situ isochron-based dating method using the K-Ar system, with K and Ar in a single rock sample extracted locally by laser ablation and measured using laser-induced breakdown spectroscopy (LIBS) and a quadrupole mass spectrometer (QMS), respectively. We built an experimental system combining flight-equivalent instruments and measured K-Ar ages for mineral samples with known ages (~1.8 Ga) and K contents (1-8 wt%); we achieved precision of 20% except for a mineral with low mechanical strength. Furthermore, validation measurements with two natural rocks (gneiss slabs) obtained K-Ar isochron ages and initial 40Ar consistent with known values for both cases. This result supports that our LIBS-MS approach can derive both isochron ages and contributions of non-in situ radiogenic 40Ar from natural rocks. Error assessments suggest that the absolute ages of key geologic events including the Noachian/Hesperian- and the Hesperian/Amazonian-transition can be dated with 10-20% errors for a rock containing ~1 wt% K2O, greatly reducing the uncertainty of current crater chronology models on Mars.

  5. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    SciTech Connect

    Anderson, M.S.; Braymen, S.D.

    1995-01-27

    The main focus of the Ames Laboratory`s Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST.

  6. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  7. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOEpatents

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  8. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  9. Nanostructural and functional properties of Ag-TiO2 coatings prepared by co-sputtering deposition technique.

    PubMed

    Chakravadhanula, V S K; Hrkac, T; Zaporojtchenko, V; Podschun, R; Kotnur, V G; Kulkarni, A; Strunskus, T; Kienle, L; Faupel, F

    2011-06-01

    Ag-TiO2 nanocomposite coatings with varying Ag content were prepared by co-sputtering from two separate sputter sources. This technique allows to prepare coatings not only with a large variation of Ag content and different gradient but also allows much better control of nanocomposite thickness and nanostructure compared with mostly used techniques based on wet chemical approaches. Various thicknesses of nanocomposite layers with different deposition parameters were studied to obtain a better understanding on the growth of Ag nanostructures in the TiO2 films. The metal-volume-fraction was varied between 15% and 47%. Structural and microstructural investigations of the nanocomposite films were carried out by transmission electron microscopy. Special attention was paid to surface segregation of Ag and its suppression. The observed segregation on TiO2 contrasts sharply with the well known embedding tendency of Ag clusters on polymers. Functionality of the Ag-TiO2 nanocomposites was demonstrated via UV-Vis spectroscopy and antibacterial tests. It was shown that a thin layer of TiO2 can be used as an effective barrier to tailor the release behaviour of Ag ions.

  10. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers.

    PubMed

    Matatagui, D; Fernández, M J; Fontecha, J; Sayago, I; Gràcia, I; Cané, C; Horrillo, M C; Santos, J P

    2014-03-01

    The electrospinning technique has allowed that very different materials are deposited as sensitive layers on Love-wave devices forming a low cost and successful sensor array. Their excellent sensitivity, good linearity and short response time are reported in this paper. Several materials have been used to produce the nanofibers: polymers as Polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP) and Polystirene (PS); composites with polymers as PVA+SnCl4; combined polymers as PS+Poly(styrene-alt-maleic anhydride) (PS+PSMA) and metal oxides (SnO2). In order to test the array, well-known chemical warfare agent simulants (CWAs) have been chosen among the volatile organic compounds due to their importance in the security field. Very low concentrations of these compounds have been detected by the array, such as 0.2 ppm of DMMP, a simulant of sarin nerve gas, and 1 ppm of DPGME, a simulant of nitrogen mustard. Additionally, the CWA simulants used in the experiment have been discriminated and classified using pattern recognition techniques, such as principal component analysis and artificial neural networks.

  11. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects.

  12. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  13. Paroxysmal atrial fibrillation ablation: Achieving permanent pulmonary vein isolation by point-by-point radiofrequency lesions

    PubMed Central

    Pedrote, Alonso; Acosta, Juan; Jáuregui-Garrido, Beatriz; Frutos-López, Manuel; Arana-Rueda, Eduardo

    2017-01-01

    Pulmonary vein isolation by point-by-point radiofrequency catheter ablation constitutes the cornerstone of catheter ablation strategies for the treatment of atrial fibrillation. However, despite advances in pulmonary vein isolation ablation strategies, long-term success rates after ablation remain suboptimal, which highlights the need to develop techniques to achieve more durable lesions. Strategies proposed to improve the durability of pulmonary vein isolation can be divided into two groups: Those addressed to improving the quality of the lesion and those that optimize the detection of acute PV reconnection during the ablation procedure. This manuscript reviews the role and potential benefits of these techniques according to current clinical evidence.

  14. Endometrial Ablation for Menorrhagia

    PubMed Central

    Sanders, Barry H.

    1992-01-01

    Endometrial ablation is a relatively new treatment for patients with persistent menorrhagia. The procedure can be performed by either laser photocoagulation or electrocoagulation; both have a very low risk of complication. Generally, less than 24 hours of hospitalization is required and return to normal activities, including work, is almost immediate. Endometrial ablation is likely to become a mainstay of treatment for menorrhagia as the technology and training become more readily available. PMID:21229128

  15. Recent Advances in Tumor Ablation for Hepatocellular Carcinoma.

    PubMed

    Kang, Tae Wook; Rhim, Hyunchul

    2015-09-01

    Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC.

  16. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    USGS Publications Warehouse

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  17. Prototyping of radially oriented piezoelectric ceramic-polymer tube composites using fused deposition and lost mold processing techniques

    NASA Astrophysics Data System (ADS)

    McNulty, Thomas Francis

    Piezoelectric tube composite hydrophones of 3-1, 3-2, and 2-2 connectivity were developed using Fused Deposition (FD) and lost mold processing (LMP). In this work, a new series of thermoplastic binder formulations, named the ECG series, were developed for the FD process. The ECG-9 formulation exhibits mechanical, thermal, and rheological properties suitable for the Fused Deposition of functional lead zirconate titanate ceramic devices. This binder consists of 100 parts (by weight) Vestoplast 408, 20 parts Escorez 2520, 15 parts Vestowax A-227, and 5 parts Indopol H-1500. Oleic acid, oleyl alcohol, stearic acid, and stearyl alcohol (in toluene) were tested for use as a dispersant in the PZT/ECG-9 system. It was found that stearic acid adsorbs the most onto PZT powder, adsorbing 8.1 mg/m2. Using stearic acid, solutions of increasing concentration (5.0--50.0 g/l) were measured for adsorption. It was found that 30.0 g/l is the minimum concentration necessary for optimum surface coverage. The surfactant-coated powder was compounded with ECG-9 binder to create a 54 vol.% mix. The mix was extruded using a single screw extrusion apparatus into continuous lengths (>30 m) of 1.78 mm diameter filament. Fused Deposition was used to create composite designs of 3-1, 3-2, and 2-2 connectivity. After sintering, samples exhibit a sintered density greater than 97%. Sanders Prototyping (SPI) was used to manufacture molds for use with LMP techniques. Molds of 3-1, 3-2, and 2-2 connectivity were developed. The molds were infiltrated with a 55 vol.% aqueous based PZT slurry. The parts were subjected to a binder decomposition cycle, followed by sintering. Resultant samples were highly variable due to random macro-pores present in the samples after sintering. The resultant preforms were embedded in epoxy, and polished to dimensions of 8.0 mm inside diameter (ID), 14.0 mm outside diameter (OD), and 10.0 mm length (l) the OD and l dimensions are accurate to +/--2%, while the ID is accurate

  18. Outpatient laser tonsillar ablation under local anaesthetic.

    PubMed

    Andrews, Peter J; Latif, Abdul

    2004-11-01

    Outpatient laser ablation of the palatine tonsils under local anaesthetic is an alternative technique to capsular tonsillectomy for recurrent tonsillitis under general anaesthetic. Laser tonsillotomy ablates up to 70% of the tonsillar tissue and is performed when patients choose not to have a conventional tonsillectomy, or are unfit for a general anaesthetic. The technique described here is an adaptation of Krespis' laser-assisted serial tonsillectomy (LAST) whereby only one sitting is required. Krespis' technique effectively eliminates recurrent tonsillitis in 96% of the cases over a 4-year follow-up period and represents the only substantial study looking at treating recurrent tonsillitis with outpatient laser ablation. This study is a retrospective postal survey of 19 patients who underwent laser tonsillar ablation under local anaesthetic for recurrent chronic tonsillitis from 1997 to 2001 and was performed in liaison with the clinical audit department at Basildon Hospital. We had a response rate of 74% and an admission rate of 0%, which compares favourably with day case tonsillectomy surgery. Of the patients, 75% did not experience further episodes of tonsillitis 12 months after the procedure and 77% of the patients were glad they had the operation. Although this technique does not completely eliminate tonsillitis, it offers an alternative for those patients who prefer a procedure that is done quickly in an outpatient setting without the additional problems of general anaesthesia, overnight hospital admission and long waiting lists.

  19. Comparison of Percutaneous Ablation Technologies in the Treatment of Malignant Liver Tumors

    PubMed Central

    Yu, Hyeon; Burke, Charles T.

    2014-01-01

    Tumor ablation is a minimally invasive technique used to deliver chemical, thermal, electrical, or ultrasonic damage to a specific focal tumor in an attempt to achieve substantial tumor destruction or complete eradication. As the technology continues to advance, several image-guided tumor ablations have emerged to effectively manage primary and secondary malignancies in the liver. Percutaneous chemical ablation is one of the oldest and most established techniques for treating small hepatocellular carcinomas. However, this technique has been largely replaced by newer modalities including radiofrequency ablation, microwave ablation, laser-induced interstitial thermotherapy, cryoablation, high-intensity–focused ultrasound ablation, and irreversible electroporation. Because there exist significant differences in underlying technological bases, understanding each mechanism of action is essential for achieving desirable outcomes. In this article, the authors review the current state of each ablation method including technological and clinical considerations. PMID:25071303

  20. Comparison of percutaneous ablation technologies in the treatment of malignant liver tumors.

    PubMed

    Yu, Hyeon; Burke, Charles T

    2014-06-01

    Tumor ablation is a minimally invasive technique used to deliver chemical, thermal, electrical, or ultrasonic damage to a specific focal tumor in an attempt to achieve substantial tumor destruction or complete eradication. As the technology continues to advance, several image-guided tumor ablations have emerged to effectively manage primary and secondary malignancies in the liver. Percutaneous chemical ablation is one of the oldest and most established techniques for treating small hepatocellular carcinomas. However, this technique has been largely replaced by newer modalities including radiofrequency ablation, microwave ablation, laser-induced interstitial thermotherapy, cryoablation, high-intensity-focused ultrasound ablation, and irreversible electroporation. Because there exist significant differences in underlying technological bases, understanding each mechanism of action is essential for achieving desirable outcomes. In this article, the authors review the current state of each ablation method including technological and clinical considerations.

  1. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.

    PubMed

    Brown, Jeremy; Sharma, Srikanta; Leadbetter, Jeff; Cochran, Sandy; Adamson, Rob

    2014-11-01

    We have developed a technique of applying multiple matching layers to high-frequency (>30 MHz) imaging transducers, by using carefully controlled vacuum deposition alone. This technique uses a thin mass-spring matching layer approach that was previously described in a low-frequency (1 to 10 MHz) transducer design with epoxied layers. This mass- spring approach is more suitable to vacuum deposition in highfrequency transducers over the conventional quarter-wavelength resonant cavity approach, because thinner layers and more versatile material selection can be used, the difficulty in precisely lapping quarter-wavelength matching layers is avoided, the layers are less attenuating, and the layers can be applied to a curved surface. Two different 3-mm-diameter 45-MHz planar lithium niobate transducers and one geometrically curved 3-mm lithium niobate transducer were designed and fabricated using this matching layer approach with copper as the mass layer and parylene as the spring layer. The first planar lithium niobate transducer used a single mass-spring matching network, and the second planar lithium niobate transducer used a single mass-spring network to approximate the first layer in a dual quarter-wavelength matching layer system in addition to a conventional quarter-wavelength layer as the second matching layer. The curved lithium niobate transducer was press focused and used a similar mass-spring plus quarter-wavelength matching layer network. These transducers were then compared with identical transducers with no matching layers and the performance improvement was quantified. The bandwidth of the lithium niobate transducer with the single mass-spring layer was measured to be 46% and the insertion loss was measured to be -21.9 dB. The bandwidth and insertion loss of the lithium niobate transducer with the mass-spring network plus quarter-wavelength matching were measured to be 59% and -18.2 dB, respectively. These values were compared with the unmatched

  2. Ablation of carbide materials with femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  3. Ultrashort laser ablation of PMMA and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Fabrikesi, E.; Spyratou, E.; Bacharis, C.; Thomson, R. R.; Kar, A. K.

    2008-10-01

    The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.

  4. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  5. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  6. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  7. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  8. Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation.

    PubMed

    Viallon, Magalie; Petrusca, Lorena; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Becker, Christoph D; Salomir, Rares

    2013-09-01

    Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU, or MRgFUS) is a hybrid technology that was developed to provide efficient and tolerable thermal ablation of targeted tumors or other pathologic tissues, while preserving the normal surrounding structures. Fast 3-D ablation strategies are feasible with the newly available phased-array HIFU transducers. However, unlike fixed heating sources for interstitial ablation (radiofrequency electrode, microwave applicator, infra-red laser applicator), HIFU uses propagating waves. Therefore, the main challenge is to avoid thermo-acoustical adverse effects, such as energy deposition at reflecting interfaces and thermal drift of the focal lesion toward the near field. We report here our investigations on some novel experimental solutions to solve, or at least to alleviate, these generally known tolerability problems in HIFU-based therapy. Online multiplanar MR thermometry was the main investigational tool extensively used in this study to identify the problems and to assess the efficacy of the tested solutions. We present an improved method to cancel the beam reflection at the exit window (i.e., tissue-to-air interface) by creating a multilayer protection, to dissipate the residual HIFU beam by bulk scattering. This study evaluates selective de-activation of transducer elements to reduce the collateral heating at bone surfaces in the far field, mainly during automatically controlled volumetric ablation. We also explore, using hybrid US/MR simultaneous imaging, the feasibility of using disruptive boiling at the focus, both as a far-field self-shielding technique and as an enhanced ablation strategy (i.e., boiling core controlled HIFU ablation).

  9. Caries-selective ablation: the second threshold

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter; Jeitner, Peter; Kaufmann, Raimund

    1993-07-01

    The aim of the study was to describe the appropriate fluence necessary for the effective removal of dental decay by ablation processes without or with at least minimal removal of healthy dentin. The experiments were conducted at two wavelengths [355 nm (frequency tripled, Q-switched Nd:YAG-laser) and 377 nm (frequency doubled, gain-switched Alexandrite-laser)] found to be close to the maximum of preferential absorption of carious dentin over healthy dentin. Optoacoustic techniques were applied to determine the ablation thresholds of healthy and carious dentin. The ablation efficiencies at characteristic fluences were determined using non-tactile microtopography. During all experiments a fiber optic delivery system was engaged.

  10. Effects of endocardial microwave energy ablation

    PubMed Central

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-01-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure. PMID:16943871

  11. Catheter ablation of fascicular ventricular tachycardia.

    PubMed

    Ramprakash, B; Jaishankar, S; Rao, Hygriv B; Narasimhan, C

    2008-08-01

    Fascicular ventricular tachycardia (VT) is an idiopathic VT with right bundle branch block morphology and left-axis deviation occuring predominantly in young males. Fascicular tachycardia has been classified into three subtypes namely, left posterior fascicular VT, left anterior fascicular VT and upper septal fascicular VT. The mechanism of this tachycardia is believed to be localized reentry close to the fascicle of the left bundle branch. The reentrant circuit is composed of a verapamil sensitive zone, activated antegradely during tachycardia and the fast conduction Purkinje fibers activated retrogradely during tachycardia recorded as the pre Purkinje and the Purkinje potentials respectively. Catheter ablation is the preferred choice of therapy in patients with fascicular VT. Ablation is carried out during tachycardia, using conventional mapping techniques in majority of the patients, while three dimensional mapping and sinus rhythm ablation is reserved for patients with nonmappable tachycardia.

  12. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  13. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    PubMed

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  14. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique.

    PubMed

    Ghrairi, Najla; Bouaicha, Mongi

    2012-07-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet-visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current-voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.

  15. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique

    PubMed Central

    2012-01-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2. PMID:22747886

  16. Consequence of oxidant to monomer ratio on optical and structural properties of Polypyrrole thin film deposited by oxidation polymerization technique

    NASA Astrophysics Data System (ADS)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Kamat, Sandip V.; Patil, Vaishali S.; Mahadik, D. B.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2015-05-01

    This paper reports the effect of oxidant to monomer (O/M) ratio on optical and structural properties of Polypyrrole (PPy) thin film deposited by chemical oxidation polymerization technique. Noticeable changes have observed in the properties of PPy thin films with O/M ratio. Cauliflower structure have been observed in FE-SEM images, wherein grain size is observed to decrease with increase in O/M ratio. AFM results are in good agreement with FE-SEM results. From FTIR spectra it is found that, PPy is in highly oxidized form at low O/M ratio but oxidation decreased with increase in O/M ratio. Also C-C stretching vibrations of PPy ring is decreased whereas C=C stretching is increased with ratio. Absorption peak around 450 nm corresponds to π-π* transition and around 800 nm for polarons and bipolarons. The intensity of such peaks confirms the conductivity of PPy, which is observed maximum at low O/M ratio and found to decrease with increase in ratio. Optical band gap (BG) is found to increase from 2.07 eV to 2.11 eV with increase in the O/M ratio.

  17. TiO2 nanowire arrays modified with a simultaneous "etching, doping and deposition" technique for ultrasensitive amperometric immunosensing.

    PubMed

    Liu, Xiaoqiang; Huo, Xiaohe; Liu, Peipei; Tang, Yunfei; Xu, Jun; Ju, Huangxian

    2017-06-15

    In this work, an ultrasensitive immunosensing scaffold was structured with TiO2 nanowire (TiNW) arrays modified with molybdenum (Mo) and MoS2 flakes by a triplex "etching, doping and deposition" technique. The triply modification of TiNW arrays improved their electron transfer, and the decoration of MoS2 flakes on TiNW arrays increased both the conductivity and the specific surface area of TiNW. Accordingly, the triply modified TiNW arrays provided a biocompatible microenviroment for the biomolecules and high specific surface area to load big amount of biomolecules. The immunosensor was prepared by immobilizing capture antibody on the scaffold surface with double amino-reactive crosslinker, and the tracing labels were prepared by immobilizing signal antibody and horseradish peroxidase molecules on cylinder-shaped TiO2 nanorods. After sandwich-type immunoreaction, the tracing labels were quantitatively captured on the immunosensor surface for the detection of carcinoembryonic antigen as a model analyte. This amperometric method showed a linear range of 0.001 and 150ngmL(-1) with a detection limit of 0.5pgmL(-1). This work provided a promising platform for sensitive amperometric immunosensing of protein biomarkers.

  18. Deposition of LaMO3 (M=Ni,Co,Cr,Al)-Oriented Films by Spray Combustion Flame Technique

    NASA Astrophysics Data System (ADS)

    Ichinose, Hiromichi; Shiwa, Yuzo; Nagano, Masamitsu

    1994-10-01

    LaMO3 (M=Ni,Co,Cr,Al) films were prepared on sintered alumina, sapphire (001) and MgO(100) at 500 900°C by spraying ultrasonically atomized aqueous solutions of nitrates into a combustion flame (spray combustion flame technique). LaNiO3 and LaCoO3 on MgO(100) crystallized in high-temperature phases (cubic) while LaCrO3 and LaAlO3 crystallized in room-temperature phases. LaMO3 (M=Ni,Co,Cr,Al) films on MgO(100) were highly oriented to (100), (100), (001) and (100), respectively, while the films on sintered alumina and sapphire were not. The electric resistivities of the dense LaMO3 (M=Ni,Co,Cr) films were as low as those of bulk ceramics. LaNiO3 film deposited on MgO above 700°C showed the lowest resistivity of about 6×10-6 Ω m. It was suggested that the reactivities of the constituent metal atoms with OH in the flame are associated with the preferred phase and the morphology of the films.

  19. Influence of growth duration on size and morphology of boron nitride nanotubes grown via chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Mohd Amin, Yusoff; Raza Khan, Ziaul

    2015-10-01

    Boron nitride nanotubes are synthesized on Si substrate via a chemical vapor deposition technique with different growth durations. Field emission scanning electron microscopy micrographs show a clear influence of growth duration on size and morphology of the synthesized nanotubes. It reveals that the diameter of the tubes decreases and length increases with an increase in growth duration. Total diameter of the tube has been reduced up to 31% and length increased up to 30% with an increase of 20 min growth duration. As a result, morphology of nanotubes has also been changed from curve like to straight. Transmission electron microscope confirms the tubular structure of the synthesized nanotubes with an interlayer spacing of 0.34 nm that corresponds to d(002) plane of hexagonal boron nitride and its crystalline nature. Energy dispersive X-ray spectroscopy indicates the presence of magnesium particles in the synthesized samples that refers to its catalytic growth. X-ray photoelectron spectroscopy confirms the elemental compositions of the sample. Raman spectra reveal a peak shift of 5.48 cm-1 towards higher region of wavelength that corresponds to E2g mode of vibration in hexagonal boron nitride. This result also confirms the structural change in the synthesized boron nitride nanotubes with respect to the growth duration.

  20. Source investigation of the tar balls deposited along the Gujarat coast, India, using chemical fingerprinting and transport modeling techniques.

    PubMed

    Suneel, V; Vethamony, P; Naik, B G; Kumar, K Vinod; Sreenu, L; Samiksha, S V; Tai, Yunus; Sudheesh, K

    2014-10-07

    Deposition of tar balls (TBs) along the south Gujarat coast, situated on the west coast of India (WCI), commonly occurs during the southwest monsoon season. Several offshore oil fields off the Mumbai-Gujarat coast, and refineries along the coast might be sources of oil spills/leakages and lead to the formation of TBs. To identify the sources, we collected 12 TB samples from the beaches of Gujarat (Tithal, Maroli, Umbergam, and Nargol) during 15-17 July 2012 as well as samples of crude oils, namely, Cairn, NIKO, MSC Chitra, and two at Bombay High (BH). These TBs were subject to the following multimarker approach for source identification: Diagnostic Ratios of n-alkanes, polycyclic aromatic hydrocarbons, pentacyclic triterpanes, compound specific isotope analysis, Principle Component Analysis and numerical simulations (hydrodynamic model coupled with particle trajectories). The chemical fingerprint results reveal that the source of the TBs is BH crude oils, and the model results confirm that the source location is BH north oil fields. This is the first study of its kind in India to use fingerprinting and transport modeling techniques for source identification of TBs.

  1. Pulsed laser ablation of borax target in vacuum and hydrogen DC glow discharges

    NASA Astrophysics Data System (ADS)

    Kale, A. N.; Miotello, A.; Mosaner, P.

    2006-09-01

    The aim of our experiment was to produce a material with B sbnd H bonds for applications in hydrogen storage and generation. By using KrF excimer laser ( λ = 248 nm) ablation of borax (Na 2B 4O 7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm 2. Films were deposited under gas pressure of 1 × 10 -5 to 5 × 10 -2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of B sbnd O stretching and B sbnd O sbnd B bending bonds. Possible reasons for absence of B sbnd H bonds are attributed to binding enthalpy of the competing molecules.

  2. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  3. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  4. Thermal ablation of hepatic malignancy: useful but still not optimal.

    PubMed

    Nicholl, M B; Bilchik, A J

    2008-03-01

    The mortality associated with primary and metastatic hepatic malignancies remains high because few patients are candidates for hepatic resection or transplantation. Resection is the most effective treatment for liver tumors but may be contraindicated by factors such as the tumor's location; hepatic transplantation can cure primary hepatocellular carcinoma and underlying cirrhosis, but a donor may not be immediately available. When resection or transplantation is not possible, thermal ablation is a reasonable therapeutic option. Effective destruction of tumors can be achieved with low recurrence rates and minimal complications or risk of death. In patients with primary hepatic malignancy, ablation treatment does not preclude subsequent transplantation. Although radiofrequency ablation is currently the most widely used thermal ablative technique for hepatic malignancy, microwave ablation is gaining popularity and eventually may prove to be more effective.

  5. Investigations of Oxidation Protection Systems for Carbon-Carbon Composites Formed by Chemical Vapor Deposition and Plasma-Assisted Chemical Vapor Deposition Techniques

    DTIC Science & Technology

    1991-01-21

    the coating oxidizes to form a protective seal. ZrO2 may react with the SiO 2 film to form zirconium silicate, which offers reasonable oxidation...oxidation behavior of coated carbon-carbon (C-C) composites is studied. Silicon carbide and zirconium diboride ceramic coating are deposited on pack...cementation process were a weight percent mixture of silicon (Si), silicon carbide (SiC), zirconium carbide (ZrC), Boron (B), and Alumina (A1203). The

  6. Clinical experiences with microwave thermal ablation of lung malignancies.

    PubMed

    Sidoff, Luby; Dupuy, Damian E

    2017-02-01

    Approximately 30% of early stage lung cancer patients are not surgical candidates due to medical co-morbidities, poor cardiopulmonary function and advanced age. These patients are traditionally offered chemotherapy and radiation, which have shown relatively modest improvements in mortality. For over a decade, percutaneous image-guided ablation has emerged as a safe, cost-effective, minimally invasive treatment alternative for patients who would otherwise not qualify for surgery. Although radiofrequency ablation (RFA) is currently the most extensively studied and widely utilised technique in the treatment of lung malignancies, there is a growing body of evidence that microwave ablation (MWA) has several unique benefits over RFA and cryoablation in the lung. This article reviews our institution's clinical experiences in the treatment of lung malignancies with MWA including patient selection, procedural technique, imaging follow-up, treatment outcomes and comparison of ablation techniques.

  7. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  8. Pulsed laser ablation of ferroelectric composites for phased array antenna applications

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Green, S. M.

    1998-05-01

    Low loss composites have been fabricated in thick and thin film forms for a broad range of frequency applications. The thin film composites of barium strontium titanium oxide (BSTO) have been primarily developed by the pulsed laser ablation (PLA) method. This deposition technique has produced high quality thin films of BSTO composites on various substrates [S. Sengupta, L.C. Sengupta, W.E. Kosik, Pulsed laser deposition of ferroelectric thin films in conjunction with superconducting oxides, IEEE Cat# 94CH3416-5, 431][Analysis of ferroelectric thin films deposited by the pulsed laser deposition method on oxide and fluoride substrates, IEEE Cat# 94CH3416-5, 70][S. Sengupta, D.P. Vijay, S.B. Desu, Thin films of novel ferroelectric composites, Proceedings of MRS, 361, 1995, 545][S. Sengupta, L.C. Sengupta, Novel pyroelectric sensor materials, submitted to the Special Issue on Sensors and Actuators of the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control]. The objective of this work is to elucidate the PLA deposition parameters of the BSTO composite thin films. The material characterization and the electronic parameters of the thin films will also be presented. Finally, the patterning techniques required to fabricate the BSTO composite thin film phase shifters will be discussed. Some preliminary results of the phase shifter characterization will also be presented.

  9. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  10. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  11. Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials

    NASA Astrophysics Data System (ADS)

    Bernhardt, Jens; Buchkamp, Thomas; Hermann, Gerd; Lasnitschka, Georg

    2000-05-01

    A graphite furnace of the boat-in-tube type as electrothermal vaporizer (ETV) and an electrostatic precipitator were used for determining analyte transport efficiencies and dependencies on plant and cereal matrices, and on carrier elements. All analytical measurements were carried out with coherent forward scattering (CFS) using simultaneous multielement determinations. Transport efficiencies of up to 19% for Cu, 21% for Fe and Mn, and 36% for Pb from the ETV boat to the L'vov platform were obtained for the standard reference materials BCR CRM 281 rye grass, BCR CRM 189 wholemeal flour and NIST SRM 1567 wheat flour and multielement standard solutions containing approximately the same element ratios as certified for the solid samples. The analytical accuracy of the procedure including the ETV process and the electrostatic deposition was tested with Cu, Fe and Pb in BCR CRM 281, Cu, Fe and Mn in BCR CRM 189, and Fe and Mn in NIST SRM 1567 by weighing the solid sample onto the ETV-boat and calibrating against multielement standard solutions dosed into the ETV-boat as well. The analyte addition technique was tested with Cu, Fe and Mn in wholemeal flour. The deviations of the results were below 10% and the relative standard deviations (R.S.D.) values were typically 3-10%. The influence of added potassium and palladium nitrates as physical carriers on the transport efficiencies of Ag, Al, Cd, Cu, Fe, Ni, Pb and Zn standard solutions was investigated with simultaneous multielement determination. Using K and Pd as carriers increased transport efficiencies by factors up to 1.74 in comparison to measurements without an added carrier.

  12. Radiofrequency Ablation of Subpleural Lung Malignancy: Reduced Pain Using an Artificially Created Pneumothorax

    SciTech Connect

    Lee, Edward W. Suh, Robert D.; Zeidler, Michelle R.; Tsai, Irene S.; Cameron, Robert B.; Abtin, Fereidoun G.; Goldin, Jonathan G.

    2009-07-15

    One of the main issues with radiofrequency (RF) ablation of the subpleural lung malignancy is pain management during and after RF ablation. In this article, we present a case that utilized a technique to decrease the pain associated with RF ablation of a malignancy located within the subpleural lung. Under CT guidance, we created an artificial pneumothorax prior to the RF ablation, which resulted in minimizing the pain usually experienced during and after the procedure. It also decreased the amount of pain medications usually used in patients undergoing RF ablation of a subpleural lung lesion.

  13. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    PubMed Central

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  14. A New Strategy for Silver Deposition on Au Nanoparticles with the Use of Peroxidase-Mimicking DNAzyme Monitored via a Localized Surface Plasmon Resonance Technique.

    PubMed

    Kosman, Joanna; Jatschka, Jacqueline; Csaki, Andrea; Fritzsche, Wolfgang; Juskowiak, Bernard; Stranik, Ondrej

    2017-04-13

    Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer. The process of silver deposition was monitored via a localized surface plasmon resonance technique (LSPR), which allows one to record scattering spectrum of a single nanoparticle. Our study showed that DNAzyme is able to catalyze silver deposition. The AFM experiments proved that DNAzyme induced the deposition of silver shells of approximately 20 nm thickness on Au nanoparticles (AuNPs). Such an effect is not observed when hemin is absent in the system. However, we noticed non-specific binding of hemin to the capture oligonucleotides on a gold NP probe that also induced some silver deposition, even though the capture probe was unable to form G-quadruplex. Analysis of SEM images indicated that the surface morphology of the silver layer deposited by DNAzyme is different from that obtained for hemin alone. The proposed strategy of silver layer synthesis on gold nanoparticles catalyzed by DNAzyme is an innovative approach and can be applied in bioanalysis (LSPR, electrochemistry) as well as in material sciences.

  15. Diagnostic characterization of ablation plasma ion implantation

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Jones, M. C.; Johnston, M. D.; Lau, Y. Y.; Wang, L. M.; Lian, J.; Doll, G. L.; Lazarides, A.

    2003-06-01

    Experiments are reported in which two configurations for ablation-plasma-ion-implantation (APII) are characterized by diagnostics and compared. The first configuration oriented the target parallel to the deposition substrate. This orientation yielded ion-beam-assisted deposition of thin films. A delay (>5 μs) between laser and high voltage was necessary for this geometry to avoid arcing between negatively biased substrate and target. The second experimental configuration oriented the target perpendicular to the deposition substrate, reducing arcing, even for zero/negative delay between the laser and the high voltage pulse. This orientation also reduced neutral atom, ballistic deposition on the substrate resulting in a pure ion implantation mode. Ion density measurements were made by resonant laser diagnostics and Langmuir probes, yielding total ion populations in the range of 1014. Implanted ion doses were estimated by electrical diagnostics, and materials analysis, including x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy, yielding implanted doses in the range 1012 ions/cm2 per pulse. This yields an APII efficiency of order 10% for implantation of laser ablated ions. Scaling of ion dose with voltage agrees well with a theory assuming the Child-Langmuir law and that the ion current at the sheath edge is due to the uncovering of the ions by the movement of the sheath. Thin film analysis showed excellent adhesion with smoother films for an accelerating voltage of -3.2 kV; higher voltages (-7.7 kV) roughened the film.

  16. Radiofrequency thermal ablation of hepatocellular carcinoma.

    PubMed

    Allgaier, H P; Galandi, D; Zuber, I; Blum, H E

    2001-01-01

    Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide. Due to advanced or decompensated liver cirrhosis, comorbidity and multicentricity of the tumor lesions, 70-80% of HCC patients are inoperable at the time of diagnosis. Radiofrequency thermal ablation (RFTA) is a new minimally invasive and sage technique for the nonsurgical treatment of HCCs. Similar to other ablation techniques, the treatment strategy depends on several factors, including the patient's clinical status, the stage of liver cirrhosis and of the HCC. RFTA can be performed percutaneously, laparoscopically or after laparotomy. Advanced RFTA equipment, refined techniques of modifying tumor tissue response to RFTA, and combined treatment strategies should lead to better response rates even in larger HCCs.

  17. EUS-Guided Ethanol Ablation of Insulinomas

    PubMed Central

    Qin, Shan-yu; Lu, Xiu-ping; Jiang, Hai-xing

    2014-01-01

    Abstract Surgical resection is a standard treatment for insulinomas; however, it is associated with a high risk of complications and limited to specific suitable candidates. In recent years, endoscopic ultrasound (EUS)-guided ethanol ablation of insulinomas has emerged as a new therapeutic option, especially for elderly patients and candidates unfit for surgery. We aimed to evaluate the feasibility and safety of this technique for insulinomas. Four patients diagnosed with insulinomas based on EUS–fine-needle aspiration and immunohistochemistry results underwent EUS-guided 95% ethanol ablation. A comprehensive literature review was performed to understand the current status of the feasibility, safety, and effects of EUS-guided ethanol ablation of insulinomas. EUS-guided ethanol ablation of insulinomas was successfully completed in all the 4 patients. There were no perioperative or postoperative complications. The patients were discharged at 3 days after the procedure. No recurrence of hypoglycemia or tumors was noted during follow-up (range, 3–6 months). Literature review showed 8 patients with insulinomas who underwent EUS-guided ethanol ablation. All the procedures were successful, with no need for further surgical treatment. Among these reviewed cases, 6 patients had no post-procedural complications, while other 2 patients showed a mild increase in the serum levels of lipase and/or pancreatic enzymes within 48 h post-procedure; furthermore, 1 of these 2 patients presented at a later date with medically controllable hematoma and ulceration. During follow-up, 6 patients remained asymptomatic and normoglycemic, while the 2 patients who presented post-procedural complications developed occasional mild confusion. EUS-guided ethanol ablation of insulinomas is an effective and safe modality, with an acceptable level of post-procedural complications. However, the long-term effects of this new therapeutic option need to be validated in a large randomized controlled

  18. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  19. Tumor Ablation with Irreversible Electroporation

    PubMed Central

    Al-Sakere, Bassim; André, Franck; Bernat, Claire; Connault, Elisabeth; Opolon, Paule; Davalos, Rafael V.; Rubinsky, Boris; Mir, Lluis M.

    2007-01-01

    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 µs at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation. PMID:17989772

  20. Percutaneous minimally invasive therapies in the treatment of bone tumors: thermal ablation.

    PubMed

    Simon, Caroline J; Dupuy, Damian E

    2006-06-01

    Many percutaneous image-guided ablative techniques have been utilized in the treatment of bone cancers. These techniques are fast becoming a focus in the treatment of patients with both benign and malignant forms of bone cancer. This article will review the principles of radiofrequency ablation including its use in combination with other therapies, cryoablation, and microwave ablation in the treatment of osteoid osteomas and bone metastases.

  1. Monopole antennas for microwave catheter ablation

    SciTech Connect

    Labonte, S.; Blais, A.; Legault, S.R.; Ali, H.O.; Roy, L.

    1996-10-01

    The authors study the characteristics of various monopole antennas for microwave catheter ablation of the endocardium. The investigation is done with a computer model based on the finite-element method in the frequency domain. Three monopole geometries are considered: open-tip, dielectric-tip, and metal-tip. Calculations are made for the magnetic field, the reflection coefficient and the power deposition pattern of the antennas immersed in normal saline. The theoretical results are compared with measurements performed on prototypes and good agreement is obtained. The antenna characteristics suggest that the metal-tip monopole best fulfills the requirements of catheter ablation. The computer model is then used to compare metal-tip monopoles of different dimensions and to determine design trade-offs.

  2. Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Jie; Li, He-Jun; Fu, Qian-Gang; Wu, Heng; Yao, Dong-Jia; Wei, Bing-Bo

    2011-03-01

    To improve ablation resistance of C/C composites, HfC-based coating and SiC coating were prepared on the surface of C/C composites by chemical vapor deposition. The coating exhibits dense surface and outstanding anti-ablation ability. Compared with uncoated C/C, the linear and mass ablation rates of the coated C/C decreased by 33.3% and 66.7%, respectively, after ablation for 20 s. The residual oxides can prevent oxygen from diffusing inwardly; large amounts of heat can be taken away by the gas generated during ablation, which is also helpful for protection.

  3. Endometrial ablation as a treatment for heavy menstrual bleeding.

    PubMed

    Glazerman, Larry R

    2013-09-01

    Until the 1980s, the only available definitive treatment for heavy menstrual bleeding (HMB) was hysterectomy, usually performed abdominally, and sometimes vaginally. Historically, multiple attempts to effect ablation of the endometrium were developed, including using steam and toxic chemicals, such as chloriquine. The advent of Nd-YAG laser endometrial ablation in the mid-1980s offered the first minimally invasive alternative to hysterectomy for the treatment of HMB. Nd-YAG ablation, however, was expensive, cumbersome, and difficult to learn; rollerball resectoscopic ablation was initially described by DeCherney in 1987, and soon overtook laser as the main method of ablation, although adoption continued to be limited because of the hysteroscopic skills necessary to perform the technique were not widely available. In 1994, the first "global" endometrial ablation, the Thermachoice™ (Ethicon Women's Health and Urology, Somerville, NJ) balloon was introduced in the U.S. Soon thereafter, four other techniques were introduced, namely microwave (MEA™, Microsulis, Hampshire, UK), circulating hot water (HTA™, Boston Scientific, Boston, MA), cryo-ablation (HerOption™, CooperSurgical, Trumbull, CT), and bipolar radiofrequency (Novasure™, Hologic, Bedford, MA). All of these techniques are done in an outpatient setting, often office-based, with little or no anesthesia, and success rates ranging from 50% to 70% amenorrhea, and 80% to 95% patient satisfaction. Although there have been few head-to-head comparisons of various techniques, current data suggests that they are all relatively effective, quite safe, and well-tolerated. This article describes the history and development of various ablation technologies, and explores each technique in depth, including published data, indications, risks, and benefits.

  4. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome

    PubMed Central

    Ozbay, Isa; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic. PMID:26064747

  5. Ablating atrial fibrillation: A translational science perspective for clinicians.

    PubMed

    Weiss, James N; Qu, Zhilin; Shivkumar, Kalyanam

    2016-09-01

    Although considerable progress has been made in developing ablation approaches to cure atrial fibrillation (AF), outcomes are still suboptimal, especially for persistent and long-lasting persistent AF. In this topical review, we review the arrhythmia mechanisms, both reentrant and nonreentrant, that are potentially relevant to human AF at various stages/settings. We describe arrhythmia mapping techniques used to distinguish between the different mechanisms, with a particular focus on the detection of rotors. We discuss which arrhythmia mechanisms are likely to respond to ablation, and the challenges and prospects for improving upon current ablation strategies to achieve better outcomes.

  6. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  7. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  8. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  9. Blue-Emitting Eu2+-Doped CaAl2O4 Phosphor Thin Films Prepared Using Pulsed Laser Deposition Technique with Post Annealing

    NASA Astrophysics Data System (ADS)

    Kunimoto, Takashi; Kakehi, Ken-nosuke; Yoshimatsu, Ryo; Ohmi, Koutoku; Tanaka, Shosaku; Kobayashi, Hiroshi

    2001-10-01

    Blue-emitting Eu2+-doped calcium aluminate phosphor thin films were obtained using the pulsed laser deposition technique with post annealing. As-deposited films were amorphous and showed weak red Eu3+ photoluminescence (PL). By annealing in reducing atmosphere (N2/H2:2% mixed gas) at 950°C for 3 h, the film was crystallized and showed a PL emission band peaking at about 447 nm, which originated from the 4f65d to 4f7 transition of Eu2+ ion. It is considered that the deposited film consists mainly of CaAl2O4 and partly of other binary compounds of the CaO-Al2O3 system. It was determined that the PL intensity of Eu2+ in CaAl2O4 can be controlled by the laser fluence, target-substrate distance and injection gas.

  10. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed

    2004-01-01

    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  11. Molecular dynamics investigation of mechanisms of femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Changrui

    Laser micro-machining has been widely applied for material processing in many industries. A phenomenon called "laser ablation" is usually involved in the laser micro-machining process. Laser ablation is the process of material removal after the irradiation of a laser beam onto the material. It is commonly characterized by small temporal and spatial scales, extremely high material temperature and pressure, and strong non-equilibrium thermodynamic state. In this work, molecular dynamics (MD) simulation is conducted to study the femtosecond laser ablation of metals (nickel and copper) and dielectrics (fused silica, or glass). The laser heating and the ablation processes are numerically modeled, and the computation is accelerated by parallel processing technique. Both the pair-wise Morse potential and the many-body EAM (Embedded-Atom Method) potential are employed for metals. In the simulation of fused silica, the BKS (van Beest, Kramer and van Santen) potential is used, and the generation of free electrons, the energy transport from laser beam to free electrons and energy coupling between electrons and the lattice are considered. The main goal of this work is to illustrate the detailed processes of femtosecond laser ablation and to study its mechanisms. From the MD results, it is found that the mechanism of femtosecond laser ablation is strongly dependent on the laser fluences. For metals, low fluence laser ablation is mainly through phase explosion (homogeneous gas bubble nucleation), while spinodal decomposition is responsible for high fluence ablation. Ablation mechanism is determined by whether or not the material (liquid) temperature exceeds the critical temperature. For fused silica, the generation and existence of free electrons are found to affect ablation significantly, especially at low fluence, where Coulomb explosion is found to play an important role in material separation.

  12. Excimer laser ablation for spatially controlled protein patterns

    NASA Astrophysics Data System (ADS)

    Thissen, Helmut; Hayes, Jason P.; Kingshott, Peter; Johnson, Graham; Harvey, Erol C.; Griesser, Hans J.

    2001-11-01

    Two-dimensional control over the location of proteins on surfaces is desired for a number of applications including diagnostic tests and tissue engineered medical devices. Many of these applications require patterns of specific proteins that allow subsequent two-dimensionally controlled cell attachment. The ideal technique would allow the deposition of specific protein patterns in areas where cell attachment is required, with complete prevention of unspecific protein adsorption in areas where cells are not supposed to attach. In our study, collagen I was used as an example for an extracellular matrix protein known to support the attachment of bovine corneal epithelial cells. An allylamine plasma polymer was deposited on a silicon wafer substrate, followed by grafting of poly(ethylene oxide). Two-dimensional control over the surface chemistry was achieved using a 248 nm excimer laser. Results obtained by XPS and AFM show that the combination of extremely low-fouling surfaces with excimer laser ablation can be used effectively for the production of spatially controlled protein patterns with a resolution of less than 1 micrometers . Furthermore, it was shown that bovine corneal epithelial cell attachment followed exactly the created protein patterns. The presented method is an effective tool for a number of in vitro and in vivo applications.

  13. Post-Ablation Endometrial Carcinoma (PAEC) Following Radiofrequency Endometrial Ablation: A Case Report and Its Implications for Management of Endometrial Ablation Failures.

    PubMed

    Wortman, Morris; Dawkins, Josette C

    2016-10-26

    Endometrial ablation (EA) has become one of the most commonly performed gynecologic procedures in the United States and other developed countries. Global endometrial ablation (GEA) devices have supplanted resectoscopic ablation primarily because they have brought with them technical simplicity and unprecedented safety. These devices, all of which received FDA approval between 1997 and 2001, are typically used to treat abnormal uterine bleeding (AUB) in premenopausal women. Several million women in the US who have undergone a previous EA procedure are about to enter the risk pool for the development of endometrial cancer (EC). Ours is the 18th reported case of post-ablation endometrial carcinoma (PAEC) in the English literature. This case underscores the diagnostic challenges faced in evaluating women with a history of a previous EA who cannot be properly evaluated with conventional techniques such as endometrial biopsy and sonohysterography.

  14. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    NASA Astrophysics Data System (ADS)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  15. Pulsed laser ablation of pepsin on an inorganic substrate

    NASA Astrophysics Data System (ADS)

    Cicco, N.; Lopizzo, T.; Marotta, V.; Morone, A.; Verrastro, M.; Viggiano, V.

    2009-03-01

    Pressed pepsin pellets used as targets were ablated with the pulses of the Nd-YAG laser. The activity of the pepsin thin layer, deposited on a glass substrate, was successfully detected by analyzing the proteolytic degradation areas on the polyacrylamide gel (PA-gel) copolymerized with albumin from the hen egg white (ovalbumin), used as an enzymatic substrate.

  16. Ablation of skeletal metastases: current status.

    PubMed

    Kurup, A Nicholas; Callstrom, Matthew R

    2010-08-01

    Image-guided percutaneous ablation of bone metastases is an effective, minimally invasive alternative to conventional therapies in the palliation of pain from metastatic disease. Ablative technologies applied in the treatment of skeletal metastases include radiofrequency ablation, cryoablation, microwave ablation, laser ablation, ethanol ablation, and, most recently, focused ultrasound. These ablative methods may be performed in combination with percutaneous cementoplasty to provide support and stabilization for metastases in weight-bearing bones at risk for pathologic fracture.

  17. Resonant infrared pulsed laser deposition of a polyimide precursor

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Schriver, K. E.; Haglund, R. F., Jr.

    2007-04-01

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  18. Ablation of idiopathic ventricular tachycardia.

    PubMed

    Schreiber, Doreen; Kottkamp, Hans

    2010-09-01

    Idiopathic ventricular arrhythmias occur in patients without structural heart disease. They can arise from a variety of specific areas within both ventricles and in the supravalvular regions of the great arteries. Two main groups need to be differentiated: arrhythmias from the outflow tract (OT) region and idiopathic left ventricular, so-called fascicular, tachycardias (ILVTs). OT tachycardia typically originates in the right ventricular OT, but may also occur in the left ventricular OT, particularly in the sinuses of Valsalva or the anterior epicardium or the great cardiac vein. Activation mapping or pace mapping for the OT regions and mapping of diastolic potentials in ILVTs are the mapping techniques that are typically used. The ablation of idiopathic ventricular arrhythmias is highly successful, associated with only rare complications. Newly recognized entities of idiopathic ventricular tachycardias are those originating in the papillary muscles and in the atrioventricular annular regions.

  19. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  20. Characterization of Pd catalyst-electrodes deposited on YSZ: Influence of the preparation technique and the presence of a ceria interlayer

    NASA Astrophysics Data System (ADS)

    Jiménez-Borja, Carmen; Matei, Florina; Dorado, Fernando; Valverde, José Luis

    2012-11-01

    Palladium catalyst-electrodes supported on Y2O3-stabilized-ZrO2 (YSZ) prepared either by paste deposition or wet impregnation technique were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found a strong dependence of the catalytic film preparation technique as well as of the presence of a ceria interlayer between the palladium film and the solid electrolyte on the catalytic activity towards methane oxidation. Impregnated palladium films were found to be more active than films prepared by paste deposition. Besides, the addition of ceria allowed stabilizing the palladium active phase for methane oxidation.

  1. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    SciTech Connect

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R.

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  2. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  3. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al Din, Nasser Saad; Hussain, Nabiha; Jandow, Nidhal

    2016-07-01

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH2)2) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  4. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Agah, K. Mikaili; Ghoranneviss, M.

    CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs.

  5. Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair irradiation

    NASA Astrophysics Data System (ADS)

    Amoruso, S.; Bruzzese, R.; Wang, X.; O'Connell, G.; Lunney, J. G.

    2010-12-01

    Copper targets are irradiated in the ablation regime by pairs of equal, time-delayed collinear laser pulses separated on a timescale going from ≈2 ps to ≈2 ns. The ablation plume is characterized by ion probe diagnostic, fast imaging, and temporally and spatially resolved optical emission spectroscopy. The variation in the ablation efficiency with the delay between the pulses is analyzed by measuring the ablation crater profile with a contact profilometer. The second laser pulse modifies the characteristics of the plasma plume produced by the first pulse and the ablation efficiency. The different mechanisms involved in double pulse ultrafast laser ablation are identified and discussed. The experimental findings are interpreted in the frame of a simple model of the interaction of the second pulse with the nascent ablation plume produced by the first pulse. This model yields consistent and quantitative agreement with the experimental findings predicting the observed experimental trends of the ablation depth reduction and ion yield increase with the delay between the pulses, as well as the characteristic timescale of the observed changes. The possibility of controlling the characteristics of the plumes produced during ultrafast laser ablation via an efficient coupling of the energy of the second pulse to the various ablation components produced by the first pulse is of particular interest in ultrafast pulsed laser deposition and microprobe analyses of materials.

  6. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  7. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  8. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    NASA Astrophysics Data System (ADS)

    Singaravelu, S.; Klopf, J. M.; Schriver, K. E.; Park, H. K.; Kelley, M. J.; Haglund, R. F.

    2014-03-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C-H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C-H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  9. Manipulating microstructures and electrical properties of carbon fiber/reduced graphene oxide/nickel composite textiles with electrochemical deposition techniques

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Liang; Zhao, Quan-Liang; Shi, Fei

    2017-04-01

    Since graphene and their composites play significant roles in the catalysts, energy storage, electronics and other fields, where electron transport is highly critical, here, we introduce reduced graphene oxide (RGO) interfaces in the carbon fiber (CF) networks for preparing a novel lightweight carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon the charaterizations on the microscopic morphologies, electrical and magnetic properties, and density, the presence of RGO nanosheets and nickel nanoparticles would substantially influence the related physical properties in the resulting composite textiles. Furthermore, the key parameters, including RGO loading, deposition time, current density and annealing temperature of carbon matrices, have been studied to understand their effects on the electrochemical deposition of nickel nanoparticles. Implication of the results suggests that the RGO interface is a unique medium for essentially promoting the electrochemical deposition kinetics and active sites for growing nickel nanoparticles, which indicates a universal approach for preparing advanced lightweight composites with the presence of graphene naonstructures.

  10. Trace detection of herbicides by SERS technique, using SERS-active substrates fabricated from different silver nanostructures deposited on silicon

    NASA Astrophysics Data System (ADS)

    Cao Dao, Tran; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Hai Nguyen, Ngoc; Kieu, Ngoc Minh; Thuy Luong, Thi; Le, Van Vu

    2015-09-01

    In this report we present the initial results of the use of different silver nanostructures deposited on silicon for trace detection of paraquat (a commonly used herbicide) using the surface-enhanced Raman scattering (SERS) effect. More specifically, the SERS-active substrates were fabricated from silver nanoparticles (AgNPs) deposited onto the flat surface of a silicon wafer (AgNPs@Si substrate), as well as on the surface of an obliquely aligned silicon nanowire (SiNW) array (AgNPs@SiNWs substrate), and from silver nanodendrites (AgNDs) deposited onto the flat surface of a silicon wafer (AgNDs@Si substrate). Results showed that with the change of the structure of the SERS-active substrate, higher levels of SERS enhancement have been achieved. Specifically, with the fabricated AgNDs@Si substrate, paraquat concentration as low as 1 ppm can be detected.

  11. Atmospheric Deposition of Metals and Organics onto Massachusetts and Cape COD Bays: a Comparison of Measurement Techniques and Source Apportionment

    NASA Astrophysics Data System (ADS)

    Underhill, Jeffrey T.

    Toxic materials enter Massachusetts and Cape Cod Bays in many different ways. While most pollutants enter the Bay area by means of direct source outfalls, river outflow and storm water runoff, a significant amount of certain materials come from the atmosphere. Pollutants in the atmosphere, both gaseous and particles eventually settle to the ground or are washed out of the air by precipitation. In many locations atmospheric deposition provides a significant contribution to surface water contamination. The deposition of atmospheric pollutants onto Massachusetts Bay and Cape Cod Bay was measured using wet/dry collection buckets at two locations along the shores of the Bay area: Nahant, 16 km northeast of Boston, and Truro, Cape Cod, 100 km southeast of Boston. A dichotomous sampler was also used at Nahant to collect atmospheric aerosols. Collected samples were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Instrumental Neutron Activation Analysis (INAA) for select toxic metals. Analysis of polycyclic aromatic hydrocarbons (PAHs) was performed by Gas Chromatography Mass Spectrometry (GC-MS). Dry deposition of most toxic metals were found to be higher at Nahant compared to Truro. Conversely, wet deposition rates were generally higher at Truro most likely due to transport from regional sources. Altogether, regional sources are believed to be the primary contributors of metals to the Bays. PAH deposition rates were higher at Nahant. Local sources are believed to be the primary contributors of PAH deposition. Metals and their compounds appear to have a longer residence time in the atmosphere than the organic PAH. Estimated deposition to Massachusetts and Cape Cod Bays compares favorably to the results presented in a 1991 study by Menzie-Cura Associates. Current estimates of total deposition of cadmium, cobalt, copper, nickel and lead to the surface waters of the Bay region are lower than the Menzie-Cura study. Chromium, antimony, manganese, selenium

  12. Cryotherapy – a mature ablation technique

    PubMed Central

    Kariappa, Sanjay M.

    2006-01-01

    This article discusses the use of cryotherapy for the treatment of hepatic tumours, from its early origins to the present day. Results of therapy, preoperative assessment, safety, and the pros and cons of its use are described. PMID:18333272

  13. Cryotherapy--a mature ablation technique.

    PubMed

    Kariappa, Sanjay M; Morris, David L

    2006-01-01

    This article discusses the use of cryotherapy for the treatment of hepatic tumours, from its early origins to the present day. Results of therapy, preoperative assessment, safety, and the pros and cons of its use are described.

  14. Cartilage ablation studies using mid-IR free electron laser

    NASA Astrophysics Data System (ADS)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  15. Noninvasive Assessment of Tissue Heating During Cardiac Radiofrequency Ablation Using MRI Thermography

    PubMed Central

    Kolandaivelu, Aravindan; Zviman, Menekhem M.; Castro, Valeria; Lardo, Albert C.; Berger, Ronald D.; Halperin, Henry R.

    2010-01-01

    Background Failure to achieve properly localized, permanent tissue destruction is a common cause of arrhythmia recurrence after cardiac ablation. Current methods of assessing lesion size and location during cardiac radiofrequency ablation are unreliable or not suited for repeated assessment during the procedure. MRI thermography could be used to delineate permanent ablation lesions because tissue heating above 50°C is the cause of permanent tissue destruction during radiofrequency ablation. However, image artifacts caused by cardiac motion, the ablation electrode, and radiofrequency ablation currently pose a challenge to MRI thermography in the heart. In the current study, we sought to demonstrate the feasibility of MRI thermography during cardiac ablation. Methods and Results An MRI-compatible electrophysiology catheter and filtered radiofrequency ablation system was used to perform ablation in the left ventricle of 6 mongrel dogs in a 1.5-T MRI system. Fast gradient-echo imaging was performed before and during radiofrequency ablation, and thermography images were derived from the preheating and postheating images. Lesion extent by thermography was within 20% of the gross pathology lesion. Conclusions MR thermography appears to be a promising technique for monitoring lesion formation and may allow for more accurate placement and titration of ablation, possibly reducing arrhythmia recurrences. PMID:20657028

  16. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    DTIC Science & Technology

    2012-11-01

    1991. [3] R. Saito,M. Fujita, G.Dresselhaus, andM. S. Dresselhaus, “Elec- tronic structure of chiral graphene tubules,” Applied Physics Letters, vol. 60...Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” Journal of Catalysis, vol. 26, no. 1, pp. 51

  17. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    DTIC Science & Technology

    2013-01-01

    354, no. 6348, pp. 56–58, 1991. [3] R. Saito,M. Fujita, G.Dresselhaus, andM. S. Dresselhaus, “Elec- tronic structure of chiral graphene tubules...Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” Journal of

  18. Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    NASA Technical Reports Server (NTRS)

    Siegel, F. R.; Vaz, J. E.; Lindholm, R. C.

    1982-01-01

    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys.

  19. Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with {sup 252}Cf

    SciTech Connect

    Wyatt, M.S.; Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Hannon, T.F.

    1998-08-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO{sub 2}F{sub 21}) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF{sub 6} process gas lines over a period of years. The resulting UO{sub 2}F{sub 2} is hygroscopic, readily absorbing moisture from the air to form hydrates as UO{sub 2}F{sub 2}-nH{sub 2}O. The ratio of hydrogen to uranium, denoted H/U, can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was needed. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize the distribution, hydration, and total mass of these deposits.

  20. Techniques for assessing sand and gravel resources in glaciofluvial deposits; an example using the surficial geologic map of the Loudon Quadrangle, Merrimack and Belknap counties, New Hampshire

    USGS Publications Warehouse

    Sutphin, David M.; Drew, Lawrence J.; Fowler, Brian K.; Goldsmith, Richard

    2002-01-01

    A method for estimating the sand and gravel resources in glaciofluvial systems has been developed based on surficial mapping techniques that use the morphosequence concept and geographic information systems (GIS). Two different strategies are used to estimate gravel resources. One strategy estimates the sand and gravel resources contained in esker deposits; the other, which is more dependent on GIS, estimates resources in non-esker deposits. An attempt has been made to determine which deposits are sterilized; that is, those beneath the water table, adjacent to streams or roads, or encroached on by urbanization. Preliminary estimates using these methods indicate that about 158,000,000 m3 (206,000,000 yd3) of sand and gravel are present in the Soucook River valley part of the Loudon, N.H., 7.5-minute quadrangle. About 64,500,000 m3 (84,400,000 yd3) of these materials are in deposits above the water table. About 26 percent of the sand and gravel resources above the water table are unlikely to be mined because they have been sterilized. Of the remaining resources, 479,000 m3 (627,000 yd3) of gravel and 1,120,000 m3 (1,460,000 yd3) of sand are in esker deposits, and 9,400,000 m3 (12,300,000 yd3) of gravel and 38,300,000 m3 (50,100,000 yd3) of sand are in stratified non-esker deposits. With the addition of new well data, newer and more accurate estimates are possible.

  1. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings

    PubMed Central

    Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.

    2008-01-01

    The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207

  2. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  3. Artificial ascites and pneumoperitoneum to facilitate thermal ablation of liver tumors: a pictorial essay.

    PubMed

    Bhagavatula, Sharath K; Chick, Jeffrey F B; Chauhan, Nikunj R; Shyn, Paul B

    2017-02-01

    Image-guided percutaneous thermal ablation is increasingly utilized in the treatment of hepatic malignancies. Peripherally located hepatic tumors can be difficult to access or located adjacent to critical structures that can be injured. As a result, ablation of peripheral tumors may be avoided or may be performed too cautiously, leading to inadequate ablation coverage. In these cases, separating the tumor from adjacent critical structures can increase the efficacy and safety of procedures. Artificial ascites and artificial pneumoperitoneum are techniques that utilize fluid and gas, respectively, to insulate critical structures from the thermal ablation zone. Induction of artificial ascites and artificial pneumoperitoneum can enable complete ablation of otherwise inaccessible hepatic tumors, improve tumor visualization, minimize unintended thermal injury to surrounding organs, and reduce post-procedural pain. This pictorial essay illustrates and discusses the proper technique and clinical considerations for successful artificial ascites and pneumoperitoneum creation to facilitate safe peripheral hepatic tumor ablation.

  4. Infrared Laser Ablation Sample Transfer for MALDI and Electrospray

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Murray, Kermit King

    2011-08-01

    We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1-2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.

  5. Recent Advances in Tumor Ablation for Hepatocellular Carcinoma

    PubMed Central

    Kang, Tae Wook; Rhim, Hyunchul

    2015-01-01

    Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC. PMID:26674766

  6. High Current Cathodes Fabricated by KrF Laser Ablation

    SciTech Connect

    Gilgenbach, Ronald M.; Lau, Y. Y.; Jones, M. C.; Johnston, M. D.; Jordan, N. M.; Hoff, B. W.

    2010-10-08

    In this paper we review several high power laser ablation techniques that have been utilized to fabricate high current (1-80 kA) electron beam cathodes for accelerators and microwave sources: 1) Projection Ablation Lithography (PAL) cathodes, 2) Ablation Line Focus (ALF) cathodes, and 3) Metal-Oxide-Junction (MOJ) cathodes. Laser-ablative micromachining techniques (PAL and ALF) have been utilized to generate micron-scale features on metal substrates that provide electric field (beta) enhancement for Fowler-Nordheim emission and plasma cathodes. Since these laser-ablated patterns are directly, laser-written on the substrate metal they exhibit much higher thermal conductivity for higher current capability and increased damage thresholds. Metal-Oxide-Junction (MOJ) cathodes exploit the triple-point electron emission that occurs at the interface between metal, insulator and vacuum.The ablation laser is a KrF excimer laser with a pulse energy of 600 mJ and pulselength of 20 ns. Cathode experiments were performed on the MELBA-C accelerator: V = -300 kV, pulselength = 0.5 microsecond. Data will be presented for PAL, ALF and MOJ cathodes.

  7. Leonid meteor ablation, energy exchange and trail morphology

    SciTech Connect

    Zinn, John; Judd, O'Dean P.; ReVelle, D. O.

    2002-01-01

    This paper describes theoretical model studies of the interaction of Leonid meteoroids with the earth's atmosphere. Subject to some modest-to-strenuous approximations we compute the rates of ablation and deceleration, energy deposition, and terminal altitudes of the meteors as functions of their initial mass and bulk density, velocity, trajectory entry angle, drag coefficient, heat of ablation, and an ablation energy transfer fraction. We find that the dominant energy deposition in the atmosphere is associated with the stopping of the ablated meteor particles and vapor by the surrounding air. Then having computed the energy deposition rates versus altitude we compute the hydrodynamic and radiative expansion of the hot wake material in the radial direction, along with the associated air chemistry. From the computed results we can then plot two-dimensional temperature contours -- as functions of the instantaneous distance behind the meteor and radial distance from the center of the wake, at various altitudes along the meteor's path. We also compute the rates of emission of radiation and the radiative efficiency, and discuss comparisons with observations.

  8. Setups for investigating heat transfer on ablative material - Advantages and drawbacks

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    The drawbacks of existing 'global' setups for investigating the ablation of internal thermal insulation are pointed out. In particular, the generator-sample-type setups are found to provide a poor treatment of the ablation/flow interface. At the present time ONERA is putting the emphasis on so-called 'fine' setups, e.g., a laser wind-tunnel apparatus and the analysis of ablation measurement techniques (ultrasound and capacitive plasma gauges).

  9. Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response?

    PubMed Central

    Mehta, Amol; Oklu, Rahmi

    2016-01-01

    Percutaneous image-guided ablation is an increasingly common treatment for a multitude of solid organ malignancies. While historically these techniques have been restricted to the management of small, unresectable tumors, there is an expanding appreciation for the systemic effects these locoregional interventions can cause. In this review, we summarize the mechanisms of action for the most common thermal ablation modalities and highlight the key advances in knowledge regarding the interactions between thermal ablation and the immune system. PMID:27051417

  10. Co-assembly of functional graphene and multiwall carbon nanotubes for supercapacitors by a vertical deposition technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhong; Cao, Xiaojian; Li, Zhenwei; Zhao, Dongmei

    2016-06-01

    Graphene and carbon nanotubes (CNTs) are nanosized carbon materials with large specific surface areas, outstanding electrical conductivities, excellent mechanical properties, and other remarkable characteristics. Preparation of graphene oxide is by a redox method, followed by vertical deposition to prepare graphene oxide/carbon nanotube GO/CNT) composites. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the morphology and microstructure of the materials. Electrodes were made by deposition of graphene oxide/carbon nanotube composites on an indium tin oxide glass slide, and its electrical properties were characterized by cyclic voltammetry. The GO/CNT composites exhibit excellent energy and power densities and are ideal materials for the preparation of supercapacitor electrodes.

  11. Optical Characterization of Pulse Laser Deposition of Thin Films of Hard Materials Using RHEED and AFM Techniques

    DTIC Science & Technology

    2011-12-20

    University, New Orleans, LA 70122 ABSTRACT Epitaxial thin films of Barium Ferrite (BaFeO3) have been fabricated by the pulsed laser deposition...the Coercivity, crystalline orientation, and grain shape and size is presented. 1. INTRODUCTION Barium ferrite powder was selected in this...published. In the presently conducted investigation, FMR absorption was studied in the case of six fine- powder samples of barium ferrite

  12. Application of photoacoustic and photothermal techniques for heat conduction measurements in a free-standing chemical vapor-deposited diamond film

    SciTech Connect

    Glorieux, C.; De Groote, J.; Lauriks, W.; Thoen, J. ); Fivez, J. EHSAL, Brussel Universitaire Faculteiten St. Ignatius, Antwerpen )

    1993-11-01

    Heat conduction in a free-standing chemical vapor-deposited polycrystalline diamond film has been investigated by means of combined front and rear photoacoustic signal detection techniques and also by means of a mirage' photothermal beam deflection technique. The results obtained with the different techniques are consistent with a value of [alpha] = (5.5 [+-] 0.4) [times] 10[sup [minus]4]m[sup 2][center dot]s[sup [minus]1] for thermal diffusivity, resulting in a value of k -(9.8 [+-] 0.7) [times] 10[sup 2]W m[sup [minus]1]. K[sup [minus]1] for thermal conductivity when literature values for the density and heat capacity for natural diamond are used. 25 refs., 7 figs.

  13. Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation.

    PubMed

    Malskat, W S J; Stokbroekx, M A L; van der Geld, C W M; Nijsten, T E C; van den Bos, R R

    2014-03-01

    Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures.

  14. Cryosurgery and needle ablation of renal lesions.

    PubMed

    Johnson, D B; Nakada, S Y

    2001-05-01

    Laparoscopic renal cryoablation is a minimally invasive alternative for treating renal tumors utilizing narrow probes cooled with a compressed gas such as argon or carbon dioxide. At this time, cryotherapy has shown the most promise as an alternative to partial nephrectomy as a nephron-sparing treatment for renal tumors. Radiofrequency ablation employs needle electrodes placed percutaneously directly into renal lesions to deliver energy, creating high temperatures leading to cell death. High-intensity focused ultrasound is a noninvasive technique in which focused ultrasound energy is applied to cause cell death within the focal zone. Microwave thermotherapy uses small applicators to deliver microwave energy to tissues, resulting in the generation of heat. Although RF, HIFU, and microwave thermotherapy show promise as energy sources for tumor ablation, they are in the early stages of development. Little is known about their acute and chronic histologic effects and long-term efficacy as a treatment for malignant disease. Further work is needed to develop cryosurgery and needle ablation in order to delineate what role these techniques will ultimately play in the management of RCC.

  15. Combining a multi deposition multi annealing technique with a scavenging (Ti) to improve the high-k/metal gate stack performance for a gate-last process

    NASA Astrophysics Data System (ADS)

    ShuXiang, Zhang; Hong, Yang; Bo, Tang; Zhaoyun, Tang; Yefeng, Xu; Jing, Xu; Jiang, Yan

    2014-10-01

    ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are investigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a significant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be responsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.

  16. Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Jabena Begum, N.; Mohan, R.; Ravichandran, K.

    2013-01-01

    Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.

  17. Investigations on alluvial deposits through borehole stratigraphy, radiocarbon dating and passive seismic technique (Carnic Alps, NE Italy)

    NASA Astrophysics Data System (ADS)

    Viero, Alessia; Marchi, Lorenzo; Cavalli, Marco; Crema, Stefano; Fontana, Alessandro; Mozzi, Paolo; Venturini, Corrado

    2016-04-01

    Alluvial sediment investigations provide fundamental tools to infer the processes that control geomorphological evolution of mountain environments. By analyzing sediment stratigraphy in depth, it is possible to retrieve the source, the geology, the time of deposition, the relative distance travelled by material as well as to distinguish among different type of transport (i.e., gravitational, fluvial or glacial). In this work, we present a combination of log stratigraphy, radiocarbon dating and geophysical surveys carried out on the valley floor of the But River (Carnic Alps, North East Italy). The But River basin drains an area of 326 km2 with a range in elevation from 2769 to 323 m a.s.l.; the bedrock mainly consists of carbonates and quartz arenites with minor inclusions of effusive rocks. After Pleistocene the gravitational deposits from mountain slopes have impounded the But River several times. In particular, we analyzed a sector of the upper portion of the But valley close to the confluence of the Moscardo Torrent, frequently affected by debris flows. A borehole was drilled in the But River floodplain, at the intersection with the Moscardo Torrent alluvial fan, down to a depth of 80 m. The analysis of the core samples allowed discerning three sedimentary levels rich in clay and organic materials, which testify the presence of small dam lakes, originated from the Moscardo debris-flow deposits. Three samples of wood and plant debris were collected from 13, 14 and 23 m of depth, respectively. They were analyzed through radiocarbon dating in order to determine the age of the lakes and, thus, to infer the activity of the debris flows building the Moscardo cone. The calibrated ages of the 3 samples are close to the younger limit of the radiocarbon method indicating a fast aggradation of the valley floor, starting from a period ranging between 1450 - 1632 AD. Historical maps and documents confirm the presence of the lakes until 19th century and they permit to assess

  18. Microwave ablation of renal tumors: state of the art and development trends.

    PubMed

    Floridi, Chiara; De Bernardi, Irene; Fontana, Federico; Muollo, Alessandra; Ierardi, Anna Maria; Agostini, Andrea; Fonio, Paolo; Squillaci, Ettore; Brunese, Luca; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2014-07-01

    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors <2.0 cm. This trend for small, low-stage tumors is the reflection of earlier diagnosis primarily as a result of the widespread and increasing use of non-invasive abdominal imaging modalities such as ultrasound, computerized tomography, and magnetic resonance imaging. Renal tumors are often diagnosed in elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

  19. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices.

  20. Pulmonary radiofrequency ablation (Part 1): current state.

    PubMed

    Plasencia Martínez, J M

    2015-01-01

    The risks involved in surgical treatment and conventional radiotherapy in patients with early lung cancer or lung metastases often make these treatments difficult to justify. However, on the other hand, it is also unacceptable to allow these lesions to evolve freely because, left untreated, these neoplasms will usually lead to the death of the patient. In recent years, alternative local therapies have been developed, such as pulmonary radiofrequency ablation, which has proven to increase survival with a minimal risk of complications. There are common recommendations for these treatments, and although the specific indications for using one technique or another have yet to be established, there are clearly defined situations that will determine the outcome of the treatment. It is important to know these situations, because appropriate patient selection is essential for therapeutic success. This article aims to describe the characteristics and constraints of pulmonary radiofrequency ablation and to outline its role in thoracic oncology in light of the current evidence.