Sample records for ablation fe oxidation

  1. Experimental and theoretical identification of the Fe(vii) oxidation state in FeO4.

    PubMed

    Lu, Jun-Bo; Jian, Jiwen; Huang, Wei; Lin, Hailu; Li, Jun; Zhou, Mingfei

    2016-11-16

    The experimentally known highest oxidation state of iron has been determined to be Fe(vi) so far. Here we report a combined matrix-isolation infrared spectroscopic and theoretical study of two interconvertible iron oxide anions: a dioxoiron peroxide complex [(η 2 -O 2 )FeO 2 ] - with a C 2v -structure and a tetroxide FeO 4 - with a D 2d tetrahedral structure, which are formed by co-condensation of laser-ablated iron atoms and electrons with O 2 /Ar mixtures at 4 K. Quantum chemistry theoretical studies indicate that the Jahn-Teller distorted tetroxide FeO 4 - anion is a d 1 species with hereto the highest iron formal oxidation state Fe(vii).

  2. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  3. Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method

    NASA Astrophysics Data System (ADS)

    Ghavidel, Elham; Sari, Amir Hossein; Dorranian, Davoud

    2018-07-01

    In this work, the effects of liquid environments on the characteristics and optical properties of carbon nanostructures - in particular, Graphene Oxide (GO) - prepared by pulsed laser ablation were studied experimentally. The second harmonic beam of a Q-switched Nd:YAG laser of 532 nm wavelength at 6 ns pulse width and 0.7 J/cm2 fluence was employed to irradiate the graphite target in liquid nitrogen, deionized water, and 0.01 M CTAB solution under the same initial experimental conditions. Produced nanostructures were characterized by Raman scattering spectrum, FE-SEM and TEM images, Photoluminescence, and UV-Vis-NIR spectrum. TEM and FE-SEM images show sheet-like morphology with few square micrometer area graphenes in all samples. Raman and UV-Vis-NIR analyses show that graphene is oxidized due to the presence of oxygen molecules in ablation environment. Results demonstrate that the graphene nanosheets produced in deionized water are multilayer, contains the largest sp2 domain size, the least defects and the lowest possibility of aggregation.

  4. Oxidation of Structural Fe(II) in Biotite by Lithotrophic Fe(II)-oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Shelobolina, E.; Blöthe, M.; Xu, H.; Konishi, H.; Roden, E.

    2008-12-01

    The potential for microbial involvement in the oxidation of Fe(II)-bearing phyllosilicates is an understudied aspect of soil/sediment Fe biogeochemistry. An important property of structural Fe in Fe-bearing smectites is their ability to undergo multiple redox cycles without being mobilized. An obvious choice of mineral substrate for enumeration/isolation of Fe(II)-oxidizing microorganisms would be reduced smectite. But reduced smectite is readily oxidized by air. That is why biotite was chosen as a substrate for this study. In contrast to smectite, biotite is more stable in the presence of air, but incapable of redox cycling. Once Fe(II) is oxidized, biotite is weathered to expendable 2:1 phyllosilicates or kaolinite. First, we evaluated the ability of a neutral-pH lithoautotrophic nitrate-reducing enrichment culture (MPI culture), recovered by Straub et al (Appl. Environ. Microbiol., 1996, 62:1458-1460) from a freshwater ditch, to oxidize two different specimens of biotite. The culture was capable of multiple transfers in anaerobic nitrate-containing biotite suspensions. The growth of MPI culture resulted in decrease of 0.5 N HCl-extractable Fe(II) content and simultaneous nitrate reduction. Cell yields were comparable to those observed for other neutral-pH lithoautotrophic Fe(II)-oxidizing bacteria. High resolution TEM examination revealed structural and chemical changes at the edges of oxidized biotite and formation of reddish amorphous precipitates dominated by Si and Fe. To further evaluate efficiency of biotite for recovery of oxygen- and nitrate-dependent Fe(II) oxidizing cultures microbial enumeration study was performed using subsoil from a site near Madison, WI. The soil is rich in Fe-bearing smectite and shows evidence of redoximorphic features. The enumeration of Fe(II) oxidizing organisms from this sediment showed 10-fold higher efficiency of biotite over soluble Fe(II) for recovery of Fe(II)-oxidizers. Isolation and identification of both aerobic and

  5. Characteristics of Fe Ablation Trials Observed During the 1998 Leonid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Chu, Xin-Zhao; Pan, Wei-Lin; Papen, George; Swenson, Gary; Gardner, Chester S.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Eighteen Fe ablation trails were observed during the 17/18 Nov 1998 Leonid meteor shower with an airborne Fe lidar aboard the National Simulation Facility/National Center for Atmospheric Research (NSF/NCAR) Electra aircraft over Okinawa. The average altitude of the 18 trails from the high velocity (72 km/s) Leonid meteors, 95.67 +/- 0.93 km, is approximately 6.7 km higher than previously observed for slower (approx. 30 km/s) sporadic meteors. This height difference is consistent with the assumption that meteors ablate when the kinetic energy imparted to the atmosphere reaches a critical threshold. The average age of the Fe trails, determined by a diffusion model, is 10.1 min. The youngest ages were observed below 92 km and above 98 km where chemistry and diffusion dominate, respectively. The average abundance of the trails is ten percent of the abundance of the background Fe layer. Observations suggest that the 1998 Leonid shower did not have a significant impact on the abundance of the background Fe layer.

  6. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  7. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation

    NASA Astrophysics Data System (ADS)

    Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.

    2007-10-01

    We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.

  8. Oxidation of Fe(II) in rainwater.

    PubMed

    Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R

    2005-04-15

    Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.

  9. Ligand-controlled Fe mobilization catalyzed by adsorbed Fe(II) on Fe(hydr)oxides

    NASA Astrophysics Data System (ADS)

    Kang, Kyounglim; Biswakarma, Jagannath; Borowski, Susan C.; Hug, Stephan J.; Hering, Janet G.; Schenkeveld, Walter D. C.; Kraemer, Stephan M.

    2017-04-01

    Dissolution of Fe(hydr)oxides is a key process in biological iron acquisition. Due to the low solubility of iron oxides in environments with a circumneutral pH, organisms may exude organic compounds catalyzing iron mobilization by reductive and ligand controlled dissolution mechanisms. Recently, we have shown synergistic effects between reductive dissolution and ligand-controlled dissolution that may operate in biological iron acquisition. The synergistic effects were observed in Fe mobilization from single goethite suspensions as well as in suspensions containing calcareous soil[1],[2]. However, how the redox reaction accelerates Fe(hydr)oxide dissolution by ligands is not studied intensively. In our study, we hypothesized that electron transfer to structural Fe(III) labilizes the Fe(hydr)oxide structure, and that this can accelerate ligand controlled dissolution. Systematical batch dissolution experiments were carried out under anoxic conditions at environmentally relevant pH values in which various Fe(hydr)oxides (goethite, hematite, lepidocrocite) interacted with two different types of ligand (desferrioxamine B (DFOB) and N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED)). Electron transfer to the structure was induced by adsorbing Fe(II) to the mineral surface at various Fe(II) concentrations. Our results show a distinct catalytic effect of adsorbed Fe(II) on ligand controlled dissolution, even at submicromolar Fe(II) concentrations. We observed the effect for a range of iron oxides, but it was strongest in lepidocrocite, most likely due to anisotropy in conductivity leading to higher near-surface concentration of reduced iron. Our results demonstrate that the catalytic effect of reductive processes on ligand controlled dissolution require a very low degree of reduction making this an efficient process for biological iron acquisition and a potentially important effect in natural iron cycling. References 1. Wang, Z. M

  10. Study on ablation behavior of silicone rubber based insulation material under the condition of boron oxide particles erosion

    NASA Astrophysics Data System (ADS)

    Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.

    2018-01-01

    Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.

  11. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation

    PubMed Central

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-01-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  12. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethitemore » and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.« less

  13. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    USGS Publications Warehouse

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  14. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.

    PubMed

    Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong

    2016-07-01

    In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  16. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    NASA Astrophysics Data System (ADS)

    Spadaro, Salvatore; Bonsignore, Martina; Fazio, Enza; Cimino, Francesco; Speciale, Antonio; Trombetta, Domenico; Barreca, Francesco; Saija, Antonina; Neri, Fortunato

    2018-01-01

    he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm) are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  17. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation

  18. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.

    PubMed

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-10-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  19. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials

    NASA Astrophysics Data System (ADS)

    Yamashita, Toru; Hayes, Peter

    2008-02-01

    Samples of the iron oxides Fe 0.94O, Fe 3O 4, Fe 2O 3, and Fe 2SiO 4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe 2+ and Fe 3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO 2 and Fe 2O 3, respectively. Using these parameters, the Fe 3p peaks of Fe 3O 4 and Fe 1- yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe 2+/Fe 3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.

  20. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  1. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Behrends, T.; Osté, L. A.; Schot, P. P.; Wassen, M. J.; Griffioen, J.

    2016-08-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction kinetics, and the characteristics of the produced Fe hydroxyphosphate precipitates in a series of aeration experiments with anoxic synthetic water and natural groundwater. A pH stat device was used to maintain constant pH and to record the H+ production during Fe(II) oxidation in the aeration experiments in which the initial aqueous P/Fe ratios ((P/Fe)ini), oxygen concentration and pH were varied. In general, Fe(II) oxidation proceeded slower in the presence of PO4 but the decrease of the PO4 concentration during Fe(II) oxidation due to the formation of Fe hydroxyphosphates caused additional deceleration of the reaction rate. The progress of the reaction could be described using a pseudo-second-order rate law with first-order dependencies on PO4 and Fe(II) concentrations. After PO4 depletion, the Fe(II) oxidation rates increased again and the kinetics followed a pseudo-first-order rate law. The first-order rate constants after PO4 depletion, however, were lower compared to the Fe(II) oxidation in a PO4-free solution. Hence, the initially formed Fe hydroxyphosphates also affect the kinetics of continuing Fe(II) oxidation after PO4 depletion. Presence of aqueous PO4 during oxidation of Fe(II) led to the formation of Fe hydroxyphosphates. The P/Fe ratios of the precipitates ((P/Fe)ppt) and the recorded ratio of H+ production over decrease in dissolved Fe(II) did not change detectably throughout the reaction despite a changing P/Fe ratio in the solution. When (P/Fe)ini was 0.9, precipitates with a (P/Fe)ppt ratio of about 0.6 were formed. In experiments with (P/Fe)ini ratios below 0.6, the (P/Fe)ppt decreased with decreasing (P/Fe)ini and pH value. Aeration experiments with

  2. Rear-side picosecond laser ablation of indium tin oxide micro-grooves

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Wenjun; Mei, Xuesong; Liu, Bin; Zhao, Wanqin

    2015-06-01

    A comparative study of the fabrication of micro-grooves in indium tin oxide films by picosecond laser ablation for application in thin film solar cells is presented, evaluating the variation of different process parameters. Compared with traditional front-side ablation, rear-side ablation results in thinner grooves with varying laser power at a certain scan speed. In particular, and in contrast to front-side ablation, the width of the micro-grooves remains unchanged when the scan speed was changed. Thus, the micro-groove quality can be optimized by adjusting the scan speed while the groove width would not be affected. Furthermore, high-quality micro-grooves with ripple free surfaces and steep sidewalls could only be achieved when applying rear-side ablation. Finally, the formation mechanism of micro-cracks on the groove rims during rear-side ablation is analyzed and the cracks can be almost entirely eliminated by an optimization of the scan speed.

  3. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and <0.02mm) in Musick soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil

  4. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  5. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    PubMed

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William

    2012-01-15

    Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  8. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  9. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor.

    PubMed

    Yang, Yang; Wang, Fengjuan; Zheng, Kaiyuan; Deng, Liming; Yang, Lu; Zhang, Nan; Xu, Chunyan; Ran, Haitao; Wang, Zhaoxia; Wang, Zhigang; Zheng, Yuanyi

    2017-01-01

    Magnetic hyperthermia ablation has attracted wide attention in tumor therapy for its minimal invasion. Although the chemo-hyperthermal synergism has been proven to be effective in subcutaneously xenografted tumors of nude mice in our previous experiment, the occurrence of residual tumors due to incomplete ablation is more common in relatively larger and deeper-seated tumors in anti-tumor therapy. Thus, a larger tumor and larger animal model are needed for further study of the therapeutic efficacy. In this study, we tested the efficiency of this newly developed technique using a rabbit tumor model. Furthermore, we chose cisplatin (DDP), which has been confirmed with high efficiency in enhancing hyperthermia therapy as the chemotherapeutic drug for the synergistic magnetic hyperthermal ablation therapy of tumors. In vitro studies demonstrated that developed DDP-loaded magnetic implants (DDP/PLGA-Fe3O4) have great heating efficacy and the drug release can be significantly boosted by an external alternating magnetic field (AMF). In vivo studies showed that the phase-transitional DDP/PLGA-Fe3O4 materials that are ultrasound (US) and computerized tomography (CT) visible can be well confined in the tumor tissues after injection. When exposed to AMF, efficient hyperthermia was induced, which led to the cancer cells' coagulative necrosis and accelerating release of the drug to kill residual tumors. Furthermore, an activated anti-tumor immune system can promote apoptosis of tumor cells. In conclusion, the DDP/PLGA-Fe3O4 implants can be used efficiently for the combined chemotherapy and magnetic-hyperthermia ablation of rabbit tumors.

  10. Magnetic effect on oxide-scale growth of Fe-5Cr alloy

    NASA Astrophysics Data System (ADS)

    Zhou, C. H.; Li, X. W.; Wang, S. H.; Ma, H. T.

    2018-01-01

    The oxidation behaviour of Fe-5Cr alloy was investigated at 650°C in the presence of magnetic field. Results indicated that the oxide scales were both consisted of an outer Fe-oxide scale and an inner mixed-oxide scale in the presence or absence of magnetic field. The oxide-scale growth of Fe-5Cr alloy, gained by measuring the oxide-scale thickness, was verified to follow parabolic lawyer. And the oxidation kinetics showed that the applied magnetic field retarded the oxide-scale growth of Fe-5Cr alloy.

  11. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    PubMed

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  12. A novel Fe(II)-oxidizing Epsilonproteobacterium from a streambank aquifer

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; McAllister, S.; Krepski, S.; Lin, C.; Lazareva, O.; Kan, J.

    2013-12-01

    Neutrophilic Fe(II)-oxidizing microorganisms (FeOM) play significant roles in elemental cycling in freshwater environments, forming biogenic Fe(III)-oxyhydroxides that sorb and sequester organics, phosphate, heavy metals, and other solutes. However, the extent of these microbes' diversity and influence are unknown, in part because we may only recognize a fraction of FeOM in environmental settings. Here we describe the first known Fe(II)-oxidizing Epsilonproteobacterium, Sulfuricurvum sp. strain EW, isolated from a biogeochemically dynamic streambank aquifer in southeastern Pennsylvania. This strain is related to the sulfur-oxidizer Sulfuricurvum kujiense (98.3% small subunit rRNA gene sequence identity). Strain EW is a facultative FeOM, capable of aerobically oxidizing reduced sulfur compounds, hydrogen, and a number of organic substrates. Pyrosequencing of the SSU rRNA gene (V1-V3 region) from porewater samples shows that Sulfuricurvum spp. is concentrated in an Fe- and organic-rich stratum within the streambank. Over the course of a year, the temporal patterns are similar to Gallionellaceae, a family with isolates that are almost exclusively FeOM. Correlation with geochemical parameters suggest that Sulfuricurvum presence is controlled by conditions favorable for Fe oxidation. These results significantly increase the known distribution, diversity, and physiology of FeOM, enabling further discoveries on the mechanisms and effects of microbial Fe oxidation. Although Epsilonproteobacteria have previously been associated with H2, S, and organic metabolisms, this discovery opens the door to understanding their roles in environmental Fe cycling.

  13. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  14. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Modeling the Relationship Between Porosity and Permeability During Oxidation of Ablative Materials

    NASA Technical Reports Server (NTRS)

    Thornton, John M.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Mansour, Nagi N.

    2017-01-01

    The ablative materials used in thermal protection systems (TPS) undergo oxidation during atmospheric entry which leads to an in-depth change in both permeability and porosity. These properties have a significant affect on heat transfer in a TPS during entry. X-ray micro-tomography has provided 3D images capturing the micro-structure of TPS materials. In this study, we use micro-tomography based simulations to create high-fidelity models relating permeability to porosity during oxidation of FiberForm, the carbon fiber preform of the Phenolic Impregnated Carbon Ablator (PICA) often used as a TPS material. The goal of this study is to inform full-scale models and reduce uncertainty in TPS modeling.

  16. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Koi, Katsuhiko; Tomita, Hiroshi; Fuke, Hiromi Niu; Iwasaki, Hitoshi; Sahashi, Masashi

    2002-05-01

    We compared the specular spin-valve films with an Fe50Co50 nano-oxide layer (NOL) and a Co90Fe10 NOL in a pinned layer, prepared by natural oxidation (NO) and ion-assisted oxidation (IAO). For the IAO, an Ar-ion beam was used for the energy-assist effect during the oxidation, resulting in thermally stable NOL formation. With small oxygen exposures during the oxidation for the Fe50Co50 NOL by IAO, good ferromagnetic coupling through the NOL and high specularity at the NOL interface were concurrently obtained. Moreover, twisted coupling through the NOL was observed for the Fe50Co50 NOL by IAO for higher oxygen exposures. On the other hand, the NO did not cause large magnetoresistance (MR) enhancement for either the Co90Fe10 or Fe50Co50 NOLs, and the Co90Fe10 NOL by IAO caused weak magnetic coupling through the NOL, resulting in a small MR ratio. The Fe50Co50 NOL for small oxygen exposures is a good candidate for a final specular spin-valve film head for 100-Giga-bit per square inch recording.

  17. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    PubMed

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  18. Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicklein, S.; Koehl, A.; Dittmann, R.

    2012-09-24

    By combining structural and chemical thin film analysis with detailed plume diagnostics and modeling of the laser plume dynamics, we are able to elucidate the different physical mechanisms determining the stoichiometry of the complex oxides model material SrTiO{sub 3} during pulsed laser deposition. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. On the one hand, a progressive preferential ablation of the Ti species with increasing laser fluence leads to a regime ofmore » Ti-rich thin film growth at larger fluences. On the other hand, in the low laser fluence regime, a more effective scattering of the lighter Ti plume species results in Sr rich films.« less

  19. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  20. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil.

    PubMed

    McCann, Clare M; Peacock, Caroline L; Hudson-Edwards, Karen A; Shrimpton, Thomas; Gray, Neil D; Johnson, Karen L

    2018-01-15

    The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70mgg -1 and 32mgg -1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p<0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Ligand-hole localization in oxides with unusual valence Fe

    PubMed Central

    Chen, Wei-Tin; Saito, Takashi; Hayashi, Naoaki; Takano, Mikio; Shimakawa, Yuichi

    2012-01-01

    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes. PMID:22690318

  2. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  3. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: Didik-phys@yahoo.co.id, E-mail: didi027@lipi.go.id; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-19

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatingsmore » exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al){sub 2}O{sub 3}. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.« less

  4. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  5. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    PubMed

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  6. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation

    USGS Publications Warehouse

    Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.

    2006-01-01

    Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments

  7. Effects of tillage on the Fe oxides activation in soil

    NASA Astrophysics Data System (ADS)

    Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui

    2009-07-01

    Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P <0.05) and 70.0% (P < 0.05), respectively. The correlations among iron forms and soil organic carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.

  8. Oxidative mutagenesis of doxorubicin-Fe(III) complex.

    PubMed

    Kostoryz, E L; Yourtee, D M

    2001-02-20

    Doxorubicin has a high affinity for inorganic iron, Fe(III), and has potential to form doxorubicin-Fe(III) complexes in biological systems. Indirect involvement of iron has been substantiated in the oxidative mutagenicity of doxorubicin. In this study, however, direct involvement of Fe(III) was evaluated in mutagenicity studies with the doxorubicin-Fe(III) complex. The Salmonella mutagenicity assay with strain TA102 was used with a pre-incubation step. The highest mutagenicity of doxorubicin-Fe(III) complex was observed at the dose of 2.5nmol/plate of the complex. The S9-mix decreased this highest mutagenicity but increased the number of revertants at a higher dose of 10nmol/plate of the complex. On the other hand, the mutagenicity of the doxorubicin-Fe(III) complex at the doses of 0.25, 0.5, 1 and 2nmol/plate was enhanced about twice by the addition of glutathione plus H(2)O(2). This enhanced mutagenicity as well as of the complex itself, the complex plus glutathione, and the complex plus H(2)O(2) were reduced by the addition of ADR-529, an Fe(III) chelator, and potassium iodide, a hydroxyl radical scavenger. These results indicate that doxorubicin-Fe(III) complex exert the mutagenicity through oxidative DNA damage and that Fe(III) is a required element in the mutagenesis of doxorubicin.

  9. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Iwata, Masahiro; Katsuno, Junichi

    2017-06-01

    Spherical Ge nanoparticles with diameters of 20-80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

  10. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    PubMed

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  11. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M

    2012-12-01

    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  12. Destruction of monocrystalline silicon with nanosecond pulsed fiber laser accompanied by the oxidation of ablation microparticles

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2013-11-01

    In this work, we report an observation of process of local destruction monocrystalline silicon with a scanning beam irradiation of pulse ytterbium fiber laser with a wavelength λ= 1062 nm, accompanied by the oxidation of ablation microparticles. It is shown that depending on the power density of irradiation was observed a large scatter size of the microparticles. From a certain average power density is observed beginning oxidation particulate emitted from the surface of the irradiated area. By varying the parameters of the laser beam such as scanning speed, pulse repetition rate, overlap of laser spot, radiation dose can be achieved almost complete oxidation of all formed during the ablation of microparticles.

  13. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  14. Ferromagnetic phase in partially oxidized FeMn films

    NASA Astrophysics Data System (ADS)

    Svalov, A. V.; Savin, P. A.; Lepalovskij, V. N.; Vas'kovskiy, V. O.; Larrañaga, A.; Kurlyandskaya, G. V.

    2018-04-01

    The structure, magnetic and magnetoresistive properties of ferromagnetic phase in partially oxidized FeMn films was studied. The oxidation was performed by annealing of the samples under atmospheric pressure in a gas mixture (nitrogen with 0.5% oxygen) at the temperature of 300 °C. The resulting ferromagnetic phase was isotropic in the film plane. The value of the anisotropic magnetoresistance was similar to the value of the anisotropic magnetoresistance usually observed in films of pure iron. The oxidation of antiferromagnetic FeMn films resulted in the appearance of an exchange bias.

  15. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

    PubMed Central

    Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre

    2009-01-01

    Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306

  16. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  17. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  18. Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides

    NASA Astrophysics Data System (ADS)

    White, Art F.; Peterson, Maria L.

    1996-10-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show

  19. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, L.; Messina, F.; Camarda, P.

    2016-07-14

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO{sub 2} and amorphous fully oxidized SiO{sub 2}, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystalsmore » emit a μs-decaying red band; defects of SiO{sub 2} give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.« less

  20. Experimental and thermodynamic study of Co-Fe and Mn-Fe based mixed metal oxides for thermochemical energy storage application

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-06-01

    Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.

  1. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    PubMed

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  2. Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics

    NASA Astrophysics Data System (ADS)

    Roden, E. E.

    2003-12-01

    Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady

  3. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  4. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment

    PubMed Central

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker

    2016-01-01

    ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the

  5. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique.

    PubMed

    Lin, K W; Kol, P H; Guo, Z Y; Ouyang, H; van Lierop, J

    2007-01-01

    We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline NiFe (25 nm)/Fe-oxide (35 nm) bilayers. A film prepared with an assist beam O2 to Ar gas ratio of 0% during deposition had a bottom layer that consisted of pure b.c.c. Fe (a = 2.87 A) whereas films prepared with 19%O2/Ar and 35%O2/Ar had either Fe3O4 (a = 8.47 angstroms) or alpha-Fe2O3 (a = 5.04 angstroms, c = 13.86 angstroms) bottom layers, respectively. Cross-sectional transmission electron microscopy revealed a smooth interface between the top nano-columnar NiFe and bottom nano-columnar Fe-oxide layer for all films. At room temperature, the observed coercivity (Hc approximately 25 Oe) for a film prepared with 19% O2/Ar indicates the existence of a magnetically hard ferrimagnetic Fe3O4 phase that is enhancing the plain NiFe (Hc approximately 2 Oe) by way of exchange coupling. A significant amount of exchange bias is observed below 50 K, and at 10 K the size of exchange bias hysteresis loops shift increases with increasing oxygen in the films. Furthermore, the strongest exchange coupling (H(ex) approximately 135 Oe at 10 K) is with alpha-Fe2O3 (35% O2/Ar) as the bottom film layer. This indicates that the pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. H(ex) (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1 - T/T(crit)) temperature dependence. Hc (T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.

  6. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    NASA Astrophysics Data System (ADS)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  7. THE EFFECT OF OXIDANTS ON THE PROPERTIES OF FE (III) PARTICLES AND SUSPENSIONS FORMED FROM THE OXIDATION OF FE (II)

    EPA Science Inventory

    Oxidation of Fe(II) to Fe(III) is an important reaction in drinking water treatment and distribution systems, and the ferric particles that form are a major source of consumer complaints of colored water. Ferrous iron is found naturally in many ground waters and can be released ...

  8. The effects of Fe-oxidizing microorganisms on post-biostimulation permeability reduction and oxidative processes at the Rifle IFRC site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Clara Sze-Yue

    2015-07-02

    Fe oxidation and biomineral formation is important in aquifers because the highly-reactive oxides can control the mobility of nutrients (e.g. phosphate, C) and metals (e.g. arsenic, uranium). Mineral formation also has the potential to affect hydrology, depending on the volume and distribution in pore spaces. In this exploratory study, we sought to understand how microbial Fe-oxidizers and their biominerals affect, and are affected by groundwater flow. As part of work at the Rifle aquifer in Colorado, we initially hypothesized that Fe-oxidizers were contributing to aquifer clogging problems associated with enhanced bioremediation. To demonstrate the presence of Fe-oxidizers in the Riflemore » aquifer, we enriched FeOM from groundwater samples, and isolated two novel chemolithotrophic, microaerophilic Fe-oxidizing Betaproteobacteria, Hydrogenophaga sp. P101 and Curvibacter sp. CD03. To image cells and biominerals in the context of pores, we developed a “micro-aquifer,” a sand-filled flow-through culture chamber that allows for imaging of sediment pore space with multiphoton confocal microscopy. Fe oxide biofilms formed on sand grains, demonstrating that FeOM produce Fe oxide sand coatings. Fe coatings are common on aquifer sands, and tend to sequester contaminants; however, it has never previously been shown that microbes are responsible for their formation. In contrast to our original hypothesis, the biominerals did not clog the mini-aquifer. Instead, Fe biofilm distribution was dynamic: they grew as coatings, then periodically sloughed off sand grains, with some flocs later caught in pore throats. This has implications for physical hydrology, including pore scale architecture, and element transport. The sloughing of coatings likely prevents the biominerals from clogging wells and aquifers, at least initially. Although attached biomineral coatings sequester Fe-associated elements (e.g. P, As, C, U), when biominerals detach, these elements are transported as

  9. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  10. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.

    PubMed

    Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin

    2014-01-01

    Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.

  11. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The

  12. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z.

    2018-04-01

    The results of synthesis of the fluorescent carbon dots (CDots) from graphite target and reduced graphene oxide (rGO) nanoparticles performed by the nanosecond laser ablation in polyethylene glycol 200 (PEG200) are shown. Two-step laser irradiation (first graphite target, next achieved suspension) revealed a very effective production of CDots. However, the ablation in PEG appeared to be effective with 1064 nm laser pulse in contrast to the ablation with 355 nm laser pulse. In the case of rGO nanoparticles similar laser irradiation procedure was less efficient. In both cases, received nanoparticles exhibited strong, broadband photoluminescence with a maximum dependent on the excitation wavelength. The size distribution for obtained CDots was evaluated using the DLS technique and HRTEM images. The results from both methods show quite good agreement in nanoparticle size estimation although the DLS method slightly overestimates nanoparticle's diameter.

  13. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  14. CO oxidation and O2 removal on meteoric material in Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Carrillo-Sánchez, Juan Diego; Nesvorný, David; Pokorný, Petr; Plane, John M. C.

    2017-11-01

    The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus' atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley-Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) - (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) - (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3T(K) - (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus' troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted

  15. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  16. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE PAGES

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...

    2017-05-19

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  17. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  18. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    NASA Astrophysics Data System (ADS)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  19. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Bazilevskaya; D Archibald; M Aryanpour

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i

  20. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  1. Using metatranscriptomics to understand the roles of Fe(II)-oxidizing microbes in marine hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.

    2015-12-01

    Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at hydrothermal vents. However, we do not have tools to track their activity, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the activity of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from hydrothermal vents at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were active, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches

  2. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.

  3. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake

    PubMed Central

    Walter, Xavier A.; Picazo, Antonio; Miracle, Maria R.; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob

    2014-01-01

    Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygenic phototrophic bacteria thriving through the oxidation of Fe(II) has provided support for a biological origin for some BIFs, but despite reports suggesting that anoxygenic phototrophs may oxidize Fe(II) in the environment, a model ecosystem of an ancient ocean where they are demonstrably active was lacking. Here we show that anoxygenic phototrophic bacteria contribute to Fe(II) oxidation in the water column of the ferruginous sulfate-poor, meromictic lake La Cruz (Spain). We observed in-situ photoferrotrophic activity through stimulation of phototrophic carbon uptake in the presence of Fe(II), and determined light-dependent Fe(II)-oxidation by the natural chemocline microbiota. Moreover, a photoferrotrophic bacterium most closely related to Chlorobium ferrooxidans was enriched from the ferruginous water column. Our study for the first time demonstrates a direct link between anoxygenic photoferrotrophy and the anoxic precipitation of Fe(III)-oxides in a ferruginous water column, providing a plausible mechanism for the bacterial origin of BIFs before the advent of free oxygen. However, photoferrotrophs represent only a minor fraction of the anoxygenic phototrophic community with the majority apparently thriving by sulfur cycling, despite the very low sulfur content in the ferruginous chemocline of Lake La Cruz. PMID:25538702

  4. Removal of thallium from aqueous solutions using Fe-Mn binary oxides.

    PubMed

    Li, Huosheng; Chen, Yongheng; Long, Jianyou; Li, Xiuwan; Jiang, Daqian; Zhang, Ping; Qi, Jianying; Huang, Xuexia; Liu, Juan; Xu, Ruibing; Gong, Jian

    2017-09-15

    In this study, Fe-Mn binary oxides, which harbor the strong oxidative power of manganese dioxide and the high adsorption capacity of iron oxides, were synthesized for Tl(I) removal using a concurrent chemical oxidation and precipitation method. The adsorption of Tl onto the Fe-Mn adsorbent was fast, effective, and selective, with equilibrium sorption reaching over 95% under a broad operating pH (3-12), and high ionic strength (0.1-0.5mol/L). The adsorption can be well fitted with both Langmuir and Freundlich isotherms, and the kinetics can be well described by the pseudo-second-order model. Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) spectra suggest that surface complexation, oxidation and precipitation were the main mechanisms for the removal of Tl. This study shows that the Fe-Mn binary oxides could be a promising adsorbent for Tl removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ablation of the Locus Coeruleus Increases Oxidative Stress in Tg-2576 Transgenic but Not Wild-Type Mice

    PubMed Central

    Hurko, Orest; Boudonck, Kurt; Gonzales, Cathleen; Hughes, Zoe A.; Jacobsen, J. Steve; Reinhart, Peter H.; Crowther, Daniel

    2010-01-01

    Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aβ transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aβ transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC. PMID:20981353

  6. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr 2O 4) oxides, wherein the concentration of the FeCr 2O 4 phasemore » decreased from the surface to the bulk-oxide interface.« less

  7. Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3.

    PubMed

    Kanaparthi, Dheeraj; Pommerenke, Bianca; Casper, Peter; Dumont, Marc G

    2013-08-01

    Anaerobic nitrate-dependent Fe(II) oxidation is widespread in various environments and is known to be performed by both heterotrophic and autotrophic microorganisms. Although Fe(II) oxidation is predominantly biological under acidic conditions, to date most of the studies on nitrate-dependent Fe(II) oxidation were from environments of circumneutral pH. The present study was conducted in Lake Grosse Fuchskuhle, a moderately acidic ecosystem receiving humic acids from an adjacent bog, with the objective of identifying, characterizing and enumerating the microorganisms responsible for this process. The incubations of sediment under chemolithotrophic nitrate-dependent Fe(II)-oxidizing conditions have shown the enrichment of TM3 group of uncultured Actinobacteria. A time-course experiment done on these Actinobacteria showed a consumption of Fe(II) and nitrate in accordance with the expected stoichiometry (1:0.2) required for nitrate-dependent Fe(II) oxidation. Quantifications done by most probable number showed the presence of 1 × 10(4) autotrophic and 1 × 10(7) heterotrophic nitrate-dependent Fe(II) oxidizers per gram fresh weight of sediment. The analysis of microbial community by 16S rRNA gene amplicon pyrosequencing showed that these actinobacterial sequences correspond to ~0.6% of bacterial 16S rRNA gene sequences. Stable isotope probing using (13)CO2 was performed with the lake sediment and showed labeling of these Actinobacteria. This indicated that they might be important autotrophs in this environment. Although these Actinobacteria are not dominant members of the sediment microbial community, they could be of functional significance due to their contribution to the regeneration of Fe(III), which has a critical role as an electron acceptor for anaerobic microorganisms mineralizing sediment organic matter. To the best of our knowledge this is the first study to show the autotrophic nitrate-dependent Fe(II)-oxidizing nature of TM3 group of uncultured

  8. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    NASA Astrophysics Data System (ADS)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  9. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  10. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright

  11. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  12. Constructing hierarchical interfaces: TiO 2-supported PtFe-FeO x nanowires for room temperature CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Huiyuan; Wu, Zili; Dong, Su

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO 2-supported PtFe–FeO x nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO x within each NW and the interactions between NWs and support (TiO 2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO x and TiO 2 participate in the initial CO oxidation, facilitating the reactionmore » through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeO x/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  13. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofan; Zhang, Bingyan; Liu, Shuangshuang; Kang, Hongwei; Kong, Weiqian; Zhang, Shouren; Shen, Yan; Yang, Baocheng

    2018-04-01

    Ni,Fe-based (oxy)hydroxides have been one of the most active catalysts for the oxygen evolution reaction. In this article, reduced graphene oxide supported Ni doped FeOOH (RGO/Ni:FeOOH) was prepared for electrochemical and photoelectrochemical (PEC) water oxidation. The RGO/Ni:FeOOH exhibited a lower over-potential (260 mV at 10 mA cm-2) and smaller Tafel slope (32.3 mV dec-1) than that of the FeOOH and Ni:FeOOH. Such significant enhancement is attributed to Ni doping and RGO, which reduce the over-potential, improve the conductivity and enlarge surface areas. Besides, RGO/Ni:FeOOH decorated the TiO2 nanorods (NRs) was also fabricated for photoelectrochemical (PEC) water oxidation, which exhibited a higher photocurrent density and lower onset potential than that of TiO2 NRs the bare under illumination due to the synergistic effect of RGO and Ni:FeOOH. These results demonstrate the RGO/Ni:FeOOH has great promising as a co-catalyst to improve the PEC performance.

  14. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  15. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    PubMed

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  16. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-09-01

    Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

  17. Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Wei, Junji; Pu, Zejun; Xu, Mingzhen; Jia, Kun; Liu, Xiaobo

    2016-02-01

    Novel graphene oxide@Fe3O4/iron phthalocyanine (GO@Fe3O4/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the monodispersed Fe3O4/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4‧-bis(3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe3O4/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5-18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of -27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field.

  18. Experimental determination of activities of FeO and Fe 2O 3 components in hydrous silicic melts under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Pichavant, Michel; Scaillet, Bruno

    2003-11-01

    The critical role of iron on crystal-silicate liquid relationships and melt differentiation is mainly controlled by the redox conditions prevailing in magmas, but the presently available database merely constrains the thermodynamic properties of iron-bearing components in strongly reduced and anhydrous molten silicate where iron is in the ferrous form. This paper provides new standard states for pure ferrous (FeOliq) and ferric (Fe2O3liq) molten iron oxides and extends the experimental database towards oxidizing and water-bearing domains. Iron-iridium, iron-platinum alloys, magnetite or hematite were equilibrated with synthetic silicic liquids at high temperature and high pressure under controlled oxygen fugacity (fO2) to determine activity-composition relationships for FeOliq and Fe2O3liq. Between 1000 and 1300°C, the fO2 ranges from that in air to 3-log units below that of the nickel-nickel oxide buffer (NNO). Experiments were performed on both anhydrous and hydrous melts containing up to 6-wt.% water. Incorporation of water under reducing conditions increases the activity coefficient of FeOliq but has an opposite effect on Fe2O3liq. As calcium is added to system, the effect of water becomes weaker and is inverted for Fe2O3liq. Under oxidizing conditions, water has a negligible effect on both activities of FeOliq and Fe2O3liq. In contrast, changes in redox conditions dominate the activity coefficients of both FeOliq and Fe2O3liq, which increase significantly with increasing fO2. The present results combined with the previous work provide a specific database on the energetics of iron in silicate melts that cover most of the condition prevailing in natural magmas.

  19. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  20. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential

    NASA Astrophysics Data System (ADS)

    Enright, Allison M. L.; Ferris, F. Grant

    2016-05-01

    The kinetics of bacterial Fe(II) oxidation was investigated 297 m underground at the Äspö Hard Rock Laboratory (near Oskarshamn, Sweden) under steady state groundwater flow conditions in a flow-through cell containing well-developed flocculent mats of bacteriogenic iron oxides (BIOS). Pseudo first-order rate constants of 0.004 min-1 and 0.009 min-1 were obtained for chemical and bacterial Fe(II) oxidation, respectively, based on the 104 min retention time of groundwater in the flow cell, inlet Fe(II) concentration of 21.0 ± 0.5 µm, outlet Fe(II) concentration of 8.5 ± 0.7 µm, as well as constant pH = - log H+ of 7.42 ± 0.01, dissolved O2 concentration of 0.11 ± 0.01 mg/L, and groundwater temperature of 12.4 ± 0.1°C. Redox potential was lower at the BIOS-free inlet (-135.4 ± 1.16 mV) compared to inside BIOS within the flow cell (-112.6 ± 1.91 mV), consistent with the Nernst relationship and oxidation of Fe(II) to Fe(III). Further evaluation of the redox potential time series data using detrended fluctuation analysis (DFA) revealed power law scaling in the amplitude of fluctuations over increasing intervals of time with significantly different (p < 0.01) DFA α scaling exponents of 1.89 ± 0.03 for BIOS and 1.67 ± 0.06 at the inlet. These α values not only signal the presence of long-range correlation in the redox potential time series measurements but also distinguish between the slower rate of chemical Fe(II) oxidation at the inlet and faster rate accelerated by FeOB in BIOS.

  1. A novel reduced symmetry oxide (Mg3B2O6) for magnetic tunnel junctions based on FeCo or Fe leads

    NASA Astrophysics Data System (ADS)

    Stewart, Derek

    2010-03-01

    Magnetic tunnel junctions with high TMR values, such as FeMgOFe, capitalize on spin filtering in the oxide due to the band symmetry of incident electrons. However, these structures rely on magnetic leads and oxide regions of the same cubic symmetry class. This raises the question of whether reducing the oxide symmetry can enhance spin filtering. A new magnetic tunnel junction (FeCoMg3B2O6FeCo) is presented that uses a reduced symmetry oxide region (orthorhombic) to filter spins between two cubic magnetic leads. Symmetry analysis of coupling between states in the cubic leads and the orthorhombic oxide indicates that majority carrier tunneling through the oxide should be favored over minority carriers. Complex band structure analysis of Mg3B2O6 shows that the relevant evanescent states in the band gap are due to boron p states and that there is sufficient difference in the decay rates of the imaginary bands for spin filtering to occur. Electronic transport calculations through a FeMg3B2O6Fe magnetic tunnel junction are also performed to address the possible influence of interface states. Some recent experimental studies of FeCoBMgOFeCoB junctions, with B diffusion into the MgO region, indicate that this new type of junction may have already been fabricated. The prospect of developing a general class of magnetic tunnel junctions based on reduced symmetry oxides is also examined.

  2. Novel Fe-oxidizing Zetaproteobacteria floating in the Chesapeake: kinetics and genomic insights into microbial Fe cycling in a stratified marine water column

    NASA Astrophysics Data System (ADS)

    Chiu, B.; Field, E.; Kato, S.; Mcallister, S.; Luther, G. W., III; Chan, C. S. Y.

    2016-12-01

    Iron-oxidizing bacteria (FeOB) are potentially important drivers in iron redox cycling, with significant effects on other major elemental cycles (e.g. C, N, P, S, As), yet the biogeochemical impacts of these microbes have been difficult to quantify. FeOB have traditionally been studied in relatively few, Fe-rich environments (groundwater seeps and hydrothermal vents), but our recent studies show that they also occur in coastal marine environments. Here we report on two Zetaproteobacteria strains, CP-5 and CP-8, isolated from the Chesapeake Bay chemocline during seasonal stratification. They represent the first known planktonic chemolithotrophic FeOB and are unusual for living in very low (micromolar) Fe(II) conditions, intermediate (brackish) salinities, and pH values (7.3-7.4) at which abiotic Fe oxidation is typically rapid. However, kinetics experiments demonstrate that CP-8 accelerates iron oxidation, relative to killed controls, and allow us to quantify the effects of microbes on iron oxidation. Ongoing work is characterizing the O2 preferences of the CP strains, specifically the lower O2 limits of FeOB activity. We obtained complete, closed genomes of both CP-5 and CP-8 genomes (2.54 and 2.30 Mbp respectively) using the PacBio RSII sequencer. Our genomic analysis of the CP strains is focused on adaptations for growth in the Chesapeake Bay chemocline, including genes for energy metabolism, and C, N, and P cycling. Initial results indicate that both strains have putative iron oxidase Cyc2 as well as Rubisco which suggests that these microbes are using energy from Fe oxidation to fix carbon, despite the availability of organics from phototrophs living higher in the water column. Our work on these Chesapeake FeOB gives us insight into how chemolithotrophic FeOB can participate in Fe redox and nutrient cycling in a stratified marine water column.

  3. Capabilities of laser ablation mass spectrometry in the differentiation of natural and artificial opal gemstones.

    PubMed

    Erel, Eric; Aubriet, Frédéric; Finqueneisel, Gisèle; Muller, Jean-François

    2003-12-01

    The potentialities of laser ablation coupled to ion cyclotron resonance Fourier transform mass spectrometry are evaluated to distinguish natural and artificial opals. The detection of specific species in both ion detection modes leads us to obtain relevant criteria of differentiation. In positive ions, species including hafnium and large amounts of zirconium atoms are found to be specific for artificial opal. In contrast, aluminum, titanium, iron, and rubidium are systematically detected in the study of natural opals. Moreover, some ions allow us to distinguish between natural opal from Australia and from Mexico. Australian gemstone includes specifically strontium, cesium, and barium. Moreover, it is also found that the yield of (H2O)0-1(SiO2)nX- (X- = O-, OH-, KO-, NaO-, SiO2-, AlO1-2-, FeO2-, ZrO2-, and ZrO3-) and (Al2O3)(SiO2)nAlO2- ions depends on the composition of the sample when opals are laser ablated. Ions, which include zirconium oxide species, are characteristics of artificial gem. In contrast, natural opals lead us, after laser ablation, to the production of ions including H2O, Al2O3 motifs and AlO-, KO-, NaO-, and FeO2- species.

  4. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    NASA Astrophysics Data System (ADS)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    2018-01-01

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  5. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  6. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.

    PubMed

    Alzahrani, Khalid E; Niazy, Abdurahman A; Alswieleh, Abdullah M; Wahab, Rizwan; El-Toni, Ahmed M; Alghamdi, Hamdan S

    2018-01-01

    The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E . coli than against E . faecalis . Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. The combination of three metal oxide NPs (ZnO, CuO, and Fe 2 O 3 ) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.

  7. Laboratory simulations of atmospheric entry of micrometeoroids: ablation of magnesium

    NASA Astrophysics Data System (ADS)

    Bones, David; Gomez Martin, Juan Carlos; Diego Carrillo Sanchez, Juan; Dobson, Alexander; Plane, John

    2017-04-01

    We address the uncertainty in the cosmic dust input into the Earth's atmosphere by simulating the atmospheric entry of micrometeoroids in a custom built chamber, capable of heating particles to 3000 K in 2 s and able to precisely reproduce representative heating profiles. In lieu of interplanetary cosmic dust, we use a range of ground-up recovered meteorites and mineral analogues. We measure the ablation of two metals simultaneously with laser induced fluorescence (LIF). The resulting ablation profiles can be compared with the composition of the remaining, unablated particle, as determined from scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis. Building on earlier studies of Na, Fe and Ca, here we present Mg profiles and compare them with results from our chemical ablation model (CABMOD). In general, Mg behaves as predicted, beginning to ablate steadily as one broad ablation peak once temperatures reach 2000 K. In contrast Fe, which should behave similarly to Mg, typically has two ablation peaks due to being present in two distinct phases.

  8. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation.

    PubMed

    Sun, Yang; Zheng, Yuanyi; Ran, Haitao; Zhou, Yang; Shen, Hongxia; Chen, Yu; Chen, Hangrong; Krupka, Tianyi M; Li, Ao; Li, Pan; Wang, Zhibiao; Wang, Zhigang

    2012-08-01

    Organic/inorganic, hybrid, multifunctional, material-based platforms combine the merits of diverse functionalities of inorganic nanoparticles and the excellent biocompatibility of organic systems. In this work, superparamagnetic poly(lactic-co-glycolic acid) (PLGA) microcapsules (Fe(3)O(4)/PLGA) have been developed, as a proof-of-concept, for the application in ultrasound/magnetic resonance dual-modality biological imaging and enhancing the therapeutic efficiency of high intensity focused ultrasound (HIFU) breast cancer surgery in vitro and in vivo. Hydrophobic Fe(3)O(4) nanoparticles were successfully integrated into PLGA microcapsules by a typical double emulsion evaporation process. In this process, highly dispersed superparamagnetic Fe(3)O(4)/PLGA composite microcapsules with well-defined spherical morphology were obtained with an average diameter of 885.6 nm. The potential of these microcapsules as dual contrast agents for ultrasonography and magnetic resonance imaging were demonstrated in vitro and, also, preliminarily in vivo. Meanwhile, the prepared superparamagnetic composite microcapsules were administrated into rabbits bearing breast cancer model for the evaluation of the in vivo HIFU synergistic ablation efficiency caused by the introduction of such microcapsules. Our results showed that the employment of the composite microcapsules could efficiently enhance ultrasound imaging of cancer, and greatly enhance the HIFU ablation of breast cancer in rabbits. In addition, pathological examination was systematically performed to detect the structural changes of the target tissue caused by HIFU ablation. This finding demonstrated that successful introduction of these superparamagnetic microcapsules into HIFU cancer surgery provided an alternative strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE PAGES

    Shipilin, M.; Lundgren, E.; Gustafson, J.; ...

    2016-09-09

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  10. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilin, M.; Lundgren, E.; Gustafson, J.

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  11. Containerless solidification of BiFeO3 oxide under microgravity

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  12. Core-shell CoFe2O4@Co-Fe-Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH.

    PubMed

    Ji, Xuqiang; Hao, Shuai; Qu, Fengli; Liu, Jingquan; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-06-14

    The exploration of high-performance and earth-abundant water oxidation catalysts operating under mild conditions is highly attractive and challenging. In this communication, core-shell CoFe 2 O 4 @Co-Fe-Bi nanoarray on carbon cloth (CoFe 2 O 4 @Co-Fe-Bi/CC) was successfully fabricated by in situ surface amorphization of CoFe 2 O 4 nanoarray on CC (CoFe 2 O 4 /CC). As a 3D water oxidation electrode, CoFe 2 O 4 @Co-Fe-Bi/CC shows outstanding activity with an overpotential of 460 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 0.1 M potassium borate (pH 9.2). Notably, it also demonstrates superior long-term durability for at least 20 h with 96% Faradic efficiency. Density functional theory calculations indicate that the conversion from OOH* to O 2 is the rate-limiting step and the high water oxidation activity of CoFe 2 O 4 @Co-Fe-Bi/CC is associated with the lower free energy of 1.84 eV on a Co-Fe-Bi shell.

  13. Magnetic properties of partially oxidized Fe films

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  14. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    PubMed

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  15. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  16. Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.

    2008-05-01

    A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.

  17. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  18. Impact of solvent mixture on iron nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Chakif, M.; Prymak, O.; Slota, M.; Heintze, E.; Gurevich, E. L.; Esen, C.; Bogani, L.; Epple, M.; Ostendorf, A.

    2014-03-01

    The present work reveals the structural and magnetic properties of iron oxide (FexOy) nanoparticles (NPs) prepared by femtosecond laser ablation. The FexOy-NPs were produced in solutions consisting of different ratios of water and acetone. Laser ablation in water yields agglomerates and that in acetone yields chain structures whereas that in water/acetone show a mixture of both. We observe significant fabrication dependent properties such as different crystallinities and magnetic behaviors. The structural characterization shows a change from iron (Fe) to a FexOy state of the NPs which depends on the solution composition. Furthermore, transmission electron microscopy measurements exhibit a broad particle size distribution in all samples but with significant differences in the mean sizes. Using magnetic measurements we show that nanoparticles fabricated in pure acetone have lower coercive fields which come along with a smaller mean particle size and therefore increasing superparamagnetic behavior.

  19. Oxidation State of Nakhlites as inferred from Fe-Ti oxide Equilibria and Augite/Melt Europium Partitioning

    NASA Technical Reports Server (NTRS)

    Makishima, J.; McKay, G.; Le, L.; Miyamoto, M.; Mikouchi, T.

    2007-01-01

    Recent studies have shown that Martian magmas had wide range of oxygen fugacities (fO2) and that this variation is correlated with the variation of La/Yb ratio and isotopic characteristics of the Martian basalts, shergottite meteorites. The origin of this correlation must have important information about mantle sources and Martian evolution. In order to understand this correlation, it is necessary to know accurate value of oxidation state of other Martian meteorite groups. Nakhlites, cumulate clinopyroxenites, are another major group of Martian meteorites and have distinctly different trace element and isotopic characteristics from shergottites. Thus, estimates of oxidation state of nakhlites will give us important insight into the mantle source in general. Several workers have estimated oxidation state of nakhlites by using Fe-Ti oxide equilibrium. However, Fe-Ti oxides may not record the oxidation state of the parent melt of the nakhlite because it is a late-stage mineral. Furthermore, there is no comprehensive study which analyzed all nakhlite samples at the same time. Therefore, in this study (1) we reduced the uncertainty of the estimate using the same electron microprobe and the same standards under the same condition for Fe-Ti oxide in 6 nakhlites and (2) we also performed crystallization experiments to measure partition coefficients of Eu into pyroxene in the nakhlite system in order to estimate fO2 when the pyroxene core formed (i.e. Eu oxybarometer [e.g. 2,6]).

  20. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    PubMed

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  1. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.

    PubMed

    Zvimba, J N; Mathye, M; Vadapalli, V R K; Swanepoel, H; Bologo, L

    2013-01-01

    This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.

  2. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.

    PubMed

    Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A

    2018-05-15

    Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.

  3. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.

    PubMed

    Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana

    2014-07-01

    Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.

  4. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films.

    PubMed

    Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo

    2017-03-01

    High-performance electrochromic films based on tungsten oxide hydrate ([WO 2 (O 2 )H 2 O]·1.66H 2 O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO 2 (O 2 )H 2 O]·1.66H 2 O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Formation of the Fe,Mg-Silicates, Fe0, and Graphite (Diamond) Assemblage as a Result of Cohenite Oxidation under Lithospheric Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Zdrokov, E. V.; Novoselov, I. D.; Sobolev, N. V.

    2018-03-01

    Experimental studies in the Fe3C-SiO2-MgO system ( P = 6.3 GPa, T = 1100-1500°C, t = 20-40 h) have been carried out. It has been established that carbide-oxide interaction resulted in the formation of Fe-orthopyroxene, graphite, wustite, and cohenite (1100 and 1200°C), as well as a Fe-C-O melt (1300-1500°C). The main processes occurring in the system at 1100 and 1200°C are the oxidation of cohenite, the extraction of carbon from carbide, and the crystallization of metastable graphite, as well as the formation of ferrosilicates. At T ≥ 1300°C, graphite crystallization and diamond growth occur as a result of the redox interaction of a predominantly metallic melt (Fe-C-O) with oxides and silicates. The carbide-oxide interaction studied can be considered as the basis for modeling a number of carbon-producing processes in the lithospheric mantle at fO2 values near the iron-wustite buffer.

  6. Oxidation of iopamidol with ferrate (Fe(VI)): Kinetics and formation of toxic iodinated disinfection by-products.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Liu, Shaogang; Li, Jin; Yu, Jianwei; Qu, Jiuhui

    2018-03-01

    Presence of iodinated X-ray contrast media (ICMs) in source water is of high concern, because of their potential to form highly toxic iodinated disinfection by-products (I-DBPs). This study investigated kinetics, mechanisms and products for oxidation of one ICMs, iopamidol (IPM) by ferrate (Fe(VI)). The obtained apparent second-order rate constants for oxidation of IPM by Fe(VI) ranged from 0.7 M -1  s -1 to 74.6 M -1  s -1  at pH 6.0-10.0, which were highly dependent on pH. It was found that the oxidation of IPM by Fe(VI) led to the formation of highly toxic I-DBPs. Iodoform (IF), iodoacetic acid and triiodoacetic acid formations were observed during the oxidation and IF dominated the formed I-DBPs. The formation of I-DBPs was also governed by pH and the maximum formation of I-DBPs occurred at pH 9.0. Transformation pathways of IPM by Fe(VI) oxidation were speculated to proceed through deiodination, amide hydrolysis and oxidation of amine reactions. The deiodination reaction during the oxidation of IPM by Fe(VI) contributed to the formation of I-DBPs. The formation of I-DBPs during the oxidation of IPM by Fe(VI) was significantly higher than those of iohexol, diatrizoate and iopromide, which was consistent with the lowest molecular orbital energy gap of IPM. Although Fe(VI) is considered as a green oxidant, the formation of highly toxic I-DBPs during the oxidation of IPM should receive great attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  8. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations

    PubMed Central

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  9. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ 57/54Fe observations

    DOE PAGES

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; ...

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  10. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.

    PubMed

    Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  11. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pospisilova, Martina; Zapotocky, Vojtech; Nesporova, Kristina; Laznicek, Milan; Laznickova, Alice; Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir

    2017-02-01

    We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  12. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Lifeng; Zhao, Di; Yang, Yang

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stabilitymore » with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.« less

  13. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  14. Oxidation and deprotonation of synthetic Fe{sup II}-Fe{sup III} (oxy)hydroxycarbonate Green Rust: An X-ray photoelectron study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullet, M.; Guillemin, Y.; Ruby, C.

    X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rusts (GRs). GRs with variable composition, i.e. Fe{sup II}{sub 6(1-x)}Fe{sup III}{sub 6x}O{sub 12}H{sub 2(7-3x)} CO{sub 3}.3H{sub 2}O where the Fe{sup III} molar fraction of the positively charged hydroxide sheets, x=[Fe(III)]/[Fe(total)] belongs to [1/3, 1], were synthesised under an inert atmosphere. The broadened Fe(2p{sub 3/2}) spectra were fitted using Gupta and Sen multiplets peaks and additional satellite and surface features. The [Fe(III)]/[Fe(total)] surface atomic ratios closely agree with the x ratios expected from the bulk composition, which gives amore » high degree of confidence on the validity of the proposed fitting procedure. The valence band spectra are also reported and show dependencies on iron speciation. The O(1s) spectra revealed the presence of O{sup 2-}, OH{sup -} species and adsorbed water. The hydroxyl component decreases with increasing x values, i.e. with the amount of ferric iron, while the oxide component increases. This study provides direct spectroscopic evidence of the deprotonation of hydroxyl groups that occurs simultaneously with the oxidation of ferrous iron within the GR structure. - Graphical abstract: X-ray photoelectron spectroscopy (XPS) is used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rust (GR) compounds. First spectroscopic evidence of the deprotonation of hydroxyls groups occurring simultaneously to the oxidation of Fe(II) into Fe(III) species is provided.« less

  15. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  16. Secondary Fe- and Mn-Oxides Associated with Faults Near Moab, Utah: Records of Past Fluid Flow

    NASA Astrophysics Data System (ADS)

    Garcia, V. H.; Reiners, P. W.

    2015-12-01

    Secondary Fe- and Mn-oxides are locally common near faults and fractures, and as cements within sandstones of the Colorado Plateau, and provide evidence of past fluid-flow. Here we describe textural, mineralogic, and geochronologic observations from fault-zone Fe- and Mn-oxide mineralization in Flat Iron Mesa, near Moab, Utah. Several hypotheses have been proposed for their origin, including reactions associated with the mixing of deep reduced and near-surface oxygenated waters. We integrate field observations, detailed SEM and petrographic observations, geochemical models, (U-Th)/He and Ar/Ar dating, and other data to develop interpretations of the formation of these deposits. SEM imaging shows that sandstone matrix cement adjacent to the faults follows two precipitation sequences: Fe-oxide followed by barite and Fe-oxide followed by Mn-oxide. Dense oxide layers also accumulated in cm-scale fractures near faults, and show the following precipitation sequence: Fe-oxide, barite, Ba rich Mn-oxide, and pure Mn-oxide. The latter sequence is observed at larger scale across faults in one site in Flat Iron Mesa. Our new He dates for Mn-oxides are 1.7-2.9 Ma while Fe-oxide dates are 2.7-3.0 Ma. If these dates represent formation ages, they are consistent with the interpreted precipitation sequence but would require protracted mineralization over Ma-timescales. Alternatively, they may represent varying degrees of He retentivity in earlier formed deposits. Previous Ar/Ar dates have been interpreted as a 20-25 Ma formation age. Ongoing Ar/Ar and He diffusion studies will resolve this discordance. Assuming the previous Ar dates do not reflect contamination by detrital K-bearing phases and do reflect oxide formation, potential interpretations for the younger He ages include recent U-Th addition, recrystallization, later oxide growth, or large diffusive He loss at low temperatures.

  17. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  18. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  19. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  20. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    PubMed Central

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID

  1. Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite

    NASA Astrophysics Data System (ADS)

    Benali, Omar; Abdelmoula, Mustapha; Refait, Philippe; Génin, Jean-Marie Robert

    2001-06-01

    Hydroxycarbonate green rust GR(CO 32-) has been synthesized by oxidation of aqueous suspensions of Fe(OH) 2 by aeration at the air-liquid interface, in the presence of HCO 3- ions at pH 7.5 to 9. During the oxidation of GR(CO 32-), ferrihydrite formed first and then turned into goethite by dissolution and precipitation. The oxidation of GR(CO 32-) in the presence of orthophosphate ions, which were added as Na 2HPO 4 · 7H 2O salt, also involved the formation of ferrihydrite but not that of goethite, because the dissolution of ferrihydrite is inhibited by the adsorption of phosphate ions on its surface. The oxidation was slowed down because of the suppression of the catalytic effect of iron(III) hydroxide on the oxidation of Fe(II). In anoxic conditions without phosphate, a mixture of GR(CO 32-), goethite, and ferrihydrite was observed to transform spontaneously into a mixture of siderite and magnetite. It is thermodynamically consistent, which shows that GR(CO 32-) is metastable with respect to the two-phase system FeCO 3-Fe 3O 4. In the presence of phosphate, this transformation was inhibited and GR(CO 32-) did not transform in anoxic conditions. Anionic phosphate species dissolved in solution did not give rise to a corresponding GR, i.e., phosphate species did not substitute for carbonate inside the interlayers of the GR. Moreover, iron phosphates did not appear, neither during the oxidation of GR(CO 32-) in the presence of oxygen nor in anoxic conditions.

  2. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  3. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  4. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2017-08-01

    Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.

  5. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    NASA Astrophysics Data System (ADS)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  6. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    NASA Astrophysics Data System (ADS)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  7. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.

    PubMed

    Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren

    2017-01-01

    Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL -1 )h -1 were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL -1 of NH 4 + -N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO 2 - -N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fe/Al synergy in Fe(2)O(3) nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions.

    PubMed

    Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio

    2010-11-07

    A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.

  9. Fe-oxidizing microbes are hydrothermal vent ecosystem engineers at the Loihi Seamount (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; McAllister, S.; Leavitt, A.; Emerson, D.; Moyer, C. L.; Glazer, B. T.

    2013-12-01

    Microaerophilic Fe-oxidizing microorganisms (FeOM) colonize gradients of Fe(II) and oxygen, taking advantage of the available chemical energy. Vast communities of FeOM proliferate at deep sea hydrothermal vents, forming mineralized mats that range from centimeters to meters thick. Because these mats structure the environment for both FeOM and the entire microbial community, the Fe-oxidizers are acting as ecosystem engineers. What organisms are responsible for initiating these mats, and how does the physical structure and community composition develop as the mats mature? By connecting structure, function, and ecology, we can better interpret modern mat structures, as well as ancient fossilized mats. We have been studying Fe microbial mats at Loihi Seamount in Hawaii, a long-term study site that has become a model for Fe oxidation in marine hydrothermal systems. Recent improvements in ROV imaging systems allow us to see a great range of mat textures and colors, which may represent diverse habitats and/or different stages of mat development. With improved imaging and sampling techniques, we have been able to obtain discrete, intact samples of these delicate microbial mats. Previous bulk sampling methods showed that mats consist of a mixture of Fe-mineralized morphologies. Our analyses of intact mats show that mats are initiated by one type of structure-former (either a stalk-former like Mariprofundus ferrooxydans or a Zetaproteobacterial sheath-former). These microbes may be the vanguard organisms that stabilize chemical gradients in this dynamic environment, allowing colonization by other organisms (evidenced by branching tubes, fibrillar nests, and other morphologies). We will show evidence of the composition and development of these mats, and discuss parallels between these marine Fe mats and their freshwater counterparts, supporting the idea that FeOM engineer environments favorable for growth.

  10. Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.

    PubMed

    Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras

    2016-11-04

    The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    NASA Astrophysics Data System (ADS)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  12. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    NASA Astrophysics Data System (ADS)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  14. Role of a unique population of lithotrophic, Fe-oxidizing bacteria in forming microbial Fe-mats at the Loihi Seamount.

    NASA Astrophysics Data System (ADS)

    Emerson, D.; Rentz, J. A.; Moyer, C. L.

    2005-12-01

    The Loihi Seamount, located 30 km SE of the island of Hawai'i, is among the most active volcanos on Earth. The summit, at a depth of 1100m, includes a 250m deep caldera (Pele's Pit) formed by an eruption in 1996. The summit, and especially Pele's Pit, are the site of extensive low to intermediate temperature (10° to 65°C) hydrothermal venting, emanating both from diffuse fissures and orifices that have substantial flow rates. The vent fluid is characterized by a low sulfide content, high CO2 concentrations and Fe(II) amounts in the 10s to 100s of μM. Associated with all vents are extensive deposits of iron oxyhydroxides that typically have 107 to 108 bacterial cells/cc associated with them. The morphology of the Fe-oxides are indicative of biological origins. We have isolated microaerophilic, obligately lithotrophic Fe-oxidizing bacteria from Loihi and describe here `Mariprofundus ferroxydans' a unique bacterium that forms a filamentous iron oxide mineral. `M. ferroxydans' is the first cultured representative of a novel division of the Proteobacteria, known previously only from clones from different hydrothermal vent sites. Molecular evidence from Loihi mats based on clone libraries and terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes indicate that this lineage of Fe-oxidizing organisms are common inhabitants at Loihi. We speculate that this organism and its relatives form the basis of an active microbial mat community that owe their existence to the inherent gradients of Fe(II) and O2 that exist at the Loihi vents. In a geological context this is interesting because the Loihi summit and caldera are in an O2-minima zone; O2 concentrations in the bulk seawater are around 0.5 mg/l. In effect, Loihi could serve as a proxy for the late Archaean and early Proterozoic periods when the Earth's atmosphere went from reducing to oxidizing, and it is speculated that abundant Fe(II) in the Earth's oceans served as a major sink for O2 production

  15. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-06-01

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.

  16. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.; Was, Gary S.

    2007-06-01

    The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

  17. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  18. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  19. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  20. Oxidation behaviour of Fe-Ni alloy nanoparticles synthesized by thermal plasma route

    NASA Astrophysics Data System (ADS)

    Ghodke, Neha; Kamble, Shalaka; Raut, Suyog; Puranik, Shridhar; Bhoraskar, S. V.; Rayaprol, Sudhindra; Mathe, V. L.

    2018-04-01

    Here we report synthesis of Fe-Ni nanoparticles using thermal plasma route. In thermal plasma, gas phase nucleation and growth at sufficiently higher temperature is observed. The synthesized Fe-Ni nanoparticles are examined by X-ray Diffraction, Raman Spectroscopy, Vibrating Sample Magnetometer and Thermo gravimetric Analysis. Formation of 16-21 nm sized Fe-Ni nanoparticles having surface oxidation show maximum value of magnetization of ˜107 emu/g. The sample synthesized at relatively low power (4kW) show presence of carbonaceous species whereas the high power (6 kW) synthesis does not depicts carbonaceous species. The presence of carbonaceous species protects oxidation of the nanoparticles significantly as evidenced from TGA data.

  1. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the

  2. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  3. Mixed-valence iron minerals on Venus: Fe(2+)-Fe(3+) oxides and oxy-silicates formed by surface-atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Straub, Darcy W.

    1992-01-01

    Inferences from these investigations are that Fe(3+)-bearing minerals such as hematite magnesioferrite, acmite, and epidote are thermodynamically unstable, and that magnetite is the predominant mixed-valence iron oxide mineral on venus. Recently, the Fe(2+)-Fe(3+) silicate mineral laihunite was proposed to be a reaction product of olivine with the venusian atmosphere. This possibility is discussed further here. We suggest that other mixed-valence Fe(2+)-Fe(3+)-Oz-OH(-) silicates could also result from surface-atmosphere interactions on Venus. Topics discussed include the following: (1) conversion of hematite to magnetite; (2) stability of laihunite; (3) the possible existence of oxy-amphiboles and oxy-micas on Venus; and (4) other mixed-valence Fe(2+)-Fe(3+) silicates likely to exist on Venus.

  4. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe 5O 6

    DOE PAGES

    Lavina, Barbara; Meng, Yue

    2015-06-26

    The iron-oxygen system is the most important reference of rocks’ redox state. Even as minor components, iron oxides can play a critical role in redox equilibria, which affect the speciation of the fluid phases chemical differentiation, melting, and physical properties. Until our recent finding of Fe 4O 5, iron oxides were assumed to comprise only the polymorphs of FeO, Fe 3O 4, and Fe 2O 3. Combining synthesis at high pressure and temperature with micro- diffraction mapping, we have identified yet another distinct iron oxide, Fe 5O 6. The new compound, which has an orthorhombic structure, was obtained in themore » pressure range from 10 to 20 GPa upon laser heating mixtures of iron and hematite at ~2000 K, and is recoverable to ambient conditions. The high-pressure orthorhombic iron oxides Fe 5O 6, Fe 4O 5, and h-Fe 3O 4 display similar iron coordination geometries and structural arrangements, and indeed exhibit coherent systematic behavior of crystallographic parameters and compressibility. Fe 5O 6, along with FeO and Fe 4O 5, is a candidate key minor phase of planetary interiors; as such, it is of major petrological and geo- chemical importance. Here, we are revealing an unforeseen complexity in the Fe-O system with four different compounds—FeO, Fe 5O 6, Fe 4O 5, and h-Fe 3O 4—in a narrow compositional range (0.75 < Fe/O < 1.0). New, finely spaced oxygen buffers at conditions of the Earth’s mantle can be defined.« less

  5. The Cross-Sectional Investigation of Oxide Scale FeCr Alloys and Commercial Ferritic Steel Implanted with Lanthanum and Titanium Dopants after Oxidation Test at 900°C

    NASA Astrophysics Data System (ADS)

    Saryanto, Hendi; Sebayang, Darwin; Untoro, Pudji; Sujitno, Tjipto

    2018-03-01

    The cross-sectional examinations of oxide scales formed by oxidation on the surface of FeCr alloys and Ferritic Steel that implanted with lanthanum and titanium dopants were observed and investigated. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) has been used to study the cross-sectional oxides produced by specimens after oxidation process. X-ray diffraction (XRD) analysis was used to strengthen the analysis of the oxide scale morphology, oxide phases and oxidation products. Cross-sectional observations show the effectiveness of La implantation for improving thinner and stronger scale/substrate interface during oxidation process. The result shows that the thickness of oxide scales formed on the surface of La implanted FeCr alloy and ferritic steel was found less than 3 μm and 300 μm, respectively. The oxide scale formed on the surface of La implanted specimens consisted roughly of Cr2O3 with a small amount of FeO mixture, which indicates that lanthanum implantation can improve the adherence, reduce the growth of the oxide scale as well as reduce the Cr evaporation. On the other side, the oxide scale formed on the surface of FeCr alloys and ferritic steel that implanted with titanium dopant was thicker, indicating that significant increase in oxidation mass gain. It can be noticed that titanium implantation ineffectively promotes Cr rich oxide. At the same time, the amount of Fe increased and diffused outwards, which caused the formation and rapid growth of FeO.

  6. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as

  7. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  8. Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Wang, Xin; Liu, Tao; Xie, Jianliang; Deng, Longjiang

    2017-09-01

    An excessively large dielectric constant is a challenge to improve the performances of the Fe-based absorbing material. Here, we propose a selective surface oxidation method to reduce the permittivity without sacrificing the permeability, by annealing under 5%H2—95%N2 (H2/N2). It is found that a thin layer of aluminum and silicon oxides formed on the surface of Fe75Si15Al10 particles during annealing in the range of 500-780 °C under H2/N2, thereby leading to an obvious decrease of permittivity of the Fe75Si15Al10 composite. According to Gibbs free energy, aluminum and silicon oxides are formed and iron oxides are reduced during annealing under H2/N2 at above 500 °C. Interestingly, the XPS result shows that the atomic ratio of Fe decreases significantly on the particle surface, which infers that the reduced Fe atoms diffuse to the interior of the particles. The surface oxide layer can protect the inner part of the alloy from further oxidation, which contributes to a high permeability. Meanwhile, the XRD result shows the formation of DO3-type ordering, which leads to the promotion of permeability. The two reasons lead to the improvement of permeability of the Fe75Si15Al10 composite after annealing. The composite is confirmed to have high permeability and low permittivity, exhibiting better electromagnetic wave absorption properties.

  9. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  10. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    PubMed

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  11. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.

    PubMed

    Ding, Zecong; Fu, Fenglian; Cheng, Zihang; Lu, Jianwei; Tang, Bing

    2017-02-01

    In this study, novel mesoporous FeAl bimetal oxides were successfully synthesized, characterized, and employed for As(III) removal. Batch experiments were conducted to investigate the effects of Fe/Al molar ratio, dosage, and initial solution pH values on As(III) removal. The results showed that the FeAl bimetal oxide with Fe/Al molar ratio 4:1 (shorten as FeAl-4) can quickly remove As(III) from aqueous solution in a wide pH range. The FeAl-4 before and after reaction with As(III) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET) surface area measurement, and X-ray photoelectron spectroscopy (XPS). The BET results showed that the original FeAl-4 with a high surface area of 223.9 m 2 /g was a mesoporous material. XPS analysis indicated that the surface of FeAl-4 possessed a high concentration of M-OH (where M represents Fe and Al), which was beneficial to the immobility of As(III). The excellent performance of FeAl-4 makes it a potentially attractive material for As(III) removal from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  13. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.

    PubMed

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-06-14

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr 0.8 Ti 0.2 C 0.74 B 0.26 ) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.

  14. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB₂-Based Ultra High Temperature Ceramic Composites.

    PubMed

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-04-29

    The ablation and oxidation of ZrB₂-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters ( i.e. , heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance.

  15. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  16. Biological Oxidation of Fe(II) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.

    Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less

  17. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    USGS Publications Warehouse

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  18. Selective Internal Oxidation and Severe Plastic Deformation of Multiphase Fe-Y Alloys

    NASA Astrophysics Data System (ADS)

    Kachur, Stephen J.

    Oxide dispersion strengthened (ODS) alloys are known for their desirable mechanical properties and unique microstructures. These alloys are characterized by an even dispersion of oxide phase throughout a metallic matrix, and exhibit high strength and enhanced creep properties at elevated temperatures. This makes them ideal candidate materials for use in many structural applications, such as coal-fired power plants or in next generation nuclear reactors. Currently most often produced by mechanical alloying, a powder metallurgy based process that utilizes high energy ball milling, these alloys are difficult and costly to produce. One proposed method for forming ODS alloys without high-energy ball milling is to internally oxidize a bulk alloy before subjecting it to severe plastic deformation to induce an even oxide distribution. This work examines such a processing scheme with a focus on the internal oxidation behavior. Internal oxidation has been shown to occur orders of magnitude faster than expected in multi-phase alloys where a highly reactive oxidizable solute has negligible solubility and diffusivity in other, more-noble, phases. Commonly referred to as in situ oxidation, this accelerated oxidation process has potential for use in a processing scheme for ODS alloys. While in situ oxidation has been observed in many different alloy systems, a comprehensive study of alloy composition and microstructure has not been performed to describe the unusual oxidation rates. This work used Fe-Y binary alloys as model system to study effects of composition and microstructure. These alloys have been shown to exhibit in situ oxidation, and additionally, Y is typically introduced during mechanical alloying to form Y-rich oxides in Fe-based ODS alloys. Alloys with Y content between 1.5 and 15 wt% were prepared using a laboratory scale arc-melting furnace. These alloys were two phase mixtures of Fe and Fe17Y2. First, samples were oxidized between 600 and 800 °C for 2 to 72

  19. On the effect of the Fe(2+)/Fe(3+) redox couple on oxidation of carbon in hot H3PO4

    NASA Technical Reports Server (NTRS)

    Dhar, H. P.; Christner, L. G.; Kush, A. K.

    1986-01-01

    Oxidation studies of graphite:glassy carbon composites have been carried out at 1 and 4.7 atm. pressures in conc. H3PO4 in the presence and absence of iron ions. The concentration of the acid was varied over 85-100 wt pct, and of the iron ions over 30-300 ppm; the temperature varied over 190-210 C. Unlike the effect of Fe, which has been observed to increase the corrosion of carbon in sulphuric acid, the corrosion in phosphoric acid was observed to be slightly decreased or not at all affected. This result arises because of the catalytic reduction of the oxidized surface groups of carbon by Fe(2+) ions. The catalytic reduction is possible because under the experimental conditions the redox potential of the Fe(2+)/Fe(3+) couple is lower than the open-circuit voltage of carbon.

  20. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    PubMed Central

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  1. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less

  2. Nitric oxide removal by combined urea and FeIIEDTA reaction systems.

    PubMed

    He, Feiqiang; Deng, Xianhe; Chen, Min

    2017-02-01

    (NH 2 ) 2 CO as well as Fe II EDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of Fe II EDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH 2 ) 2 CO and Fe II EDTA was employed. The effects of various operating parameters (urea and Fe II EDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of Fe II EDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH 2 ) 2 CO and Fe II EDTA on NO removal was investigated. Results showed that urea could react with Fe II EDTA-NO to produce Fe II EDTA, N 2 , and CO 2 , and hinder oxidation of Fe II EDTA. Finally, to evaluate the effect of SO 3 2- on NO removal, a mixed absorbent containing Fe II EDTA, urea, and Na 2 SO 3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH 2 ) 2 CO concentration of 5 wt%, Fe II EDTA concentration of 0.02 M, O 2 concentration of 7% (v/v), and Na 2 SO 3 concentration of 0.2 M. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water.

    PubMed

    Huang, Chang-Ning; Bow, Jong-Shing; Zheng, Yuyuan; Chen, Shuei-Yuan; Ho, Newjin; Shen, Pouyan

    2010-04-13

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV-visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  4. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    PubMed Central

    2010-01-01

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence. PMID:20672115

  5. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-11-01

    The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.

  6. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    NASA Astrophysics Data System (ADS)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  7. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    PubMed

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides

  8. Phase transition of Fe oxides under reducing condition and its relation with the As behavior

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Kim, S. H.; Jeong, G. Y.; Kim, K.

    2014-12-01

    Fe oxides are very common in the earth's crust and easily transform into other minerals such as magnetite and siderite under reducing conditions by microbial reactions. It is well known that As concentrations in groundwater is strongly regulated by adsorption onto Fe oxides. Even though some studies have suggested that the formation of siderite can also control the As concentration, direct evidences are not sufficient. In this study, we performed microbial incubation experiments to see the phase transition of As-rich Fe oxides under anoxic condition and to see how the water As concentrations are controlled accordingly. Three experiments were performed by changing organic carbon concentrations. Natural groundwaters and yeast extracts were used for the sources of microorganisms and organic carbon. Seven reactors were prepared for each experiment and opened one by one to observe the changes of the water chemistry and solid phases for 60 days. The formation of magnetite was observed at the early stage of each experiment. Siderite was formed at the later stage only when the dissolved organic carbon concentrations were high (donor/accepter molar ratio = 1.5). Goethite and hematite, instead of siderite, were formed from the experiment using low organic carbon concentration (donor/accepter molar ratio = 0.75). It is likely that dissolved ferrous ion adsorbs onto the Fe oxides and recrystallizes into hematite and goethite when the DOC concentration was low. As concentrations were generally very low in the water (normally 10 ug/L) and we could not find any relations with the Fe minerals formed by anoxic microbial reactions, maybe due to high Fe oxide/water ratio of our experiments. The sequential extraction analysis indicated that most of the As in solids are mostly associated with Fe-oxides and organic matters. The As bound to carbonates were very low even in the precipitates containing siderite due to low As concentrations in the water where the siderite formed. Further

  9. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched

  10. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  11. Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface

    NASA Astrophysics Data System (ADS)

    Sung, Windsor; Morgan, James J.

    1981-12-01

    A laboratory study was undertaken to ascertain the role of surface catalysis in Mn(II) oxidative removal. γ-FeOOH, a ferric oxyhydroxide formed by O2 oxidation of ferrous iron in solution, was studied in the following ways: surface charge characteristics by acid base titration, adsorption of Mn(II) and surface oxidation of Mn(II). A rate law was formulated to account for the effects of pH and the amount of surface on the surface oxidation rate of Mn(II). The presence of milli-molar levels of γ-FeOOH was shown to reduce significantly the half-life of Mn(II) in 0.7 M NaCl from hundreds of hours to hours. The numerical values of the surface rate constants for the γ-FeOOH and that reported for colloidal MnO2 are comparable in order of magnitude.

  12. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  13. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    PubMed

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composites

    PubMed Central

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-01-01

    The ablation and oxidation of ZrB2-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters (i.e., heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance. PMID:28809239

  15. Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI).

    PubMed

    Ma, Yan; Zhang, Kejia; Li, Cong; Zhang, Tuqiao; Gao, Naiyun

    2015-01-01

    The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band electrons from the surface of TiO2. The photocatalytic oxidation of sulfonamides with Fe(VI) was found to be much faster than that without Fe(VI). The SD, SM, and SMX concentration was greatly reduced by 89.2%, 83.4%, and 82.0%, respectively, after 10 min with UV-TiO2-Fe(VI), comparing to 65.2%, 66.0%, and 71.9%, respectively, with Fe(VI) only in the dark and 71.3%, 72.7%, and 76.0%, respectively, with UV-TiO2. The pH value of solution significantly influenced the sulfonamides degradation in UV-TiO2-Fe(VI) system. The degradation amount of sulfonamides after 10 min was a maximum at pH 7. The intermediate products of sulfonamides oxidation by UV-TiO2-Fe(VI) were analysed by LC-HESI-MS-MS and the results suggested that a majority of sulfonamides turned into large-molecule products without complete mineralization.

  16. Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI)

    PubMed Central

    Ma, Yan; Zhang, Kejia; Li, Cong; Zhang, Tuqiao; Gao, Naiyun

    2015-01-01

    The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band electrons from the surface of TiO2. The photocatalytic oxidation of sulfonamides with Fe(VI) was found to be much faster than that without Fe(VI). The SD, SM, and SMX concentration was greatly reduced by 89.2%, 83.4%, and 82.0%, respectively, after 10 min with UV-TiO2-Fe(VI), comparing to 65.2%, 66.0%, and 71.9%, respectively, with Fe(VI) only in the dark and 71.3%, 72.7%, and 76.0%, respectively, with UV-TiO2. The pH value of solution significantly influenced the sulfonamides degradation in UV-TiO2-Fe(VI) system. The degradation amount of sulfonamides after 10 min was a maximum at pH 7. The intermediate products of sulfonamides oxidation by UV-TiO2-Fe(VI) were analysed by LC-HESI-MS-MS and the results suggested that a majority of sulfonamides turned into large-molecule products without complete mineralization. PMID:26347888

  17. Streaming potential method for characterizing interaction of electrical double layers between rice roots and Fe/Al oxide-coated quartz in situ.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou

    2017-10-01

    The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary

  18. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    NASA Astrophysics Data System (ADS)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  19. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C

    PubMed Central

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-01-01

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000–3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr–Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic’s oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance. PMID:28613275

  20. Using Meteoric Ablation to Constrain Vertical Transport in the Upper Mesosphere

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Carrillo-Sánchez, J. D.; Nesvorny, D.; Pokorný, P.; Janches, D.

    2016-12-01

    Meteoric ablation injects a variety of metals into the upper mesosphere and lower thermosphere, giving rise to layers of metal atoms centered around 90 km. The Na, Fe, K and Ca atom densities are measured accurately using resonance lidars. Since the reaction kinetics of many of the chemical reactions which produce these layers have now been studied in the laboratory, chemistry modules for each of the metals have been developed with a reasonable degree of confidence. When these modules are put into a global high-top model such as NCAR's Whole Atmosphere Community Climate Model (WACCM), a major problem emerges: the injection flux of each of the metals, termed the Meteoric Input Function (MIF), has to be reduced substantially in order to model the observed metal atom densities. For instance, the Na and Fe MIFs need to be reduced by factors of 8 and 14, respectively, compared with the MIFs determined from the lidar-measured vertical fluxes of Na and Fe atoms. The accumulation of meteoric smoke particles in polar ice cores also indicates that the meteoric ablation flux is significantly larger that can be handled in models where vertical transport is solely due to eddy diffusional mixing. Here we derive new Na and Fe MIFs by determining the relative contributions of the known dust sources in the near-Earth environment: Jupiter Family Comets (JFCs), the main asteroid belt, Halley Type comets, and Oort Cloud comets. The mass/velocity/radiant distributions of these cosmic dust populations are Monte Carlo sampled and the elemental ablation rates calculated with the Leeds Chemical Ablation Model. The contribution of each dust source in the Earth's atmosphere is then determined by fitting the measured cosmic spherule accretion rate at the South Pole, and the measured vertical Na and Fe fluxes above 86 km. We conclude that JFCs contribute either 85% or 93% to the total incoming mass, depending on whether infra-red observations of the Zodiacal Dust Cloud by the IRAS or Planck

  1. Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS

    PubMed Central

    Tominski, Claudia; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Nitrate-dependent ferrous iron [Fe(II)] oxidation (NDFO) is a well-recognized chemolithotrophic pathway in anoxic sediments. The neutrophilic chemolithoautotrophic enrichment culture KS originally obtained from a freshwater sediment (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl Environ Microbiol 62:1458–1460, 1996) has been used as a model system to study NDFO. However, the primary Fe(II) oxidizer in this culture has not been isolated, despite extensive efforts to do so. Here, we present a metagenomic analysis of this enrichment culture in order to gain insight into electron transfer pathways and the roles of different bacteria in the culture. We obtained a near-complete genome of the primary Fe(II) oxidizer, a species in the family Gallionellaceae, and draft genomes from its flanking community members. A search of the putative extracellular electron transfer pathways in these genomes led to the identification of a homolog of the MtoAB complex [a porin-multiheme cytochrome c system identified in neutrophilic microaerobic Fe(II)-oxidizing Sideroxydans lithotrophicus ES-1] in a Gallionellaceae sp., and findings of other putative genes involving cytochrome c and multicopper oxidases, such as Cyc2 and OmpB. Genome-enabled metabolic reconstruction revealed that this Gallionellaceae sp. lacks nitric oxide and nitrous oxide reductase genes and may partner with flanking populations capable of complete denitrification to avoid toxic metabolite accumulation, which may explain its resistance to growth in pure culture. This and other revealed interspecies interactions and metabolic interdependencies in nitrogen and carbon metabolisms may allow these organisms to cooperate effectively to achieve robust chemolithoautotrophic NDFO. Overall, the results significantly expand our knowledge of NDFO and suggest a range of genetic targets for further exploration. PMID:26896135

  2. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  3. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ma, Yingqun; Lin, Chuxia

    2013-06-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  4. Microbial oxidation of Fe²⁺ and pyrite exposed to flux of micromolar H₂O₂ in acidic media.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe(2+) was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe(2+) could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe(2+) to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe(2+)-Fe(3+) conversion rate in the solution (due to reduced microbial activity) weakened the Fe(3+)-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  5. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    PubMed

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  6. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation.

    PubMed

    Chang, Fangfang; Qu, Jiuhui; Liu, Huijuan; Liu, Ruiping; Zhao, Xu

    2009-10-15

    Fe-Mn binary oxide incorporated into diatomite (FMBO-diatomite) was prepared by a simple coating method, and exhibited high oxidation and adsorption ability for arsenite [As(III)]. After being incorporated by Fe-Mn binary oxide, the surface area of diatomite increased 36%, and the pore volume increased five times. The pHzpc of FMBO-diatomite was determined to be 8.1. These characteristics are responsible for the increased As(III) adsorption efficiency. The adsorption equilibria of As(III) on FMBO-diatomite were described well by a Langmuir isotherm model due to the homogeneous distribution of Fe-Mn binary oxide on a diatomite surface. As(III) was oxidized into As(V), and then adsorbed by FMBO-diatomite. The oxidation and adsorption efficiencies for As(III) depended deeply on the pH of solution. When the pH was raised to 8.1, the As(III) adsorption efficiency of FMBO-diatomite was almost equal to the As(III) oxidation efficiency. Silicate and phosphate had negative effects on As(III) adsorption. Also the influence of silicate and phosphate with the pH variation was different.

  7. Microplasma Jet Synthesis of Ni-Fe Oxide Films for Magnetic Exchange Bias and Electrocatalytic Studies

    NASA Astrophysics Data System (ADS)

    Pebley, Andrew Christian

    Ni-Fe oxides have received significant interest from the scientific community because they have attractive magnetic and electrochemical properties for use in next generation data storage and energy conversion technologies. For example, the NiFe2O4/NiO nanogranular system exhibits the exchange bias effect, a magnetic phenomenon occurring at the interface of a ferro- or ferrimagnet (FM or FiM) and an antiferromagnet (AFM), where the AFM acts to increase the magnetic hardness of the corresponding FM or FiM. Additionally, doping of NiO with Fe has resulted in remarkably high catalytic activities for water splitting, a potential clean energy alternative to fossil fuels. A key challenge in implementing these Ni-Fe oxides for magnetic and electrocatalytic applications is the ability to control film morphology, crystallinity, composition, chemical phase, and doping during synthesis. Moreover, how these physiochemical properties effect magnetic and electrochemical behavior in the Ni-Fe oxide system is not fully understood. This dissertation focuses on the development and use of a novel synthesis technique, known as microplasma (MP) jet-based deposition, for the fabrication of biphasic NiFe2O4 (FiM)/NiO (AFM) and Fe-doped NiO nanostructured films for fundamental studies of exchange bias and electrocatalysis, respectively. The goal of this work was to understand how MP operation and deposition conditions (e.g., precursor composition, flux, substrate temperature, and post-deposition heat treatment) influence Ni-Fe oxide growth and film microstructure. Specifically, the role of composition, phase fraction, grain size, temperature, and interfacial density on exchange bias phenomena in NiFe 2O4/NiO nanogranular films was investigated. MP jets were also used to realize metastable Fe-doped NiO films with high surface area to assess how doping affects the electrochemical properties of NiO for the oxygen evolution reaction (OER). Biphasic NiFe2O4/NiO films of different composition

  8. [Clinical effect of ultrasound-guided injection of biodegradable poly(lactic-co-glycolic acid)-Fe3O4 in situ implant for magnetic thermal ablation in treatment of nude mice with human liver cancer SMMC-7721 cells].

    PubMed

    Liang, B; Zuo, G Q; Zheng, Y Y; He, S; Zuo, D Y

    2016-12-20

    Objective: To prepare the Fe 3 O 4 -loaded biodegradable liquid-solid phase inversion poly(lactic-co-glycolic acid) (PLGA) in situ implant for ultrasound-guided injection into nude mouse tumor model, and to investigate its clinical effect in thermomagnetic treatment of nude mice with human liver cancer SMMC-7721 cells in an alternating magnetic field. Methods: An in situ implant containing 10% Fe 3 O 4 was prepared, and 50 μl Fe 3 O 4 -PLGA-NMP gel was injected into the subcutaneous tissue of Kunming mice. The degradation of this material was observed for 2 consecutive months, and the changes in body weight were recorded. HE staining and Prussian blue staining were performed for the heart, liver, spleen, lung, and kidney of Kunming mice. Fresh ex vivo bovine liver was taken and cut into cubes with a dimension of 2 cm×2 cm×2 cm and then 50 μl Fe 3 O 4 -PLGA-NMP gel was injected; after phase inversion, the cubes of ex vivo bovine liver were heated for 1, 2, 3, 4, and 5 minutes, respectively, and then cut open for observing the range of ablation; HE staining was also performed. Micro-CT scan was performed after ultrasound-guided injection of 50 μl Fe 3 O 4 -PLGA gel into the tumors of the nude mice, and then the nude mice were divided into treatment group and control group. The mice in the treatment group were given thermomagnetic treatment for 3 minutes, and tumor growth was observed daily. Results: The biodegradation of Fe 3 O 4 -PLGA-NMP implant showed that the subcutaneously injected material was gradually metabolized at 2 weeks after injection and that the nude mice were in good condition. The bovine liver ablation experiment showed that the range of ablation of 50 μl Fe 3 O 4 -PLGA implant reached 1.46 ± 0.11 cm. HE staining showed that part of bovine liver had coagulative necrosis. The phase inversion experiment of Fe 3 O 4 -PLGA gel showed quick liquid-solid phase inversion of the material after injection into the tumor, and the process of liquid

  9. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  10. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NiFe2O4 Spinel Protection Coating for High-Temperature Solid Oxide Fuel Cell Interconnect Application

    NASA Astrophysics Data System (ADS)

    Irankhah, Reza; Raissi, Babak; Maghsoudipour, Amir; Irankhah, Abdullah; Ghashghai, Sasan

    2016-04-01

    In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant ( K P) of 8.9 × 10-15 g2 cm-4 s-1.

  12. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation.

    PubMed

    Ebrahimi, Kourosh Honarmand; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2016-11-15

    Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O 2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.

  13. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-yang; Xu, Xue-cheng

    2015-08-01

    Chemical oxidation is still the major approach to the covalent functionalization of carbon nanotubes (CNTs). Theoretically, the defects on CNTs are more reactive than skeletal hexagons and should be preferentially oxidized, but conventional oxidation methods, e.g., HNO3/H2SO4 treatment, have poor reaction selectivity and inevitably consume the Cdbnd C bonds in the hexagonal lattices, leading to structural damage, π-electrons loss and weight decrease. In this work, we realized the nondestructive covalent functionalization of CNTs by selective oxidation of the defects. In our method, potassium ferrate K2FeVIO4 was employed as an oxidant for CNTs in H2SO4 medium. The CNT samples, before and after K2FeO4/H2SO4 treatment, were characterized with colloid dispersibility, IR, Raman spectroscopy, FESEM and XPS. The results indicated that (i) CNTs could be effectively oxidized by Fe (VI) under mild condition (60 °C, 3 h), and hydrophilic CNTs with abundant surface sbnd COOH groups were produced; and (ii) Fe (VI) oxidation of CNTs followed a defect-specific oxidation process, that is, only the sp3-hybridized carbon atoms on CNT surface were oxidized while the Cdbnd C bonds remained unaffected. This selective/nondestructive oxidation afforded oxidized CNTs in yields of above 100 wt%. This paper shows that K2FeO4/H2SO4 is an effective, nondestructive and green oxidation system for oxidative functionalization of CNTs and probably other carbon materials as well.

  14. Importance of allochthonous and autochthonous dissolved organic matter in Fe(II) oxidation: A case study in Shizugawa Bay watershed, Japan.

    PubMed

    Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Natsuike, Masafumi; Ito, Hiroaki; Watanabe, Toru; Yoshimura, Chihiro

    2017-08-01

    Ferrous iron (Fe[II]) oxidation by dissolved oxygen was investigated in the Shizugawa Bay watershed with particular attention given to the effect of dissolved organic matter (DOM) properties on Fe(II) oxidation. To cover a wide spectrum of DOM composition, water samples were collected from various water sources including freshwater (e.g., river water and wastewater effluent) and coastal seawater. Measurement of nanomolar Fe(II) oxidation by using luminol chemiluminescence under dark, air-saturated conditions at 25 °C indicated that spatio-temporal variation of the second-order rate constant (6.7-74.5 M -1  s -1 ) was partially explained by the variation of the sample pH (7.5-8.6). However, at comparable pH values, the oxidation rates for freshwater were generally greater than those for coastal seawater. The substantial decline in oxidation rate constant after the removal of humic-type (allochthonous) DOM suggested that this hydrophobic DOM is a key factor that accelerates the Fe(II) oxidation in the freshwater samples. Observed lower oxidation rates for coastal seawater compared with freshwater and organic ligand-free seawater were likely associated with microbially derived autochthonous DOM, and the variation of Fe(II) oxidation at a fixed pH was best described by fluorescence index that represents the proportion of autochthonous and allochthonous DOM in natural waters. Consistently, Fe(II) oxidation was found to be slower in the presence of cellular exudates from phytoplankton. The present study highlighted the significant effect of DOM composition on the Fe(II) oxidation in inland and coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  16. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Min; Mok, Yong-Kyoon; Sohn, Dong-Seong

    2017-12-01

    In this study, high-temperature steam oxidation experiments were performed at 1012-1207 °C on Zr-1Nb-1Sn-0.1Fe fuel cladding tubes to study their weight gains and microstructural characteristics. Many specimens were tested at each test temperature, and the results were reproducible and reliable. It is often debated whether the Zr-1Nb-1Sn-0.1Fe alloy follows the weight gain correlation developed by Cathcart and Pawel (C-P correlation) at around 1000 °C. According to our results, the C-P correlation overpredicts the weight gain at around 1000 °C, and this observation agrees well with the data reported by Westinghouse. In addition, the microstructures of the specimens were analyzed using scanning electron microscopy, and it was found that circumferential cracks are formed at the oxide-metal interface only at around 1000 °C. In previous studies, it has been postulated that cracks in the oxide promote the oxidation process, but it appears that the circumferential cracks at the oxide-metal interface decrease the oxidation rate before the breakaway oxidation occurs by disturbing the diffusion of oxygen. The oxidation rate reduction due to the circumferential cracks appears to be the reason for the overprediction of the C-P correlation at around 1000 °C.

  17. Kinetic model to explain the effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters

    NASA Astrophysics Data System (ADS)

    González-Dávila, M.; Samperio-Ramos, G.; Santana-Casiano, J. M.; Gonzallez, A. G.; Pérez-Almeida, N.

    2016-12-01

    The speciation of inorganic Fe(II) as a function of the pH and temperature have been modeled in order to elucidate the inorganic Fe(II) redox behavior over a wide range of scenarios of acidification and global warming of the upper ocean, as well as, changes due to natural ambient fluctuations of pH and temperature. In addition, a kinetic modeling approach has been carried out to elucidate the fractional contribution of most kinetically active Fe(II) species to the overall oxidation rate to improve our future and present knowledge with respect to redox iron chemistry in the marine systems. The kinetic model considers the interactions of Fe(II) with the major ions in seawater, including phosphate and silicate and the competition with copper with the ROS. The model has been applied to the experimental results in order to describe the effect of temperature and pH in the speciation of Fe(II) and to compute the fractional contribution of each Fe(II)-specie to the overall oxidation rate. The oxidation rates (kapp) of nanomolar levels of Fe(II) have been studied in seawater enriched with nutrients (SWEN) in air saturated conditions. The nutrient effect (nitrate, phosphate and silicate), on the oxidation of Fe(II), has been evaluated as a function of pH (7.2-8.2), temperature (5-35 ºC) and salinity (10-37.09). The oxidation of Fe(II) was faster in the presence of nutrient with the change in the Fe(II) oxidation rates (Δlogkapp) more intensive at higher temperatures over the entire pH range studied. From the model it can be observed that the inorganic speciation of Fe(II) is controlled largely by pH, either in SW or in SWEN. A greater presence of Fe-nutrient reactive species (FeH3SiO4+ and FePO4-) in SWEN at higher temperatures explained the changes in the oxidation process. The individual oxidation rates by oxygen, for the Fe(II) most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3(OH)-, FeCO3, Fe(CO3)22-, FeH3SiO3+, FePO4-), were fitted as a function of the

  18. Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH

    USGS Publications Warehouse

    Burrows, Jill E.; Cravotta, Charles A.; Peters, Stephen C.

    2017-01-01

    Net-alkaline, anoxic coal-mine drainage containing ∼20 mg/L FeII and ∼0.05 mg/L Al and Zn was subjected to parallel batch experiments: control, aeration (Aer 1 12.6 mL/s; Aer 2 16.8 mL/s; Aer 3 25.0 mL/s), and hydrogen peroxide (H2O2) to test the hypothesis that aeration increases pH, FeII oxidation, hydrous FeIII oxide (HFO) formation, and trace-metal removal through adsorption and coprecipitation with HFO. During 5.5-hr field experiments, pH increased from 6.4 to 6.7, 7.1, 7.6, and 8.1 for the control, Aer 1, Aer 2, and Aer 3, respectively, but decreased to 6.3 for the H2O2 treatment. Aeration accelerated removal of dissolved CO2, Fe, Al, and Zn. In Aer 3, dissolved Al was completely removed within 1 h, but increased to ∼20% of the initial concentration after 2.5 h when pH exceeded 7.5. H2O2 promoted rapid removal of all dissolved Fe and Al, and 13% of dissolved Zn.Kinetic modeling with PHREEQC simulated effects of aeration on pH, CO2, Fe, Zn, and Al. Aeration enhanced Zn adsorption by increasing pH and HFO formation while decreasing aqueous CO2 available to form ZnCO30 and Zn(CO3)22− at high pH. Al concentrations were inconsistent with solubility control by Al minerals or Al-containing HFO, but could be simulated by adsorption on HFO at pH < 7.5 and desorption at higher pH where Al(OH)4− was predominant. Thus, aeration or chemical oxidation with pH adjustment to ∼7.5 could be effective for treating high-Fe and moderate-Zn concentrations, whereas chemical oxidation without pH adjustment may be effective for treating high-Fe and moderate-Al concentrations.

  19. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Day, James M. D.; Pernet-Fisher, John F.; Goodrich, Cyrena A.; Pearson, D. Graham; Luo, Yan; Ryabov, Viktor V.; Taylor, Lawrence A.

    2017-04-01

    Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2 Fe alloy liquid. If this liquid also contains sufficient sulfur, it can undergo further division into conjugate Fe-C-rich and a Fe-S-rich immiscible melts that can effectively scavenge the highly siderophile elements (HSE: Re, Au, and the platinum group elements [PGE], Pd, Pt, Rh, Ru, Ir, Os), as well as Ni and Cu, to economic abundances. Three localities are known globally where native Fe bearing mafic rocks occur: (1) Paleocene basalts of Disko Island, West Greenland; (2) a Miocene lava of the Bühl basalts, Germany; and (3) mafic intrusions associated with the Late Permian Siberian flood basalts. In this contribution, we report major- and minor-element compositions and HSE concentrations for the main alloy phases (FeNi metal and cohenite) and sulfide, for all three known global occurrences of native Fe bearing basalt. Total HSE abundances in metal grains, obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are lowest in the Bühl basalt, (∼0.05 ppm), intermediate in the Disko Island basalts (4-8 ppm), and highest the Siberian Khungtukun and Dzhaltul intrusions (10-30 ppm). These differences demonstrate that, while native Fe formation is the result of carbonaceous crustal assimilation, HSE enrichment is not ubiquitous during this process. The Siberian occurrences are characterized by Pt PGE (PPGE: Pt, Pd) enrichment relative to the Ir PGE (IPGE: Rh, Ru, Ir, Os), consistent with models of early stage fractionation of olivine, chromite and metallic IPGE in staging magma reservoirs, prior to the addition of C-rich crustal materials in the shallow crust. Relative to Noril'sk Ni-Cu-PGE sulfide ores

  20. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Kai; Jia, Lichao; Zhang, Qian; Jiang, San Ping; Chi, Bo; Pu, Jian; Jian, Li; Yan, Dong

    2015-03-01

    Porous Ni-Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0-50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO-Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni-Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni-Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of (Percentageweightgain /Specificsurfacearea) 2 =kp · t , where kp is the rate constant and t the oxidation time. The dimension of the Ni-Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni-Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

  1. The Reduction of Aqueous Metal Species on the Surfaces of Fe(II)-Containing Oxides: The Role of Surface Passivation

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1998-01-01

    The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.

  2. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation.

    PubMed

    Wang, Hui; Yao, Hong; Sun, Peizhe; Pei, Jin; Li, Desheng; Huang, Ching-Hua

    2015-01-01

    The presence of Fe(III) ions was found to induce degradation of three tetracycline antibiotics (TCs), tetracycline (TTC), oxytetracycline (OTC) and chlorotetracycline (CTC), in aqueous solutions without light. The presence of Fe(III) promoted the degradation of TCs in most experimental pH (5.0, 7.0 and 9.0) except at pH 9.0 for CTC. Degradation rate constants of TTC, OTC and CTC reached maximum ((6.2±0.5)×10(-3) h(-1), (10.6±0.1)×10(-3) h(-1) and (15.9±0.5)×10(-3) h(-1) at pH 7.0, 20 °C) when Fe(III):TC molar ratio was 1:1, 1:1 and 2:1, respectively. Such metal-to-ligand ratios agreed well with the most favorable complexation between Fe(III) and each TC. Compared to without metals, Fe(III) enhanced the degradation rate of TTC, OTC and CTC by up to 20.67, 7.07 and 2.30 times, respectively, in clean water matrix, and also promoted degradation of TCs in real surface water and wastewater matrices. The promoted degradation likely occurred via complexation of TCs and subsequent oxidation by Fe(III). Degradation results of CTC versus 4-epi-CTC suggested Fe(III) likely binds to TCs' C4 dimethylamino group. Toxicity of the complexes evaluated using Photobacterium phosphoreum T3 was increased after several hours of reaction, suggesting the transformation products may exert a stronger toxicity than parent TCs. This study identifies new oxidative transformation of TCs induced by Fe(III) ions without light irradiation, further supporting the important role of iron species in the environmental fate of TCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states.

    PubMed

    Volbeda, Anne; Martin, Lydie; Barbier, Elodie; Gutiérrez-Sanz, Oscar; De Lacey, Antonio L; Liebgott, Pierre-Pol; Dementin, Sébastien; Rousset, Marc; Fontecilla-Camps, Juan C

    2015-01-01

    Catalytically inactive oxidized O2-sensitive [NiFe]-hydrogenases are characterized by a mixture of the paramagnetic Ni-A and Ni-B states. Upon O2 exposure, enzymes in a partially reduced state preferentially form the unready Ni-A state. Because partial O2 reduction should generate a peroxide intermediate, this species was previously assigned to the elongated Ni-Fe bridging electron density observed for preparations of [NiFe]-hydrogenases known to contain the Ni-A state. However, this proposition has been challenged based on the stability of this state to UV light exposure and the possibility of generating it anaerobically under either chemical or electrochemical oxidizing conditions. Consequently, we have considered alternative structures for the Ni-A species including oxidation of thiolate ligands to either sulfenate or sulfenic acid. Here, we report both new and revised [NiFe]-hydrogenases structures and conclude, taking into account corresponding characterizations by Fourier transform infrared spectroscopy (FTIR), that the Ni-A species contains oxidized cysteine and bridging hydroxide ligands instead of the peroxide ligand we proposed earlier. Our analysis was rendered difficult by the typical formation of mixtures of unready oxidized states that, furthermore, can be reduced by X-ray induced photoelectrons. The present study could be carried out thanks to the use of Desulfovibrio fructosovorans [NiFe]-hydrogenase mutants with special properties. In addition to the Ni-A state, crystallographic results are also reported for two diamagnetic unready states, allowing the proposal of a revised oxidized inactive Ni-SU model and a new structure characterized by a persulfide ion that is assigned to an Ni-'Sox' species.

  4. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of themore » same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.« less

  5. Simultaneous NOx and Particulate Matter Removal from Diesel Exhaust by Hierarchical Fe-Doped Ce–Zr Oxide

    PubMed Central

    2017-01-01

    Particulate matter and NOx emissions from diesel exhaust remains one of the most pressing environmental problems. We explore the use of hierarchically ordered mixed Fe–Ce–Zr oxides for the simultaneous capture and oxidation of soot and reduction of NOx by ammonia in a single step. The optimized material can effectively trap the model soot particles in its open macroporous structure and oxidize the soot below 400 °C while completely removing NO in the 285–420 °C range. Surface characterization and DFT calculations emphasize the defective nature of Fe-doped ceria. The isolated Fe ions and associated oxygen vacancies catalyze facile NO reduction to N2. A mechanism for the reduction of NO with NH3 on Fe-doped ceria is proposed involving adsorbed O2. Such adsorbed O2 species will also contribute to the oxidation of soot. PMID:28603656

  6. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    PubMed

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  7. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard

    2018-04-01

    The Wajilitag and Puchang intrusive complexes of the Tarim large igneous province (TLIP) are associated with significant resources of Fe-Ti oxide ores. These two mafic-ultramafic intrusions show differences in lithology and mineral chemistry. Clinopyroxenite and melagabbro are the dominant rock types in the Wajilitag complex, whereas the Puchang complex is generally gabbroic and anorthositic in composition with minor plagioclase-bearing clinopyroxenites in the marginal zone. Disseminated Fe-Ti oxide ores are found in the Wajilitag complex and closely associated with clinopyroxenites, whereas the Puchang complex hosts massive to disseminated Fe-Ti oxide ores mainly within its gabbroic rocks. The Wajilitag intrusive rocks are characterized by a restricted range of initial 87Sr/86Sr ratios (0.7038-0.7048) and positive εNd(t) (+0.04 - +3.01), indicating insignificant involvement of continental crustal contamination. The slightly higher initial 87Sr/86Sr ratios (0.7039-0.7059) and lower εNd(t) values (-1.05 - +2.35) of the Puchang intrusive rocks also suggest that the isotopic characteristics was controlled primarily by their mantle source, rather than by crustal contamination. Both complexes have Sr-Nd isotopic compositions close the neighboring kimberlitic rocks and their hosted mantle xenoliths in the TLIP. This indicates that the ferrobasaltic parental magmas were most probably originated from partial melting of a metasomatized subcontinental lithospheric mantle, modified recently with subduction-related materials by the impingement of the ascending mantle plume. The recycled subduction-related materials preserved in the lithospheric mantle could play a key role in the formation of the parental Fe-rich magmas in the context of an overall LIP system. The distinct variations in mineral assemblage for each complex and modeled results indicated that the Wajilitag and Puchang complexes experienced different crystallization path. Fe-Ti oxides in Wajilitag joined the

  8. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2017-10-01

    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier

  9. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    PubMed

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  10. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).

    PubMed

    Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F

    2015-02-07

    We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to

  11. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) tomore » insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies

  12. Origin of Fe-Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite-Gabbro Intrusive Complex (Northern Karelia, Russia)

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.

    2018-03-01

    Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and

  13. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].

    PubMed

    Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi

    2009-07-15

    Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.

  14. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, following Extended Aging at 300-600C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Parker, Stephen Scott; Wood, Elizabeth Sooby

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21wt.%Cr-5wt.%Al-3wt.%Mo (Kanthal APMT). Aging treatments were performed for 100-1000 hours in stagnant air at 300, 400, 500, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, themore » oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.« less

  15. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  16. The Oxidation State of Fe in Glasses from the Galapagos Archipelago: Variable Oxygen Fugacity as a Function of Mantle Source

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.

    2015-12-01

    The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error < 0.5 log units) and showing that oxidation state varies as a function of mantle source composition in the Galapagos hotspot system. After correcting back to a common MgO content = 8.0 wt%, the trace element depleted group similar to MORB (ITD), and the group similar to Pinta (WD = high Th/La, Δ7/4, Δ8/4 ratios) show Fe3+/ΣFe ratios within the range of MORB (average ITD = 0.162 ± 0.003 and WD = 0.164 ± 0.006). Another trace element enriched group similar to Sierra Negra and Cerro Azul (ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0

  17. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    NASA Astrophysics Data System (ADS)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  18. Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Han, Hyun Soo; Shin, Sun; Noh, Jun Hong; Cho, In Sun; Hong, Kug Sun

    2014-04-01

    Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100-500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.

  19. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  20. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.

    PubMed

    Yu, Lei; Wang, Shi; Tang, Qing-Wen; Cao, Ming-Yue; Li, Jia; Yuan, Kun; Wang, Ping; Li, Wen-Wei

    2016-05-01

    Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.

  1. Fe-Ca-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation

    USGS Publications Warehouse

    Medrano, M.D.; Piper, D.Z.

    1997-01-01

    Concentrically zoned phosphatic-enriched concretions were collected at three sites from the Monterey Formation. The following minerals were identified: vivianite, lipscombite, rockbridgeite, leucophosphite, mitridatite, carbonate fluorapatite, nontronite, todorokite, and barite. The mineralogy of the concretions was slightly different at each of the three collection sites. None of the concretions contains all of the minerals, but the spatial distribution of minerals in individual concretions, overlapping mineralogies between different concretions, and the geochemical properties of the separate minerals suggest a paragenesis represented by the above order. Eh increased from the precipitation of vivianite to that of rockbridgeite/lipscombite. The precipitation of leucophosphite, then mitridatite, carbonate fluorapatite and todorokite/Fe-oxide indicates increasing pH. Concretion growth culminated with the precipitation of todorokite, a Mn oxide, and minor amounts of barite along microfractures. Conspicuously absent are Fe-sulfide and Mn-phosphate minerals. The concretions are hosted by finely laminated diatomite. The laminations exhibit little to no deformation around the concretions, requiring that the concretions formed after compaction. We interpret this sediment feature and the paragenesis as recording the evolving pore-water chemistry as the formation was uplifted into the fresh-ground-water zone.

  2. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  3. Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq

    NASA Astrophysics Data System (ADS)

    Franzblau, Rachel E.; Daughney, Christopher J.; Swedlund, Peter J.; Weisener, Christopher G.; Moreau, Magali; Johannessen, Bernt; Harmer, Sarah L.

    2016-01-01

    There is currently poor understanding of metal removal by composites of bacteria and iron oxide minerals, even though they commonly co-occur and are among the most important sorbents in near-surface fluid-rock environments. This study evaluated Cu removal by composites of Anoxybacillus flavithermus and iron oxide over time during the addition, oxidation, and hydrolysis of Fe(II)aq and precipitation of the mineral, in comparison to Cu removal in the two single-sorbent end-member systems. In the absence of iron oxide, Cu removal by A. flavithermus was well described by a previously published surface complexation model, after inclusion of additional reactions describing aqueous complexation by exudate ligands released by the bacteria. In the absence of bacterial cells, Cu removal by iron oxide synthesized in the presence of the bacterial exudate ligands demonstrated the formation of ternary surface complexes. Removal of Cu by the A. flavithermus-iron oxide composites was ca. 20% greater than the prediction based on assumption of additivity in the two end-member systems. This non-additive behavior was attributed to (1) progressive physical blockage of bacterial surface sites by the iron oxide particles, (2) physical blockage of adsorption sites as a result of self-aggregation of the iron oxide particles, and (3) the reduction of Cu(II) to Cu(I) at the bacterial cell surface, as demonstrated by X-ray absorption spectroscopy. The extent of reduction of Cu(II) to Cu(I) was proportional to the concentration of solid phase Fe(II), suggesting that iron oxidation and copper reduction are linked. This study has shown that Cu removal by bacteria-iron oxide composites is greatly affected by redox processes such as Cu(II) reduction on the cell surface both by other bacterial surface ligands and the oxidation of sorbed Fe(II), as well as Fe(II) redox interactions, and aging effects of the mineral (i.e. surface site masking).

  4. A photoelectrochemical (PEC) study on graphene oxide based hematite thin films heterojunction (R-GO/Fe2O3)

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team

    2013-03-01

    Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.

  5. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  6. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  7. Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.

    2003-01-01

    Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in Martian meteorite EETA79001, especially effects of compositional and structural variations on their Raman features.

  8. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

    PubMed

    Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A

    2017-07-01

    Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate

  9. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS

    PubMed Central

    Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.

    2017-01-01

    ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate

  10. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts.

    PubMed

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; De Los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-20

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al₂O₃ 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al₂O₃ support helped to stabilize the furfural molecule on the surface.

  11. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.

    PubMed

    Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  12. Water oxidation by size selected Co 27 clusters supported on Fe 2O 3

    DOE PAGES

    Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...

    2016-09-22

    The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less

  13. Effect of nano-oxide layers on giant magnetoresistance in pseudo-spin-valves using Co 2FeAl electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, D. L.; Xu, X. G.; Wu, Y.; Miao, J.; Jiang, Y.

    2011-03-01

    We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2FeAl/NOL 1/Co 2FeAl/Cu/Co 2FeAl/NOL 2/Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2FeAl (CFA) PSV with a structure of Ta/Co 2FeAl/Cu/Co 2FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2O 3)(Al 2O 3)] in NOL 1 and [(Fe 2O 3)(Al 2O 3)(Ta 2O 5)] in NOL 2. Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure.

  14. Dissociative Recombination of FeO(+) with Electrons: Implications for Plasma Layers in the Ionosphere.

    PubMed

    Bones, D L; Plane, J M C; Feng, W

    2016-03-10

    The dissociative recombination (DR) of FeO(+) ions with electrons has been studied in a flowing afterglow reactor. FeO(+) was generated by the pulsed laser ablation of a solid Fe target, and then entrained in an Ar(+) ion/electron plasma where the absolute electron density was measured using a Langmuir probe. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a DR rate coefficient at 298 K of k(FeO(+) + e(-)) = (5.5 ± 1.0) × 10(-7) cm(3) molecule(-1) s(-1), where the quoted uncertainty is at the 2σ level. Fe(+) ions in the lower thermosphere are oxidized by O3 to FeO(+), and this DR reaction is shown to provide a more important route for neutralizing Fe(+) below 110 km than the radiative/dielectronic recombination of Fe(+) with electrons. The experimental system was first validated by measuring two other DR reaction rate coefficients: k(O2(+) + e(-)) = (2.0 ± 0.4) × 10(-7) and k(N2O(+) + e(-)) = (3.3 ± 0.8) × 10(-7) cm(3) molecule(-1) s(-1), which are in good agreement with the recent literature.

  15. Effect Of Inorganic, Synthetic And Naturally Occurring Chelating Agents On Fe(II) Mediated Advanced Oxidation Of Chlorophenols

    EPA Science Inventory

    This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...

  16. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  17. Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite

    NASA Astrophysics Data System (ADS)

    Wang, Zhibing; Ma, Jinlong; Li, Jie; Wei, Gangjian; Zeng, Ti; Li, Lei; Zhang, Le; Deng, Wenfeng; Xie, Luhua; Liu, Zhifeng

    2018-04-01

    Understanding the fractionation mechanisms of Mo isotopes and seeking the main hosts of light δ98/95Mo during chemical weathering of continental rocks is a prerequisite for constraining heavy δ98/95Mo input into rivers. This study investigates the Mo concentrations and δ98/95Mo values of bulk samples, chemical extractions, and clay fractions of weathering products in a granite weathering profile in Guangdong province, South China, as well as in surrounding stream water. Results from bulk samples show that the τ MoTiO2 values systematically decrease from 59.1% to -77.0%, and δ98/95Mo values systematically increase from -1.46‰ to -0.17‰, upwards in the profile (from 30 to 0 m depth). Atmospheric input has a limited effect on δ98/95Mo variations in the weathering profile. Adsorption and desorption processes of Fe (hydro) oxide are the dominant factors controlling the variations in δ98/95Mo, with light Mo isotopes preferentially adsorbed by Fe (hydro) oxide, and released during desorption process, whereas the incongruent dissolution of primary minerals has little effect. Organic materials and the clay fraction are not the main hosts of light δ98/95Mo, as indicated by the results of chemical extractions, which show that a large proportion (41.5-86.2%) of total Mo with light δ98/95Mo (-1.57‰ to -0.59‰) is associated with Fe (hydro) oxide. Moreover, a significant positive correlation exists between Mo concentrations and δ98/95Mo in the Fe (hydro) oxide extractions from bulk samples. Finally, δ98/95Mo in stream water indicates the release of heavier δ98/95Mo into river water during the chemical weathering of granite rock. The results advance our understanding the mechanisms of Mo isotope fractionation during chemical weathering and its isotopic mass balance in Earth's surface system.

  18. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte.

    PubMed

    Inoishi, Atsushi; Ida, Shintaro; Uratani, Shouichi; Okano, Takayuki; Ishihara, Tatsumi

    2012-10-05

    Rapid growth and improved functions of mobile equipment present the need for an advanced rechargeable battery with extremely high capacity. In this study, we investigated the application of fuel cell technology to an Fe-air rechargeable battery. Because the redox potential of Fe is similar to that of H(2), the combination of H(2) formation by the oxidation of Fe with a fuel cell has led to a new type of metal-air rechargeable battery. By decreasing the operating temperature, a deep oxidation state of Fe can be achieved, resulting in enlarged capacity of the Fe-air battery. We found that the metal Fe is oxidized to Fe(3)O(4) by using H(2)/H(2)O as mediator. The observed discharge capacity is 817 mA h g(-1)-Fe, which is approximately 68% of the theoretical capacity of the formation of Fe(3)O(4), 1200 mA h g(-1)-Fe, at 10 mA cm(-2) and 873 K. Moreover, the cycle stability of this cell is examined. At 1073 K, the cell shows a discharge capacity of ca. 800 mA h g(-1)-Fe with reasonably high discharge capacity sustained over five cycles.

  19. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    NASA Astrophysics Data System (ADS)

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  20. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Kotnala, R. K.; Gopal, R.

    2015-08-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  1. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  2. Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media

    DOE PAGES

    Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...

    2015-10-22

    Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less

  3. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  4. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower

  5. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    PubMed Central

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; De los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface. PMID:28788472

  6. A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan

    2017-04-01

    Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.

  7. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  8. Progressive Oxidation of Pyrite in Five Bituminous Coal Samples: An As XANES and 57Fe Mossbauer Spectroscopic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolker,A.; Huggins, F.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much

  9. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement

  10. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  11. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose.

    PubMed

    Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E

    1999-08-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic

  12. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE PAGES

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    2017-05-05

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  13. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  14. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  15. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics

    NASA Astrophysics Data System (ADS)

    Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.

    2018-05-01

    The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.

  16. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Su, Lianghu; Kobayashi, Takuro; Kumar, Gopalakrishnan; Zhou, Tao; Xu, Kaiqin; Li, Yu-You; Zhu, Xuefeng; Zhao, Youcai

    2018-05-01

    Dewatering of waste activated sludge (WAS) is of major interest in its volume reduction, transportation and ultimate disposal. Persulfate-based oxidation process is a newly developed option for enhancing WAS dewaterability through the generation of powerful sulfate radicals (SO 4 - ·). However, the enhancement in WAS dewaterability by persulfate differs with the species of iron catalysts used. In this study, two types of iron catalysts (i.e. Fe 2+ vs. Fe 0 ) were employed to initiate the persulfate (S 2 O 8 2- ), and the catalyzing behaviors and the underlying principles in enhancing WAS dewaterability were investigated and compared. The Fe 2+ exhibited the high effectiveness in catalyzing the decomposition of persulfate to sulfate radicals (SO 4 - ·), inducing the greater improvement in WAS dewatering. The WAS dewaterability (indicated by dry solids content after filtration) increased with the added S 2 O 8 2- /Fe 2+ dosages, with the dry solids content reaching up to 5.1 ± 0.8 wt% at S 2 O 8 2- /Fe 2+ dosages of 1.2/1.5 mmol/g-VS after only 30 s' filtration, roughly 1.8-fold increase than raw WAS (1.8 ± 0.1 wt%). In contrast, the influence of the persulfate oxidation when activated with Fe 0 on WAS dewaterability was statistically insignificant. The WAS dewaterability remained nearly unchanged (i.e. dry solids content of 2.0 ± 0.0 wt%), irrespective of the employed S 2 O 8 2- /Fe 0 dosages. Further analysis demonstrated that the WAS dewaterability negatively corresponded to loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS). The abundant SO 4 - · from S 2 O 8 2- /Fe 2+ system could effectively disrupt the gel-like EPS matrix, break apart the cells and subsequently arouse the release of the water inside EPS and cells, facilitating water-solid separation. In the case of S 2 O 8 2- /Fe 0 , the dissolution of Fe 0 particles was the rate-limiting step, due to the formation of oxide iron layer near Fe 0

  17. Fe-rich carbonate chimney in Okinawa Trough Implication for Fe-driven Microbial Anaerobic Oxidation of Methane (AMO)

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.

    2016-12-01

    Marine sediments associated with cold seeps at continental margins discharge substantial amounts of methane. Microbial anaerobic oxidation of methane (AMO) is a key biogeochemical process in these environments, which can trigger the formation of carbonate chimneys within sediments. The exact biogeochemical mechanism of how AMO control the formation of carbonate chimneys and influence their mineralogy and chemistry remains poorly constrained. Here, we use nano-scale secondary ion mass spectrometry to characterize the petrology and geochemistry of methane-derived Fe-rich carbonate chimneys formed between 5-7 Ma in the Northern Okinawa Trough. We find abundant framboid pyrites formed in the authigenic carbonates in the chimneys, indicating a non-Fe limitation sedimentary system. The δ13C values of carbonate (-18.9‰ to -45.9‰, PDB) show their probable origin from a mixing source of biogenic and thermogenic methane. The δ34S values range from -3.9 ± 0.5‰ to 23.2 ± 0.5‰ (VCDT), indicative of a strong exhaustion of sulfates in a local sulfate pool. We proposed that Fe-rich carbonate chimneys formed at the bottom of the sulfate-methane transition zone, beneath which Fe-driven AOM may happen and provide available ferrous for the extensive precipitation of pyrite in carbonate chimneys. The accumulation of reductive Fe in sediments via this process may widely occur in other analogous settings, with important application for Fe and S biogeochemical cycling within deep sediments at continental margins.

  18. Non-Metallic Ti Oxides and MnS/FeS2 Complex Precipitation in Ti-Killed Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jieyun; Zhao, Dan; Li, Huigai; Zheng, Shaobo

    Titanium deoxidized experiments can be carried in vacuum induction furnace by adding Ti-Fe alloy in molten steel to simulate strip casting. Sub-rapid solidification samples were obtained in the method of suing copper mold. The morphology, the chemical composition and the structures of nanometer precipitations were carried out to investigate by transmission electron microscope (TEM) with Energy Dispersive X ray Spectrum (EDX) and by collecting diffraction patterns with carbon extraction specimens. It has been found that titanium oxides were TiO monoclinic, Ti4O7 anorthic and TiO2 orthogonal structure in one nanometer inclusion, as the composite oxide was precipitated MnS/FeS2 cubic structure during sub-rapid solidification. Thermodynamic calculation analysis showed that it was possible to precipitate different kinds of nonstoichiometric TiOx. The solid solution between MnS/FeS2 will precipitate on the surface of titanium oxides because of good coherency relationship.

  19. [4Fe-4S]-cluster-depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron-sulfur protein.

    PubMed Central

    Stephens, P J; Morgan, T V; Devlin, F; Penner-Hahn, J E; Hodgson, K O; Scott, R A; Stout, C D; Burgess, B K

    1985-01-01

    Fe(CN)6(-3) oxidation of the aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I, (7Fe)FdI, is a degradative reaction. Destruction of the [4Fe-4S] cluster occurs first, followed by destruction of the [3Fe-3S] cluster. At a Fe(CN)6(-3)/(7Fe)FdI concentration ratio of 20, the product is a mixture of apoprotein and protein containing only a [3Fe-3S] cluster, (3Fe)FdI. This protein mixture, after partial purification, has been characterized by absorption, CD, magnetic CD, and EPR and Fe x-ray absorption spectroscopies. EPR and magnetic CD spectra provide strong evidence that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in (7Fe)FdI. Analysis of the extended x-ray absorption fine structure (EXAFS) of (3Fe)FdI finds Fe scattering at an average Fe...Fe distance of approximately equal to 2.7 A. The structure of the oxidized [3Fe-3S] cluster in solutions of oxidized (3Fe)FdI, and, by extension, of oxidized (7Fe)FdI, is thus different from that obtained by x-ray crystallography on oxidized (7Fe)FdI. Possible interpretations of this result are discussed. PMID:2994040

  20. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  1. Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases.

    PubMed

    Volbeda, Anne; Martin, Lydie; Cavazza, Christine; Matho, Michaël; Faber, Bart W; Roseboom, Winfried; Albracht, Simon P J; Garcin, Elsa; Rousset, Marc; Fontecilla-Camps, Juan C

    2005-05-01

    [NiFe] hydrogenases catalyze the reversible heterolytic cleavage of molecular hydrogen. Several oxidized, inactive states of these enzymes are known that are distinguishable by their very different activation properties. So far, the structural basis for this difference has not been understood because of lack of relevant crystallographic data. Here, we present the crystal structure of the ready Ni-B state of Desulfovibrio fructosovorans [NiFe] hydrogenase and show it to have a putative mu-hydroxo Ni-Fe bridging ligand at the active site. On the other hand, a new, improved refinement procedure of the X-ray diffraction data obtained for putative unready Ni-A/Ni-SU states resulted in a more elongated electron density for the bridging ligand, suggesting that it is a diatomic species. The slow activation of the Ni-A state, compared with the rapid activation of the Ni-B state, is therefore proposed to result from the different chemical nature of the ligands in the two oxidized species. Our results along with very recent electrochemical studies suggest that the diatomic ligand could be hydro-peroxide.

  2. Control of the permeability loss-peak frequency of Ni81Fe19 thin films through laser ablation of triangular and square cluster geometries

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Lumpp, J. K.

    2000-01-01

    Laser ablation arrays of triangular and square shaped clusters, comprised of 23 micrometers diam circular holes, are defined upon 100 nm thick Ni81Fe19 films used to control the rf permeability spectra. Cluster-to-cluster spacing is varied from 200 to 600 micrometers. For each geometry it is found that the loss peak frequency and permeability magnitude shift lower, in a step-wise fashion, at a cluster-to-cluster spacing between 275 and 300 micrometers. The nonlinear shift in the behavior of the permeability spectra correlates with a dramatic increase in domain wall density. c2000 American Institute of Physics.

  3. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.

    2015-08-14

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less

  4. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Sack, O.

    1991-10-01

    A new thermodynamic formulation of the Fe-Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4-(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3-Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2- T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (Δlog10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher Δ log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest Δ log10 f O 2 s, sphene

  5. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    NASA Astrophysics Data System (ADS)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; Crowhurst, Jonathan C.; Rose, Timothy P.; Koroglu, Batikan; Radousky, Harry B.; Armstrong, Michael R.

    2017-12-01

    In this work, we present a newly constructed U x O y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. The global model is used to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.

  6. Preliminary study of heavy metal pollution from Fe-Al oxides in Peihuang Creek, North Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, B.

    2012-12-01

    Tatun Volcano Group (TVG) is not active since late Pleistocene but the post-volcanic activities, such as hot spring and sulfur gas, still widespread around the volcano province. Peihuang Creek is the main watershed system in TVG. The creek water is characterized by higher temperature, low pH values (3.0-4.5) and high SO4 content (60-400 ppm) due to the mixing of hotspring. This would promote the geochemical interaction between water and andesitic rocks and results in waters with highly enriched iron, aluminum and silica. These elements prefer to form suspended colloidal particles in water and adsorb heavy metals. Once the pH of water increases under oxidation condition, the colloid would precipitate in the form of ochre colored powder on the riverbed. The previous study reports that the arsenic content can reach as high as hundreds ppm. It is very important to evaluate the desorption behavior of heavy metals, especially for the study area with highly developed agriculture. For the preliminary analysis, five samples of ochre colored powder were sampled along the creek. The results of XRF demonstrate that the powder is mainly composed of iron, aluminum and silica, which is Fe-Al hydroxide. The iron content of Fe-Al hydroxide decreases from 63% to 25% while the aluminum and silica contents gradually increase from 5% to 20% and from 9% to 30%, respectively. To evaluate the desorption of heavy metals, the sequential extraction procedure was conducted. In the first step for determining leachable metals, the Fe-Al oxides were extracted with deionized water in the room temperature for one week. All of the metals are in ppb level except copper. For determining reducible phase, Step 2 used reagent solution of 0.5 mol/L hydroxylamine hydrochloride, which was adjusted to pH=2 with ultrapure nitric acid, for one week. The extracted chromium, arsenic, lead and copper are in the dangerous level of tens to hundreds ppm. It is believed that only very small amounts of heavy metals

  7. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  8. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    NASA Astrophysics Data System (ADS)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  9. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stengl, Vaclav, E-mail: stengl@uach.cz; Houskova, Vendula; Bakardjieva, Snejana

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resultingmore » doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.« less

  10. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  11. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction

    NASA Astrophysics Data System (ADS)

    Wang, Fulong; Xue, Huaiguo; Tian, Zhiqun; Xing, Wei; Feng, Ligang

    2018-01-01

    Developing catalyst promoter for Pd/C catalyst is significant for the catalytic ability improvement in energy transfer related electrochemical reactions. Herein, we demonstrate Fe2P as an efficient catalyst promoter in Pd/C catalyst system for formic acid electro-oxidation in fuel cells reactions. Adding Fe2P in the Pd/C catalyst system greatly increases the performances for formic acid oxidation by 3-4 times; the CO stripping technique displays two kinds of active sites formation in the Pd-Fe2P/C catalyst system coming from the interaction of Pd, Fe2P and Pd oxide species and both are more efficient for formic acid and CO-species electrooxidation. The smaller charge transfer resistance and Tafel slope for formic acid oxidation indicate the improvements in kinetics by Fe2P in the Pd-Fe2P/C system. The nanostructured hybrid units of Pd, Fe2P and carbon are evidently visible in the high resolution microscopy images and XPS technique confirmes the electronic effect in the catalyst system. The promotion effect of Fe2P in the catalyst system arising from the structure, composition and electronic effect changes is discussed with the help from multiple physical and electrochemical techniques. It is concluded that Fe2P as a significant catalyst promoter will have potential application in energy transfer related electrochemical reactions.

  12. Synthesis and characterization of Fe-based metal and oxide based nanoparticles: discoveries and research highlights of potential applications in biology and medicine.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Cao, Yanqin; Wu, Haibo; Nogami, Masayuki

    2014-01-01

    In this review, we have presented the controlled synthesis of Fe-based metal and oxide nanoparticles with large size by chemical methods. The issues of the size, shape and morphology of Fe nanoparticles are discussed in the certain ranges of practical applications in biology and medicine. The homogeneous nanosystems of Fe-based metal and oxide nanoparticles with various sizes and shapes from the nano-to-micro ranges can be used in order to meet the demands of the treatments of dangerous tumors and cancers through magnetic hyperthermia and magnetic resonance imaging (MRI). In this context, the polyhedral Fe-based metal and oxide nanoparticles having large size in the ranges from 1000 nm to 5000 nm can be potentially used in magnetic hyperthermia and MRI in the innovative drug delivery, diagnosis, treatment, and therapy of tumor and cancer diseases because of their very high bio-adaptability. We have suggested that high stability and durability of Fe-based metal and oxide nanoparticles are very crucial to recent magnetic hyperthermia and MRI technology. The roles of various Fe-based nanostructures are focused in biomedical applications of tumors and cancers diagnostics, targeted drug delivery, and magnetic hyperthermia. Finally, Fe-based, α-, β- and γ-Fe2O3, and Fe3O4-based nanoparticles are shortly discussed in various potential applications in catalysis, biology, and medicine.

  13. Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.

    PubMed

    Dueñas-García, I E; Heres-Pulido, M E; Arellano-Llamas, M R; De la Cruz-Núñez, J; Cisneros-Carrillo, V; Palacios-López, C S; Acosta-Anaya, L; Santos-Cruz, L F; Castañeda-Partida, L; Durán-Díaz, A

    2017-05-01

    4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO 4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO 4 resulted in genotoxicity; the three antioxidants and FeSO 4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO 4 , were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO 4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO. Copyright © 2017. Published by Elsevier Ltd.

  14. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  15. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  16. Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Lak, Aidin; Niculaes, Dina; Anyfantis, George C.; Bertoni, Giovanni; Barthel, Markus J.; Marras, Sergio; Cassani, Marco; Nitti, Simone; Athanassiou, Athanassia; Giannini, Cinzia; Pellegrino, Teresa

    2016-09-01

    Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3-δO4 core-shell nanocubes to Fe3-δO4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe1-xO core to Fe3-δO4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3-δO4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.

  17. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  18. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Yang, Min; Wang, Yajing; Xia, Qixing; Jiang, Zhaohua

    2016-08-01

    The Fe3O4/FeAl2O4 composite coatings were successfully fabricated on Q235 carbon steel by plasma electrolytic oxidation technique and used to degrade phenol by Fenton-like system. XRD, SEM, and XPS indicated that Fe3O4 and FeAl2O4 composite coating had a hierarchical porous structure. The effects of various parameters such as pH, phenol concentration, and H2O2 dosage on catalytic activity were investigated. The results indicated that with increasing of pH and phenol content, the phenol degradation efficiency was reduced significantly. However, the degradation rate was improved with the addition of H2O2, but dropped with further increasing of H2O2. Moreover, 100 % removal efficiency with 35 mg/L phenol was obtained within 60 min at 303 K and pH 4.0 with 6.0 mmol/L H2O2 on 6-cm(2) iron oxide coating. The degradation process consisted of induction period and rapid degradation period; both of them followed pseudo-first-order reaction. Hydroxyl radicals were the mainly oxidizing species during phenol degradation by using n-butanol as hydroxyl radical scavenger. Based on Fe leaching and the reaction kinetics, a possible phenol degradation mechanism was proposed. The catalyst exhibited excellent stability.

  19. PHOTONICS AND NANOTECHNOLOGY Pulsed laser ablation of binary semiconductors: mechanisms of vaporisation and cluster formation

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Evtushenko, A. B.; Shukhov, Yu G.; Ozerov, I.; Marin, W.

    2010-12-01

    Formation of small clusters during pulsed ablation of two binary semiconductors, zinc oxide and indium phosphide, in vacuum by UV, visible, and IR laser radiation is comparatively studied. The irradiation conditions favourable for generation of neutral and charged ZnnOm and InnPm clusters of different stoichiometry in the ablation products are found. The size and composition of the clusters, their expansion dynamics and reactivity are analysed by time-of-flight mass spectrometry. A particular attention is paid to the mechanisms of ZnO and InP ablation as a function of laser fluence, with the use of different ablation models. It is established that ZnO evapourates congruently in a wide range of irradiation conditions, while InP ablation leads to enrichment of the target surface with indium. It is shown that this radically different character of semiconductor ablation determines the composition of the nanostructures formed: zinc oxide clusters are mainly stoichiometric, whereas InnPm particles are significantly enriched with indium.

  20. Oxidation behavior and area specific resistance of La, Cu and B alloyed Fe-22Cr ferritic steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Ko, Yoon Seok; Lee, Young-Su; Kim, Dong-Ik

    2017-11-01

    Two Fe-22 wt% Cr ferritic stainless steels containing varying concentrations of La (0.14 or 0.52 wt%), Cu (0.17 or 1.74 wt%) and B (48 or 109 ppm) are investigated with respect to oxidation behavior and high temperature area specific resistance (ASR) of the surface oxide scales. To determine the oxidation resistance of developed steels, continuous isothermal oxidation is carried out at 800 °C in air, for 2000 h, and their thermally grown oxide scale is characterized using dynamic SIMS, SEM/EDX, XRD and GI-XRD techniques. To assess their electrical performance, the ASR measurement by four-point probe method is conducted at 800 °C in air, for 400 h. In higher La content steel, the La-oxides at the scale/alloy interface promotes the oxygen transport which resulted in sub-surface oxidation of Mn, Cr, Ti and Al. Moreover, the inward growth of oxides contributes to increase of Fe-Cr alloy protrusions within the scale, which reduced the ASR. In contrast, sub-surface oxidation is reduced in high Cu-alloyed steel by segregated Cu at the scale/alloy interface. Thus, addition of Cu is effective to oxidation resistance and also to better electrical performance. However, no obvious impact of B on the scale sequence and/or ASR is observed.

  1. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  2. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  3. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation.

    PubMed

    Xing, Jiale; Guo, Kailu; Zou, Zehua; Cai, Minmin; Du, Jing; Xu, Cailing

    2018-06-06

    Well-ordered NiFe-MOF-74 is in situ grown on Ni foam by the induction of Fe2+ and directly used as an OER electrocatalyst. Benefited from the intrinsic open porous structure of MOF-74, the in situ formed MOF arrays and the synergistic effect of Ni and Fe, outstanding water oxidation activity is obtained in alkaline electrolytes with an overpotential of 223 mV at 10 mA cm-2.

  4. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation.

    PubMed

    Yao, Yunjin; Qin, Jiacheng; Cai, Yunmu; Wei, Fengyu; Lu, Fang; Wang, Shaobin

    2014-06-01

    A magnetic ZnFe2O4-reduced graphene oxide (rGO) hybrid was successfully developed as a heterogeneous catalyst for photo-Fenton-like decolorization of various dyes using peroxymonosulfate (PMS) as an oxidant under visible light irradiation. Through an in situ chemical deposition and reduction, ZnFe2O4 nanoparticles (NPs) with an average size of 23.7 nm were anchored uniformly on rGO sheets to form a ZnFe2O4-rGO hybrid. The catalytic activities in oxidative decomposition of organic dyes were evaluated. The reaction kinetics, effect of ion species and strength, catalytic stability, degradation mechanism, as well as the roles of ZnFe2O4 and graphene were also studied. ZnFe2O4-rGO showed to be a promising photocatalyst with magnetism for the oxidative degradation of aqueous organic pollutants and simple separation. The combination of ZnFe2O4 NPs with graphene sheets leads to a much higher catalytic activity than pure ZnFe2O4. Graphene acted as not only a support and stabilizer for ZnFe2O4 to prevent them from aggregation, largely improving the charge separation in the hybrid material, but also a catalyst for activating PMS to produce sulfate radicals at the same time. The ZnFe2O4-rGO hybrid exhibited stable performance without losing activity after five successive runs.

  5. Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.

    PubMed

    Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe

    2015-01-06

    Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.

  6. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest

  7. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.

    PubMed

    Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. © FASEB.

  8. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

    PubMed

    Peters, John W; Schut, Gerrit J; Boyd, Eric S; Mulder, David W; Shepard, Eric M; Broderick, Joan B; King, Paul W; Adams, Michael W W

    2015-06-01

    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  10. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE PAGES

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; ...

    2017-10-12

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  11. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition.

    PubMed

    Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian

    2017-02-01

    To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (P max ) of 87.85mW/m 2 with a corresponding maximum voltage (V max ) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Immobilization of Radionuclides Through Anaerobic Bio-oxidation of Fe(ll)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2005-06-01

    Over the last year we have focused our efforts on two independent aspects (a) further investigation of the microbiology and geochemistry of nitrate-dependent Fe(II) oxidation and (b) assembling the sequenced genome of Dechloromonas aromatica strain RCB. This work has been performed in a cooperative fashion amongst the independent labs of the three PI's with the UC Berkeley lab taking the lead under the guidance of J.D. Coates.

  13. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less

  14. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish.

    PubMed

    de Oliveira, Luciana Fernandes; Santos, Caroline; Risso, Wagner Ezequiel; Dos Reis Martinez, Claudia Bueno

    2018-06-01

    Metal bioaccumulation and oxidative stress biomarkers were determined in Prochilodus lineatus to understand the effects of short-term exposure to a triple-mixture of Zn, Mn, and Fe. Three independent tests were carried out, in which fish were exposed to 3 concentrations of Zn (0.18, 1.0, and 5.0 mg L -1 ), Mn (0.1, 0.5, and 5.0 mg L -1 ), and in the mix test to Fe (5.0 mg L -1 ) and a mixture of Zn (1.0 mg L -1 ) + Mn (0.5 mg L -1 ), with and without Fe. After exposure for 96 h, tissues were removed for metal bioaccumulation analysis and oxidative stress biomarkers were determined in liver, along with DNA damage in blood cells. Our results revealed that Zn and Mn were bioaccumulated in fish tissues after exposure to 5.0 mg L -1 , whereas Fe only bioaccumulated in muscle and gills after mixture exposure. Results indicated that 1 metal interfered with the other's bioaccumulation. In P. lineatus, 5 mg L -1 of both Mn and Fe were toxic, because damage was observed (lipid peroxidation [LPO] in liver and DNA damage in blood cells), whereas Zn induced liver responses (metallothionein [MT] and reduced glutathione [GSH] increases) to prevent damage. In terms of bioaccumulation and alterations of oxidative stress biomarkers, we showed that Zn, Mn, and Fe triple-mixture enhances individual metal toxicity in Neotropical fish P. lineatus. Environ Toxicol Chem 2018;37:1749-1756. © 2018 SETAC. © 2018 SETAC.

  15. Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhao, Qidong; Li, Xinyong; Zhu, Zhengru; Tade, Moses; Liu, Shaomin

    2013-06-01

    Spindle-shaped microstructure of α-Fe2O3 was successfully synthesized by a simple hydrothermal method. The α-Fe2O3/graphene oxide (GO) composites was prepared using a modified Hummers' strategy. The properties of the samples were systematically investigated by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectrophotometer, transmission electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy (Raman) techniques. GO nanosheets act as supporting materials for anchoring the α-Fe2O3 particles. The average crystallite sizes of the α-Fe2O3 and α-Fe2O3/GO samples are ca. 27 and 24 nm, respectively. The possible growth of α-Fe2O3 onto GO layers led to a higher absorbance capacity for visible light by α-Fe2O3/GO than α-Fe2O3 composite. The photocatalytic degradation of toluene over the α-Fe2O3 and α-Fe2O3/GO samples under xenon-lamp irradiation was comparatively studied by in situ FTIR technique. The results indicate that the α-Fe2O3/GO sample synthesized exhibited a higher capacity for the degradation of toluene. The composite of α-Fe2O3/GO could be promisingly applied in photo-driven air purification.

  16. Capacity and recycling of polyoxometalate applied in As(III) oxidation by Fe(II)-Amended zero-valent aluminum.

    PubMed

    Hsu, Liang-Ching; Cho, Yen-Lin; Liu, Yu-Ting; Tzou, Yu-Min; Teah, Heng Yi

    2018-06-01

    Arsenic remediation is often initiated by oxidizing As(III) to As(V) to alleviate its toxicity and mobility. Due to the easy availability, zero-valent Al (ZVAl) like Al can was considered as potential alternatives to facilitate As(III) oxidation. This study determined the capability and recycling of polyoxometalate (POM) to catalyze As(III) oxidation in Fe(II)-amended ZVAl systems. POM acquired electrons from ZVAl more effectively at pH 1 than at pH 2. While 76% of the reduced POM [POM(e - )] reacted with O 2(g) to generate H 2 O 2 at pH 1, only 60% of POM(e - ) was used to produce H 2 O 2 at pH 2. The remaining POM(e - ) was oxidized by the generated H 2 O 2 . Such additional consumption of POM(e - ) and H 2 O 2 led to the incomplete As(III) oxidation in the system without residual ZVAl and emphasized the need for a continuous electron supply from ZVAl to compensate the depletion of POM(e - ). After the hydrolyzation at pH 6.0, the XANES data evidenced that not only As(V) but WO 4 released from the POM retained on surfaces of Al/Fe hydroxides. The competition for sorption sites on Al/Fe hydroxides between As(V) and WO 4 led to the incomplete As removal. Despite the loss of WO 4 , the POM re-polymerized at pH 1 still showed the comparable capability to catalyze As(III) oxidation with original POM. This study revealed electron transfer pathways from ZVAl to As(III) as catalyzed by POM and evidenced the effective POM recycling after As removal, which lowers the cost of POM application and turns the ZVAl/Fe(II)/POM/O 2 system into a practical strategy for As remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A kinetic study of the reactions FeO+ + O, Fe+.N2 + O, Fe+.O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere.

    PubMed

    Woodcock, K R S; Vondrak, T; Meech, S R; Plane, J M C

    2006-04-21

    These gas-phase reactions were studied by pulsed laser ablation of an iron target to produce Fe(+) in a fast flow tube, with detection of the ions by quadrupole mass spectrometry. Fe(+).N(2) and Fe(+).O(2) were produced by injecting N(2) and O(2), respectively, into the flow tube. FeO(+) was produced from Fe(+) by addition of N(2)O, or by ligand-switching from Fe(+).N(2) following the addition of atomic O. The following rate coefficients were measured: k(FeO(+) + O --> Fe(+) + O(2), 186-294 K) = (3.2 +/- 1.5) x 10(-11); k(Fe(+).N(2) + O --> FeO(+)+ N(2), 294 K) = (4.6 +/- 2.5) x 10(-10); k(Fe(+).O(2) + O --> FeO(+) + O(2), 294 K) = (6.3 +/- 2.7) x 10(-11); and k(FeO(+) + CO --> Fe(+) + CO(2), 294 K) = (1.59 +/- 0.34) x 10(-10) cm(3) molecule(-1) s(-1), where the quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic experimental errors. The surprisingly slow reaction between FeO(+) and O is examined using ab initio quantum calculations of the relevant potential energy surfaces. The importance of this reaction for controlling the lifetime of sporadic E layers is then demonstrated using a model of the upper mesosphere and lower thermosphere.

  18. Sc-substituted La0.6Sr0.4FeO3-δ mixed conducting oxides as promising electrodes for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuejiao; Han, Da; Zhou, Yucun; Meng, Xie; Wu, Hao; Li, Junliang; Zeng, Fanrong; Zhan, Zhongliang

    2014-01-01

    The main barrier to symmetrical solid oxide fuel cells (SOFCs), where the same catalytic materials are used simultaneously as the anodes and the cathodes, is to identify a redox-stable catalyst that exhibits superior catalytic activities for both fuel oxidation and oxygen reduction reactions. Here we report a Sc-substituted La0.6Sr0.4FeO3-δ oxide, La0.6Sr0.4Fe0.9Sc0.1O3-δ, that shows great promise as a new symmetrical electrode material with good structural stability and reasonable conductivities in air and hydrogen. We further demonstrate that nano-scale La0.6Sr0.4Fe0.9Sc0.1O3-δ catalysts impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ backbones exhibit good catalytic activities for oxygen reduction and hydrogen oxidation reactions and thereby yield low polarization resistances, e.g., 0.015 Ω cm2 in air and 0.29 Ω cm2 in hydrogen with appropriate current collection at 800 °C. Thin La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte fuel cells with such symmetrical La0.6Sr0.4Fe0.9Sc0.1O3-δ catalysts showed maximum power densities of 0.56 and 0.32 W cm-2 when operating on 97% H2-3% H2O at 800 and 700 °C, respectively.

  19. Spectral reflectance properties (0.4-2.5 um) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulfate-hydrate minerals associated with sulfide-bearing mine waste

    USGS Publications Warehouse

    Crowley, J.K.; Williams, D.E.; Hammarstrom1, J.M.; Piatak, N.; Mars, J.C.; Chou, I-Ming

    2006-01-01

    Fifteen Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate mineral species commonly associated with sulphide bearing mine wastes were characterized by using X-ray powder diffraction and scanning electron microscope methods. Diffuse reflectance spectra of the samples show diagnostic absorption features related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl ions. Such spectral features enable field and remote sensing based studies of the mineral distributions. Because secondary minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of these minerals promises to have important applications to mine waste remediation studies. This report releases digital (ascii) spectra (spectral_data_files.zip) of the fifteen mineral samples to facilitate usage of the data with spectral libraries and spectral analysis software. The spectral data are provided in a two-column format listing wavelength (in micrometers) and reflectance, respectively.

  20. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2013-01-01

    Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50-150 mg L(-1). We used (14)C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to (14)CO(2) increased 2-5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50-60% in the absence of Fe(III). (14)CH(4) was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe

  1. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO₄.

    PubMed

    Blanco-Ayala, Tonali; Lugo-Huitrón, Rafael; Serrano-López, Elizabeth M; Reyes-Chilpa, Ricardo; Rangel-López, Edgar; Pineda, Benjamín; Medina-Campos, Omar Noel; Sánchez-Chapul, Laura; Pinzón, Enrique; Cristina, Trejo-Solis; Silva-Adaya, Daniela; Pedraza-Chaverrí, José; Ríos, Camilo; de la Cruz, Verónica Pérez; Torres-Ramos, Mónica

    2013-10-11

    Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO₄-induced toxicity. Through combinatory chemistry assays, we evaluated the superoxide (O₂·⁻), hydroxyl radical (OH·), hydrogen peroxide (H₂O₂) and peroxynitrite (ONO⁻) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH· generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO₄-exposed brain, liver and lung rat homogenates. Xanthone V exhibited a better scavenging capacity for O₂·⁻, ONOO⁻ and OH· than xanthone III, although both xanthones were unable to trap H₂O₂. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH· generator system. Lipid peroxidation and ROS production evoked by FeSO₄ were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants.

  2. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  3. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings.

    PubMed

    Li, Junli; Hu, Jing; Xiao, Lian; Wang, Yunqiang; Wang, Xilong

    2018-06-01

    The interactions between α-Fe 2 O 3 , γ-Fe 2 O 3 , and Fe 3 O 4 nanoparticles (NPs) and Citrus maxima seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α- and γ-Fe 2 O 3 NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in Citrus maxima seedlings, which followed an order of Fe deficiency>Fe 3+ >α-Fe 2 O 3 , γ-Fe 2 O 3 NPs>Fe 3 O 4 NPs. However, the chlorophyll leaf content of plants exposed to α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 NPs and Fe 3+ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in Citrus maxima roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4-2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  5. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-07-05

    Incorporating reduced graphene oxide (rGO) or Fe 3+ ions in TiO 2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO 2 -Fe and TiO 2 -rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO 2 -rGO and TiO 2 -Fe nanocomposites. Doping Fe into TiO 2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO 2 decreased significantly the intensity of TiO 2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO 2 -rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO 2 -Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO 2 -rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO 2 -Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH3-plasma.

    PubMed

    Ning, Ping; Liu, Sijian; Wang, Chi; Li, Kai; Sun, Xin; Tang, Lihong; Liu, Gui

    2018-02-01

    Walnut-shell activated carbon (WSAC) supported ferric oxide was modified by non-thermal plasma (NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge (DBD) was significantly promoted. The sample modified for 10min and 6.8kV output (30V input voltage) maintained 100% H 2 S conversion over a long reaction time of 390min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis and in-situ Fourier transform infrared spectroscopy (FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of 0.4, 0.5 and 0.75nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H 2 S oxidation. From the in-situ FTIR result, transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H 2 S adsorption-oxidation. Copyright © 2017. Published by Elsevier B.V.

  7. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T

    2015-08-01

    Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Assessment of laser ablation techniques in a-si technologies for position-sensor development

    NASA Astrophysics Data System (ADS)

    Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.

    2005-07-01

    Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  9. Stabilized gold nanoparticles by laser ablation in ferric chloride solutions

    NASA Astrophysics Data System (ADS)

    Nouraddini, M. I.; Ranjbar, M.; Dobson, P. J.; Farrokhpour, H.; Johnston, C.; Jurkschat, K.

    2017-12-01

    In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.

  10. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  11. Effect of reactive element oxide coating on the high temperature oxidation behaviour of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F.; Issartel, C.; El Messki, S.

    2004-05-01

    The influence of yttrium oxide coating (processed by the sol-gel method) on the oxidation behaviour of a commercial FeCrAl alloy (Kanthal A1) has been investigated during isothermal exposures in air at 1373 K. The scale growth kinetics of the uncoated alloy obey a parabolic rate law during the whole oxidation test, whereas the kinetic curves of the Y-coated specimen exhibit an initial transient stage for the first few hours, followed by a parabolic regime. The yttrium sol-gel coating deposited on the bare alloy does not provide the beneficial effect usually ascribed to reactive elements. No oxidation rate improvement of the coated alloy is observed, the parabolic rate constant values are strictly identical for both specimens. In situ X-ray diffraction reveals a marked influence of the reactive element on the composition of the oxide scale. The oxide layer formed on the yttrium-coated specimen comprised, in addition to α-alumina which is the main oxide also identified on the bare specimen, the presence of yttrium aluminates (YAlO 3, Y 3Al 5O 12) located in the outermost part of the layer.

  12. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    PubMed Central

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-01-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500

  13. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.

    1993-05-01

    The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.

  14. Effect of betaine in the successful synthesis of CoFe2O4 containing octahedron nanoparticles for electrocatalytic water oxidation

    NASA Astrophysics Data System (ADS)

    Valdez, R.; Olivas, A.; Grotjahn, D. B.; Barrios, E.; Arjona, N.; Antaño, R.; Oropeza-Guzman, M. T.

    2017-12-01

    The development of robust catalysts that oxidize water is necessary for their application in artificial photosynthesis cells. Here we report the synthesis and characterization of octahedral CoFe2O4 nanoparticles obtained through a novel aqueous method that employs betaine, (CH3)3+NCH2COO-, as the stabilizer agent. The synthetic conditions are modified changing the betaine content and the metal precursor ratios. These conditions modify the shape of CoFe2O4 finding both, octahedral and semi-spherical nanoparticles. Linear voltammetry measurements show the octahedral CoFe2O4 lead to an overpotential of ∼390 mV at the onset potential for water oxidation at alkaline conditions. Among the as-synthesized cobalt-ferrite nanomaterials, the CoFe(1:2)-C in the form of tiny nanoparticles performed a superior electrocatalytic water oxidation in alkaline conditions, showing an overpotential of ∼335 mV, which is lower than other similar catalysts in literature.

  15. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo

    2017-11-01

    Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.

  16. Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond.

    PubMed

    Rockne, Karl J

    2007-02-15

    To better understand the dynamics of Fe2 + oxidation in facultative wastewater stabilization ponds, water samples from a three-pond system were taken throughout the period of transition from anoxic conditions with high aqueous Fe2 + levels in the early spring to fully aerobic conditions in late spring. Fe2 + levels showed a highly significant correlation with pH but were not correlated with dissolved oxygen (DO). Water column Fe2 + levels were modeled using the kinetic rate law for Fe2 + oxidation of Sung and Morgan.[5] The fitted kinetic coefficients were 5 +/- 3 x 10(6) M(- 2) atm(-1) min(-1); more than six orders of magnitude lower than typically reported. Comparison of four potential Fe redox couples demonstrated that the rhoepsilon was at least 3-4 orders of magnitude higher than would be expected based on internal equilibrium. Surprisingly, measured nitrate and DO (when present) were typically consistent with both nitrate (from denitrification) and DO levels (from aerobic respiration) predicted from equilibrium. Although the hydrous Fe oxide/FeCO3 couple was closest to equilibrium and most consistent with the observed pH dependence (in contrast to predicted lepidocrocite), Fe2 + oxidation is kinetically hindered, resulting in up to 10(7)-fold higher levels than expected based on both kinetic and equilibrium analyses.

  17. Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon.

    PubMed

    Qin, Hangdao; Xiao, Rong; Chen, Jing

    2018-06-01

    The parent activated carbon (ACP) was modified with urea and thiourea to obtain N-doped activated carbon (ACN) and N, S co-doped activated carbon (ACNS), respectively. Iron supported on activated carbon (Fe/ACP, Fe/ACN and Fe/ACNS) were prepared and worked as catalyst for catalytic wet peroxide oxidation of benzoic acid (BA). The catalysts were characterized by N 2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM), and their performance was evaluated in terms of benzoic acid and TOC removal. The results indicated the doped N and S improved the adsorption capacity as well as catalytic activity of activated carbon. Besides, the catalytic activity toward benzoic acid degradation was found to be enhanced by Fe/ACNS compared to that of Fe/ACP and Fe/ACN. The enhanced catalytic performance was attributed to the presence of the nitrogen and sulfur atoms may serve to improve the relative amount of Fe 2+ on iron oxide surface and also help prevent leaching of Fe. It was also observed that the stability or reutilization of Fe/ACNS catalyst was fairly good. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol

    PubMed Central

    2017-01-01

    Fe/ZSM-5 nanosheet zeolites of varying thickness were synthesized with di- and tetraquaternary ammonium structure directing agents and extensively characterized for their textural, structural, and catalytic properties. Introduction of Fe3+ ions in the framework of nanosheet zeolites was slightly less effective than in bulk ZSM-5 zeolite. Steaming was necessary to activate all catalysts for N2O decomposition and benzene oxidation. The higher the Fe content, the higher the degree of Fe aggregation was after catalyst activation. The degree of Fe aggregation was lower when the crystal domain size of the zeolite or the Fe content was decreased. These two parameters had a substantial influence on the catalytic performance. Decreasing the number of Fe sites along the b-direction strongly suppressed secondary reactions of phenol and, accordingly, catalyst deactivation. This together with the absence of diffusional limitations in nanosheet zeolites explains the much higher phenol productivity obtainable with nanostructured Fe/ZSM-5. Steamed Fe/ZSM-5 zeolite nanosheet synthesized using C22-6-3·Br2 (domain size in b-direction ∼3 nm) and containing 0.24 wt % Fe exhibited the highest catalytic performance. During the first 24 h on stream, this catalyst produced 185 mmolphenol g–1. Calcination to remove the coke deposits completely restored the initial activity. PMID:28413693

  19. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.

    PubMed

    Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-12-15

    Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Stable isotope fractionation of tungsten during adsorption on Fe and Mn (oxyhydr)oxides

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Teruhiko; Kubo, Sayuri; Tanaka, Masato; Senda, Ryoko; Iizuka, Tsuyoshi; Tanimizu, Masaharu; Takahashi, Yoshio

    2017-05-01

    The similar, but not identical chemical properties of W compared with Mo suggest that the stable isotope system of W could be a novel proxy to explore the modern and ancient ocean as is the case in the well-established utility of Mo isotopes. We experimentally investigated the isotopic fractionation of W during adsorption on Fe and Mn (oxyhydr)oxides (ferrihydrite and δ-MnO2), a key process in the global ocean budget of this element. Our adsorption experiments confirmed that W isotopes fractionate substantially on both ferrihydrite and δ-MnO2: lighter W isotopes are preferentially adsorbed on both oxides as a result of equilibrium isotopic exchange between dissolved and adsorbed species, and the obtained values of Δ186/183Wliquid-solid (= δ186Wdissolved - δ186Wadsorbed) are 0.76 ± 0.09‰ for ferrihydrite and 0.88 ± 0.21‰ for δ-MnO2 (2σ, n = 6). Compared with the case of Mo isotopes, fractionation of W isotopes is (i) of comparable magnitude between ferrihydrite and δ-MnO2, and (ii) much smaller than that of Mo on δ-MnO2. Our previous XAFS observations and newly-performed DFT calculations both indicate that the observed W isotopic fractionations are caused by the symmetry change from Td (tetrahedral) WO42- to distorted Oh (octahedral) monomeric W species via formation of inner-sphere complexes on both ferrihydrite and δ-MnO2. The similar isotopic fractionations between the two oxides relate to the strong tendency for W to form inner-sphere complexes, which causes the symmetry change, in contrast to the outer-sphere complex of Mo on ferrihydrite. The smaller isotopic fractionation of W compared with Mo on δ-MnO2 despite their similar molecular symmetry seems to be due to their different degrees of distortion of Oh species. Our findings imply that the isotopic composition of W in modern oxic seawater is likely to become heavier relative to the input by removal of lighter W isotopes via adsorption on ferromanganese oxides in analogy with the Mo isotope

  1. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  2. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  3. Experimental Determination of Fe-Mg Interdiffusion Coefficients in Orthopyroxene Using Pulsed Laser Ablation and Nanoscale Thin Films

    NASA Astrophysics Data System (ADS)

    Ter Heege, J. H.; Dohmen, R.; Becker, H.; Chakraborty, S.

    2006-12-01

    Fe-Mg interdiffusion in silicate minerals is of interest in petrological studies for determining the closure temperature of geothermometers and for determining cooling rates from compositional profiles. It is also relevant for studies of the physical properties of silicates, such as rheology or electrical conductivity, because knowledge of its dependence on oxygen fugacity can aid in the understanding of point defect chemistry. Compositionally zoned orthopyroxenes are common in meteorites, mantle rocks, lower crustal rocks and a variety of plutonic and volcanic igneous rocks. However, experimental difficulties have precluded direct determination of Fe-Mg diffusion rates in orthopyroxenes so far and the available information comes from (1) Mg tracer diffusion coefficients obtained from isotope tracer studies using enriched ^{25}MgO films [1], (2) calculations of interdiffusion rates based on the (diffusion-controlled) order-disorder kinetics measured in orthopyroxene [2], and (3) indirect estimates from the comparison of diffusion widths in coexisting garnets and olivines, in which Fe-Mg diffusion rates are relatively well known [e.g., 3]. We have directly measured Fe-Mg interdiffusion coefficients parallel to the [001] direction in two natural orthopyroxene single crystals (approximately En95Fs5 and En90Fs10) using diffusion couples consisting of an olivine thin film (Fo30Fa70, typically 20 - 50 nm thick) deposited under vacuum on pre-heated, polished and oriented pyroxene single crystals using a pulsed laser ablation deposition technique. Samples were annealed for 4 - 337 hours at 800 - 1100 °C under atmospheric pressure in a continuous flow of CO + CO2 to control the oxygen fugacity between 10-16 and 10^{-12} bar within the stability field of pyroxene. Film thickness and compositional profiles were measured using Rutherford backscattering Spectroscopy (RBS) on reference and annealed samples, and Fe concentration depth profiles were extracted from the RBS spectra

  4. Effect of Alloying Additions on Oxidation Behaviors of Ni-Fe Based Superalloy for Ultra-Supercritical Boiler Applications

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Zhao, Xinbao; Yan, Jingbo; Gu, Y.

    A new kind of Ni-Fe-based superalloy is designed recently for 750 °C-class A-USC boiler tube. The oxidation behavior of the designed alloys with various combinations of anti-oxidation additions, Cr, Al and Si, was investigated at 750 °C and 850 °C, respectively. The results indicated that the oxidation rate of tested alloys decreased with the increase of the sum of additions. Cr addition may drop the relative constant of parabolic rate greatly when temperature is raised. But the oxide scale, mainly consisted of NiCr spinel at 750 °C and NiCrMn spinel at 850 °C, was similar while the Cr content is in a range of 20-25 wt.% at tested temperatures. Al addition, however, showed the best effective to reduce the oxidation rates. Internal Al-rich oxide was observed at the scale/metal interface for alloys added with high content of Al and was increased with Al content increase. Very tiny difference between the oxide scales of the Si-added alloys was identified when Si content varies among 0.02-0.05 wt.%. Basing on these results, this presentation discussed the optimum combination of anti-oxidation additions as well as oxidation mechanisms in the designed Ni-Fe-base superalloy.

  5. CoFe 2O 4 spinel protection coating thermally converted from the electroplated Co-Fe alloy for solid oxide fuel cell interconnect application

    NASA Astrophysics Data System (ADS)

    Bi, Z. H.; Zhu, J. H.; Batey, J. L.

    CoFe 2O 4 has been demonstrated as a potential spinel coating for protecting the Cr-containing ferritic interconnects. This spinel had an electrical conductivity of 0.85 S cm -1 at 800 °C in air and an average coefficient of thermal expansion (CTE) of 11.80 × 10 -6 K -1 from room temperature to 800 °C. A series of Co-Fe alloys were co-deposited onto the Crofer 22 APU ferritic steel via electroplating with an acidic chloride solution. After thermal oxidation in air at 800 °C, a CoFe 2O 4 spinel layer was attained from the plated Co 0.40Fe 0.60 film. Furthermore, a channeled Crofer 22 APU interconnect electrodeposited with a 40-μm Co 0.40Fe 0.60 alloy film as a protective coating was evaluated in a single-cell configuration. The presence of the dense, Cr-free CoFe 2O 4 spinel layer was effective in blocking the Cr migration/transport and thus contributed to the improvement in cell performance stability.

  6. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  7. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  8. Investigation of photoluminescence and dielectric properties of pure and Fe doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmad, Arham S.

    2018-05-01

    The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.

  9. Fe(+) chemical ionization of peptides.

    PubMed

    Speir, J P; Gorman, G S; Amster, I J

    1993-02-01

    Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.

  10. Graphene oxide/Fe3O4/chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue

    NASA Astrophysics Data System (ADS)

    Tran, Hoang V.; Bui, Lieu T.; Dinh, Thuy T.; Le, Dang H.; Huynh, Chinh D.; Trinh, Anh X.

    2017-03-01

    In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of methylene blue (MB) as a cationic dye from aqueous solutions was investigated. For this purpose, first, graphene oxide (GO) was prepared from pencil’s graphite by Hummer’s method, then after, CS/Fe3O4/GO was synthesized via chemical co-precipitation method from a mixture solution of GO, Fe3+, Fe2+ and chitosan. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting dye removal were investigated. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer capacity (q max), was calculated from the Langmuir as 30.10 mg · g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of cationic dyes from aqueous solutions.

  11. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    NASA Astrophysics Data System (ADS)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  12. DFT studies of elemental mercury oxidation mechanism by gaseous advanced oxidation method: Co-interaction with H2O2 on Fe3O4 (111) surface

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi

    2017-12-01

    Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.

  13. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  14. Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile separation.

    PubMed

    Ge, X; Gu, C D; Wang, X L; Tu, J P

    2015-09-15

    Adsorption is often time consuming due to slow diffusion kinetic. Sizing he adsorbent down might help to accelerate adsorption. For CoFe spinel oxide, a magnetically separable adsorbent, the preparation of nanosheets faces many challenges including phase separation, grain growth and difficulty in preparing two-dimensional materials. In this work, we prepared porous CoFe oxide nanosheet with chemical formula of Co2.698Fe0.302O4 through topochemical transformation of a CoFe precursor, which has a layered double hydroxide (LDH) analogue structure and a large interlayer spacing. The LDH precursor was synthesized from a cheap deep eutectic solvent (DES) system. The calcined Co2.698Fe0.302O4 has small grain size (10-20nm), nanosheet morphology, and porous structure, which contribute to a large specific surface area of 79.5m(2)g(-1). The Co2.698Fe0.302O4 nanosheets show fast removal ability and good adsorption capacity for both organic waste (305mgg(-1) in 5min for Congo red) and toxic heavy metal ion (5.27mgg(-1) in 30min for Cr (VI)). Furthermore, the Co2.698Fe0.302O4 can be separated magnetically. Considering the precursor can be prepared through a fast, simple, surfactant-free and high-yield synthetic strategy, this work should have practical significance in fabricating adsorbents. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Influence of different propellant systems on ablation of EPDM insulators in overload state

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  16. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO 2. We have shown that SRB reduce U(VI) to nanometer-sized UO 2 particles (1-5 nm) which are both intra- and extracellular, with UO 2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO 2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phasemore » when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO 2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO 2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO 2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO 2 reoxidation with ferrihydrite. The highest rate of UO 2 reoxidation occurred when the chelator promoted UO 2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO 2 dissolution did not occur, UO 2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the

  17. Synthesis of Cluster-Derived PtFe/SiO(2) Catalysts for the Oxidation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siani, A.; Alexeev, O.S.; Captain, B.

    2009-05-27

    Infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were used to characterize the species formed after impregnation of Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} onto silica, before and after removal of the organic ligands. The results indicate that the Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} cluster adsorbs weakly on the SiO{sub 2} surface. Nevertheless, partial disintegration of the cluster was observed during aging even under He and at room temperature, related to the loss of CO ligands due to their interactions with silanol groups of the support. The organic ligands can be removed from a freshly impregnated cluster bymore » thermal treatment in either He or H{sub 2}, but the surface species formed in each case have different structures. Treatment in He at 350 {sup o}C leads to a complete disintegration of the Pt-Fe bimetallic core and results in the formation of highly dispersed Pt clusters with a nuclearity of six, along with surface Fe oxide-like species. In contrast, bimetallic PtFe nanoparticles with an average size of approximately 1 nm were formed when a similar H{sub 2} treatment was used. In this case, a greater degree of metal dispersion and a larger fraction of Pt-Fe interactions were observed compared to the PtFe/SiO{sub 2} samples prepared by co-impregnation of monometallic salt precursors. Electronic interactions between Pt and Fe atoms in such cluster-derived samples led to an increased electron density on platinum, as indicated by a red shift of the frequencies of FTIR bands for adsorbed NO and CO. These electronic interactions affect the strength of the CO adsorption on platinum. All bimetallic samples were found to be more active than Pt/SiO{sub 2} for the oxidation of CO in air; however, the activity depends strongly on the structure of the surface species, the fraction of Pt-Fe bimetallic contributions, the degree of electronic interactions between Pt and Fe, and the strength of the CO

  18. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide.

    PubMed

    Chang, Fangfang; Qu, Jiuhui; Liu, Ruiping; Zhao, Xu; Lei, Pengju

    2010-01-01

    A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 microg/L of arsenic was collected from suburb of Beijing. Arsenic (III) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 microg/L were produced in the operation period of four months. The regeneration of FMBO (1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO (1:1)-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO (1:1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO (1:1)-diatomite had high oxidation ability and exhibited strong adsorptive filtration.

  19. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  20. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  1. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  2. Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are important mediators in a number of degenerative diseases. Oxidative stress refers to the imbalance between the production of ROS and the ability to scavenge these species through endogenous antioxidant systems. Since antioxidants can inhibit oxidative processes, it becomes relevant to describe natural compounds with antioxidant properties which may be designed as therapies to decrease oxidative damage and stimulate endogenous cytoprotective systems. The present study tested the protective effect of two xanthones isolated from the heartwood of Calophyllum brasilienses against FeSO4-induced toxicity. Methods Through combinatory chemistry assays, we evaluated the superoxide (O2●—), hydroxyl radical (OH●), hydrogen peroxide (H2O2) and peroxynitrite (ONOO—) scavenging capacity of jacareubin (xanthone III) and 2-(3,3-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone (xanthone V). The effect of these xanthones on murine DNA and bovine serum albumin degradation induced by an OH• generator system was also evaluated. Additionally, we investigated the effect of these xanthones on ROS production, lipid peroxidation and glutathione reductase (GR) activity in FeSO4-exposed brain, liver and lung rat homogenates. Results Xanthone V exhibited a better scavenging capacity for O2●—, ONOO- and OH● than xanthone III, although both xanthones were unable to trap H2O2. Additionally, xanthones III and V prevented the albumin and DNA degradation induced by the OH● generator system. Lipid peroxidation and ROS production evoked by FeSO4 were decreased by both xanthones in all tissues tested. Xanthones III and V also prevented the GR activity depletion induced by pro-oxidant activity only in the brain. Conclusions Altogether, the collected evidence suggests that xanthones can play a role as potential agents to attenuate the oxidative damage produced by different pro-oxidants. PMID:24119308

  3. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    PubMed

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  4. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2012-07-01

    Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo

  5. Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage.

    PubMed

    Zhou, Quan; Zhao, Zongbin; Wang, Zhiyu; Dong, Yanfeng; Wang, Xuzhen; Gogotsi, Yury; Qiu, Jieshan

    2014-02-21

    Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1).

  6. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  7. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  8. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  9. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  10. Play the heavy: An effective mass study for α-Fe{sub 2}O{sub 3} and corundum oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neufeld, Ofer; Caspary Toroker, Maytal, E-mail: maytalc@tx.technion.ac.il

    2016-04-28

    Iron(III) oxide (α-Fe{sub 2}O{sub 3}) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in α-Fe{sub 2}O{sub 3}, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in α-Fe{sub 2}O{sub 3} and other corundum oxides, including Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G{sub 0}W{sub 0}. We findmore » DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe{sub 2}O{sub 3} “play the heavy” since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe{sub 2}O{sub 3} could contribute to efficiency improvements in Fe{sub 2}O{sub 3} upon Al{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, and In{sub 2}O{sub 3} coverage.« less

  11. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    PubMed

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  12. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.

    PubMed

    Qi, Jianying; Zhang, Gaosheng; Li, Haining

    2015-10-01

    A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO4(2-), HCO3(-) and SiO3(2-) have no great influence on arsenic sorption, whereas, the HPO4(2-) shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 μg/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fe 3 O 4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Longlong; Zheng, Bin; Wang, Xiang

    2016-01-13

    Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be themore » active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.« less

  14. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  15. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.

    PubMed

    Ardo, Sandy G; Nélieu, Sylvie; Ona-Nguema, Georges; Delarue, Ghislaine; Brest, Jessica; Pironin, Elsa; Morin, Guillaume

    2015-04-07

    Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having ∼ 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO(•)) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants.

  16. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides.

    PubMed

    Suga, Hiroki; Kikuchi, Sakiko; Takeichi, Yasuo; Miyamoto, Chihiro; Miyahara, Masaaki; Mitsunobu, Satoshi; Ohigashi, Takuji; Mase, Kazuhiko; Ono, Kanta; Takahashi, Yoshio

    2017-09-27

    Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.

  17. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    NASA Astrophysics Data System (ADS)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  18. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  19. Dissimilatory Fe(III) and Mn(IV) reduction.

    PubMed Central

    Lovley, D R

    1991-01-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521

  20. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  1. Optoelectronic properties of Fe impurities in delafossite oxide materials. A high-throughput investigation

    NASA Astrophysics Data System (ADS)

    Haycock, Barry; Lewis, James P.

    2014-03-01

    A group of materials that shows promise in optoelectronic applications is the family of oxide materials (delafossites), of the form ABO2, where the A site is a monovalent cation (e . g . , Cu, Ag, or Au) and the B site is a trivalent cation (e . g ., Ga, Y, Al, or In). The bandgap of some delafossites can be tailored for specific purposes, such as in photocatalysis applications, with B-site doping. We report on our recent investigations of the properties of CuGaO2, CuInO2, CuAlO2 and NaInO2 and predict the relative disorder of Fe impurities by comparing crystallographic metrics resulting from Fe doping. We performed approximately 10K calculations, in parallel on the Titan platform (Oak Ridge Leadership Computing Facility), of possible Fe-impurity permutations to determine the most-likely configurations of Fe impurities relative to each another. Our computational approach allows us to study large supercells, consisting of 432 atoms, which enable us to examine the properties of these materials in increments of 1% for the B-site doping of Fe. We will present results from our energetically-preferred supercells and discuss further applications of our techniques applied for characterization of new reconstructions via derived metrics.

  2. A simple way to prepare reduced graphene oxide nanosheets/Fe2O3-Pd/N-doped carbon nanosheets and their application in catalysis.

    PubMed

    Yao, Tongjie; Zhang, Junshuai; Zuo, Quan; Wang, Hao; Wu, Jie; Zhang, Xiao; Cui, Tieyu

    2016-04-15

    The catalysts with Pd and γ-Fe2O3 nanoparticles embedded between reduced graphene oxide nanosheets (rGS) and N-doped carbon nanosheets (NCS) were prepared through a two-step method. Firstly, graphene oxide nanosheets (GS)/prussian blue (PB)-Pd/polypyrrole (PPy) composites were synthesized by using pyrrole monomer as reductant, K3Fe(CN)6 and PdCl2 as oxidants in the presence of GS via a redox reaction. Subsequently, the as-obtained GS/PB-Pd/PPy composites were calcinated in N2 atmosphere. During the heat-treatment, carbonization of PPy to NCS, conversion of nonmagnetic PB to magnetic γ-Fe2O3 nanoparticles, and reduction of GS to rGS were finished, simultaneously. rGS/Fe2O3-Pd/NCS composites exhibited good catalytic activity toward reduction of 4-nitrophenol. The rate constant k and turnover frequency were calculated and compared with recent reports. Owing to γ-Fe2O3 nanoparticles, the rGS/Fe2O3-Pd/NCS composites could be quickly separated by magnet and reused without obvious decrease in activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-07

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.

  4. Fe2 PO5 -Encapsulated Reverse Energetic ZnO/Fe2 O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water.

    PubMed

    Qin, Dong-Dong; He, Cai-Hua; Li, Yang; Trammel, Antonio C; Gu, Jing; Chen, Jing; Yan, Yong; Shan, Duo-Liang; Wang, Qiu-Hong; Quan, Jing-Jing; Tao, Chun-Lan; Lu, Xiao-Quan

    2017-07-10

    Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe 2 O 3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm -2 ), a maximal photocurrent of 1.0 mA cm -2 is achieved with ZnO/Fe 2 O 3 core-shell NWs and 2.3 mA cm -2 was achieved for the PH 3 -treated NWs at 1.23 V versus RHE. The PH 3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe 2 PO 5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities

    PubMed Central

    Emerson, David; Rentz, Jeremy A.; Lilburn, Timothy G.; Davis, Richard E.; Chan, Clara; Moyer, Craig L.

    2007-01-01

    Background For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Methodology/Principle Findings Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. Conclusions On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first

  6. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.

    PubMed

    Hamd, Wael; Cobo, Saioa; Fize, Jennifer; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre; Fontecave, Marc; Artero, Vincent; Laberty-Robert, Christel; Sanchez, Clement

    2012-10-14

    This work reports a facile and cost-effective method for synthesizing photoactive α-Fe(2)O(3) films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe(2)O(3) mesoporous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe(2)O(3) films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe(2)O(3) photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm(-2)) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.

  7. Removal of Cd2+ and Cu2+ ions from aqueous solution by using Fe-Fe3O4/graphene oxide as a novel and efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Le, Giang H.; Ha, Anh Q.; Nguyen, Quang K.; Nguyen, Kien T.; Dang, Phuong T.; Tran, Hoa T. K.; Vu, Loi D.; Nguyen, Tuyen V.; Lee, Gun D.; Vu, Tuan A.

    2016-10-01

    The nano Fe-Fe3O4/graphene oxide (GO) was successfully synthesized by the precipitation method and followed by chemical reduction using FeCl3 as iron sources and NaBH4 as reducing agent. The products were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), BET, x-ray photoelectron spectroscopy (XPS) and VMS. From the obtained XRD and XPS results, it revealed the formation of both Fe and Fe3O4 nano particles on GO surface. TEM images showed that both Fe3O4/GO and Fe-Fe3O4/GO had small particle size of 10-20 nm and uniform size distribution. Fe3O4/GO and Fe-Fe3O4/GO were used as adsorbents for removal of Cd2+ and Cu2+ ions from aqueous solution. Maximum adsorption capacity (Q max) of Fe-Fe3O4/GO for Cu2+ and Cd2+ are 90.0 mg g-1 and 108.6 mg g-1, respectively. These values are much higher as compared to those of Fe3O4/GO as well as those reported in the literature. Additionally, this novel adsorbent can be reused by washing with diluted Hcl solution and easily recovered by applying the magnetic field. The Cd2+ adsorption isotherm fits better for the Langmuir model that of the Freundlich model and it obeys the pseudo-second order kinetic equation.

  8. Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Laitala, Jaakko J.; Lahtinen, Raimo; Whitehouse, Martin J.

    2015-12-01

    The Paleoproterozoic, 2.0-1.9 Ga Talvivaara formation of Finland was deposited during the Shunga Event, a worldwide episode of enhanced accumulation of organic-rich sediments in the aftermath of the Lomagundi-Jatuli carbon isotope excursion. Sulfidic carbonaceous mudstones in the Talvivaara formation contain one of the largest known shale-hosted nickel deposits. In order to gain new insight into this Shungian sedimentary environment, sedimentological, petrographical and in situ S and Fe isotopic microanalyses were carried out on samples representing depositional and early-diagenetic conditions. The event-bedded lithology with tidal signatures in the organic-rich mudstones strongly indicates deposition from predominantly river-delivered mud on a highly-productive coastal area, below storm-wave base. The riverine supply of phosphorus, sulfate and iron supported high primary productivity and resulted in strong lateral and vertical chemical gradients in the nearshore waters with a shallow oxic surface layer underlain by euxinic water. The stratigraphic upper part of the Talvivaara formation contains banded intervals of thin alternating pyrite beds and carbonaceous mudstone beds. The pyrite beds were deposited by seaward excursions of the concentrated, acidic Fe-rich river plume subsequent to droughts or dry seasons, which led to intense pyrite precipitation upon mixing with euxinic waters. δ34S and δ56Fe values of the bedded pyrite (median δ34S = - 10.3 ‰ and δ56Fe = - 0.79 ‰) are consistent with the reaction of dissolved Fe(II) with H2S from bacterial sulfate reduction. Organic-rich clayey Fe-monosulfide-bearing granules were transported from the muddy estuary, and enclosed in Fe (oxyhydr)oxide aggregates that were forming by wave and current reworking in nearshore accumulations of river-delivered iron. The isotopic composition of these presently pyrrhotitic inclusions (median δ34S = - 3.3 ‰ and δ56Fe = - 1.6 ‰) indicates microbial iron reduction. The Fe

  9. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    PubMed

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Self-Assembly of Antisite Defectless nano-LiFePO4 @C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries.

    PubMed

    Wang, Hongbin; Liu, Lijia; Wang, Runwei; Yan, Xiao; Wang, Ziqi; Hu, Jiangtao; Chen, Haibiao; Jiang, Shang; Ni, Ling; Qiu, Hailong; Tang, Haitong; Wei, Yingjin; Zhang, Zongtao; Qiu, Shilun; Pan, Feng

    2018-05-18

    LiFePO 4 @C/reduced graphene oxide (rGO) hierarchical microspheres with superior electrochemical activity and a high tap density were first synthesized by using a Fe 3+ -based single inorganic precursor (LiFePO 4 OH@RF/GO; RF=resorcinol-formaldehyde, GO=graphene oxide) obtained from a template-free self-assembly synthesis followed by direct calcination. The synthetic process requires no physical mixing step. The phase transformation pathway from tavorite LiFePO 4 OH to olivine LiFePO 4 upon calcination was determined by means of the in situ high-temperature XRD technique. Benefitting from the unique structure of the material, these microspheres can be densely packed together, giving a high tap density of 1.3 g cm -3 , and simultaneously, defectless LiFePO 4 primary nanocrystals modified with a highly conductive surface carbon layer and ultrathin rGO provide good electronic and ionic kinetics for fast electron/Li + ion transport. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitrate-to-nitrite-to-nitric oxide conversion modulated by nitrate-containing {Fe(NO)2}9 dinitrosyl iron complex (DNIC).

    PubMed

    Tsai, Fu-Te; Lee, Yu-Ching; Chiang, Ming-Hsi; Liaw, Wen-Feng

    2013-01-07

    Nitrosylation of high-spin [Fe(κ(2)-O(2)NO)(4)](2-) (1) yields {Fe(NO)}(7) mononitrosyl iron complex (MNIC) [(κ(2)-O(2)NO)(κ(1)-ONO(2))(3)Fe(NO)](2-) (2) displaying an S = 3/2 axial electron paramagnetic resonance (EPR) spectrum (g(⊥) = 3.988 and g(∥) = 2.000). The thermally unstable nitrate-containing {Fe(NO)(2)}(9) dinitrosyl iron complex (DNIC) [(κ(1)-ONO(2))(2)Fe(NO)(2)](-) (3) was exclusively obtained from reaction of HNO(3) and [(OAc)(2)Fe(NO)(2)](-) and was characterized by IR, UV-vis, EPR, superconducting quantum interference device (SQUID), X-ray absorption spectroscopy (XAS), and single-crystal X-ray diffraction (XRD). In contrast to {Fe(NO)(2)}(9) DNIC [(ONO)(2)Fe(NO)(2)](-) constructed by two monodentate O-bound nitrito ligands, the weak interaction between Fe(1) and the distal oxygens O(5)/O(7) of nitrato-coordinated ligands (Fe(1)···O(5) and Fe(1)···O(7) distances of 2.582(2) and 2.583(2) Å, respectively) may play important roles in stabilizing DNIC 3. Transformation of nitrate-containing DNIC 3 into N-bound nitro {Fe(NO)}(6) [(NO)(κ(1)-NO(2))Fe(S(2)CNEt(2))(2)] (7) triggered by bis(diethylthiocarbamoyl) disulfide ((S(2)CNEt(2))(2)) implicates that nitrate-to-nitrite conversion may occur via the intramolecular association of the coordinated nitrate and the adjacent polarized NO-coordinate ligand (nitrosonium) of the proposed {Fe(NO)(2)}(7) intermediate [(NO)(2)(κ(1)-ONO(2))Fe(S(2)CNEt(2))(2)] (A) yielding {Fe(NO)}(7) [(NO)Fe(S(2)CNEt(2))(2)] (6) along with the release of N(2)O(4) (·NO(2)) and the subsequent binding of ·NO(2) to complex 6. The N-bound nitro {Fe(NO)}(6) complex 7 undergoes Me(2)S-promoted O-atom transfer facilitated by imidazole to give {Fe(NO)}(7) complex 6 accompanied by release of nitric oxide. This result demonstrates that nitrate-containing DNIC 3 acts as an active center to modulate nitrate-to-nitrite-to-nitric oxide conversion.

  12. The Importance of pH, Oxygen, and Bitumen on the Oxidation and Precipitation of Fe(III)-(oxy)hydroxides during Hydraulic Fracturing of Oil/Gas Shales

    NASA Astrophysics Data System (ADS)

    Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.

    2016-12-01

    Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to

  13. Reactions of laser-ablated Fe, Co, and Ni with NO: Infrared spectra and density functional calculations of MNO{sup +} and M(NO){sub x} (M = Fe, Co, x = 1--3; M = Ni, x = 1,2), and M(NO){sub x}{sup {minus}} (M = Co, Ni; x = 1,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M.; Andrews, L.

    2000-05-04

    Laser-ablated iron, cobalt, and nickel atoms, cations, and electrons have been reacted with NO molecules during condensation in excess neon and argon. The end-on bonded Fe(NO){sub 1-3}, Co(NO){sub 1-3}, and Ni(NO){sub 1-2} nitrosyls and side-bonded Fe-({eta}{sup 2}-NO), Co-({eta}{sup 2}-NO), and Ni-({eta}{sup 2}-NO) species are formed during sample deposition or on annealing. The FeNO{sup +}, CoNO{sup +}, and NiNO{sup +} mononitrosyl cations are also produced via metal cation reactions with NO. Evidence is also presented for the Ni(NO){sub 1,2}{sup {minus}} and Co(NO){sub 1,2}{sup {minus}} anions. The product absorptions are identified by isotopic substitution ({sup 15}N{sup 16}O, {sup 15}N{sup 18}O, and mixtures),more » electron trapping with added CCl{sub 4}, and density functional calculations of isotopic frequencies. This work provides the first vibrational spectroscopic characterization of Fe, Co, and Ni nitrosyl cations and anions.« less

  14. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery.

    PubMed

    Yang, Yan; Shi, Haili; Wang, Yapei; Shi, Benzhao; Guo, Linlin; Wu, Dongmei; Yang, Shiping; Wu, Huixia

    2016-01-01

    Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible in vivo toxicity. In vitro and in vivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugate effect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect. © The Author(s) 2015.

  15. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that themore » Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.« less

  16. Amphorous hydrated Fe(III) sulfate: metastable product and bio-geochemical marker of iron oxidizing thiobacilli

    NASA Astrophysics Data System (ADS)

    Lazaroff, Norman; Jollie, John; Dugan, Patrick R.

    1998-07-01

    Chemolithotrophic iron oxidation by Thiobacillus ferrooxidans and other iron oxidizing thiobacilli produce an Fe(III) sulfato complex that polymerizes as x-ray amorphous filaments approximately 40 nm in diameter. The precursor complex in solutionis seen by ATR-FTIR spectroscopy to have a sulfate spectrum resembling the v(subscript 3) and v(subscript 1) vibrational modes of the precipitated polymer. Chemically similar precipitates prepared by oxidation of acid ferrous sulfate with hydrogen peroxide have a different micromorphology, higher iron/sulfur ratio and acid solubility than the bacterial product. They possess coalescing globular microstructures composed of compacted micro-fibrils. Scanning electron microscopy and diffuse reflectance FTIR show the formation of iron polymer on the surface of immobilized cells of T. ferrooxidans, oxidizing iron during the corrosion of steel. Although spatially separated form the steel coupons by a membrane filter, the cell walls become covered with tufts of amorphous hydrated Fe(III) sulfate. The metastable polymer is converted to crystalline goethite, lepidocrocite, and magnetite in that order, as the pH rises due to proton reduction at cathodic sites on the steel. The instability of the iron polymer to changes in pH is also evidenced by the loss of sulfate when washed with lithium hydroxide solution at pH 8. Under those conditions there is little change in micromorphology, but restoration of sulfate with sulfuric acid at pH 2.5, fails to re-establish the original chemical structure. Adding sulfate salts of appropriate cations to solutions of the Fe(III) sulfato complex or suspensions of its precipitated polymer in dilute sulfuric acid, result in dissociation of the metastable complex followed by crystallization of ferric ions and sulfate in jarosites. Jarosites and other derivatives of iron precipitation by iron oxidizing thiobacilli, form conspicuous deposits in areas of natural pyrite leaching. The role of iron oxidizing

  17. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  18. High-Temperature Oxidation of Fe3Al Intermetallic Alloy Prepared by Additive Manufacturing LENS

    PubMed Central

    Łyszkowski, Radosław

    2015-01-01

    The isothermal oxidation of Fe-28Al-5Cr (at%) intermetallic alloy microalloyed with Zr and B (<0.08 at%) in air atmosphere, in the temperature range of 1000 to 1200 °C, was studied. The investigation was carried out on the thin-walled (<1 mm) elements prepared by Laser Engineered Net Shaping (LENS) from alloy powder of a given composition. Characterization of the specimens, after the oxidation, was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM, with back-scatter detector (BSE) and energy-dispersive X-ray spectroscopy (EDS) attachments). The investigation has shown, that the oxidized samples were covered with a thin, homogeneous α-Al2O3 oxide layers. The intensity of their growth indicates that the material lost its resistance to oxidation at 1200 °C. Structural analysis of the thin-walled components’ has not shown intensification of the oxidation process at the joints of additive layers. PMID:28788014

  19. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-07-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  20. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-05-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  1. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the

  2. Mixed Metal Oxides of the Type CoxZn1-xFe2O4 as Photocatalysts for Malachite Green Degradation Under UV Light Irradiation.

    PubMed

    Tzvetkov, Martin; Milanova, Maria; Cherkezova-Zheleva, Zara; Spassova, Ivanka; Valcheva, Evgenia; Zaharieva, Joana; Ivan, Mitov

    2017-06-01

    A combination of thermal and mechanical (high energy ball milling) treatment was applied in an attempt to obtain polycrystalline mixed metal binary and ternary oxides of the type CoxZn1-xFe2O4 (x = 0; 0.25; 0.5; 0.75; 1). The synthetic procedure used successfully produced single-phased, homogeneous ZnFe2O4, CoFe2O4, and Co0.75Zn0.25Fe2O4, as well as mixed oxides, whose composition depended both on the duration of the high energy ball milling and the ratio Zn(II)/Co(II). The formation of spinel-like structures was proved by XRD, Mössbauer spectroscopy and Raman spectroscopy. For the characterization of the samples low-temperature N2 adsorption, UV/Vis spectroscopy and transmission electron microscopy were applied. The energy band gap of the samples was calculated, suggesting they are promising photocatalysts. The decomposition of the Malachite Green in model water solutions under UV-light irradiation was successfully achieved in the presence of the samples as photocatalysts. The highest rate constant was obtained for the sample synthesized at longer milling time in combination with higher Zn(II)/Co(II) ratio. The photocatalytic activity of the ternary mixed oxides was compared with the pure hematite, α-Fe2O3, and the binary ZnFe2O4 and CoFe2O4 ferrites with spinel structure that were treated in the same way. A synergetic effect of α-Fe2O3 and the spinel-like structure on the photocatalytic properties of ternary mixed metal oxides was detected.

  3. Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang

    2013-05-01

    Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.

  4. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    PubMed

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  5. Transformation of dinitrosyl iron complexes [(NO)2Fe(SR)2]- (R = Et, Ph) into [4Fe-4S] Clusters [Fe4S4(SPh)4]2-: relevance to the repair of the nitric oxide-modified ferredoxin [4Fe-4S] clusters.

    PubMed

    Tsou, Chih-Chin; Lin, Zong-Sian; Lu, Tsai-Te; Liaw, Wen-Feng

    2008-12-17

    Transformation of dinitrosyl iron complexes (DNICs) [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) into [4Fe-4S] clusters [Fe(4)S(4)(SPh)(4)](2-) in the presence of [Fe(SPh)(4)](2-/1-) and S-donor species S(8) via the reassembling process ([(NO)(2)Fe(SR)(2)](-) --> [Fe(4)S(3)(NO)(7)](-) (1)/[Fe(4)S(3)(NO)(7)](2-) (2) --> [Fe(4)S(4)(NO)(4)](2-) (3) --> [Fe(4)S(4)(SPh)(4)](2-) (5)) was demonstrated. Reaction of [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) with S(8) in THF, followed by the addition of HBF(4) into the mixture solution, yielded complex [Fe(4)S(3)(NO)(7)](-) (1). Complex [Fe(4)S(3)(NO)(7)](2-) (2), obtained from reduction of complex 1 by [Na][biphenyl], was converted into complex [Fe(4)S(4)(NO)(4)](2-) (3) along with byproduct [(NO)(2)Fe(SR)(2)](-) via the proposed [Fe(4)S(3)(SPh)(NO)(4)](2-) intermediate upon treating complex 2 with 1.5 equiv of [Fe(SPh)(4)](2-) and the subsequent addition of 1/8 equiv of S(8) in CH(3)CN at ambient temperature. Complex 3 was characterized by IR, UV-vis, and single-crystal X-ray diffraction. Upon addition of complex 3 to the CH(3)CN solution of [Fe(SPh)(4)](-) in a 1:2 molar ratio at ambient temperature, the rapid NO radical-thiyl radical exchange reaction between complex 3 and the biomimetic oxidized form of rubredoxin [Fe(SPh)(4)](-) occurred, leading to the simultaneous formation of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) (5) and DNIC [(NO)(2)Fe(SPh)(2)](-). This result demonstrates a successful biomimetic reassembly of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) from NO-modified [Fe-S] clusters, relevant to the repair of DNICs derived from nitrosylation of [4Fe-4S] clusters of endonuclease III back to [4Fe-4S] clusters upon addition of ferrous ion, cysteine, and IscS.

  6. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun

    2016-10-01

    A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.

  7. The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M = Fe, Co, Ni and Zn) nanohybrids

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan; Prakash, Anand; Bahadur, D.

    2018-02-01

    In this work, a comparative study of electrochemical performance of reduced graphene oxide-ferrites (RGO-MFe2O4, M = Fe, Co, Ni, and Zn) nanohybrids synthesized by hydrothermal method was done. The structural morphology and investigation of other physical properties of nanohybrids confirm the cubic spinel phase of the MFe2O4, reduction of graphene oxide and the distribution of ferrite nanoparticles (NPs) on RGO nanosheets. The role of RGO on the electrochemical behavior of nanohybrids was understood by quantifying the charge storage capacitance and charging-discharging behavior in a 0.1 M Na2SO4 electrolyte. The specific capacitance values of pristine Fe3O4, CoFe2O4, NiFe2O4, and ZnFe2O4 are 128, 117, 15.2 and 9.1 F g-1 respectively whereas specific capacitance of RGO-Fe3O4, RGO-CoFe2O4, RGO-NiFe2O4 and RGO-ZnFe2O4 are 233, 200, 25 and 66.8 F g-1 respectively. Our investigation suggests that apart from specific surface area of nanohybrids other factors such as structural morphology determine interaction between nanohybrids and electrolyte ions which play critical role in elevating the performance of electrodes.

  8. Nitrous oxide/oxygen inhalation provides effective analgesia during the administration of tumescent local anaesthesia for endovenous laser ablation.

    PubMed

    Meier, Thomas Oleg; Jacomella, Vincenzo; Clemens, Robert Karl Josef; Amann-Vesti, Beatrice

    2015-11-01

    Tumescent anaesthesia (TA) is an important but sometimes very painful step during endovenous thermal ablation of incompetent veins. The aim of this study was to examine whether the use of fixed 50% nitrous oxide/oxygen mixture (N2O/O2), also called equimolar mixture of oxygen and nitrous oxide, reduces pain during the application of TA. Patients undergoing endovenous laser ablation (EVLA) of incompetent saphenous veins were included. Thirty consecutive patients inhaled N2O/O2 during the application of TA. Thirty consecutive patients received TA alone (controls). Patients were asked to complete a questionnaire immediately after the intervention to assess satisfaction with the intervention and pain-levels during the different steps of the intervention (0=not at all, 10=very much). Adverse events during the treatment were monitored. 30 patients (14 men, mean age of 44 years) were included in the N2O/O2 group and 30 patients (9 men, mean age 48 years) were included in the control group. In the N2O/O2 group a significantly lower pain score was noted (mean 2.45 points, range 0-6) compared to the controls (mean 4.3 points, range 1-9, p<0.001). Overall, 64.5% of the patients were perfectly satisfied with the N2O/O2-Inhalation. Only 4 patients receiving N2O/O2 complained of adverse effects such as unpleasant loss of control (2 patients), headache (1 patient) and dizziness (1 patient). N2O/O2 is a safe and effective method to reduce pain during the application of tumescent anaesthesia for EVLA.

  9. Arsenic release from Fe/Mn oxide-rich (model) soils/sediments - A comparison of single extraction procedures

    NASA Astrophysics Data System (ADS)

    Vanek, A.; Komarek, M.; Galuskova, I.

    2012-04-01

    Arsenic extractability in As-modified Fe(III) and Mn(III,IV) oxide-coated sands was tested using five widely used 2-h single extraction procedures: deionised water, 0.01 M CaCl2, 1 M NH4NO3, 0.1 M Na2HPO4 and 0.005 DTPA. In general, the highest As recoveries reaching 39-50% of total As concentration were observed for all extracting media in the birnessite (delta-MnO2) system, indicating relatively weak adsorption of As onto the Mn oxides. The Na2HPO4 extracts from the Fe oxide systems (i.e., associated with ferrihydrite and goethite) were highest in As, accounting for up to 34% of total As amount. Surprisingly, comparable recoveries of As (14-20%) yielded deionised water, CaCl2, NH4NO3, DTPA as extracting media for both ferrihydrite and goethite coatings. Deionised water and Na2HPO4 extractions are suggested for quick estimation of easily soluble, exchangeable and/or specifically adsorbed As in real soil/sediment samples.

  10. Atomic Layer Deposition of Metastable β-Fe 2 O 3 via Isomorphic Epitaxy for Photoassisted Water Oxidation

    DOE PAGES

    Emery, Jonathan D.; Schlepütz, Christian M.; Guo, Peijun; ...

    2014-12-09

    Here, we report the growth and photoelectrochemical (PEC) characterization of the uncommon bibyite phase of iron(III) oxide (β-Fe 2O 3) epitaxially stabilized via atomic layer deposition on an conductive, transparent, and isomorphic template (Sn-doped In 2O 3). Furthermore, as a photoanode, unoptimized β-Fe 2O 3 ultrathin films perform similarly to their ubiquitous α-phase (hematite) counterpart, but reveal a more ideal bandgap (1.8 eV), a ~0.1 V improved photocurrent onset potential, and longer wavelength (>600 nm) spectral response. Finally, stable operation under basic water oxidation justifies further exploration of this atypical phase and motivates the investigation of other unexplored metastable phasesmore » as new PEC materials.« less

  11. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  12. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site.

    PubMed

    Breglia, Raffaella; Greco, Claudio; Fantucci, Piercarlo; De Gioia, Luca; Bruschi, Maurizio

    2018-01-17

    The extraordinary capability of [NiFe]-hydrogenases to catalyse the reversible interconversion of protons and electrons into dihydrogen (H 2 ) has stimulated numerous experimental and theoretical studies addressing the direct utilization of these enzymes in H 2 production processes. Unfortunately, the introduction of these natural H 2 -catalysts in biotechnological applications is limited by their inhibition under oxidising (aerobic and anaerobic) conditions. With the aim of contributing to overcome this limitation, we studied the oxidative inactivation mechanism of [NiFe]-hydrogenases by performing Density Functional Theory (DFT) calculations on a very large model of their active site in which all the amino acids forming the first and second coordination spheres of the NiFe cluster have been explicitly included. We identified an O 2 molecule and two H 2 O molecules as sources of the two oxygen atoms that are inserted at the active site of the inactive forms of the enzyme (Ni-A and Ni-B) under aerobic and anaerobic conditions, respectively. Furthermore, our results support the experimental evidence that the Ni-A-to-Ni-B ratio strongly depends on the number of reducing equivalents available for the process and on the oxidizing conditions under which the reaction takes place.

  13. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle

    NASA Astrophysics Data System (ADS)

    Cottrell, Elizabeth; Kelley, Katherine A.

    2011-05-01

    Micro-analytical determination of Fe3+/∑Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure (μ-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe3+/∑Fe ratios of 0.16 ± 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe3+/∑Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe3+/∑Fe ratios determined by micro-colorimety and XANES can be attributed to the Mössbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe3+/∑Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe3+ behaving incompatibly in shallow MORB magma chambers. MORB Fe3+/∑Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na2O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe3+ may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at ~ QFM. Both explanations, in combination with the measured MORB Fe3+/∑Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe2O3.

  14. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage

    NASA Astrophysics Data System (ADS)

    Wang, Jie; He, Huan; Wu, Zexing; Liang, Jianing; Han, Lili; Xin, Huolin L.; Guo, Xuyun; Zhu, Ye; Wang, Deli

    2018-07-01

    Transitions metal sulfides/oxides have been considered as promising anode candidates for next generation lithium-ion batteries (LIBs) due to high theoretical capacities. However, the large volume change during lithiation/delithiation process and poor electronic conductivity often result in a poor charging/discharging performance. Herein, we design a flower-like FeS/Fe2O3 composite via a simple "solvothermal-oxidation" method, in which the Fe2O3 is most distributed on the surface of the flower. The unique porous structure and synergistic effect between FeS and Fe2O3 not only accommodate the large volume expansion, but also facilitate Li ion and electron transport. The Fe2O3 shell effectively reduce the dissolution of Li2Sx during discharge/charge process. When serving as the anode material in lithium ion battery, FeS/Fe2O3 exhibits superior specific capacity, rate capacity and cycling stability compared with pure FeS and Fe2O3.

  15. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) by Leptospirillum ferrooxidans

    NASA Astrophysics Data System (ADS)

    Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J.

    2008-12-01

    Arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ˜917 and ˜180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).

  16. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  17. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    USGS Publications Warehouse

    Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.

    1991-01-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.

  18. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique.

    PubMed

    Zhang, Yuanyuan; Shang, Jiaobo; Song, Yanqun; Rong, Chuan; Wang, Yinghui; Huang, Wenyu; Yu, Kefu

    2017-02-01

    A facile strategy to increase the selectivity of heterogeneous Fenton oxidation is investigated. The increase was reached by increasing selective adsorption of heterogeneous Fenton catalyst to a target pollutant. The heterogeneous Fenton catalyst was prepared by a two-step process. First, zeolite particles were imprinted by the target pollutant, methylene blue (MB), in their aggregations, and second, iron ions were loaded on the zeolite aggregations to form the molecule imprinted Fe-zeolites (MI-FZ) Fenton catalyst. Its adsorption amount for MB reached as high as 44.6 mg g -1 while the adsorption amount of un-imprinted Fe-zeolites (FZ) is only 15.6 mg g -1 . Fenton removal efficiency of MI-FZ for MB was 87.7%, being 33.9% higher than that of FZ. The selective Fenton oxidation of MI-FZ for MB was further confirmed by its removal performance for the mixed MB and bisphenol A (BPA) in solution. The removal efficiency of MB was 44.7% while that of BPA was only 14.9%. This fact shows that molecular imprinting is suitable to prepare the Fe-zeolites (FZ)-based Fenton catalyst with high selectivity for removal of target pollutants, at least MB.

  19. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    DOE PAGES

    Yu, Liang; Liu, Yun; Yang, Fan; ...

    2015-07-14

    Very active FeO x–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe 3O 4, and Fe 2O 3 on a Au(111) substrate. Neither FeO nor Fe 2O 3 is stable under the reaction conditions. Under an environment of CO/O 2, they undergo oxidation (FeO) or reduction (Fe 2O 3) to yield nanoparticles of Fe 3O 4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe 3O 4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of anmore » active phase, and provides a unique interface to facilitate a catalytic reaction. This work highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.« less

  20. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials.

    PubMed

    Lee, K K; Deng, S; Fan, H M; Mhaisalkar, S; Tan, H R; Tok, E S; Loh, K P; Chin, W S; Sow, C H

    2012-04-28

    We present a facile approach for the fabrication of a nanocomposite comprising α-Fe(2)O(3) nanotubes (NTs) anchored on reduced graphene oxide (rGO) for electrochemical capacitors (ECs). The hollow tubular structure of the α-Fe(2)O(3) NTs presents a high surface area for reaction, while the incorporation of rGO provides an efficient two-dimensional conductive pathway to allow fast, reversible redox reaction. As a result, the nanocomposite materials exhibit a specific capacitance which is remarkably higher (~7 times) than α-Fe(2)O(3) NTs alone. In addition, the nanocomposites show excellent cycling life and large negative potential window. These findings suggest that such nanocomposites are a promising candidate as negative electrodes in asymmetrical capacitors with neutral electrolytes. This journal is © The Royal Society of Chemistry 2012

  1. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    PubMed

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  2. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the

  3. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.

    PubMed

    Hu, Qingyang; Kim, Duck Young; Yang, Wenge; Yang, Liuxiang; Meng, Yue; Zhang, Li; Mao, Ho-Kwang

    2016-06-09

    The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.

  4. Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model.

    PubMed

    Inoue, Motoki; Tazuma, Susumu; Kanno, Keishi; Hyogo, Hideyuki; Igarashi, Kazuhiko; Chayama, Kazuaki

    2011-03-01

    Bach1 is a transcriptional repressor of heme oxygenase-1 (HO-1, a.k.a. HSP-32), which is an inducible enzyme and has anti-oxidation/anti-inflammatory properties shown in various models of organ injuries. Since oxidative stress plays a pivotal role in the pathogenesis of nonalcoholic steatohepatitis (NASH), HO-1 induction would be expected to prevent the development of NASH. In this study, we investigated the influence of Bach1 ablation in mice on the progression of NASH in methionine-choline deficient (MCD) diet model. Bach1 ablation resulted in significant induction of HO-1 mRNA and its activity in the liver. When fed MCD diet, Bach1(-/-) mice exhibited negligible hepatic steatosis compared to pronounced steatohepatitis in wild type mice with 6-fold increase in hepatic triglyceride content. Whereas feeding of MCD diet decreased mRNA expressions of peroxisome proliferator-activated receptor (PPAR) α and microsomal triglyceride transfer protein (MTP) in wild type mice, there were no change in Bach1(-/-) mice. In addition, hepatic concentration of malondialdehyde (MDA), a biomarker for oxidative stress as well as plasma alanine aminotransferase (ALT) was significantly lower in Bach1(-/-) mice. These findings suggest that Bach1 ablation exerts hepatoprotective effect against steatohepatitis presumably via HO-1 induction and may be a potential therapeutic target.

  5. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  6. Crystal chemistry and oxidation state of Fe-rich prehnite from a hydrothermally altered dolerite

    NASA Astrophysics Data System (ADS)

    Nagashima, Mariko; Iwasa, Kiyoka; Akasaka, Masahide

    2018-04-01

    Fe-rich prehnite, Ca2(Al,Fe)(AlSi3)O10(OH)2, in a hydrothermally altered dolerite sill from Mitsu, Shimane Peninsula, Japan, was studied using 57Fe Mössbauer spectroscopy and X-ray Rietveld method to determine the oxidation state and distribution of Fe within the prehnite and to clarify its structural properties. Prehnite shows two modes of occurrence: a druse and vein mineral (prehnite I) associated with Fe-rich pumpellyite and laumontite and a replacement of primary plagioclase (prehnite II). The Fe contents of prehnite I and II are 0.33-0.44 and 0.01-0.46 Fe3+ atoms per formula unit, respectively. The Mössbauer spectrum of prehnite II consists of one doublet with isomer shift ( IS) = 0.364 mm/s and quadrupole splitting ( QS) = 0.284 mm/s assigned to Fe3+ at the octahedral M site. In contrast, the Mössbauer spectrum of prehnite I consists of two doublets assigned to Fe3+ at the M site ( IS = 0.369 mm/s and QS = 0.299 mm/s) and Fe2+ at the seven coordinated A site ( IS = 1.05 and QS = 2.78 mm/s). According to X-ray Rietveld refinements with Pmna and Pma2 space groups, the fitting with Pma2 gave more reduced reliability factors than those using Pmna for both specimens, implying ordering of Al and Si at the tetrahedral T2 sites. Determined T2-O bond lengths at the Al-rich and Si-rich T2 sites, 1.71-1.72 and 1.62-1.64 Å, respectively, also indicate the ordered arrangement of Al and Si at the T2 sites. Refined site occupancies at the A and M sites are represented as A (Ca0.993(9)Fe2 + 0.007) M (Al0.666(6)Fe3 + 0.334) for prehnite I, and A Ca1.0 M (Al0.865(5)Fe3 + 0.135) for prehnite II, respectively. The existence of Fe2+ in the A site filling Ca deficiency in prehnite I is consistent with the result from the Mössbauer analysis.

  7. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  8. Ablation Predictions for Carbonaceous Materials Using Two Databases for Species Thermodynamics

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2013-01-01

    During previous work at NASA Ames Research Center, most ablation predictions were obtained using a species thermodynamics database derived primarily from the JANAF thermochemical tables. However, the chemical equilibrium with applications thermodynamics database, also used by NASA, is considered more up to date. In this work, ablation analyses were performed for carbon and carbon phenolic materials using both sets of species thermodynamics. The ablation predictions are comparable at low and moderate heat fluxes, where the dominant mechanism is carbon oxidation. For high heat fluxes where sublimation is important, the predictions differ, with the chemical equilibrium with applications model predicting a lower ablation rate. The disagreement is greater for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate. Sample calculations for representative Orion and Stardust environments show significant differences only in the sublimation regime. For Stardust, if the calculations include a nominal environmental uncertainty for aeroheating, then the chemical equilibrium with applications model predicts a range of recession that is consistent with measurements for both heatshield cores.

  9. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  10. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid

    NASA Astrophysics Data System (ADS)

    Rastgar, Masoud; Shakeri, Alireza; Bozorg, Ali; Salehi, Hasan; Saadattalab, Vahid

    2018-05-01

    Emerging forward osmosis (FO) process as a potentially more energy efficient method has recently gained remarkable attention. Herein, considering the unique features of graphene oxide (GO), a new facile method has been proposed to magnetically modify GO within the polyamide active layer to obtain highly efficient osmotically driven membranes. While exposed to magnetic field, thin film nanocomposite membranes modified by GO/Fe3O4 nanohybrids (TFN-MMGO/Fe3O4) were synthesized by in-situ interfacial polymerization of the prepared monomer solution and organic trimesoyl chloride. Water permeability, salt rejection, and fouling tendency of the modified membranes were then evaluated and compared with both pristine thin film composite (TFC) membrane and the ones modified by GO/Fe3O4 nanohybrides in the absence of magnetic field (TFN-GO/Fe3O4). According to the experimental results, when compared to the TFC and TFN-GO/Fe3O4 membranes, respectively, 117.4% and 63.2% water flux enhancements were achieved in TFN-MMGO/Fe3O4 membrane with optimal GO/Fe3O4 nanohybrid concentration of 100 ppm. In spite of such improvements in water flux, little compromise in reverse salt leakages were observed in the TFN-MMGO/Fe3O4 membranes compared to the TFC one. As well, the TFN-MMGO/Fe3O4 and TFN-GO/Fe3O4 membranes revealed higher fouling resistances than the TFC membrane due to their distinguished manipulated surface characteristics.

  11. Effects of oxide replacement with fluoride at the CoFeB interface on interface magnetic anisotropy and its voltage control

    NASA Astrophysics Data System (ADS)

    Pankieiev, Mykhailo; Kita, Koji

    2018-05-01

    In this paper we report results of improving Co60Fe20B20 interface perpendicular magnetic anisotropy (PMA) by replacing neighbor oxide layer with fluoride one. We expected that fluorine as element with higher than oxide electronegativity could more effectively attract electrons from out-of-plane d orbitals of ferromagnetic, increasing role of in-plane orbitals. By this we wanted to increase PMA and its response to applied voltage bias. Polar magneto-optic Kerr effect measurement show decreasing of out-of-plane magnetic field needed to change magnetization to perpendicular in stacks with oxygen replaced by fluorine as well as increasing of coefficient of response to applied voltage α from < 10 fJ/Vm for CoFeB/Al2O3 interface to 20 fJ/Vm for CoFeB/AlF3/Al2O3 and 22 fJ/Vm for CoFeB/MgF2 stacks. Direct chemical interaction of Co with F was confirmed by x-ray photoelectron spectroscopy (XPS) measurement of Co2p core level region. Moreover angular-resolved XPS showed that F tends to stay at CoFeB interface rather than diffuse out of it.

  12. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  13. Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design.

    PubMed

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein

    2018-09-01

    The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1  mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Becker, U.

    2017-01-01

    (II) to travel through the hematite surface and reach U(VI). The progression and extent of ET occurring on the semiconducting hematite (0 0 1) surface via the proximity effect depends on the electronic properties of the surface. ET between the spatially separated U(VI) and Fe(II) occurs most readily when orbitals between the Fe and U adsorbates overlap with those of neighboring O and Fe ions at the hematite surface, as shown by calculations without the Hubbard U correction. Analyses of the spins densities confirm that the U and Fe adsorbates were reduced and oxidized, respectively, (acquiring 0.33 μB and 0.11-0.20 μB, respectively), while Fe cations at the hematite surface were reduced (losing ⩽0.6 μB). If electrons are highly localized, the amount of orbital mixing and electronic coupling through the hematite surface decreases and in turn leads to a lower degree of spin transfer, as predicted by calculations with the Hubbard U correction. Thus, the proximity effect is a potential mechanism on semiconducting surfaces facilitating surface-mediated redox reactions, although its significance varies depending on the electronic properties and subsequent charge-carrying ability of the surface. These results provide insight into ET pathways and mechanisms on insulating Al- and semiconducting Fe oxide surfaces influencing the reduction U(VI) by Fe(II) that may subsequently limit uranium's transport in the subsurface.

  15. Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    González-Dávila, M.; Santana-González, C.; Santana-Casiano, J. M.

    2017-12-01

    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.

  16. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    PubMed

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  17. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  18. Iron-oxide Aerogel and Xerogel Catalyst Formulations: Characterization by 57Fe Mössbauer and XAFS Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huggins, F.; Bali, S; Huffman, G

    2010-01-01

    Iron in various iron-oxide aerogel and xerogel catalyst formulations ({ge}85% Fe{sub 2}O{sub 3}; {le}10% K, Co, Cu, or Pd) developed for possible use in Fischer-Tropsch synthesis (FTS) or the water-gas-shift (WGS) reaction has been examined by {sup 57}Fe Moessbauer spectroscopy. The seventeen samples consisted of both as-prepared and calcined aerogels and xerogels and their products after use as catalysts for FTS or the WGS reaction. Complementary XAFS spectra were obtained on the occurrence of the secondary elements in some of the same materials. A broad, slightly asymmetric, two-peak Moessbauer spectrum was obtained from the different as-prepared and calcined catalyst formulationsmore » in the majority of cases. Such spectra could only be satisfactorily fit with three quadrupole doublet components, but no systematic trends in the isomer shift and quadrupole splitting parameters and area ratios of the individual components could be discerned that reflected variations in the composition or preparation of the aerogel or xerogel materials. However, significant reductions were noted in the Moessbauer effective thickness (recoilless absorption effect per unit mass of iron) parameter, {chi}{sub eff}/g, determined at room temperature, for aerogels and xerogels compared to bulk iron oxides, reflecting the openness and lack of rigidity of the aerogel and xerogel structures. Moessbauer measurements for two aerogels over the range from 15 to 292 K confirmed the greatly diminished nature of this parameter at room temperature. Major increases in the effective thickness parameter were observed when the open structure of the aerogel or xerogel collapsed during calcination resulting in the formation of iron oxides (hematite, spinel ferrite). Similar structural changes were indicated by increases in this parameter after use of iron-oxide aerogels as catalysts for FTS or the WGS reaction, during which the iron-oxide aerogel was converted to a mixture of nonstoichiometric

  19. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-11-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.

  20. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  1. Fenton-like Degradation of Phenol Catalyzed by a Series of Fe-Containing Mixed Oxides Systems

    NASA Astrophysics Data System (ADS)

    Alhmoud, T. T.; Mahmoud, S. S.; Hammoudeh, A. Y.

    2018-02-01

    In our attempts to develop a solid catalyst to degrade organic pollutants in wastewater via the Fenton-like reaction, six Fe-containing mixed oxide systems were prepared by means of the sol-gel auto-combustion method to have the following stoichiometries: CuFe1.2O2.8, BaFe7.2O11.8, BaFe7.2Cu2O13.8, BaFe5.4V3O16.6, BaFe4.8Cu2V3O17.7 and Ag2Fe5.4V3O16.6. The prepared systems were thermally treated at 550°C, 650°C, 800°C and 1100°C, and then characterized by XRD to identify the present phases. The systems were tested with respect to their catalytic efficiency in the degradation of phenol (200 ppm) in water where CuFe1.2O2.8 was found to be the most reactive one (80% removal in 60 min). It showed thereby first-order kinetics and an enhanced behavior under irradiation with a 30-W LED light source. The positive role of irradiation was most obvious in the case of Ag2Fe5.4V3O16.6 in which almost complete conversion was achieved in 120 min compared to only 45% in the same period but without irradiation. However, increasing the temperature at which thermal treatment is performed was found to suppress the catalytic activity of the system. Due to their high efficiency and rather low leaching rates of constituents, CuFe1.2O2.8 or Ag2Fe5.4V3O16.6 seem to be very promising in the Fenton-like degradation of organic pollutants.

  2. A computational study of the catalytic aerobic epoxidation of propylene over the coordinatively unsaturated metal-organic framework Fe3(btc)2: formation of propylene oxide and competing reactions.

    PubMed

    Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras

    2018-02-28

    The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .

  3. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    PubMed

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH

    PubMed Central

    Losey, Nathaniel A.; Mus, Florence; Peters, John W.; Le, Huynh M.

    2017-01-01

    ABSTRACT Syntrophomonas wolfei syntrophically oxidizes short-chain fatty acids (four to eight carbons in length) when grown in coculture with a hydrogen- and/or formate-using methanogen. The oxidation of 3-hydroxybutyryl-coenzyme A (CoA), formed during butyrate metabolism, results in the production of NADH. The enzyme systems involved in NADH reoxidation in S. wolfei are not well understood. The genome of S. wolfei contains a multimeric [FeFe]-hydrogenase that may be a mechanism for NADH reoxidation. The S. wolfei genes for the multimeric [FeFe]-hydrogenase (hyd1ABC; SWOL_RS05165, SWOL_RS05170, SWOL_RS05175) and [FeFe]-hydrogenase maturation proteins (SWOL_RS05180, SWOL_RS05190, SWOL_RS01625) were coexpressed in Escherichia coli, and the recombinant Hyd1ABC was purified and characterized. The purified recombinant Hyd1ABC was a heterotrimer with an αβγ configuration and a molecular mass of 115 kDa. Hyd1ABC contained 29.2 ± 1.49 mol of Fe and 0.7 mol of flavin mononucleotide (FMN) per mole enzyme. The purified, recombinant Hyd1ABC reduced NAD+ and oxidized NADH without the presence of ferredoxin. The HydB subunit of the S. wolfei multimeric [FeFe]-hydrogenase lacks two iron-sulfur centers that are present in known confurcating NADH- and ferredoxin-dependent [FeFe]-hydrogenases. Hyd1ABC is a NADH-dependent hydrogenase that produces hydrogen from NADH without the need of reduced ferredoxin, which differs from confurcating [FeFe]-hydrogenases. Hyd1ABC provides a mechanism by which S. wolfei can reoxidize NADH produced during syntrophic butyrate oxidation when low hydrogen partial pressures are maintained by a hydrogen-consuming microorganism. IMPORTANCE Our work provides mechanistic understanding of the obligate metabolic coupling that occurs between hydrogen-producing fatty and aromatic acid-degrading microorganisms and their hydrogen-consuming partners in the process called syntrophy (feeding together). The multimeric [FeFe]-hydrogenase used NADH without the

  5. Thermodynamics of Fe(II)Fe(III) oxide systems I. Hydrothermal Fe3O4

    USGS Publications Warehouse

    Bartel, J.J.; Westrum, E.F.; Haas, J.L.

    1976-01-01

    The heat capacity of a hydrothermally-prepared polycrystalline sample of Fe3O4 was measured from 53 to 350 K, primarily to study the thermophysics of the Verwey transitions. Although the bifurcation of the transition was confirmed, the sample was found to contain traces of manganese. The observed transition temperatures of 117.0 and 123.0 K are 3.7 and 4.2 K higher respectively than those found in pure Fe3O4. Ancillary analytical results are consistent and indicate a stoichiometry of Mn0.008Fe2.992O4 for this material. Characteristics in the transition region are ascribed to dopant effects. ?? 1976.

  6. A subsurface Fe-silicate weathering microbiome

    NASA Astrophysics Data System (ADS)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  7. Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Shetty, Krushitha; Lokesh, S. V.; Rangappa, Dinesh; Nagaswarupa, H. P.; Nagabhushana, H.; Anantharaju, K. S.; Prashantha, S. C.; Vidya, Y. S.; Sharma, S. C.

    2017-02-01

    Here, a green route has been reported to convert Graphene Oxide (GO) to reduced graphene oxide (RGO) using clove extract. A modest and eco-accommodating sol-gel strategy has been employed to prepare MgFe2O4 nanoparticles, MgFe2O4-RGO nanocomposite samples. The samples were analyzed by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-Visible Spectroscopy, Scanning Electron Microcopy (SEM), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Electrochemical Impedance Spectroscopy (EIS). PXRD result revealed that the prepared samples were cubic spinel in nature. SEM results uncovered flake like surface morphology of the prepared nanomaterial. Better PL emission signature was observed when excited at 329 nm. PL studies demonstrated that the present samples were potential for the fabrication of white component of white light emitting diodes (WLEDs). Further, MgFe2O4-RGO nanocomposite showed enhanced photocatalytic movement (PCM) and photostability under Sunlight in the decomposition of Malachite Green (MG) compared to MgFe2O4. This can be attributed to the interaction of MgFe2O4 surface with RGO sheets which results in PL quenching, demonstrates that the recombination of photo-induced electrons and holes in MgFe2O4-RGO nanocomposite is more effectively inhibited. A possible mechanism for the enhanced properties of MgFe2O4-RGO nanocomposite was discussed. Moreover, MgFe2O4-RGO photocatalyst also showed easy magnetic separation with high reusability. These results unveil that the synthesized sample can be used in display applications and also as a potential photocatalyst.

  8. The effect of cerium oxide argon-annealed coatings on the high temperature oxidation of a FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Nguyen, C. T.; Buscail, H.; Cueff, R.; Issartel, C.; Riffard, F.; Perrier, S.; Poble, O.

    2009-09-01

    Ceria coatings were applied in order to improve the adherence of alumina scales developed on a model Fe-20Cr-5Al alloy during oxidation at high temperature. These coatings were performed by argon annealing of a ceria sol-gel coating at temperatures ranging between 600 and 1000 °C. The influence of these coatings on the alloy oxidation behaviour was studied at 1100 °C. In situ X-ray diffraction (XRD) was performed to characterize the coating crystallographic nature after annealing and during the oxidation process. The alumina scale morphologies were studied by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The present work shows that the alumina scale morphology observed on cerium sol-gel coated alloy was very convoluted. On the cerium sol-gel coated alloy, argon annealing results in an increase of the oxidation rate in air, at 1100 °C. The 600 °C argon annealing temperature results in a good alumina scale adherence under thermal cycling conditions at 1100 °C.

  9. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    PubMed

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Oba, Masaki; Miyabe, Masabumi; Akaoka, Katsuaki; Wakaida, Ikuo

    2016-02-01

    We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3-4 mm (2 mm) from the sample surface.

  11. The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells

    DOE PAGES

    Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...

    2017-02-18

    Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less

  12. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe-Mn hydrous oxide.

    PubMed

    Szlachta, Małgorzata; Gerda, Vasyl; Chubar, Natalia

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6 mg/g) and Se(IV) (up to 29.0 mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH(-) groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO(3) did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  14. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    PubMed Central

    Edwards, Katrina J; Glazer, B T; Rouxel, O J; Bach, W; Emerson, D; Davis, R E; Toner, B M; Chan, C S; Tebo, B M; Staudigel, H; Moyer, C L

    2011-01-01

    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep', while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers' (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures. PMID:21544100

  15. Oxidation of pyrite in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Alexander, Corrine; Dulong, F.T.; LaCount, R.B.; Friedman, S.

    1987-01-01

    Pyrite (FeS2) inclusions in coal, when heated in an oxygen deficient atmosphere (approximately 1% oxygen), become coated with magnetic Fe3O4 due to oxidation. Most of the FeS2 can thus be removed from the coal by magnetic separation to reduce the sulphur concentration. The oxidation products have been studied in greater detail by measuring the SO2 and O2 in the effluent gas during the heating process and by performing further magnetic measurements. At 582 K, the pyrite surface was oxidized to FeSO4. Significant oxidation of FeSO4 and FeS2 to Fe3O4 was observed starting at 677 K. At about 681 K, the Fe3O4 is further oxidized to ??-Fe2O3. At 681 K, under isothermal conditions, the oxidation is impeded by the ??-Fe2O3 formed on the surfaces of the grains. If the temperature is rapidly increased, the oxygen penetrates the ??-Fe2O3 veneer to the FeS2 core of the pyrite grains and oxidizes essentially the whole pyrite mass to Fe3O4 before ??-Fe2O3 can be formed. ?? 1987.

  16. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.

    PubMed

    Semin, Boris K; Seibert, Michael

    2016-06-01

    We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.

  17. Excellent temperature performance of spherical LiFePO4/C composites modified with composite carbon and metal oxides.

    PubMed

    Zhang, Bao; Zeng, Tao; Zhang, Jiafeng; Peng, Chunli; Zheng, Junchao; Chen, Guomin

    2014-01-01

    Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4 ·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g(-1) at a 0.1 C rate, 152.4 mAh·g(-1) at a 1 C rate and 131.7 mAh·g(-1) at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, -10°C, and -20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  18. Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell-Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria.

    PubMed

    Schmid, Gregor; Zeitvogel, Fabian; Hao, Likai; Ingino, Pablo; Adaktylou, Irini; Eickhoff, Merle; Obst, Martin

    2016-01-05

    Fe(II)-oxidizing bacteria form biogenic cell-mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel-iron and nickel-organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.

  19. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    PubMed

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  20. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    PubMed Central

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007

  1. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    PubMed

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  2. Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.

    An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperaturemore » were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.« less

  3. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  4. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  5. Influence of nanovoids on α-α' phase separation in FeCrAl oxide dispersion strengthened alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capdevila, Carlos; Aranda, M. M.; Rememnteria, R.

    2015-08-10

    The presence of nanovoids in the vicinity of oxide particles in FeCrAl oxide dispersion strengthened (ODS) alloy has been identified. These nanovoids are inherent to the manufacturing route and remain quite resistant during heat treatments. Positron annihilation spectroscopy (PAS) experiments demonstrate that these nanovoids trap Cr inside thereby reducing the Cr-content in the matrix. In conclusion, this might lead to a delay in the α–α' phase separation process as observed by atom probe tomography (APT).

  6. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    NASA Astrophysics Data System (ADS)

    Butvinová, B.; Butvin, P.; Brzózka, K.; Kuzminski, M.; Maťko, I.; Švec, P., Sr.; Chromčíková, M.

    2017-02-01

    Si-poor Fe74Nb3Cu1Si8B14-xPx, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties.

  7. Environmental factors associated with baseline and serial changes in fractional exhaled nitric oxide (FeNO) in spice mill workers.

    PubMed

    Van der Walt, Anita; Baatjies, Roslynn; Singh, Tanusha; Jeebhay, Mohamed F

    2016-09-01

    This study evaluated the determinants of high fractional exhaled nitric oxide (FeNO; >50 ppb) and serial changes in FeNO over a 24-hour period in spice mill workers at risk of work-related allergic respiratory disease and asthma. A cross-sectional study of 150 workers used European Community Respiratory Health Survey (ECRHS) questionnaires, Phadiatop, serum-specific IgE (garlic, chilli pepper, wheat; Phadia, ImmunoCAP), spirometry and FeNO. A hand-held portable nitric oxide sampling device (NIOX MINO, Aerocrine AB) measured FeNO before and after the 8-hour shift and after 24 hours from baseline. The mean age of workers was 33 years; 71% were male, 46% current smokers and 45% atopic. Among workers with garlic sensitisation, 13% were monosensitised and 6% were co-sensitised to chilli pepper. Baseline preshift FeNO geometric mean (GM=14.9 ppb) was similar to the mean change across shift (GM=15.4 ppb) and across the 24-hour period (GM=15.8 ppb). In multivariate linear models, smoking (β=-0.507) and atopy (β=0.433) were strongly associated with FeNO. High FeNO (>50 ppb) was significantly associated with asthma-like symptoms due to spice dust (OR=5.38, CI 1.01 to 28.95). Sensitisation to chilli pepper was more strongly correlated with FeNO (r=0.32) and FeNO>50 ppb (OR=17.04, p=0.005) than garlic. FeNO increase (>12%) across 24 hours demonstrated a strong association with elevated exposures to spice dust particulate (OR=3.77, CI 1.01 to 14.24). This study suggests that chilli pepper sensitisation is associated with high FeNO (>50 ppb), more strongly compared with garlic, despite the low prevalence of sensitisation to chilli. Elevated inhalant spice dust particulate is associated with a delayed elevation of FeNO across the 24-hour period. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  9. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  10. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-03-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  11. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-06-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  12. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    NASA Astrophysics Data System (ADS)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  13. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The dependence of nano-contact magnetoresistance on the bulk scattering spin asymmetry in CoFe alloys with oxidation impurities

    NASA Astrophysics Data System (ADS)

    Shiokawa, Yohei; Jung, JinWon; Otsuka, Takahiko; Sahashi, Masashi

    2015-08-01

    Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlOx nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlOx oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β, we investigated the dependence of NCMR on the composition of the ferromagnetic material Co1-xFex. The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μm2 was maximized for Co0.5Fe0.5. To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co1-xFex/Cu/Co1-xFex layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co1-xFex was also maximized for Co0.5Fe0.5. Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co0.5Fe0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co0.5Fe0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.

  15. FeOx‐Based Materials for Electrochemical Energy Storage

    PubMed Central

    Ma, Jingyi; Guo, Xiaotian; Yan, Yan; Xue, Huaiguo

    2018-01-01

    Abstract Iron oxides (FeOx), such as Fe2O3 and Fe3O4 materials, have attracted much attention because of their rich abundance, low cost, and environmental friendliness. However, FeOx, which is similar to most transition metal oxides, possesses a poor rate capability and cycling life. Thus, FeOx‐based materials consisting of FeOx, carbon, and metal‐based materials have been widely explored. This article mainly discusses FeOx‐based materials (Fe2O3 and Fe3O4) for electrochemical energy storage applications, including supercapacitors and rechargeable batteries (e.g., lithium‐ion batteries and sodium‐ion batteries). Furthermore, future perspectives and challenges of FeOx‐based materials for electrochemical energy storage are briefly discussed.

  16. Are the stratospheric dust particles meteor ablation debris or interplanetary dust?

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Kyte, F. T.

    1978-01-01

    Natural and laboratory created fusion crusts and debris from artificial meteor samples were used to develop criteria for recognizing meteor ablation debris in a collection of 5 to 50 micron particles from the stratosphere. These laboratory studies indicate that meteor ablation debris from nickel-iron meteoroids produce spherules containing taenite, wuestite, magnetite, and hematite. These same studies also indicate that ablation debris from chondritic meteoroids produce spheres and fragmentary debris. The spheres may be either silicate rich, containing zoned olivine, magnetite, and glass, or sulfide rich, containing iron oxides (e.g., magnetite, wuestite) and iron sulfides (e.g., pyrrhotite, pentlandite). The fragmentary debris may be either fine-grained aggregates of olivine, magnetite, pyroxene, and occasionally pyrrhotite (derived from the meteorite matrix) or individual olivine and pyroxene grains (derived from meteorite inclusions).

  17. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    PubMed

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  19. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  20. Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.

    PubMed

    Wu, Hao; Ai, Zhihui; Zhang, Lizhi

    2014-04-01

    In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    PubMed

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of Molar Ratios and Sintering Times on Crystal Structures and Surface Morphology of Nd1+xFeO3 Oxide Alloy Prepared by using Solid Reaction Method

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.

    2018-05-01

    The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.

  3. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  4. Thermal Stability of FeS2 Cathode Material in "Thermal" Batteries: Effect of Dissolved Oxides in Molten Salt Electrolytes

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.

    2008-09-01

    The thermal stability of FeS2 cathode material for thermal batteries is investigated in the LiCl-KCl eutectic containing up to 10 wt% Li2O (used as anti-peak). The results show that the decomposition of pyrite shifts to higher temperatures in the presence of molten salts as the S2 gas is repressed by the liquid phase. For high lithium oxide contents the decomposition temperature of pyrite decreases by 100 °C. In addition Li2FeS2 as reaction product is evidenced whereas Li3Fe2S4 is expected from literature data.

  5. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng

    2018-03-01

    Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.

  6. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positivemore » magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.« less

  7. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  8. 2:1 Charge disproportionation in perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haichuan; Hosaka, Yoshiteru; Seki, Hayato

    La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. The compound crystallizes in a √2a×2a×√2a perovskite cell in which the La and Ca ions at the A site are disordered. At 217 K the Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and this disproportionation is accompanied by transitions in magnetic and transport properties. The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. The local electronic and magnetic environments of Fe in La{sub 1/3}Ca{sub 2/3}FeO{submore » 3} are quite similar to those of Fe in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}, and the 2:1 charge disproportionation pattern of Fe{sup 3+} and Fe{sup 5+} in La{sub 1/3}Ca{sub 2/3}FeO{sub 3} is also the same as that in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}. - Graphical abstract: The perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and the charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. - Highlights: • La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. • At 217 K the Fe{sup 3.67+} shows charge disproportionation (CD) to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1. • The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. • The disproportionation is accompanied by transitions in magnetic and transport properties.« less

  9. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    NASA Astrophysics Data System (ADS)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  10. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fe-oxide mineralogy of the Jiujiang red earth sediments and implications for Quaternary climate change, southern China.

    PubMed

    Yin, Ke; Hong, Hanlie; Algeo, Thomas J; Churchman, Gordon Jock; Li, Zhaohui; Zhu, Zongmin; Fang, Qian; Zhao, Lulu; Wang, Chaowen; Ji, Kaipeng; Lei, Weidong; Duan, Zhenggang

    2018-02-26

    Diffuse reflectance spectrophotometry (DRS) is a new, fast, and reliable method to characterize Fe-oxides in soils. The Fe-oxide mineralogy of the Jiujiang red earth sediments was investigated using DRS to investigate the climate evolution of southern China since the mid-Pleistocene. The DRS results show that hematite/(hematite + goethite) ratios [Hm/(Hm + Gt)] exhibit an upward decreasing trend within the Jiujiang section, suggesting a gradual climate change from warm and humid in the middle Pleistocene to cooler and drier in the late Pleistocene. Upsection trends toward higher (orthoclase + plagioclase)/quartz ratios [(Or + Pl)/Q] and magnetic susceptibility values (χ lf ) support this inference, which accords with global climate trends at that time. However, higher-frequency climatic subcycles observed in loess sections of northern China are not evident in the Jiujiang records, indicating a relatively lower climate sensitivity of the red earth sediments in southern China.

  12. Ablative and transport fractionation of trace elements during laser sampling of glass and copper

    NASA Astrophysics Data System (ADS)

    Outridge, P. M.; Doherty, W.; Gregoire, D. C.

    1997-12-01

    The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.

  13. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  14. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  15. Microwave thermal ablation of spinal metastatic bone tumors.

    PubMed

    Kastler, Adrian; Alnassan, Hussein; Aubry, Sébastien; Kastler, Bruno

    2014-09-01

    To assess feasibility, safety, and efficacy of microwave ablation of spinal metastatic bone tumors. Retrospective study of 17 patients with 20 spinal metastatic tumors treated with microwave ablation under computed tomographic guidance between March 2011 and August 2013 was performed. Ablations were performed under local anesthesia and nitrous oxide ventilation. Lesions were lumbar (n = 10), sacral (n = 7), and thoracic (n = 3) in location. Primary neoplastic sites were lung (n = 9), prostate (n = 4), kidney (n = 6), and uterus (n = 1). Adjunct cementoplasty was performed in nine cases, and a temperature-monitoring device was used in four cases. Procedure effectiveness was evaluated by visual analog scale (VAS) during a 6-month follow-up. Patient medical records were reviewed, and demographic and clinical data, tumor characteristics, and information on pain were assessed. Mean ablation time was 4.4 minutes ± 2.7 (range, 1-8 min), with an average of 3.8 cycles per ablation at 60 W (range, 30-70 W). The preprocedure mean VAS score was 7.4 ± 1.2 (range, 6-9). Pain relief was achieved in all but one patient. Follow-up VAS scores were as follows: day 0, 1.3 ± 1.8 (P < .001); day 7, 1.6 ± 1.7 (P < .001); month 1, 1.9 ± 1.6 (P < .001); month 3, 2.2 ± 1.5 (P < .001); and month 6, 2.3 ± 1.4 (P < .01). No complications were noted. Microwave ablation appears to be feasible, safe, and an effective treatment of painful refractory spinal metastases and may be considered as a potential alternative percutaneous technique in the management of spinal metastases. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  17. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  18. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  19. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  20. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.