Science.gov

Sample records for ablation inductively-coupled plasma

  1. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  2. Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyan, V. I.; Borisyuk, P. V.; Khalitov, R. R.; Krasavin, A. V.; Lebedinskii, Yu Yu; Palchikov, V. G.; Poteshin, S. S.; Sysoev, A. A.; Yakovlev, V. P.

    2013-10-01

    Single- and double-charged 232Th and 229Th ions were produced by laser ablation of solid-state thorium compounds and by inductively coupled plasma techniques with mass-spectrometry analysis from liquid solutions of thorium. The latter method was found to be more applicable for producing ions of radioactive 229Th for laser experiments when searching for the energy value of the isomeric nuclear transition.

  3. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  4. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  5. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  6. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  7. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  8. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  9. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  10. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    PubMed

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  11. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease

    PubMed Central

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-01-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content. PMID:25704483

  12. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  13. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Sabine; Zoriy, Miroslav; Matusch, Andreas; Wu, Bei; Salber, Dagmar; Palm, Christoph; Becker, J Susanne

    2010-01-01

    The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.

  14. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  15. [Determination of blue ballpoint pen ink by laser ablation inductively coupled plasma mass spectrometry].

    PubMed

    Ma, Dong; Shen, Min; Luo, Yi-wen; Bo, Jun; Xu, Che; Zhuo, Xian-yi

    2010-10-01

    To establish an identification method for the forensic analysis of blue ballpoint ink by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), 95 kinds of blue ballpoint pen from different manufacturers were detected. These blue ballpoint pens were classified into 34 groups according to their metal element components, among which, 26 groups can be directly distinguished according to the types of metal element components contained in the ballpoint pen, the other groups can be distinguished by different element response ratios. Meanwhile the examination result on the papers showed that the papers have no impact on the ink handwriting analysis. Experimental results showed that the method's reproducibility is good and precision is less than 10%. This method has better identification ability than traditional identification technology for questioned document. Eighty eight kinds of blue ballpoint pen out of the total 95 selected kinds can be distinguished with this method. The established method is simple, rapid, with good precision, and almost has no damage to the sample. It is particularly suitable for the demand of identification of blue ballpoint pen in forensic science.

  16. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    SciTech Connect

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth; Dirmyer, Matthew R.; Campbell, Keri; Gonzalez, Jhanis J.

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  17. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  18. Strategies for the analysis of coal by laser ablation inductively coupled plasma mass spectroscopy.

    PubMed

    Kleiber, L; Fink, H; Niessner, R; Panne, U

    2002-09-01

    The potential of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was investigated for the inorganic characterization of different coal samples pressed into pellets. Reference analysis was performed by microwave-assisted digestion of the ground samples followed by ICP-MS analysis of the resulting solutions. Two different laser ablation sampling procedures were compared. For continuous sampling, three sites of the pellet were sampled for approximately one minute, whereas for sequential sampling 15 sites were sampled for two seconds, respectively. The qualitative results of the two procedures were equivalent, but continuous sampling allowed faster analysis and better precision (RSD about 10%) than sequential sampling (RSD 10-20%). Different normalization procedures with internal and extrinsic standards were investigated and allowed a quantitative determination of Al, Ti, Zn, Ni, and V with measurement uncertainties below 10% and Fe, Si, and Sn with measurement uncertainties below 20%.

  19. Investigation of lanthanum-strontium-cobalt ferrites using laser ablation inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Óvári, Mihály; Tarsoly, Gergely; Németh, Zoltán; Mihucz, Victor G.; Záray, Gyula

    2017-01-01

    In the present study, suitability of laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for characterization of the purity and homogeneity of lanthanum-strontium-cobalt ferrite (LSCF) ceramic microsamples with general formula La1 - xSrxFe0.025Co0.975O3 (0.00 ≤ x ≤ 0.50) was studied through determination of their Sr:La ratios as well as Sr content either in depth or line profiling mode. The Sr content of the LSCF samples expressed as weight percent ranged between 5.8% and 9.7% in the case of wet chemical ICP-MS analysis, while theoretical values varied from 5.5% to 9.4%. In the case of LA-ICP-MS, relative standard deviation of the La-normalized Sr intensities was sufficient to characterize the homogeneity of the studied samples. Major and trace element (Mn, Ni, Cu, Mg, Al, Ba) concentrations could be detected at medium resolution of the applied sector field ICP-MS instrument after microwave-assisted acid digestion. For depth and line profiling, a successful approach consisted of the normalization of intensities of Sr, Fe and Co with the corresponding La counts. For the determination of the elemental ratios of La and Sr, the methods involving LA were in good agreement with theoretical values by standardization to an in-house standard corresponding to the LSCF sample having the highest x value (i.e., 0.50) checked by wet chemical ICP-MS measurements. Thus, assessment of fine scale doping of synthesized perovskite type of microsamples could be achieved by the proposed LA-ICP-MS based on a novel calibration approach applying an in-house perovskite standard. Therefore, LA-ICP-MS can be recommended for quality control of perovskite-based products. In memoriam Attila Vértes (1934-2011), full professor of the Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.

  20. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P.; Jaselskis, Edward J.

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  1. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  2. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  3. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.

    PubMed

    Poitrasson, Franck; Mao, Xianglei; Mao, Samuel S; Freydier, Rémi; Russo, Richard E

    2003-11-15

    We compared the analytical performance of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The benefit of ultrafast lasers was evaluated regarding thermal-induced chemical fractionation, that is otherwise well known to limit LA-ICPMS. Both lasers had a Gaussian beam energy profile and were tested using the same ablation system and ICPMS analyzer. Resulting crater morphologies and analytical signals showed more straightforward femtosecond laser ablation processes, with minimal thermal effects. Despite a less stable energy output, the ultrafast laser yielded elemental (Pb/U, Pb/Th) and Pb isotopic ratios that were more precise, repeatable, and accurate, even when compared to the best analytical conditions for the nanosecond laser. Measurements on NIST glasses, monazites, and zircon also showed that femtosecond LA-ICPMS calibration was less matrix-matched dependent and therefore more versatile.

  4. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, James

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  5. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-07-14

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

  6. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  7. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  8. Direct solid sampling of fire assay beads by spark ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Van Hoven, R. L.; Nam, Sang-Ho; Montaser, Akbar; Doughten, M. W.; Dorrzapf, A. F.

    1995-06-01

    A spark-based, solid-sampling cell is described for inductively coupled plasma mass spectrometry (ICP-MS). The cell is devised for the direct sampling of gold and silver beads produced by the classical lead fire assay procedure. The sampler produces a solid aerosol composed of submicron-sized vapor condensates and small (< 2 μm) spherules. In contrast to solution nebulization, the mass spectrum for spark-ICP-MS is relatively free of interfering metal oxide, polyatomic, and multiply-charged ions. The measurement precision is 3% RSD for Pt, Pd, and Rh preconcentrated into fire assay beads, but is 6% RSD for Ir due to its heterogeneous distribution in a silver bead. Detection limits determined for Pt, Pd, Rh, and Ir in fire assay beads range from 0.6 μg/g (Pt) to 1.2 μg/g (Pd). Calibration curves for these elements are linear up to the highest concentration in the bead studied (2000 μg/g). The quantitative potential of the method is evaluated using the South African Reference Material (SARM-7) geologic standard.

  9. Inductively coupled helium plasma torch

    DOEpatents

    Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  10. Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia.

    PubMed

    Hsieh, Yi-Kong; Jiang, Pei-Shin; Yang, Bing-Shen; Sun, Tian-Ye; Peng, Hsu-Hsia; Wang, Chu-Fang

    2011-08-01

    In this study, we employed laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the spatial distribution of Gd-doped iron oxide nanoparticles (IONPs) in one tumor slice that had been subjected to magnetic fluid hyperthermia (MFH). The mapping results revealed the high resolution of the elemental analysis, with the distribution of Gd atoms highly correlated with that of the Fe atoms. The spatial distributions of C, P, S, and Zn atoms revealed that the effect of MFH treatment was significantly dependent on the diffusion of the magnetic fluid in the tissue. An observed enrichment of Cu atoms after MFH treatment was probably due to inflammation in the tumor. The abnormal distribution of Ni atoms suggests a probable biochemical reaction in the tumor. Therefore, this LA-ICP-MS mapping technique can provide novel information regarding the spatial distribution of elements in tumors after cancer therapy.

  11. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    İzgi, Belgin; Kayar, Murat

    2015-07-01

    The polybrominated flame retardants and organotin compounds were screened in terms of bromine and tin content using laser ablation inductively coupled plasma mass spectrometry in plastics. The calibration standards were prepared using the fused-disk technique, and all samples were investigated under optimal conditions. Using a central composite experimental design, laser parameters, laser energy, pulse rate, scan rate and spot size were identified. The detection limits of the method were 1000 mgkg(-1) and 1600 mgkg(-1) for bromide and tin, whereas the relative standard deviation (%) values of the analysis were 9% and 6% (n=3) for ERM EC681k with 770 ± 70 mgkg(-1) Br and 86 ± 6 mgkg(-1) Sn respectively, and 106-115% of Br and 102-104% of Sn were observed for the tetrabromobisphenol A and butyltin trichloride spike plastics, respectively.

  12. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-05

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses.

  13. Portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Glaus, Reto; Koch, Joachim; Günther, Detlef

    2012-06-19

    Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is a powerful method for elemental fingerprinting of solid samples in a quasi-nondestructive manner. In order to extend the field of application to objects outside the laboratory, a portable laser ablation sampling device was assembled using a diode pumped solid state laser and fiber-optics. The ablated materials were sampled on membrane filters and subsequently quantified by means of LA-ICPMS. The analytical performance of this approach was investigated for glass and gold reference materials. Accuracies of better than 20% were reached for most elements and typical limits of detection were found to be in the range of 0.01-1 μg/g. In summary, this approach combines spatially resolved sampling with the detection power of ICPMS and enables elemental fingerprinting of objects which cannot be transferred to the laboratory, e.g., archeological artifacts in museums.

  14. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  15. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.

  16. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  17. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  18. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores.

    PubMed

    Reinhardt, H; Kriews, M; Miller, H; Schrems, O; Lüdke, C; Hoffmann, E; Skole, J

    2001-07-01

    A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

  19. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  20. Analysis of glass fragments by laser ablation-inductively coupled plasma-mass spectrometry and principal component analysis.

    PubMed

    Bajic, Stanley J; Aeschliman, David B; Saetveit, Nathan J; Baldwin, David P; Houk, R S

    2005-09-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to differentiate glass samples with similar optical and physical properties based on trace elemental composition. Laser ablation increases the number of elements that can be used for differentiation by eliminating problems commonly associated with dissolution and contamination. In this study, standard residential window and tempered glass samples that could not be differentiated by refractive index or density were successfully differentiated by LA-ICP-MS. The primary analysis approach used is Principal Component Analysis (PCA) of the complete mass spectrum. PCA, a multivariate analysis technique, provides rapid analysis of samples without time-consuming pair-wise comparison of calibrated analyses or prior knowledge of the elements present in the samples. Probabilities for positive association of the individual samples are derived from PCA. Utilization of the Q-statistic with PCA allowed us to distinguish all samples within the set to a certainty greater than the 99% confidence interval.

  1. Coupling centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry to determine contaminant retardation in clays.

    PubMed

    Timms, Wendy; Hendry, M Jim; Muise, Jason; Kerrich, Robert

    2009-02-15

    Quantifying the retardation (Rd) of reactive solutes as they migrate through low-permeability clay-rich media is difficult, thus motivating this study to assess the viability of combining centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) techniques. An influent solution containing Cl-, trace metals, and lanthanide species flowed at 1.0 mL x h(-1) through an undisturbed clay-rich core sample (33 mm diameter x 50 mm long) mounted in a UFA Beckman centrifuge operating at 3000 rpm (N factor = 876 g). During the 87 day experiment the hydraulic conductivity of the core was 3.4 x 10(-10) m x s(-1). Effluent breakthrough data indicate the Rd of Tl to be 10; incomplete breakthrough (non-steady-state) data for 145Nd and 171Yb suggest Rd values of >75 and >85, respectively. At the completion of the transport experiment, longitudinal sections of the core solid were analyzed for 145Nd and 171Yb using a Cetac laser ablation system coupled with an ICP-MS. The longitudinal core sections yielded Rd values of >10000 for 145Nd and 171Yb. This study demonstrates coupling these techniques can provide Rd values for a wide range of reactive solutes with relatively rapid testing of small-scale, low hydraulic conductivity core samples.

  2. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance.

  3. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  4. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  5. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  6. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS).

    PubMed

    Hare, Dominic J; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2017-01-22

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures.

  7. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  8. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  9. [Progress in combination of gel electrophoresis and laser ablation inductively coupled plasma mass spectrometry for trace elements determination in proteins].

    PubMed

    Wang, Ying; Guo, Yan-li; Yuan, Hong-lin; Wei, Yong-feng; Yan, Hong-tao; Chen, Hui-hui

    2012-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become a very efficient and sensitive trace, ultratrace, and surface analytical technique for the in situ study of the concentration and distribution of the elements in life sciences with high spatial resolution. It is being used more and more frequently in biological, medical materials and protein research, which will lead to a better understanding of physiology and pathology process in cells and tissues. The present review mainly introduces the strategies of combination of gel electrophoresis (GE) with LA-ICP-MS for the quantification of trace elements in proteins, including the proteins separation, elements detection and calibration methods. The paper emphasizes the basic conditions of the proteins separation, focusing on the stability of proteins during GE and the treatment methods of staining and drying of the gel to enable successful detection of the elements by LA-ICP-MS. In addition, the application of GE-LA-ICP-MS in phosphoproteins, selenoproteins and metal-binding proteins is introduced in detail. The prospects and challenge for this technique are discussed as well for further study.

  10. High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects.

    PubMed

    Van Acker, Thibaut; Van Malderen, Stijn J M; Van Heerden, Marjolein; McDuffie, James Eric; Cuyckens, Filip; Vanhaecke, Frank

    2016-11-16

    Two-dimensional elemental mapping (bioimaging) via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was performed on 5 μm thick formalin-fixed, paraffin-embedded kidney tissue sections from Cynomolgus monkeys administered with increasing pharmacological doses of cisplatin. Laterally resolved pixels of 1 μm were achieved, enabling elemental analysis on a (sub-)cellular level. Zones of high Pt response were observed in the renal cortex, where proximal tubules are present, the epithelium of which is responsible for partial reabsorption of cisplatin. Histopathological evaluation, of hematoxylin and eosin-stained serial sections, adjacent to the sections probed via LA-ICP-MS, revealed minimal to mild cisplatin-related lesions (<100 μm) in the renal cortex. Necrotic proximal tubules with sloughed epithelial cells in their lumen could be linked directly to the areas with the highest accumulation of cisplatin, indicating a direct link between cellular concentration and toxicity, thereby providing more insight into the mechanisms through which renal damage occurs.

  11. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site.

  12. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  13. In situ determination of uranium in soil by laser ablation-inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Zamzow, D.S.; Baldwin, D.P.; Weeks, S.J.; Bajic, S.J.; D'Silva, A.P. )

    1994-02-01

    The concentration of uranium in soil has been determined for 80 sites in an area suspected to have uranium contamination by in situ laser ablation - inductively coupled plasma atomic emission spectrometry (LA-ICPAES), utilizing a field-deployable mobile analytical laboratory. For 15 of the 80 sites analyzed, soil samples are collected so that the field LA-ICPAES results could be compared to laboratory-determined values. Uranium concentrations determined in the field by LA-ICPAES for these 15 sites range from <20 parts per million (ppm) by weight to 285 ppm. The uncertainty in the values determined, however, is large relative to the uranium concentrations encountered at this site. The 95% confidence interval (CI) values are approximately 85 ppm. The uranium concentrations determined by laboratory LA-ICPAES analysis range from <20 to 102 ppm (95% CI of approximately 50 ppm); microwave dissolution and subsequent standard addition determination of uranium by solution nebulization ICPAES using an ultrasonic nebulizer yields 19-124 ppm uranium (95% CI of approximately 10 ppm). For 11 of the 15 samples, the field- and laboratory-determined uranium concentrations agree, within the uncertainty of the determined values. 19 refs., 5 figs., 3 tabs.

  14. Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S.

    2006-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 20 [mu]m thin tissue sections of primary human brain tumors (glioblastoma multiforme--GBM) and adjacent non-neoplastic brain tissue. The sample surface was scanned (raster area ~1 cm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 [mu]m, and laser power density 1 x 109 W cm-2). The laser ablation system was coupled to a double-focusing sector field ICP-SFMS. Ion intensities of 63Cu+, 64Zn+, 208Pb+, and 238U+ were measured by LA-ICP-MS within the tumor area and the surrounding region invaded by GBM as well as in control tissue. The quantitative determination of copper, zinc, lead and uranium distribution in brain tissues by LA-ICP-MS was performed using prepared matrix-matched laboratory standards doped with these elements of interest. The limits of detection (LODs) obtained for Cu and Zn were 0.34 and 0.14 [mu]g g-1, respectively, while LODs of 12.5 and 6.9 ng g-1 were determined for Pb and U. The concentration and distribution of selected elements are compared between the control tissues and regions affected by GBM. A correlation was found between LA-ICP-MS and receptor-autoradiographic results. As receptor-autoradiographic techniques, a labeling for A1AR and the pBR was employed. Regarding the A1AR, we used the specific A1 adenosine receptor (A1AR)-ligand, 3H-CPFPX [3H-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine], which has been shown to specifically label the invasive zone around GBMs. The peripheral benzodiazepine receptor was labeled with 3H-Pk11195 [3H-1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide].

  15. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  16. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.

  17. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  18. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  19. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    SciTech Connect

    Allen, Lloyd A.

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu+/65Cu+ is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr+/53Cr+ (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr+ signal to 0.12% for the ratio of 51V+ to 52Cr+. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li+ signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  20. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    NASA Astrophysics Data System (ADS)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  1. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  2. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  3. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  4. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  5. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  6. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  7. Analysis of Plant Leaves Using Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry: Use of Carbon to Compensate for Matrix Effects.

    PubMed

    Chirinos, José; Oropeza, Dayana; González, Jhanis; Zorba, Vassilia; Russo, Richard E

    2017-04-01

    Direct solid sampling by laser ablation into an inductively coupled plasma synchronous vertical dual view optical emission spectroscope (LA-SVDV-ICP-OES) was used for the elemental analysis of nutrient elements Ca, B, Mn, Mg, K, and Zn and essential (non-metallic) elements P and S in plant materials. The samples were mixed with paraffin as a binder, an approach that provides better cohesion of the particles in the pellets in addition to supplying carbon to serve as an internal standard (atomic line C I 193.027 nm) as a way to compensate for matrix effects, and/or variations in the ablation process. Precision was in the range of 1-8% relative standard deviation (RSD) with limit of detection in the range of 0.4-1 mg/kg(-1) and 25-640 mg/kg(-1) for metallic and non-metallic elements, respectively.

  8. DURIP - Acquisition of an Inductively-Coupled Plasma Mass Spectrometer with Laser Ablation Source for Surface Characterization

    DTIC Science & Technology

    2010-12-24

    allows low interference which reduces common polyatomic interferences on As, Se, Cr, V and Fe, thus achieving lower detection limits in the plasma...Formerly Varian) 820 ICP-MS Ion Optics Soft Landed Hf on Si SEM Image of ablation track 178Hf LA-ICP-MS transient signals showing spatially resolved Hf on surface (left) and in defects (right)

  9. Depth profile analysis of various titanium based coatings on steel and tungsten carbide using laser ablation inductively coupled plasma--"time of flight" mass spectrometry.

    PubMed

    Bleiner, D; Plotnikov, A; Vogt, C; Wetzig, K; Günther, D

    2000-01-01

    A homogenized 193 nm ArF* laser ablation system coupled to an inductively coupled plasma-"Time of Flight"-mass spectrometer (LA-ICP-TOFMS) was tested for depth profiling analysis on different single-layer Ti based coatings on steel and W carbides. Laser parameters, such as repetition rate, pulse energy and spatial resolution were tested to allow optimum depth related calibration curves. The ablation process using a laser repetition rate of 3 Hz, 120 microm crater diameter, and 100 mJ output energy, leads to linear calibration curves independent of the drill time or peak area used for calibrating the thickness of the layer. The best depth resolution obtained (without beam splitter) was 0.20 microm per laser shot. The time resolution of the ICP-TOFMS of 102 ms integration time per isotope was sufficient for the determination of the drill time of the laser through the coatings into the matrix with better than 2.6% RSD (about 7 microm coating thickness, n = 7). Variation of the volume of the ablation cell was not influencing the depth resolution, which suggests that the depth resolution is governed by the ablation process. However, the application on the Ti(N,C) based single layer shows the potential of LA-ICP-TOFMS as a complementary technique for fast depth determinations on various coatings in the low to medium microm region.

  10. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Taylor, R. P.; Jackson, S. E.; Longerich, H. P.; Webster, J. D.

    1997-07-01

    This paper reports the successful application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to the in situ analysis of a diverse suite of twenty trace elements including Zr, Hf, Nb, Ta, Y, and REEs, in individual silicate melt inclusions in phenocrysts from Fantale volcano, Ethiopia. The UV laser, a frequency quadrupled Nd: YAG operating at 266 nm, significantly improves the ablation characteristics of minerals that do not absorb strongly at near-IR wavelengths (e.g., quartz and feldspar). Furthermore, it allows for a significant reduction in ablation pit size to ca. 10 μm, thereby permitting numerous applications that require high-resolution sampling. Multiple ablations in individual melt inclusions in the size range 10-50 μm demonstrate both the effectiveness of the technique and the generally homogeneous character of the inclusions. Comparison of the LAM-ICP-MS data for international reference material RGM-1 (a rhyolite), with recommended values, indicates an analytical precision of <10% for most of the trace elements determined in this study. The trace element abundances of the Fantale melt inclusions, determined by LAM-ICP-MS, are typical of those of pantellerites (i.e., peralkaline rhyolites), and are consistent with their origin as tiny volumes of melt trapped in quartz and alkali-feldspar phenocrysts during the final stage of fractional crystallization of the host peralkaline magma.

  11. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    NASA Astrophysics Data System (ADS)

    Walaszek, Damian; Senn, Marianne; Faller, Markus; Philippe, Laetitia; Wagner, Barbara; Bulska, Ewa; Ulrich, Andrea

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials.

  12. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  13. Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Santos, Mirian C; Wagner, Martin; Wu, Bei; Scheider, Jessica; Oehlmann, Jörg; Cadore, Solange; Becker, J Sabine

    2009-12-15

    An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels. The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low microg g(-1) range.

  14. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    PubMed

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method.

  15. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  16. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  17. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect

    Witte, Travis

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  18. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  19. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Otruba, Vítězslav; Kanický, Viktor

    2006-05-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  20. Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.

    PubMed

    Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  1. Monitoring of platinum in a single hair by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after cisplatin treatment for cancer

    NASA Astrophysics Data System (ADS)

    Pozebon, Dirce; Dressler, Valderi L.; Matusch, Andreas; Becker, J. Sabine

    2008-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to quantify and monitor the concentration of Pt along a single strand of hair from a patient who had been treated with cisplatin as cytostatic drug. The sensitivity of the analytical method developed could be increased by total ablation of the hair cross-section compared to partial ablationE A low-noise intensity ratio was obtained along the strand, while the blank was negligible. The variation of the Pt signal with reference to each cisplatin dose was clearly observed. Home-made standards consisting of Pt-enriched hair strands served as calibrators and sulphur (measuring 34S+) was used as the internal reference element. The correlation coefficient of the calibration curve for platinum was 0.9973 and the detection limit was 0.029 [mu]g g-1. The rate of hair growth between doses was constant. The mean relative standard deviation (R.S.D.) for five replicates of single hair strands ranged from 15 to 22%. The maximum concentrations of Pt found along the hair strands were 26.9 ± 5.3, 14.7 ± 3.3, 20.9 ± 3.9 and 26.1 ± 3.8 [mu]g g-1, which correspond to four treatment of cisplatin administered to the patient at 3-week intervals.

  2. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.

    PubMed

    Chéry, Cyrille C; Günther, Detlef; Cornelis, Rita; Vanhaecke, Frank; Moens, Luc

    2003-10-01

    The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.

  3. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of <2, whereas the laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  4. A magnesium hydroxide preconcentration/matrix reduction method for the analysis of rare earth elements in water samples using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Hsieh, Hui-Fang; Chen, Yi-Hsiang; Wang, Chu-Fang

    2011-08-15

    This paper describes a simple method for simultaneous preconcentration and matrix reduction during the analysis of rare earth elements (REEs) in water samples through laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). From a systematic investigation of the co-precipitation of REEs using magnesium hydroxide, we optimized the effects of several parameters - the pH, the amount of magnesium, the shaking time, the efficiency of Ba removal, and the sample matrix - to ensure quantitative recoveries. We employed repetitive laser ablation to remove the dried-droplet samples from the filter medium and introduce them into the ICP-MS system for determinations of REEs. The enrichment factors ranged from 8 to 88. The detection limit, at an enrichment factor of 32, ranged from 0.03 to 0.20 pg mL(-1). The relative standard deviations for the determination of REEs at a concentration of 1 ng mL(-1) when processing 40 mL sample solution were 2.0-4.8%. We applied this method to the satisfactory determination of REEs in lake water and synthetic seawater samples.

  5. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  6. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  7. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    SciTech Connect

    Perkins, W.T.; Pearce, N.J.G.; Jeffries, T.E. )

    1993-01-01

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs.

  8. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  9. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  10. Metal imaging on surface of micro- and nanoelectronic devices by laser ablation inductively coupled plasma mass spectrometry and possibility to measure at nanometer range.

    PubMed

    Zoriy, Myroslav V; Mayer, Dirk; Becker, J Sabine

    2009-05-01

    An analytical mass spectrometric method for the elemental analysis of nano-bioelectronic devices involved in bioengineering research was developed and applied for measurements of selected metals (Au, Ti, Pt, Cr, etc.) on interdigitated electrode array chips (IDA-chip). An imaging laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) procedure was used to map the elements of interest on the surface of the analyzed sample. The obtained images of metals were in a good agreement and corresponded to the micro- and nanofabricated metal electrode pattern. For the analysis at nanometer resolution scale a NF-LA-ICP-MS (NF-near-field) procedure was applied, which utilize thin Ag needle to enhance laser beam energy and improve spatial resolution of the method. The results show a approximately 100x enhancement of analyte signal, when the needle was positioned in the "near-field region" to the sample surface and the laser shot was performed. In addition, mass spectrometric studies of reproducibly for five separated NF-LA shots in different places of analyzed sample yielded an RSD of the measurement of 16%.

  11. Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy.

    PubMed

    Davies, Katherine M; Hare, Dominic J; Bohic, Sylvain; James, Simon A; Billings, Jessica L; Finkelstein, David I; Doble, Philip A; Double, Kay L

    2015-07-07

    Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 μm × 15 μm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 μm × 7 μm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.

  12. Laser ablation inductively coupled plasma mass spectrometric analyses of base metals in arctic char (Salvelinus alpinus) otoliths collected from a flooded base metal mine.

    PubMed

    Friedrich, Lisa A; Halden, Norman M

    2011-05-15

    Otoliths from arctic char recovered from the water body formed from an abandoned open-pit nickel-copper mine contain a trace element record related to the geology of the immediate watershed, past mining activity in the area, and the fish's diet. Laser ablation inductively coupled plasma mass spectrometric analyses across the annular structure of the otoliths detected trace amounts of nickel, copper, and chromium believed to be related to the metal-bearing, mafic-ultramafic minerals in the pit. Oscillatory strontium, barium, and zinc profiles may reflect changing water temperature, diet, or fish metabolism. Lead was detected in very low concentrations and may be related to anthropogenic influence. This closed lake system provides a unique opportunity to study an introduced exotic species in a setting where neither migration nor recruitment have been possible. The fish have successfully occupied the lake and continue to breed despite the influence of the surrounding rocks and local contamination. The chemical record retained within otoliths provides a method of monitoring trace elements affecting fish on a yearly basis and may be regarded as a useful assessment tool for examining the exposure of wild organisms to trace elements.

  13. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Elci, S Gokhan; Yan, Bo; Kim, Sung Tae; Saha, Krishnendu; Jiang, Ying; Klemmer, Gunnar A; Moyano, Daniel F; Tonga, Gulen Yesilbag; Rotello, Vincent M; Vachet, Richard W

    2016-04-21

    Functionalized gold nanoparticles (AuNPs) have unique properties that make them important biomedical materials. Optimal use of these materials, though, requires an understanding of their fate in vivo. Here we describe the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to image the biodistributions of AuNPs in tissues from mice intravenously injected with AuNPs. We demonstrate for the first time that the distributions of very small (∼2 nm core) monolayer-protected AuNPs can be imaged in animal tissues at concentrations in the low parts-per-billion range. Moreover, the LA-ICP-MS images reveal that the monolayer coatings on the injected AuNPs influence their distributions, suggesting that the AuNPs remain intact in vivo and their surface chemistry influences how they interact with different organs. We also demonstrate that quantitative images of the AuNPs can be generated when the appropriate tissue homogenates are chosen for matrix matching. Overall, these results demonstrate the utility of LA-ICP-MS for tracking the fate of biomedically-relevant AuNPs in vivo, facilitating the design of improved AuNP-based therapeutics.

  14. Multiplexed quantification of plant thylakoid proteins on Western blots using lanthanide-labeled antibodies and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    de Bang, Thomas Christian; Pedas, Pai; Schjoerring, Jan Kofod; Jensen, Poul Erik; Husted, Søren

    2013-05-21

    We have developed a novel calibration method that allows concurrent quantification of multiple proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after Western blotting. Calibrants were made of nitrocellulose membranes doped with lanthanide standards. Excellent linearity was obtained in the interval from 0 to 24 ng lanthanide cm(-2). Cerium-labeled lysozyme was introduced as an internal reference protein, enabling correction for up to 50% difference in transfer efficiency during the blotting of membranes. The sensitivity of the LA-ICP-MS method was comparable to state-of-the-art chemiluminescence detection and was further improved by a factor of 20, using a polymer tag. Our method allowed reproducible and multiplexed quantification of five thylakoid proteins extracted from chloroplasts of the plant species Arabidopsis thaliana (relative standard deviation (RSD) of ≤ 5% in three independent analytical series). The method was capable of measuring the L subunit in photosystem I of an Arabidopsis mutant containing <5% of this particular protein, relative to the wild type. We conclude that the developed calibration method is highly suited for multiplexed and comparative protein studies, allowing for intermembrane comparisons with high sensitivity and reproducibility.

  15. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry.

    PubMed

    Becker, J Sabine; Breuer, Uwe; Hsieh, Hui-Fang; Osterholt, Tobias; Kumtabtim, Usarat; Wu, Bei; Matusch, Andreas; Caruso, Joseph A; Qin, Zhenyu

    2010-11-15

    Bioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples. Zinc and copper were inhomogeneously distributed with average concentrations of 26 and 11 μg g(-1), respectively. Titanium and manganese were detected at concentrations reaching 1 and 2 μg g(-1), respectively. The highest regional metal concentration of 360 μg g(-1)was observed for iron in blood present in the lumen of the aorta. Secondary ion mass spectrometry (SIMS) as an elemental and biomolecular mass spectrometric technique was employed for imaging of Na, K, and selected biomolecules (e.g., phosphocholine, choline, cholesterol) in adjacent sections. Here, two different bioimaging techniques, LA-ICPMS and SIMS, were combined for the first time, yielding novel information on both elemental and biomolecular distributions.

  16. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    PubMed

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  17. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  18. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  19. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies.

  20. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin.

    PubMed

    Köppen, C; Reifschneider, O; Castanheira, I; Sperling, M; Karst, U; Ciarimboli, G

    2015-12-01

    This work presents a quantitative bioimaging method for platinum based on laser ablation-inductively coupled plasma-mass spectrometry and its application for a biomedical study concerning toxic side effects of cisplatin. To trace the histopathology back to cisplatin, platinum was localized and quantified in major functional units of testicle, cochlea, kidney, nerve and brain sections from cisplatin treated mice. The direct consideration of the histology enables precise interpretation of the Pt images and the novel quantitative evaluation approach allows significantly more precise investigations than the pure image. For the first time, platinum was detected and quantified in all major injured structures including organ of Corti of cochlea and seminiferous tubule of testicle. In this way, proximal tubule in kidney, Leydig cells in testicle, stria vascularis and organ of Corti in cochlea and nerve fibers in sciatic nerves are confirmed as targets of cisplatin in these organs. However, the accumulation of platinum in almost all investigated structures also raises questions about more complex pathogenesis including direct and indirect interruption of several biological processes.

  1. A comparison of the use of refractive index (RI) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the provenance establishment of glass bottles.

    PubMed

    May, Christopher D; Watling, R John

    2009-01-01

    The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been compared with the traditional method of refractive index (RI) measurement for the establishment of the provenance of glass bottles. Using the RI method alone, it is not possible to discriminate between certain glass bottles produced up to 18 days apart from a single manufacturing plant. Furthermore, variations in RI within a single bottle can be large enough to invalidate co-provenance establishment using this technique alone. Determination of the trace elemental composition of bottles collected over a 1-month period confirmed that minimal variation of trace metal distribution occurred within individual bottles made during this period. Therefore, the trace element composition of any fragment of glass from a broken bottle may be considered representative of the elemental composition of the entire bottle. In addition, statistical comparison of the distribution of approximately 38 of the 56 analytes that were determined established that it was possible to discriminate between two glass bottles manufactured in the same plant two hours apart. Using this methodology it has been possible to develop an analytical protocol to significantly improve the accurate comparison and provenance establishment of forensic glass evidence.

  2. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  3. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  4. Elemental bioimaging of nanosilver-coated prostheses using X-ray fluorescence spectroscopy and laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Blaske, Franziska; Reifschneider, Olga; Gosheger, Georg; Wehe, Christoph A; Sperling, Michael; Karst, Uwe; Hauschild, Gregor; Höll, Steffen

    2014-01-07

    The distribution of different chemical elements from a nanosilver-coated bone implant was visualized, combining the benefits of two complementary methods for elemental bioimaging, the nondestructive micro X-ray fluorescence (μ-XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Challenges caused by the physically inhomogeneous materials including bone and soft tissues were addressed by polymer embedding. With the use of μ-XRF, fast sample mapping was achieved obtaining titanium and vanadium signals from the metal implant as well as phosphorus and calcium signals representing hard bone tissue and sulfur distribution representing soft tissues. Only by the use of LA-ICP-MS, the required high sensitivity and low detection limits for the determination of silver were obtained. Metal distribution within the part of cancellous bone was revealed for silver as well as for the implant constituents titanium, vanadium, and aluminum. Furthermore, the detection of coinciding high local zirconium and aluminum signals at the implant surface indicates remaining blasting abrasive from preoperative surface treatment of the nanosilver-coated device.

  5. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna.

    PubMed

    Gholap, Deepti S; Izmer, Andrei; De Samber, Björn; van Elteren, Johannes T; Selih, Vid S; Evens, Roel; De Schamphelaere, Karel; Janssen, Colin; Balcaen, Lieve; Lindemann, Inge; Vincze, Laszlo; Vanhaecke, Frank

    2010-04-01

    Visualization of elemental distributions in thin sections of biological tissue is gaining importance in many disciplines of biological and medical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and scanning micro-X-ray fluorescence spectrometry (micro-XRF) are two widely used microanalytical techniques for elemental mapping. This article compares the capabilities of the two techniques for imaging the distribution of selected elements in the model organism Daphnia magna in terms of detection power and spatial resolution. Sections with a thickness of 10 and 20 microm of the fresh water crustacean Daphnia magna were subjected to LA-ICP-MS and micro-XRF analysis. The elemental distributions obtained for Ca, P, S and Zn allow element-to-tissue correlation. LA-ICP-MS and micro-XRF offer similar limits of detection for the elements Ca and P and thus, allow a cross-validation of the imaging results. LA-ICP-MS was particularly sensitive for determining Zn (LOD 20 microg g(-1), 15 microm spot size) in Daphnia magna, while the detection power of micro-XRF was insufficient in this context. However, LA-ICP-MS was inadequate for the measurement of the S distributions, which could be better visualized with micro-XRF (LOD 160 microg g(-1), 5 s live time). Both techniques are thus complementary in providing an exhaustive chemical profiling of tissue samples.

  6. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder.

  7. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Vašinová Galiová, M; Nývltová Fišáková, M; Kynický, J; Prokeš, L; Neff, H; Mason, A Z; Gadas, P; Košler, J; Kanický, V

    2013-02-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to map the matrix (Ca, P) and trace (Ba, Sr, Zn) elements in the root section of a fossilized brown bear (Ursus arctos) tooth. Multielemental analysis was performed on a (2.5 × 1.5)cm(2) area. For elemental distribution, a UP 213 laser ablation system was coupled either with a quadrupole or a time of flight ICP-MS. The cementum and dentine on the slice of the sample surface were clearly distinguishable, especially changes in elemental distribution in the summer and winter bands in the fossil root dentine. Migration and diet of U. arctos were determined on the basis of fluctuations in Sr/Zn ratio and their contents. Quantification was accomplished with standard reference material of bone meal (NIST 1486) and by the use of electron microprobe analysis (EMPA). Changes in Sr/Zn and Sr/Ba ratios relating to the season, and composition of food during the lifetime of the animal are discussed on basis of analysis of light stable isotopes. It was observed that there was an increase in the Sr/Zn ratio during the winter season caused by a reduction of food intake during hibernation. Above mentioned inferences drawn from elemental data obtained by LA-ICP-MS were confirmed independently by determination of carbon, nitrogen and strontium isotopes. Moreover, diagenesis and its interfering influence on the biogenic composition of cementum and dentine were resolved. According to the distribution and/or content of the element of interest, post-mortem alterations were revealed. Namely, U, Na, Fe, Mg and F predicate about the suitability of the selected area for determination of migration and diet.

  8. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  9. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  10. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Wu, Bei; Zoriy, Miroslav; Chen, Yingxu; Becker, J Sabine

    2009-04-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of (39)K(+), (24)Mg(+), (55)Mn(+), (63)Cu(+), (31)P(+), (34)S(+) and (11)B(+) were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon ((13)C(+)) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L(-1). The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 microg g(-1) for Cu and 14,000 microg g(-1) for K.

  11. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  12. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  13. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  14. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Dressler, Valderi L; Pozebon, Dirce; Mesko, Marcia Foster; Matusch, Andreas; Kumtabtim, Usarat; Wu, B; Sabine Becker, J

    2010-10-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M(+)/(34)S(+) ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of

  15. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    PubMed

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  16. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues.

    PubMed

    Becker, J Sabine; Becker, J Susanne

    2010-01-01

    The determination of the localization and distribution of essential and beneficial metals (e.g., Cu, Fe, Zn, Mn, Co, Ti, Al, Ca, K, Na, Cr and others), toxic metals (like Cd, Pb, Hg, U), metalloids (e.g., As, Se, Sb), and non-metals (such as C, S, P, Cl, I) in biological tissues is a challenging task for life science studies. Over the past few years, the development and application of mass spectrometric imaging (MSI) techniques for elements has been rapidly growing in the life sciences in order to investigate the uptake and the transport of both essential and toxic metals in plant and animal sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a very sensitive and efficient trace, surface, and isotopic analytical technique for biological samples. LA-ICP-MS is increasingly utilized as an elemental mass spectrometric technique using double-focusing sector field (LA-ICP-SFMS) or quadrupole mass spectrometers (LA-ICP-QMS) to produce images of detailed regionally specific element distributions in thin biological tissue sections. Nowadays, MSI studies focus on brain research for studying neurodegenerative diseases such as Alzheimer's or Parkinson's, stroke, or tumor growth, or for the imaging of cancer biomarkers in tissue sections.The combination of the mass spectrometry imaging of metals by LA-ICP-MS with proteomics using biomolecular mass spectrometry (such as MALDI-MS or ESI-MS) to identify metal-containing proteins has become an important strategy in the life sciences. Besides the quantitative imaging of metals, non-metals and metalloids in biological tissues, LA-ICP-MS has been utilized for imaging metal-containing proteins in a 2D gel after electrophoretic separation of proteins. Recent progress in applying LA-ICP-MS in life science studies will be reviewed including the imaging of thin slices of biological tissue and applications in proteome analysis in combination with MALDI/ESI-MS to analyze metal-containing proteins.

  17. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments.

    PubMed

    Sabine Becker, J

    2013-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is well established as a sensitive trace and ultratrace analytical technique with multielement capability for bioimaging of metals and studying metallomics in biological and medical tissue. Metals and metalloproteins play a key role in the metabolism and formation of metal-containing deposits in the brain but also in the liver. In various diseases, analysis of metals and metalloproteins is essential for understanding the underlying cellular processes. LA-ICP-MS imaging (LA-ICP-MSI) combined with other complementary imaging techniques is a sophisticated tool for investigating the regional and cellular distribution of metals and related metal-containing biomolecules. On the basis of successful routine techniques for the elemental bioimaging of cryosections by LA-ICP-MSI with a spatial resolution between 200 and ~10 µm, the further development used online laser microdissection ICP-MSI to study the metal distribution in small biological sample sections (at the cellular level from 10 µm to the submicrometer range). The use of mass spectrometric imaging of metals and also nonmetals is demonstrated on a series of biological specimens. This article discusses the state of the art of bioimaging of metals in thin biological tissue sections by LA-ICP-MSI with spatial resolution at the micrometer scale, future developments and prospects for quantitative imaging techniques of metals in the nanometer range. In addition, combining quantitative elemental imaging by LA/laser microdissection-ICP-MSI with biomolecular imaging by matrix-assisted laser desorption/ionization-MSI will be challenging for future life science research.

  18. The potential of using laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS) in the forensic analysis of micro debris.

    PubMed

    Scadding, Cameron J; Watling, R John; Thomas, Allen G

    2005-08-15

    The majority of crimes result in the generation of some form of physical evidence, which is available for collection by crime scene investigators or police. However, this debris is often limited in amount as modern criminals become more aware of its potential value to forensic scientists. The requirement to obtain robust evidence from increasingly smaller sized samples has required refinement and modification of old analytical techniques and the development of new ones. This paper describes a new method for the analysis of oxy-acetylene debris, left behind at a crime scene, and the establishment of its co-provenance with single particles of equivalent debris found on the clothing of persons of interest (POI). The ability to rapidly determine and match the elemental distribution patterns of debris collected from crime scenes to those recovered from persons of interest is essential in ensuring successful prosecution. Traditionally, relatively large amounts of sample (up to several milligrams) have been required to obtain a reliable elemental fingerprint of this type of material [R.J. Walting , B.F. Lynch, D. Herring, J. Anal. At. Spectrom. 12 (1997) 195]. However, this quantity of material is unlikely to be recovered from a POI. This paper describes the development and application of laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS), as an analytical protocol, which can be applied more appropriately to the analysis of micro-debris than conventional quadrupole based mass spectrometry. The resulting data, for debris as small as 70mum in diameter, was unambiguously matched between a single spherule recovered from a POI and a spherule recovered from the scene of crime, in an analytical procedure taking less than 5min.

  19. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Matusch, Andreas; Depboylu, Candan; Palm, Christoph; Wu, Bei; Höglinger, Günter U; Schäfer, Martin K-H; Becker, J Sabine

    2010-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful technique for the determination of metal and nonmetal distributions within biological systems with high sensitivity. An imaging LA-ICP-MS technique for Fe, Cu, Zn, and Mn was developed to produce large series of quantitative element maps in native brain sections of mice subchronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) as a model of Parkinson's disease. Images were calibrated using matrix-matched laboratory standards. A software solution allowing a precise delineation of anatomical structures was implemented. Coronal brain sections were analyzed crossing the striatum and the substantia nigra, respectively. Animals sacrificed 2 h, 7 d, or 28 d after the last MPTP injection and controls were investigated. We observed significant decreases of Cu concentrations in the periventricular zone and the fascia dentata at 2 h and 7d and a recovery or overcompensation at 28 d, most pronounced in the rostral periventricular zone (+40%). In the cortex Cu decreased slightly to -10%. Fe increased in the interpeduncular nucleus (+40%) but not in the substantia nigra. This pattern is in line with a differential regulation of periventricular and parenchymal Cu, and with the histochemical localization of Fe, and congruent to regions of preferential MPTP binding described in the rodent brain. The LA-ICP-MS technique yielded valid and statistically robust results in the present study on 39 slices from 19 animals. Our findings underline the value of routine micro-local analytical techniques in the life sciences and affirm a role of Cu availability in Parkinson's disease.

  20. The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study.

    PubMed

    Wang, TsingHai; Hsieh, HuiAn; Hsieh, YiKong; Chiang, ChiShiun; Sun, YuhChang; Wang, ChuFang

    2012-12-01

    Understanding the cytotoxicity of quantum dots strongly relies upon the development of new analytical techniques to gather information about various aspects of the system. In this study, we demonstrate the in vivo biodistribution and fate of CdSe quantum dots in the murine model by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). By comparing the hot zones of each element acquired from LA-ICP-MS with those in fluorescence images, together with hematoxylin and eosin-stained images, we are able to perceive the fate and in vivo interactions between quantum dots and rat tissues. One hour after intravenous injection, we found that all of the quantum dots had been concentrated inside the spleen, liver and kidneys, while no quantum dots were found in other tissues (i.e., muscle, brain, lung, etc.). In the spleen, cadmium-114 signals always appeared in conjunction with iron signals, indicating that the quantum dots had been filtered from main vessels and then accumulated inside splenic red pulp. In the liver, the overlapped hot zones of quantum dots and those of phosphorus, copper, and zinc showed that these quantum dots have been retained inside hepatic cells. Importantly, it was noted that in the kidneys, quantum dots went into the cortical areas of adrenal glands. At the same time, hot zones of copper appeared in proximal tubules of the cortex. This could be a sign that the uptake of quantum dots initiates certain immune responses. Interestingly, the intensity of the selenium signals was not proportional to that of cadmium in all tissues. This could be the result of the decomposition of the quantum dots or matrix interference. In conclusion, the advantage in spatial resolution of LA-ICP-MS is one of the most powerful tools to probe the fate, interactions and biodistribution of quantum dots in vivo.

  1. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    SciTech Connect

    Messerly, Joshua D.

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  2. Inductively coupled plasma source for VASIMR engine

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Smolyakov, A. I.; Sydorenko, D. Y.; Sagdeev, R. Z.; Krasheninnikov, S. I.; Shevchenko, V. I.

    2004-11-01

    Various devices for plasma production differ in the way of plasma coupling to the electrical energy source. Power losses in the chain from the AC power line to the power deposited into the electrons are the most important for the overall efficiency of the plasma source while the losses to ionization, radiation and walls are typically very similar and do not depend on a mechanism of the electron interaction with the electromagnetic field. Inductively coupled plasma (ICP) discharges with ferromagnetic cores, seems to be the most suitable candidate for a primary plasma source for VASIMR engine. Such commercial ICPs have coupling efficiency up to 98% (99% in laboratory devices). Combined with compact and efficient (90-95%) rf power converters operating at f < 1 MHz, it will allow to achieve high overall efficiency of plasma production and reduce the energy cost of the ion in the first stage plasma source. An important advantage of such sources is the ability to continuously work in a wide dynamic range (two orders of magnitude) of plasma density contrary to e.g. helicon sources where efficient operation is possible only on certain discrete modes (and plasma density) with discontinuous transitions between them.

  3. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2015-01-01

    Technical Paper 3. DATES COVERED (From - To) January 2015-March 2015 4. TITLE AND SUBTITLE Non-Equilibrium Modeling of Inductively Coupled RF Plasmas...Mar 2015. PA#15120 14. ABSTRACT This paper discusses the modeling of non-equilibrium effects in inductively coupled plasma facilities. The model...98) Prescribed by ANSI Std. 239.18 NON-EQUILIBRIUMMODELING OF INDUCTIVELY COUPLED RF PLASMAS Alessandro Munafò1, Jean-Luc Cambier2, and Marco

  4. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  5. Dynamics of a pulsed inductively coupled oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zaka-ul-Islam, Mujahid

    2016-11-01

    Inductively coupled plasma system (ICPs) is extensively used for a wide range of nanofabrication applications. The ICPs operated in a pulsed or power modulated mode has shown several advantages compared to the continuous discharge. In this work, the plasma dynamics in a planar coil pulsed inductively coupled plasma system (ICPs) operated in oxygen has been investigated, using phase and space resolved optical emission spectroscopy. It is well-known that the ICPs operates in two distinct operational modes as a function of power known as E and H modes, generated dominantly by capacitive and inductive couplings, respectively. The measurements show that the discharge ignites due a capacitive coupling (in the E-mode) and later transits to the H-mode as a function of time. The inductive coupling, however, starts during the E-mode along with capacitive coupling. The relative contribution of inductive coupling increases until the discharge reaches the E-H transition where the growth rate of inductive coupling becomes much faster. It is found that the time to reach E-H transition decreases with the pressure. At the E-H transition, the total emission has a spike-like feature (i.e., it first achieves a peak emission which later decreases and finally settles to a lower value). The 2D images of the discharge show that at the time of peak total-emission, the discharge structure is sharp and bright, which later decreases in brightness and becomes diffusive.

  6. Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: a new tool for the study of critical substructures affined to heavy metals in tissues.

    PubMed

    Becker, J Sabine; Dobrowolska, Justina; Zoriy, Miroslav; Matusch, Andreas

    2008-09-01

    The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated.

  7. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer

  8. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  9. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  10. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators.

    PubMed

    Liu, Long; Tang, Wei; Wang, Zhong Lin

    2017-01-20

    Polyethylene terephthalate (PET) films' electret property was significantly enhanced after being treated with inductively coupled plasma (ICP). Based on this modified material, the triboelectric nanogenerators' (TENGs) transferred charges remained at 68.6% of the initial value after 400 000 cycles of contact-separation process, which was about three times that of the untreated samples.

  11. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Liu, Long; Tang, Wei; Wang, Zhong Lin

    2017-01-01

    Polyethylene terephthalate (PET) films’ electret property was significantly enhanced after being treated with inductively coupled plasma (ICP). Based on this modified material, the triboelectric nanogenerators’ (TENGs) transferred charges remained at 68.6% of the initial value after 400 000 cycles of contact-separation process, which was about three times that of the untreated samples.

  12. Ion-wave stabilization of an inductively coupled plasma

    SciTech Connect

    Camparo, J.C.; Mackay, R.

    2006-04-24

    Stabilization of the rf power driving an inductively coupled plasma (ICP) has implications for fields ranging from atomic clocks to analytical chemistry to illumination technology. Here, we demonstrate a technique in which the plasma itself acts as a probe of radio wave power, and provides a correction signal for active rf-power control. Our technique takes advantage of the resonant nature of forced ion waves in the plasma, and their observation in the ICP's optical emission.

  13. Inductively coupled plasmas: Optimizing the inductive-coupling efficiency for large-area source design

    SciTech Connect

    Colpo, P.; Meziani, T.; Rossi, F.

    2005-03-01

    An inductively coupled plasma (ICP) source enabling high-density plasma generation was developed for large area processing. Technological difficulties related to the scaling up of the coil antenna, dielectric vacuum window, and gas distribution have been addressed. The proposed solution consists in using a magnetic core to concentrate the magnetic field produced by the antenna. Both are placed within the plasma chamber, and the gas injection is done through the magnetic pole. A 75x72- cm{sup 2} plasma source has been designed based on this solution. First, the electrical operation and coil geometries were optimized. The results show that the use of a low excitation frequency (2 MHz) increases the electrical efficiency of the magnetic core, enabling a higher plasma-density generation than at the classical radio frequency of 13.56 MHz. The antenna configuration providing the better uniformity is composed of three loops connected in parallel. Some tuning inductances in series with each loop were added to balance the rf power, i.e., the plasma density over the reactor area. Deviation from plasma uniformities better than 12% over 60x60 cm{sup 2} were achieved. Preliminary SiO{sub 2} etching experiments with CF{sub 4} gas show that the etching uniformity deviation reaches 7% over 60x60 cm{sup 2} with etching rates larger than 150 nm/min. These results are very promising and open the way to the successful scale-up of ICP sources to large areas.

  14. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references.

    PubMed

    Stärk, H-J; Wennrich, Rainer

    2011-02-01

    Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA-ICP-MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP-MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90-110% (for rare earth elements 97-102%). Laser ablation ICP-MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP-MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP-MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP-MS.

  15. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  16. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  17. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  18. Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Myroslav V.; Dehnhardt, Markus; Matusch, Andreas; Becker, J. Sabine

    2008-03-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of selected elements (P, S, Fe, Cu, Zn and C) in thin sections of rat brain samples (thickness 20 μm). The sample surface was scanned (raster area ~ 2 cm 2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 μm, and irradiance 1 × 10 9 W cm - 2 ). The laser ablation system was coupled to a double-focusing sector field. The possibility was evaluated of using carbon (via measurement of 13C +) as an internal standard element for imaging element distribution as part of this method. The LA-ICP-MS images obtained for P, S, Fe Cu and Zn were quantified using synthetically prepared matrix-matched laboratory standards. Depending on the sample analyzed, concentrations of Cu and Zn in the control tissue were found to be in the range of 8-10 μg g - 1 and 10-12 μg g - 1 , while in the tumor tissue these concentrations were in the range of 12-15 μg g - 1 and 15-17 μg g - 1 , respectively. The measurements of P, S and Fe distribution revealed the depletion of these elements in tumor tissue. In all the samples, the shape of the tumor could be clearly distinguished from the surrounding healthy tissue by the depletion in carbon. Additional experiments were performed in order to study the influence of the water content of the analyzed tissue on the intensity signal of the analyte. The results of these measurements show the linear correlation ( R2 = 0.9604) between the intensity of analyte and amount of water in the sample. The growth of a brain tumor was thus studied for the first time by imaging mass spectrometry.

  19. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  20. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  1. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal.

  2. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  3. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy.

    PubMed

    Wang, H A O; Grolimund, D; Van Loon, L R; Barmettler, K; Borca, C N; Aeschlimann, B; Günther, D

    2011-08-15

    Quantitative chemical imaging of trace elements in heterogeneous media is important for the fundamental understanding of a broad range of chemical and physical processes. The primary aim of this study was to develop an analytical methodology for quantitative high spatial resolution chemical imaging based on the complementary use of independent microanalytical techniques. The selected scientific case study is focused on high spatially resolved quantitative imaging of major elements, minor elements, and a trace element (Cs) in Opalinus clay, which has been proposed as the host rock for high-level radioactive waste repositories. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), providing quantitative chemical information, and synchrotron radiation based micro-X-ray fluorescence (SR-microXRF), providing high spatial resolution images, were applied to study Cs migration into Opalinus clay rock. The results indicate that combining the outputs achievable by the two independent techniques enhances the imaging capabilities significantly. The qualitative high resolution image of SR-microXRF is in good agreement with the quantitative image recorded with lower spatial resolution by LA-ICPMS. Combining both techniques, it was possible to determine that the Opalinus clay sample contains two distinct domains: (i) a clay mineral rich domain and (ii) a calcium carbonate dominated domain. The two domains are separated by sharp boundaries. The spatial Cs distribution is highly correlated to the distribution of the clay. Furthermore, extended X-ray absorption fine structure analysis indicates that the trace element Cs preferentially migrates into clay interlayers rather than into the calcite domain, which complements the results acquired by LA-ICPMS and SR-microXRF. By using complementary techniques, the quantification robustness was improved to quantitative micrometer spatial resolution. Such quantitative, microscale chemical images allow a more detailed

  4. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  5. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  6. A double inductively coupled plasma for sterilization of medical devices

    NASA Astrophysics Data System (ADS)

    Halfmann, H.; Bibinov, N.; Wunderlich, J.; Awakowicz, P.

    2007-07-01

    A double inductively coupled low pressure plasma for sterilization of bio-medical materials is introduced. It is developed for homogeneous treatment of three-dimensional objects. The short treatment times and low temperatures allow the sterilization of heat sensitive materials like ultra-high-molecular-weight-polyethylene or polyvinyl chloride. Using a non-toxic atmosphere reduces the total process time in comparision with common methods. Langmuir probe measurements are presented to show the difference between ICP- and CCP-mode discharges, the spatial homogeneity and the influence on the sterilization efficiency. To know more about the sterilization mechanisms optical emission is measured and correlated with sterilization results.

  7. Diagnostic studies of ion beam formation in inductively coupled plasma

    SciTech Connect

    Jacobs, Jenee L.

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  8. Reproducibility of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements in mussel shells and comparison with micro-drill sampling and solution ICP-MS.

    PubMed

    Phung, Anh Tuan; Baeyens, Willy; Leermakers, Martine; Goderis, Steven; Vanhaecke, Frank; Gao, Yue

    2013-10-15

    The accumulation of trace elements (Mg, Mn, Sr, Ba) in Unio pictorum L. mussel shells from Lake Balaton has been assessed using a Laser Ablation (LA) system coupled to either a quadrupole-based or a sector-field inductively coupled plasma-mass spectrometer (ICP - MS), as well as by a combination of micro-drill sampling and solution ICP-MS. The LA-ICP-MS measurements were carried out in the holes made by the micro-drilling system. The longitudinal concentration profiles obtained with the different methods show similar patterns. However, the absolute concentrations determined at individual spots (holes) can be quite different. Especially Ba shows erratic peaks at a very small spatial scale. A paired, two-sample t-test between LA-ICP-MS longitudinal profiles and between LA-ICP-MS and micro-drill/solution ICP-MS profiles indicates that, in most cases, there is no significant difference between the concentration profiles of Ba, Mg, Mn and Sr. Average shell concentrations of Mg, Mn, Sr and Ba, as obtained by LA-ICP-MS and micro-drill/solution ICP-MS, compare well with bulk shell concentrations as obtained by acid digestion/ICP-MS of larger shell pieces. Next to the four elements mentioned above, also the concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn could be determined by bulk shell analysis. The element concentrations in 11 shells, all sampled at the same site, show a relative standard deviation (RSD) between 2% (Ni) and 46% (Zn). LA-ICP-MS and micro-drill solution ICP-MS are not sensitive enough for the determination of ultra-trace elements in Lake Balaton's mussel shells. We estimated the amount of shell material necessary to determine Ni, Pb, Cr and Cu by micro-drilling ICP-MS (for a concentration that equals 3 times their limit of detection) at, respectively, 0.04, 0.82, 2.7 and 0.4 mg, while the amount sampled by micro-drilling is about 0.06 mg.

  9. AETHER: A simulation platform for inductively coupled plasma

    SciTech Connect

    Turkoz, Emre Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  10. Improvement of uniformity in a weakly magnetized inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.

    2015-12-01

    Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).

  11. Effects of driving frequency on properties of inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    2016-10-01

    Inductively coupled plasma (ICP) can be maintained over a wide range of driving frequencies from 50 Hz up to GHz. In this paper, we analyze how the properties of ICP depend on driving frequency ω. With respect to the time of ion transport to the walls, τd and the electron energy relaxation time τɛ three operating regimes are distinguished. The quasi-static regime, ωτd << 1 , the high-frequency regime, ωτɛ >> 1 and the intermediate dynamic regime, 1 /τd < ω <1 /τɛ. In the quasi-static regime, plasma density oscillates significantly over the field period. In the high-frequency regime, the plasma density and the electron energy distribution function (EEDF) are constant. In the dynamic regime, the plasma density is constant, while the EEDF varies over the field period. Depending on ICP configuration, the induced by the coil magnetic fields inside ICP, Bc can be zero or not. For example, in ICP maintained by a long helical coil with the plasma current flowing outside the coil, Bc = 0 , while when the plasma current flows inside the coil, Bc ≠ 0 . We show that in the latter case, in the quasi-static regimes, electrons become magnetized over a significant part of the period that may strongly affect the plasma properties. Examples of ICP simulations in different frequency regimes will be demonstrated in this paper.

  12. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  13. H-mode inductive coupling plasma for PVC surface treatment

    NASA Astrophysics Data System (ADS)

    Croccolo, F.; Quintini, A.; Barni, R.; Ripamonti, M.; Malgaroli, A.; Riccardi, C.

    2009-08-01

    An inductively coupled plasma machine has been modified to be able to apply working powers in the order of 1 kW, thus switching to the real inductive H-mode. The plasma is generated by applying a 13.56 MHz radio-frequency to a λ/4 antenna outside the plasma chamber in low pressure conditions. The working gas is argon at pressure in the range from 10 to 100 Pa. With this high power source we have been able to perform plasma etching on a poly(vinyl-chloride) (PVC) film. In particular the effect of the plasma is the selective removal of hydrogen and chlorine from the sample surface. The action of the high power plasma on the sample has been proved to be much more effective than that of the low power one. Results similar to those obtained with the low power machine at about 300 W for 120 min, have been obtained with the high power source at about 600 W for 30 min. The superficial generation of a conductive layer of double C=C bonds was obtained. The samples have been investigated by means of ATR spectroscopy, FIB/SEM microscopy and micro-electrical measurements, which revealed the change in charge conductivity.

  14. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  15. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  16. Quantitative aspects of inductively coupled plasma mass spectrometry.

    PubMed

    Bulska, Ewa; Wagner, Barbara

    2016-10-28

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  17. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    SciTech Connect

    Shin, Dong-Wook Kim, Tae Sung; Yoo, Ji-Beom

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  18. Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.

    2016-09-01

    The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.

  19. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  20. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  1. Analysis of trimethylgallium with inductively coupled plasma spectrometry

    SciTech Connect

    Bertenyi, I.; Barnes, R.M.

    1986-07-01

    Two methods for the analysis of trimethylgallium (TMG) are described. Since TMG is pyrophoric and volatile and the nature of its impurity species is not known, separate methods were employed for volatile and nonvolatile impurities. The nonvolatile impurities (Al, Cu, Fe, Mg) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in an aqueous solution of decomposed TMG with conventional nebulization. The volatile impurity silicon in TMG also was determined by ICP-AES but with exponential dilution. A known quantity of TMG was placed in an exponential dilution flask, and argon swept the vapor out of the flask into the plasma. Limits of detection in 1 g of TMG were 2 ..mu..g of Al, 0.6 ..mu..g of Fe, 0.6 ..mu..g of Cu, and 0.08 ..mu..g of Mg. The Si detection limit was 0.6 ..mu..g. The analysis precision for practical samples was 10-20%.

  2. Environmental analysis by inductively coupled plasma mass spectrometry.

    PubMed

    Beauchemin, Diane

    2010-01-01

    This article reviews the numerous ways in which inductively coupled plasma mass spectrometry has been used for the analysis of environmental samples since it was commercially introduced in 1983. Its multielemental isotopic capability, high sensitivity and wide linear dynamic range makes it ideally suited for environmental analysis. Provided that some care is taken during sample preparation and that appropriate calibration strategies are used to circumvent non-spectroscopic interferences, the technique is readily applicable to the analysis of a wide variety of environmental samples (natural waters, soils, rocks, sediments, vegetation, etc.), using quadrupole, time-of-flight or double-focusing sector-field mass spectrometers. In cases where spectroscopic interferences arising from the sample matrix cannot be resolved, then separation methods can be implemented either on- or off-line, which can simultaneously allow analyte preconcentration, thus further decreasing the already low detection limits that are achievable. In most cases, the blank, prepared by following the same steps as for the sample but without the sample, limits the ultimate detection limits that can be reached.

  3. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry.

    PubMed

    Dennis, Elise A; Ray, Steven J; Enke, Christie G; Hieftje, Gary M

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time-compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  4. Inductively Coupled Plasma Mass Spectrometry and the Determination of Neptunium and Plutonium in the Marine Environment

    NASA Astrophysics Data System (ADS)

    Sampson, Kate

    This project is concerned with the application of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of neptunium-237, plutonium-239 and plutonium-240 concentrations in the marine environment…

  5. Research on the mechanism of multiple inductively coupled plasma source for large area processing

    NASA Astrophysics Data System (ADS)

    Lee, Jangjae; Kim, Sijun; Kim, Daewoong; Kim, Kwangki; Lee, Youngseok; You, Shinjae

    2016-09-01

    In the plasma processing, inductively coupled plasma having the high-density is often used for high productivity. In large area plasma processing, the plasma can be generated by using the multi-pole connected in parallel. However, in case of this, it is difficult for power to be transferred to plasma uniformly. To solve the problem, we studied the mechanism of inductively coupled plasma connected in parallel. By using the transformer model, the multiple ICP source is treated. We also studied about the change of the plasma parameters over the time through the power balance equation and particle balance equation. Corresponding author.

  6. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    SciTech Connect

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong; Kim, Hyuk; Park, Wanjae

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  7. Measuring atomic oxygen densities and electron properties in an Inductively Coupled Plasma for thin film deposition

    NASA Astrophysics Data System (ADS)

    Meehan, David; Gibson, Andrew; Booth, Jean-Paul; Wagenaars, Erik

    2016-09-01

    Plasma Enhanced Pulsed Laser Deposition (PE-PLD) is an advanced way of depositing thin films of oxide materials by using a laser to ablate a target, and passing the resulting plasma plume through a background Inductively-Coupled Plasma (ICP), instead of a background gas as is done in traditional PLD. The main advantage of PE-PLD is the control of film stoichiometry via the direct control of the reactive oxygen species in the ICP instead of relying on a neutral gas background. The aim is to deposit zinc oxide films from a zinc metal target and an oxygen ICP. In this work, we characterise the range of compositions of the reactive oxygen species achievable in ICPs; in particular the atomic oxygen density. The density of atomic oxygen has been determined within two ICPs of two different geometries over a range of plasma powers and pressures with the use of Energy Resolved Actinometry (ERA). ERA is a robust diagnostic technique with determines both the dissociation degree and average electron energy by comparing the excitation ratios of two oxygen and one argon transition. Alongside this the electron densities have been determined with the use of a hairpin probe. This work received financial support from the EPSRC, and York-Paris CIRC.

  8. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    SciTech Connect

    Ebert, Christopher Hysjulien

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  9. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence.

    PubMed

    Tsolakidou, Alexandra; Kilikoglou, Vassilis

    2002-10-01

    The accurate measurement of the maximum possible number of elements in ancient ceramic samples is the main requirement in provenance studies. For this reason neutron activation analysis (NAA) and X-ray fluorescence (XRF) have been successfully used for most of the studies. In this work the analytical performance of inductively coupled plasma-optical-emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) has been compared with that of XRF and NAA for the chemical characterization of archaeological pottery. Correlation coefficients between ICP techniques and XRF or NAA data were generally better than 0.90. The reproducibility of data calculated on a sample prepared and analysed independently ten times was approximately 5% for most of the elements. Results from the ICP techniques were finally evaluated for their capacity to identify the same compositional pottery groups as results from XRF and NAA analysis, by use of multivariate statistics.

  10. Investigation of pyrolysis gas chemistry in an inductively coupled plasma facility

    NASA Astrophysics Data System (ADS)

    Tillson, Corey C.

    The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as they react with the different environments. Measurements done to date include time-resolved absolute emission spectroscopy, location-based temperature response, flow characterization of temperature, enthalpy, and enthalpy flux, and more recently, spatially resolved and high-resolution emission spectroscopy, all of which provide measure of the characteristics of the pyrolysis chemistry and material response. Flow characterization tests construct an general knowledge of the test condition temperature, composition, and enthalpy. Tests with relatively inert argon plasmas established a baseline for the pyrolysis gases that leave the material. Key pyrolysis species such as CN Violet bands, NH, OH and Hydrogen Alpha (Hα) lines were seen with relative repeatability in temporal, spectral, and intensity values. Tests with incremental addition, and static mixtures, of reactive plasmas provided a preliminary image of how the gases interacted with atmospheric flows and other pyrolysis gases. Evidence of a temporal relationship between NH and Hα relating to nitrogen addition is seen, as well as a similar relationship between OH and Hα in oxygen based environments. Temperature analysis highlighted the reaction of the material to various flow conditions and displayed the in depth material response to argon and air/argon plasmas. The development

  11. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  12. Effect of bias application to plasma density in weakly magnetized inductively coupled plasma

    SciTech Connect

    Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong

    2013-07-15

    Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.

  13. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    SciTech Connect

    Halliday, A.N.; Lee, Der-Chuen; Christensen, J.C.; Jones, C.E.; Hall, C.M.; Yi, Wen; Teagle, D.; Walder, A.J.; Freedman, P.A.

    1994-11-01

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument`s capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  14. Characterization of inductively coupled plasma generated by a quadruple antenna

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  15. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    SciTech Connect

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  16. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  17. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  18. The analysis of some evidential materials by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Carpenter, R C

    1985-03-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) is under evaluation at the Central Research Establishment for the analysis of evidential materials. The analysis of standard reference materials has demonstrated that quantitative multi-element data can be obtained from small samples of a variety of materials. The results of some determinations carried out in support of casework investigations are reported.

  19. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  20. Atlas of atomic spectral lines of neptunium emitted by an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Dekalb, E. L.; Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230 to 700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data.

  1. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  2. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  3. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  4. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  5. Comprehensive Chemical Analysis of Metal Alloys by Means of Inductively Coupled Plasma Optical Emission Spectroscopy

    DTIC Science & Technology

    1985-10-01

    Multielement standard solutions were prepared from commercially available atomic absorbtion standard solutions or Spex Industries plasma-grade materials... SPECTROSCOPY W. E. Glad D"TIC LECTEfl Naval Ocean Systems Center scR. San Diego, California 92152-5000 Approved for public release; distribution unlimited 0...MEANS OF INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROSCOPY 12. PENSOIAF 111151 W.. la boron Stitaim tantlum nibim tn sten and EC zircNI in n n

  6. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

    2014-05-01

    A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

  7. A study on plasma parameters in Ar/SF6 inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2017-01-01

    Sulfur hexafluoride (SF6) gas or Ar/SF6 mixing gas is widely used in plasma processes. However, there are a little experimental studies with various external parameters such as gas pressure and mixing ratio. In this work, a study of the plasma parameters by changing the gas mixing ratio was done in an Ar/SF6 inductively coupled plasma from the measurement of the electron energy distribution function. At a low gas pressure, as the mixing ratio of SF6 gas increased at a fixed inductively coupled plasma (ICP) power, the electron density decreased and the electron temperature increased, while they were not changed drastically. At a high gas pressure, a remarkable increase in the electron temperature was observed with the decrease in the electron density. These variations are due to the electron loss reactions such as the electron attachment. It was also found that at a fixed ICP power, the negative ion creation with the diluted SF6 gas can change the discharge mode transition from an inductive mode to a capacitive mode at the high gas pressure. The electron attachment reactions remove the low energy electrons and change the mean electron energy towards higher energies with diluting SF6 gas at high pressure. The measured results were compared with the simplified global model, and the global model is in relatively good agreement with the measured plasma parameters except for the result in the case of the large portion of SF6 gas at the high pressure and the capacitive mode, which causes strong negative ion formation by the electron attachment reactions.

  8. Induced magnetic-field effects in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cohen, Ronald H.; Rognlien, Thomas D.

    1996-05-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. It was previously shown that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here the electron density calculation is extended to include both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. The potential required to establish a constant electron density is calculated and compared with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest.

  9. Induced magnetic-field effects in inductively coupled plasmas

    SciTech Connect

    Cohen, R.H.; Rognlien, T.D.

    1995-11-04

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday`s law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest.

  10. Determination of silver in nano-plastic food packaging by microwave digestion coupled with inductively coupled plasma atomic emission spectrometry or inductively coupled plasma mass spectrometry.

    PubMed

    Lin, Q-B; Li, B; Song, H; Wu, H-J

    2011-08-01

    The detection of silver in nano-plastic food packaging by microwave digestion coupled with either inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) was investigated. Microwave digestion was optimised by trialling different acid mixtures. Both ICP-AES and ICP-MS showed good reproducibility, repeatability and recovery. For ICP-AES the limit of detection of the method (LODm) was 25.0 µg g(-1), the limit of detection of the instrument (LODi) was 30.0 ng ml(-1), the linear range was 0.10-10.0 µg ml(-1). The average recoveries for blank samples spiked with silver at 100, 250 and 500 µg g(-1) ranged from 82.53% to 87.60%, and the relative standard deviations (RSDs) were from 1.79% to 8.30%. For ICP-MS analysis the LODm was 0.75 µg g(-1), the LODi was 0.04 ng ml(-1), the linear range was 0.20-500.0 ng ml(-1), the RSDs were 2.26-4.79%, and the recoveries were 78.09-92.72% (spiked concentrations of 2.5, 5.0 and 10.0 µg g(-1)). These results indicate that the proposed method could be employed to analyse silver in nano-plastic food packaging.

  11. Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale.

    PubMed

    Kreitals, Natasha M; Watling, R John

    2014-11-01

    Chemical signatures within the environment vary between regions as a result of climatological, geochemical and anthropogenic influences. These variations are incorporated into the region's geology, soils, water and vegetation; ultimately making their way through the food chain to higher level organisms. Because the variation in chemical signatures between areas is significant, a specific knowledge of differences in elemental distribution patterns between, and within populations, could prove beneficial for provenancing animals or animal related products when applied to indigenous and feral faunal populations. The domestic pig (Sus scrofa domestica) was used as an investigative model to determine the feasibility of using a chemical traceability method for the provenance determination of animal tissue. Samples of pig muscle, tongue, stomach, heart, liver and kidney were collected from known farming areas around Australia. Samples were digested in 1:3 H2O2:HNO3 and their elemental composition determined using solution based Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Pigs from different growing regions in Australia could be distinguished based on the chemical signature of each individual tissue type. Discrimination was possible at a region, state and population level. This investigation demonstrates the potential for multi-element analysis of low genetic variation native and feral species of forensic relevance.

  12. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  13. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Delta34S measurements of sulfur by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Clough, Robert; Evans, Peter; Catterick, Tim; Evans, E Hywel

    2006-09-01

    An accurate and precise method for the determination of delta34S measurements by multicollector inductively coupled plasma mass spectrometry has been developed. Full uncertainty budgets, taking into consideration all the uncertainties of the measurement process, have been calculated. The technique was evaluated by comparing measured values with a range of isotopically enriched sulfur solutions prepared by gravimetric addition of a 34S spike. The gravimetric and measured results exhibited a correlation of R2 >0.999. Repeat measurements were also made after adding Na (up to 420 microg g(-1)) and Ca (up to 400 microg g(-1)) salts to the sulfur standard. No significant deviations in the delta34S values were observed. The Russell correction expression (Ingle, C.; Sharp, B.; Horstwood, M.; Parrish, R.; Lewis, D. J. J. Anal. At. Spectrom. 2003, 18, 219) was used to correct for mass bias on the 34S/32S isotope amount ratio from the mass bias observed for the 30Si/28Si isotope amount ratio. Consistent compensation for instrumental mass bias was achieved. Resolution of the measured delta34S values was better than 1 per thousand after consideration of all uncertainty components. The technique was evaluated for practical applications by measurement of delta34S for a range of mineral waters by pneumatic nebulization sample introduction and the analysis of genuine and counterfeit pharmaceuticals using both laser ablation sample introduction and liquid chromatography. For the former two cases polyatomic interferences were resolved by operating the MC-ICPMS in medium resolution, while for the chromatographic analyses polyatomic interferences were minimized by the use of a membrane desolvator, allowing the instrument to be operated at a resolution of 400.

  15. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  16. [Determination of trace elements in shark cartilage by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Deng, B; Zhang, Z

    1998-10-01

    Semiquantitative estimation of all elements in shark cartilage was investigated by inductively coupled plasma mass spectrometry (ICP-MS). The determination of trace elements, namely Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr in shark cartilage, was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES). The matrix effects were overcome by using yttrium as an internal standard element. The recoveries are in the range of 81.6 to 100.7%. The determination limits of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr are 0.60, 0.55, 0.21, 0.39, 0.042, 0.27, 0.038 and 0.48 microg x g(-1), respectively. The results showed that the shark cartilage contains higher amount of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr than those in other fishes and in other animal bones.

  17. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  18. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  19. Effects of antenna coil turns on plasma density and antenna voltage in solenoidal inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Moon, Jun-Hyeon; Kim, Kyung-Hyun; Lin, Ming-Chieh; Chung, Chin-Wook

    2016-11-01

    The number of antenna coil turns, N , that affects the plasma density is a significant factor to design an inductively coupled plasma source. The equivalent resistance and inductance of a transformer circuit seen at the antenna coil are known to increase with N . This can enhance the power transfer efficiency. However, there is an undesired capacitive coupling between the antenna coil and the plasma. The antenna voltage related to the capacitive coupling is known to be proportional to N . In this work, to investigate the effects of N , the plasma density and the antenna coil voltage are measured by a floating probe and high-voltage probes, respectively. A terminal capacitor is used to suppress the capacitive coupling. As a result, the effects of N are clearly observed on the plasma densities and the voltages of the antenna coil. The plasma density was found to dramatically increase with N while the capacitive coupling is suppressed. The antenna voltage was not increased with N , and it was investigated by the ratio of the antenna voltage to the total voltage.

  20. Parametric investigations of plasma characteristics in a remote inductively coupled plasma system

    NASA Astrophysics Data System (ADS)

    Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth

    2016-09-01

    Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.

  1. Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)

    NASA Technical Reports Server (NTRS)

    Coedo, A. G.; Lopez, M. T. D.

    1986-01-01

    The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel.

  2. Feedback control of plasma electron density and ion energy in an inductively coupled plasma etcher

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Huang, H.-M.; Hsieh, C.-H.

    2009-01-15

    Here the authors report the development of a fuzzy logic based feedback control of the plasma electron density and ion energy for high density plasma etch process. The plasma electron density was measured using their recently developed transmission line microstrip microwave interferometer mounted on the chamber wall, and the rf voltage was measured by a commercial impedance meter connected to the wafer stage. The actuators were two 13.56 MHz rf power generators which provided the inductively coupled plasma power and bias power, respectively. The control system adopted the fuzzy logic control algorithm to reduce frequent actuator action resulting from measurement noise. The experimental results show that the first wafer effect can be eliminated using closed-loop control for both poly-Si and HfO{sub 2} etching. In particular, for the HfO2 etch, the controlled variables in this work were much more effective than the previous one where ion current was controlled, instead of the electron density. However, the pressure disturbance effect cannot be reduced using plasma electron density feedback.

  3. Temperature dependence of inductively coupled plasma assisted growth of TiN thin films.

    SciTech Connect

    Meng, W. J.; Curtis, T. J.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Louisiana State Univ.

    1999-11-01

    The use of low pressure high density plasmas to assist the synthesis of ceramic thin film materials is in its infancy. Using an inductively coupled plasma assisted magnetron sputtering system, we examine the dependence of plasma-assisted growth of TiN thin films on growth temperature at different ratios of ion flux to neutral atom flux. Our results indicate that a temperature independent densification of TiN films occurs above a certain ion to neutral atom flux ratio. As an example of this temperature independent densification, we demonstrate the formation of dense B1 TiN crystalline thin films at growth temperatures down to {approx}100 K.

  4. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  5. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds only as the total metal (e.g., total arsenic), inductively coupled plasma-mass spectrometry.

  6. Optical diagnostics for a high power, rf-inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Nogar, N. S.; Keaton, G. L.; Anderson, J. E.; Trkula, M.

    Emission spectroscopy and laser-induced fluorescence have been used to monitor the field and tail-flame regions of a Hull-design inductively coupled plasma. This plasma is used for a variety of syntheses including SiC, TiC, BN, A1N and diamond. Temporally- and spatially-resolved spectra of both pure Ar and Ar/gas mixtures have been studied as a function of RF power, pressure and flow rate. Preliminary data suggest that the system is far from local thermodynamic equilibrium.

  7. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C+ with 12C 1H+ comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.

  8. Optical Diagnostics of the Plasma and Surface during Inductively Coupled Plasma Etching

    NASA Astrophysics Data System (ADS)

    Herman, Irving P.

    1999-10-01

    The use of optical diagnostics to analyze the etching of Si, Ge, and InP by chlorine in an inductively coupled plasma (ICP) is investigated. Optical probes, along with other conventional plasma diagnostics, are used to characterize the process through measurements of the constituents of the plasma and the surface composition to obtain a more complete picture of the etching process. Neutral Cl2 and Cl densities are determined by optical emission actinometry by following optical emission from Cl_2. The absolute densities of Cl_2^+ and Cl^+ are determined by laser- induced fluorescence (LIF) of Cl_2^+ and Langmuir probe measurements of the total positive ion density. The surface is probed by using laser-induced thermal desorption with an XeCl laser (308 nm) to desorb the steady-state adlayer and optical methods to detect these desorbed species. The development of a new method to detect optically these laser desorbed (LD) species is detailed, that of examining transient changes in the plasma-induced emission (PIE). This LD-PIE method is more universal than the previously reported detection by LIF (LD-LIF), but requires more calibration due to varying electron density and temperature with varying plasma conditions. This is detailed for Si etching, for which LD-PIE and LD-LIF results are compared. The calibration methods are seen to be valid when the surface is analyzed as the rf power supplied to the reactor is varied. The electron density - needed for LD-PIE calibration - is measured by microwave interferometry. An improved understanding of the etching mechanism is obtained by combining the results of each of these measurements. This work was supported by NSF Grant No. DMR-98-15846. note

  9. Equivalent circuit effects on mode transitions in H{sub 2} inductively coupled plasmas

    SciTech Connect

    Xu, Hui-Jing; Zhao, Shu-Xia Zhang, Yu-Ru; Gao, Fei; Li, Xue-Chun; Wang, You-Nian

    2015-04-15

    It is well known experimentally that the circuit matching network plays an important role in the mode transition behavior of inductively coupled plasmas. To date, however, there have been no reports of numerical models being used to study the role of the matching circuit in the transition process. In this paper, a new two-dimensional self-consistent fluid model that couples the components of an equivalent circuit module is developed to investigate the effects of the equivalent circuit on the mode transition characteristics of an inductively coupled, hydrogen plasma. The equivalent circuit consists of a current source, impedance matching network, reactor impedance, and plasma transferred impedance. The nonlinear coupling of the external circuit with the internal plasma is investigated by adjusting the matching capacitance at a fixed input current. The electron density and temperature as well as the electromagnetic fields all change suddenly, and the E to H mode transition occurs abruptly at a certain matching capacitance as the impedance matching of the external circuit is varied. We also analyze the fields and the plasma characteristics during the transition process, especially for the case of the capacitive E mode.

  10. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  11. A Self-Consistent Plasma-Sheath Model for the Inductively Coupled Plasma Reactor

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindam, T. R.; Meyyappan, M.

    2000-01-01

    Accurate determination of ion flux on a wafer requires a self-consistent, multidimensional modeling of plasma reactor that adequately resolves the sheath region adjoining the wafer. This level of modeling is difficult to achieve since non-collisional sheath lengths are usually 3-4 orders of magnitude smaller than the reactor scale. Also, the drift-diffusion equations used for ion transport becomes invalid in the sheath since the ion frictional force is no longer in equilibrium with drift and diffusion forces. The alternative is to use a full momentum equation for each ionic species. In this work we will present results from a self-consistent reactor scale-sheath scale model for 2D inductively coupled plasmas. The goal of this study is to improve the modeling capabilities and assess the importance of additional physics in determining important reactor performance features, such as the ion flux uniformity, coil frequency and configuration effects, etc. Effect of numerical dissipation on the solution quality will also be discussed.

  12. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Lorge, Susan Elizabeth

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  13. Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-ul-Islam, M.; Zakaullah, M.

    2017-03-01

    This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.

  14. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gillon, X.; Diallo, M.; Houssiau, L.; Pireaux, J.-J.

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  15. Effects of capacitance termination of the internal antenna in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Konishi, K.; Nakamura, K.; Sugai, H.

    2000-05-01

    In a conventional inductive rf discharge, the electrostatic coupling from the coil to the plasma causes a serous problem of sputtering of any dielectric materials in the vicinity of the coil. This paper reports the suppression of the electrostatic coupling by terminating the coil (inductance L ) with a capacitor (capacitance C ). The suppression resonantly takes place when the termination reactance (1/icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/> C ) coincides with a half of the coil reactance (icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/> L ). In this condition, the plasma density is observed to increase by ~50% at the same input power, in comparison with the conventional internal antenna inductively coupled plasma without the capacitance termination. The electrical transmission-line properties of the coil well account for the termination capacitance dependence of the coil voltages, currents, plasma potential oscillation, plasma density and dc self-bias voltage.

  16. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  17. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Jing; Zhao, Shu-Xia; Fei, Gao; Yu-Ru, Zhang; Xue-Chun, Li; You-Nian, Wang

    2015-11-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11205025, 11305023, and 11075029).

  18. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  19. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes.

  20. Determination of trace metals in marine biological reference materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Beauchemin, D.; McLaren, J.W.; Willie, S.N.; Berman, S.S.

    1988-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of two marine biological reference materials (dogfish liver tissue (DOLT-1) and dogfish muscle tissue (DORM-1)). The materials were put into solution by digestion in a nitric acid/hydrogen peroxide mixture. Thirteen elements (Na, Mg, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb) were then determined. Accurate results were obtained by standard additions or isotope dilution techniques for all of these elements in DORM-1 and for all but Cr in DOLT-1.

  1. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    PubMed

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  2. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  3. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Sun, Jianbo

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  4. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  5. Effect of dual frequency rf power in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Ho; Lee, Ho-Won; Kim, Tae Woo; Chung, Chin-Wook

    2016-09-01

    Dual frequency inductively coupled plasma discharge is investigated. Dual RF power is applied independently to each antenna (inner and outer coil), and the electron energy distribution functions (EEDFs) are measured using a RF compensated Langmuir probe. As the ratio of low frequency power (Plow) and high frequency power (Phigh) is changed, the variation of EEDF is observed. When Plow is higher than Phigh, the low energy electrons effectively heated compared to the case when Plow is comparable to Phigh. This difference in the shape of the EEDF can be understood by correlation between the driving frequency and the collision frequency.

  6. [Determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Liu, Dong-yan; Zhang, Yuan-li

    2002-02-01

    A direct method was reported for the determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution conditions of coal samples as well as interference conditions of hydrochloric acid and matrix were studied. The recommended method not only proved to be simple and rapid than traditional gravimetric method but show satisfying precision and accuracy as well. The results of samples are as same as gravimetry. The recoveries are more than 96%, and the relative standard deviation of six samples are less than 3%.

  7. An Environmental Focus Using Inductively Coupled Plasma Optical Emission Spectrometry and Ion Chromatography

    NASA Astrophysics Data System (ADS)

    Salido, Arthur; Atterholt, Cynthia; Bacon, J. Roger; Butcher, David J.

    2003-01-01

    The Western Carolina University chemistry faculty have developed an environmental focus to their curriculum. Inductively coupled plasma-optical emission spectrometry (ICP-OES) and ion chromatography (IC) have been shown to be useful tools for the determination of elements and ions, respectively. Several novel experiments have been developed monitoring these analytes in environmental samples, including water, pressure-treated wood, and nutritional supplements. In addition, ICP-OES and IC have been used to teach seniors the principles of analytical method development. Lastly, this equipment has been employed extensively in a vigorous research program.

  8. Chemical recoveries of technetium-99 for various procedures using inductively coupled plasma-mass spectrometry

    SciTech Connect

    Ihsanullah; East, B.W.

    1993-12-31

    The procedure for the determination of {sup 99}Tc inductively coupled plasma-mass spectrometry (ICP-MS) was based on the modification of a variety of available separation techniques. Standard Ru and Rh solutions were used for checking decontaminations and instrument response respectively. Technetium-99 and {sup 95m}Tc tracers were applied as yield monitors using ICP-MS and gamma-ray spectrometry respectively. Percent recoveries are reported for a variety of radiochemical separation procedures for water (58-83%), seaweed (10-76%), and for soil matrices (19-79%).

  9. Etch Characteristics of GaN using Inductively Coupled Cl2 Plasma Etching

    NASA Astrophysics Data System (ADS)

    Rosli, Siti Azlina; Aziz, A. Abdul

    2008-05-01

    In this study, the plasma characteristics and GaN etch properties of inductively coupled Cl2/Ar plasmas were investigated. It has shown that the results of a study of inductively coupled plasma (ICP) etching of gallium nitride by using Cl2/Ar is possible to meet the requirement (anisotropy, high etch rate and high selectivity), simultaneously. We have investigated the etching rate dependency on the percentage of Argon in the gas mixture, the total pressure and DC voltage. We found that using a gas mixture with 20 sccm of Ar, the optimum etch rate of GaN was achieved. The etch rate were found to increase with voltage, attaining a maximum rate 2500 Å/min at -557 V. The addition of an inert gas, Ar is found to barely affect the etch rate. Surface morphology of the etched samples was verified by scanning electron microscopy and atomic force microscopy. It was found that the etched surface was anisotropic and the smoothness of the etched surface is comparable to that of polished wafer.

  10. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  11. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    SciTech Connect

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  12. A volume averaged global model for inductively coupled HBr/Ar plasma discharge

    NASA Astrophysics Data System (ADS)

    Chung, Sang-Young; Kwon, Deuk-Chul; Choi, Heechol; Song, Mi-Young

    2015-09-01

    A global model for inductively coupled HBr/Ar plasma was developed. The model was based on a self-consistent global model had been developed by Kwon et al., and a set of chemical reactions in the HBr/Ar plasma was compiled by surveying theoretical, experimental and evaluative researches. In this model vibrational excitations of bi-atomic molecules and electronic excitations of hydrogen atom were taken into account. Neutralizations by collisions between positive and negative ions were considered with Hakman's approximate formula achieved by fitting of theoretical result. For some reactions that were not supplied from literatures the reaction parameters of Cl2 and HCl were adopted as them Br2 and HBr, respectively. For validation calculation results using this model were compared with experimental results from literatures for various plasma discharge parameters and it showed overall good agreement.

  13. Effect of metastables on a sustaining mechanism in inductively coupled plasma in Ar

    NASA Astrophysics Data System (ADS)

    Sato, Toshikazu; Makabe, Toshiaki

    2005-12-01

    We numerically predicted the spatial distribution of Ar metastables in an inductively coupled plasma (ICP) source; this distribution may be an indicator of the behavior of long-lived neutral radicals in a reactive plasma. We investigated the effect of metastables on the sustaining mechanism in ICP in Ar. The predicted two-dimensional profile of Ar metastables agreed reasonably well with experimental results. The transition of the sustaining mechanism from direct ionization to stepwise ionization is found as a function of input power at 50 mTorr. In addition, a strong hysteresis of plasma density is predicted between the increasing and decreasing phases of the input power based on the stepwise ionization of Ar metastables in the ICP.

  14. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  15. Electromagnetic field distribution calculation in solenoidal inductively coupled plasma using finite difference method

    SciTech Connect

    Li, W. P.; Liu, Y.; Long, Q.; Chen, D. H.; Chen, Y. M.

    2008-10-15

    The electromagnetic field (both E and B fields) is calculated for a solenoidal inductively coupled plasma (ICP) discharge. The model is based on two-dimensional cylindrical coordinates, and the finite difference method is used for solving Maxwell equations in both the radial and axial directions. Through one-turn coil measurements, assuming that the electrical conductivity has a constant value in each cross section of the discharge tube, the calculated E and B fields rise sharply near the tube wall. The nonuniform radial distributions imply that the skin effect plays a significant role in the energy balance of the stable ICP. Damped distributions in the axial direction show that the magnetic flux gradually dissipates into the surrounding space. A finite difference calculation allows prediction of the electrical conductivity and plasma permeability, and the induction coil voltage and plasma current can be calculated, which are verified for correctness.

  16. Synthesis of Ozone at Atmospheric Pressure by a Quenched Induction-Coupled Plasma Torch

    SciTech Connect

    A. Blutke; B.C. Stratton; D.R. Mikkelsen; J. Vavruska; R. Knight

    1998-01-01

    The technical feasibility of using an induction-coupled plasma (ICP) torch to synthesize ozone at atmospheric pressure is explored. Ozone concentrations up to ~250 ppm were produced using a thermal plasma reactor system based on an ICP torch operating at 2.5 MHz and ~11 kVA with an argon/oxygen mixture as the plasma-forming gas. A gaseous oxygen quench formed ozone by rapid mixing of molecular oxygen with atomic oxygen produced by the torch. The ozone concentration in the reaction chamber was measured by Fourier Transform infrared (FTIR) spectroscopy over a wide range of experimental configurations. The geometry of the quench gas flow, the quench flow velocity, and the quench flow rate played important roles in determining the ozone concentration. The ozone concentration was sensitive to the torch RF power, but was insensitive to the torch gas flow rates. These observations are interpreted within the framework of a simple model of ozone synthesis.

  17. Inductively Coupling Plasma (ICP) Treatment of Propylene (PP) Surface and Adhesion Improvement

    NASA Astrophysics Data System (ADS)

    Liu, Yenchun; Fu, Yenpei

    2009-12-01

    Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.

  18. Effect of antenna size on electron kinetics in inductively coupled plasmas

    SciTech Connect

    Lee, Hyo-Chang; Chung, Chin-Wook

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  19. Simulation and Experimental Measurements of Inductively Coupled CF4 and CF4/Ar Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    The recently developed code SEMS (semiconductor equipment modeling software)is applied to the simulation of CF4 and CF4/Ar inductively coupled plasmas (ICP). This work builds upon the earlier nitrogen, transformer coupled plasma (TCP) SEMS research by demonstrating its accuracy for more complex reactive mixtures, moving closer to the realization of a virtual plasma reactor. Attention is given to the etching of and/or formation of carbonaceous films on the quartz dielectric window and diagnostic aperatures. The simulations are validated through comparisons with experimental measurements using FTIR (Fourier Transform Infrared) and UV absorption spectroscopy for CFx and SiFx neutral radicals, QMS (quadrupole mass spectrometry) for the ions, and Langmuir probe measurements of electron number density and temperature in an ICP GEC reference cell.

  20. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani

    2015-09-01

    Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science

  1. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  2. Viscous effects on motion and heating of electrons in inductively coupled plasma reactors

    SciTech Connect

    Chang, C.H.; Bose, D.

    1999-10-01

    A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor.

  3. A new air-cooled argon/helium-compatible inductively coupled plasma torch.

    PubMed

    Miyahara, Hidekazu; Iwai, Takahiro; Kaburaki, Yuki; Kozuma, Tomokazu; Shigeta, Kaori; Okino, Akitoshi

    2014-01-01

    A new inductively coupled plasma (ICP) torch with an air-cooling system has been designed and developed for both argon and helium plasma. The same torch and impedance-matching network could be used to generate stable Ar- and He-ICP. The torch consists of three concentric quartz tubes. The carrier gas, plasma gas, and cooling gas flow through the intervals between each tube. In an experiment, it was found that Ar-ICP could form a stable plasma under the following conditions: RF power of 1 kW, plasma gas flow rate of 11 L min(-1), and cooling gas flow rate of 20 L min(-1). For He-ICP, an input RF power of 2 kW, which is two-times higher than that of a conventional He-ICP, could be constantly applied to the plasma with plasma gas and cooling gas flow rates of 15 and 20 L min(-1), respectively. Using this torch, it is possible to realize lower plasma gas consumption for Ar- and He-ICP and a high-power drive for He-ICP. It has been found that the air-cooling gas stabilizes the shape of the plasma due to the pressure difference between the cooling gas and the plasma gas.

  4. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  5. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  6. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  7. Inductively coupled plasma reactive ion etching of III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Shah, A. P.; Laskar, M. R.; Rahman, A. A.; Gokhale, M. R.; Bhattacharya, A.

    2013-02-01

    III-Nitride semiconductor materials are resistant to most wet chemical etch processes, and hence the only viable alternative is to use dry etching for device processing. However, the conventional Reactive Ion Etching (RIE) process results in very slow etch-rates because of low reactive ion density, and larger surface damage due to high energy ion bombardment. Using Inductively Coupled Plasma (ICP) RIE, a very fast etch-rate and smooth morphology is achieved due to independent control of ion density and ion energy. In this paper, we present our results on ICP-RIE of epitaxial III-N materials, namely c-plane and a-plane oriented GaN, AlN, AlxGa1-xN using various chlorine plasma chemistries based on Cl2 and BCl3. We have examined the role of BCl3 deoxidising pre-treatment on the etching of AlGaN alloys.

  8. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Rauscher, H.; Gilliland, D.; Brétagnol, F.; Rossi, F.

    2008-05-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  9. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  10. E→H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  11. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    SciTech Connect

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  12. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    NASA Astrophysics Data System (ADS)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-01

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  13. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  14. Characterization of radical production mechanism in CHF3 and CF4 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Zhao, Shuxia; PSEG Team

    2015-09-01

    Inductively coupled fluorocarbon (fc) plasmas are widely used in Si /SiO2 etching industry as they provide active radicals which are reactive to the Si or SiO2 materials. It is well known that CHF3 plasma has relatively low density ratio of F vs. CFx radicals and hence high etching selectivity, as compared with the CF4 , due to the fact that one F is replaced by H in CHF3 molecules and H can abstract F from fluorocarbon radicals to form HF. However, for now, much elaborate details are still missed in the literature. Therefore in this work, a fluid model is used to characterize the radical production components in these two different fc plasmas. The fluid model includes continuity and energy equations for electrons, continuity and momentum equations for ions and continuity equations for radicals. An electromagnetic model is used to calculate the electric field which is generate by coupling coil current and Poisson equation is used to calculate the static field within the plasma. The model predicts the electron density, ion density and radical density of CHF3 plasma. For now the simulations of CF4 plasma are still under construction. We expect to compare the different radical production mechanisms in the CHF3 and CF4 plasma sources in new future.

  15. Kinetic simulations and photometry measurements of the E-H transition in cylindrical inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Nishida, K.; Mochizuki, S.; Grudiev, A.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2016-12-01

    Inductively coupled plasmas (ICP) are well known to exhibit two modes of operation: a low density capacitive E-mode and a high density inductive H-mode. In this study we investigate the E-H transition in a cylindrical ICP, and show the effect of an external magnetic cusp field on the transition dynamics. The plasma is simulated by an electro-magnetic particle-in-cell Monte Carlo collision code in order to take into account spatio-temporal variations of the plasma dynamics as well as kinetic effects. Simulations are compared to photometry measurements on the Linac4 H-ion source plasma chamber. We show that the E-H transition is characterized by strong spatial variations of the plasma parameters, with an axial plasma oscillation in E-mode followed by a centring in the coil region in H-mode. The external magnetic cusp field prevents electrons close to the wall to be accelerated and reduces the inductive power deposition in the plasma. This resulted in a  ≈50% higher current to achieve E-H transition compared to the configuration without cusp field. The results indicate possible improvements to the magnetic cusp field configuration in order to achieve optimal power transfer.

  16. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  17. Electron density characterization of inductively-coupled argon plasmas by the terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Dogeun; Uhm, Han Sup; Jang, Donggyu; Hur, Min Sup; Suk, Hyyong

    2016-12-01

    Inductively-coupled plasmas (ICP) in the high electron density regime of the order of 1013 cm-3 are generated and their electron density characteristics are investigated by the terahertz time-domain spectroscopy (THz-TDS) method. In this experiment, the plasma was produced by RF (13.56 MHz) with an applied RF power of 300-550 W and the argon gas pressure was in the range of 0.3-1.1 Torr. We generated the THz wave by focusing a femtosecond laser pulse in air with a DC electric field. As a plasma diagnostic tool, the THz-TDS method is found to successfully provide the plasma density information in the high-density regime, where other available plasma diagnostic tools are very limited. In addition, the analytical model based on the ambipolar diffusion equation is compared with experimental observations to explain the behavior of the electron density in the ICP source, where the plasma density is shown to be related to the applied RF power and gas pressure. The analytical result from the model is found to be in good agreement with the THz-TDS result.

  18. Characterization of Inductively Coupled Plasmas in High Power, High Pressure Regime

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Kenney, Jason; Agarwal, Ankur; Nichols, Michael; Rogers, James; Rauf, Shahid

    2015-09-01

    Inductively coupled plasmas (ICP) are widely used in the microelectronic industry for thin film etching. ICPs have typically been operated at low gas pressures (<50 mTorr) and they have been well-characterized in this regime. Several applications requiring high etch rates (e.g., vertical NAND etch) have recently extended the use of ICPs to the high power (>4000 W) and high pressure (>100 mTorr) regime. ICP operation in this high-power, high-pressure regime imposes a tremendous challenge of achieving good plasma uniformity over large substrates. This necessitates a good theoretical understanding of the underlying physics, thorough experimental characterization, and more accurate numerical models for hardware design guidance. In this study, we will focus on the characterization of ICP in the high-power, high-pressure regime. Computational modeling is done using CRTRS, our in-house 2D/3D plasma model. The fluid plasma model is coupled to a circuit model to self-consistently account for the capacitive coupling from the coils that is expected to dominate in this operating regime. Properties of Ar plasma will be discussed and compared with experiments. The impact of critical operating parameters such as ICP power, pressure, flow rate, and current ratio (in multi-coil antenna structures) on plasma characteristics will be examined. Results in relevant processing gases will also be discussed.

  19. On anomalous temporal evolution of gas pressure in inductively coupled plasma

    SciTech Connect

    Seo, B. H.; Chang, H. Y.; You, S. J.; Kim, J. H.; Seong, D. J.

    2013-04-01

    The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

  20. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    PubMed

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  1. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  2. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  3. Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching

    SciTech Connect

    Muttalib, Muhammad Firdaus A. Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B.

    2014-07-01

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

  4. [Study on the determination of trace elements in bitter almond by inductively coupled plasma mass spectrometry].

    PubMed

    Liu, Hong-Wei; Xie, Hua-Lin; Nie, Xi-Du

    2013-05-01

    Samples of bitter almond were digested by microwave digestion, and trace elements amounts of B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Ba and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The result showed that the relative standard deviation (RSD) was less than 4.79% for all the elements, and the recovery was 90.00%-109.30% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneo multi-elements determination for bitter almond, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements in bitter almond.

  5. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  6. Analysis of biological reference materials, prepared by microwave dissolution, using inductively coupled plasma mass spectrometry.

    PubMed

    Friel, J K; Skinner, C S; Jackson, S E; Longerich, H P

    1990-03-01

    A procedure has been developed for the analysis of biological materials by inductively coupled plasma mass spectrometry (ICP-MS). Fast, efficient and complete sample digestion is achieved by a combined microwave-nitric acid/open beaker-nitric acid-hydrogen peroxide procedure. The ICP-MS analysis is performed with an on-line five-element internal standard to correct for matrix and instrumental drift effects. Results are presented for 24 elements in three biological reference materials (National Institute of Standards and Technology Standard Reference Materials 5277a Liver and 1566 Oyster and International Atomic Energy Agency Certified Reference Material H4 Animal Muscle). For all elements significantly above the detection limit and reagent blank concentrations, good agreement exists between ICP-MS and certified values.

  7. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  8. Determination of mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liaw, Ming-Jyh; Jiang, Shiuh-Jen; Li, Yi-Ching

    1997-06-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to the determination of mercury in several fish samples. The effects of instrument operating conditions and slurry preparation on the ion signals are reported. Palladium was used as modifier to delay the vaporization of mercury in this study. As the vaporization behavior of mercury in fish slurry and aqueous solution is quite different, the standard addition method was used for the determination of mercury in reference materials. The detection limit of mercury estimated from the standard addition curve was in the range 0.002-0.004 μg g -1 for different samples. This method has been applied to the determination of mercury in dogfish muscle reference material (DORM-1 and DORM-2) and dogfish liver reference material (DOLT-1). Accuracy was better than 4% and precision was better than 7% with the USS-ETV-ICP-MS method.

  9. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  10. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  11. Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Zhang, S.; Hu, X. N.; Ding, R. J.; He, L.

    2016-05-01

    To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.

  12. Reaction Simulation and Experiment of a Cl2/Ar Inductively Coupled Plasma for Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Ge, Jie; Liu, Xuan; Yang, Yi; Song, Yixu; Ren, Tianling

    2014-05-01

    As the key feature size keeps shrinking down, inductively coupled plasma (ICP) has been widely used for etching. In this study, a commercial ICP etcher filled with Cl2/Ar mixture was simulated. The simulation was based on a commercial software CFD-ACE+, which is a multi-module solver. For the simulation part, CFD-ACE module was used for reactor scale and CFD-TOPO module was used for feature scale simulation. We have reached a reasonable agreement between the simulative and experimental results. Specifically, the different causes of sidewall bowing and microtrenching were discussed. We also analyzed the causes of special profile as trench width scaling down. Moreover, the agreement validates correctness of the chemistry mechanism, so it can be used as guidance for the process designing and manufacturing equipment improvement.

  13. Inductively coupled plasma optical emission spectrometric determination of minerals in catfish frame.

    PubMed

    Losso, Jack N; Munene, Cate N; Moody, Michael W

    2003-10-01

    The concentration of 14 major and trace elements in catfish (Ictalurus punctatus) frames was determined and analyzed for differences. Three frames were obtained each week for five consecutive weeks in the spring and the fall of 2000. The frames were freed of remaining flesh, dried, treated by microwave dissolution technique and the minerals determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The mean calcium concentration (mg/kg, dry basis) in the spring (140400) was not significantly (P > 0.05) different from that in fall (167000). Among the heavy metals (Cd, Pb, and Al) the concentration of Cd varied significantly (P < 0.05) from week to week but not from season to season. The concentration of all the above-mentioned heavy metals did not exceed the critical level for human consumption.

  14. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  15. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  16. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  17. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  18. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  19. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  20. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  1. HPLC with inductively coupled plasma optical emission spectrometric detection for the analysis of inositol phosphates.

    PubMed

    Amaro, Rosa; Escalona, Andrés; Murillo, Miguel

    2004-10-01

    The use of inductively coupled plasma optimal emission spectroscopy as a detector for the high-performance liquid chromatographic analysis of inositol phosphates is studied. It is found that separation of different inositol phosphates with a mobile phase consisting of tetraethylammonium (0.14%, w/v), methanol (5%, v/v), and formic acid (0.18%, w/v) may be obtained on a PRP-1 column with an analysis time of 18 min. In addition, high specificity and sensitivity of the detection system used permits detection of the inositol phosphates from bi- to hexaphosphate free from interference of other chromatographic peaks, which could be from the sample or mobile phase. Additionally, it is possible to use less sample because of the high sensitivity of the detection system.

  2. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  3. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry.

    PubMed

    Melnyk, Lisa Jo; Morgan, Jeffrey N; Fernando, Reshan; Pellizzari, Edo D; Akinbo, Olujide

    2003-01-01

    A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4-1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0-11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.

  4. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  5. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    NASA Astrophysics Data System (ADS)

    Tanner, Scott D.; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I.

    2007-03-01

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  6. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    SciTech Connect

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  7. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  8. Extraction and neutralization of positive and negative ions from a pulsed electronegative inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Marinov, D.; el Otell, Z.; Bowden, M. D.; Braithwaite, N. St. J.

    2015-12-01

    Almost electron-free (ion-ion) plasmas can be transiently formed during the afterglow phase of pulsed plasmas in electronegative gases. In ion-ion plasmas, both positive and negative ions can be extracted which makes them advantageous for a number of applications. In this paper, we investigate the extraction and acceleration of positive and negative ion beams from a pulsed inductively coupled plasma in SF6. The plasma is bounded by two electrodes biased synchronously with the discharge modulation. It is shown that when a DC bias voltage is applied during the afterglow phase, positive/negative ions are accelerated in a positive/negative space charge sheath formed in front of one of the electrodes. The energy of extracted ions closely follows the amplitude of the applied bias voltage (25-150 V) and the peak beam current density reaches 2 A m-2. With a view to using the described system as a source of energetic neutral beams for low damage material processing, simultaneous extraction and surface neutralization of positive and negative ions using an extraction electrode with high aspect ratio apertures is investigated.

  9. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi

    the neutral pressure is reduced due the balance of total pressure with plasma pressure (mainly electron pressure). Neutral gas heating is due to the elastic scattering and charge exchange collisions with ions, which are accelerated by the bulk plasma ambi-polar electrostatic field. The excellent agreement between experiment and simulation, and parametric study reveal that gas heating and pressure balance are the main mechanisms of gas depletion in an inductively coupled plasma. Coupling between plasma and neutral gas was observed by both experiment and simulation. The resulting gas depletion enhances the plasma transport to the surrounding wall, increases the particle loss, and decreases the plasma density.

  10. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  11. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  12. Measurements of relative BCl density in BCl3-containing inductively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Fleddermann, C. B.; Hebner, G. A.

    1998-04-01

    The relative density of BCl radicals in inductively coupled plasmas has been studied using laser-induced fluorescence (LIF), and the BCl excited state has been studied using plasma-induced emission (PIE). Measurements were made as a function of input power, pressure, position, and as a function of gas ratio for industry-relevant metal-etch gas mixtures containing BCl3, Cl2, Ar, and N2. LIF was used to measure the ground state BCl population, whereas PIE monitored the BCl A1Π excited state; the LIF and PIE intensities varied differently as the plasma parameters were changed. Between 150 and 400 W input power at 20 mTorr pressure, there was no variation in BCl density, indicating that the dissociation fraction for BCl3 to BCl was constant with power. No significant interactions between BCl3 and Cl2 or Ar were evident in the LIF measurements. However, the BCl density was suppressed by addition of nitrogen to the plasma. The BCl density was radially uniform for all gas mixtures, but axial measurements showed a slight decrease in BCl density near the upper electrode. After running the reactor with a BCl3/N2 mixture, BCl was observed for up to an hour after the discharge was switched to Cl2: this is attributed to buildup of BN films on reactor surfaces and subsequent etching of the film by Cl.

  13. External control of electron energy distributions in a dual tandem inductively coupled plasma

    SciTech Connect

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M. Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-28

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  14. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry.

    PubMed

    Degueldre, C; Favarger, P-Y

    2004-04-19

    Thorium colloid analysis in water has been carried out by a single particle mode using inductively coupled plasma mass spectrometry (ICP-MS). The flash of ions due to the ionisation of a thorium colloidal particle in the plasma torch can be detected and measured in a time scan for (232)Th (+ ) or (248)[ThO] (+ ) according to the sensitivity required by the mass spectrometer. The peaks of the recorded intensity of the MS signal can be analysed as a function of the particle size or fraction of the studied element in the colloid phase. The frequency of the flashes is directly proportional to the concentration of particles in the colloidal suspension. After discussing Th colloid detection, on the basis of the intensity of the ion flashes generated in the plasma torch, tests were performed on thorium dioxide colloidal particles. This feasibility study also describes the experimental conditions and the limitation of the plasma design to detect thorium colloids in a single particle analysis mode down to about 10fg.

  15. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  16. Mode transition in CF{sub 4} + Ar inductively coupled plasma

    SciTech Connect

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian

    2013-12-15

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF{sub 4} + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and △P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF{sub 4} increases, the E to H mode transition happens at higher applied power, and meanwhile, the △P also significantly increases. Besides, the effects of CF{sub 4} gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF{sub 4} at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF{sub 4} gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  17. External control of electron energy distributions in a dual tandem inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-01

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  18. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    NASA Astrophysics Data System (ADS)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  19. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  20. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  1. Comparison of various interpretation methods of the electric probe measurements in inductively coupled Ar and O{sub 2} plasmas

    SciTech Connect

    Woo Seo, Min; Keun Bae, Min; Chung, T. H.

    2014-02-15

    In low-pressure inductively coupled argon and oxygen discharges, the plasma density and electron temperature and the electron energy distribution function (EEDF) were obtained by using a cylindrical electric probe. The plasma densities were determined by various methods to interpret the probe current-voltage characteristic curve: the EEDF integration, the electron saturation current, the ion current at the floating potential, and the orbital-motion-limited (OML) ion current. Quite a good agreement exists between the plasma densities determined by various classical methods. Although the probe technique has some limitation in electronegative plasmas, the plasma densities determined from OML theory compare well with those measured by the ion saturation current at the floating potential in the oxygen discharges. In addition, the EEDFs of inductively coupled Ar and oxygen plasmas are observed to be nearly Maxwellian at the pressure range of 1-40 mTorr.

  2. Measurements of Relative BCl Density in BCl_3-containing Inductively-Coupled rf Plasmas

    NASA Astrophysics Data System (ADS)

    Fleddermann, C. B.; Hebner, G. A.

    1997-10-01

    The relative density of BCl radicals in inductively-coupled plasmas has been studied using laser induced fluorescence and plasma induced emission. Measurements were made as a function of input power, reactor pressure, position in the reactor, and as a function of gas ratio for metal etch gas mixtures containing BCl_3, Cl_2, Ar, and N_2. The LIF and PIE intensities varied differently as the plasma parameters were changed. Between 150 and 400 W input power, there was no variation in BCl density, indicating that the dissociation fraction for BCl3 to BCl was constant with power. No significant interactions between BCl3 and Cl2 or Ar were evident in the LIF measurements. However, the BCl density decreased with addition of nitrogen. The BCl density was radially uniform for all gas mixtures. After running the reactor with a BCl_3/N2 mixture, BCl was observable for up to an hour after the discharge was switched to Cl_2, attributed to buildup of BN films on reactor surfaces.

  3. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond

    SciTech Connect

    Fávaro de Oliveira, Felipe; Momenzadeh, S. Ali; Wang, Ya; Denisenko, Andrej; Konuma, Mitsuharu; Markham, Matthew; Edmonds, Andrew M.; Wrachtrup, Jörg

    2015-08-17

    Near-surface nitrogen-vacancy (NV) centers in diamond have been successfully employed as atomic-sized magnetic field sensors for external spins over the last years. A key challenge is still to develop a method to bring NV centers at nanometer proximity to the diamond surface while preserving their optical and spin properties. To that aim we present a method of controlled diamond etching with nanometric precision using an oxygen inductively coupled plasma process. Importantly, no traces of plasma-induced damages to the etched surface could be detected by X-ray photoelectron spectroscopy and confocal photoluminescence microscopy techniques. In addition, by profiling the depth of NV centers created by 5.0 keV of nitrogen implantation energy, no plasma-induced quenching in their fluorescence could be observed. Moreover, the developed etching process allowed even the channeling tail in their depth distribution to be resolved. Furthermore, treating a {sup 12}C isotopically purified diamond revealed a threefold increase in T{sub 2} times for NV centers with <4 nm of depth (measured by nuclear magnetic resonance signal from protons at the diamond surface) in comparison to the initial oxygen-terminated surface.

  4. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N.

    2016-02-01

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a "minor" effect on the ion flux and the shape of the IVDF.

  5. Erosion behavior of CVD 3C silicon carbide in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Brooks, Mitchell R.

    2010-11-01

    An electrostatic, capacitively coupled Planar Ion Flux (PIF) probe has been developed as a sensor for use in high volume reactive ion etch (RIE) chambers. An important factor in the design is the material used for the probe collection area that is exposed to the plasma. For use in inductively coupled plasma chambers, bulk-deposited, 3C silicon carbide (SiC) was chosen. The primary objective of this work was to characterize the erosion behavior of the probe tip throughout repeated cycling for 100 RF hours (RFH). Surface morphology, roughness, and composition were documented at the beginning and end of cycling. In addition, the mass of the probe tip was documented three times throughout the experiment. This was used to calculate the wear rate which averaged ~100 mug/RFH. Although physical and chemical mechanisms were evident, it appears that preferential sputtering at pre-existing surface defects had the greatest influence on the erosion behavior. Additionally, an investigation into the sudden abnormal electrical behavior of the probe yielded the conclusion that the added capacitance of a deposited film reduces the number of data points in the ion saturation region used to fit the experimental data. This results in excessive values for extracted plasma parameters, most notably the electron temperature. However, this is only a temporary condition if the film can be removed.

  6. Metastable CF and CF2 molecules in CF4 inductively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Corr, Cormac

    2006-02-01

    The radicals CF and CF2, which are important intermediates in fluorocarbon plasma chemistry, both have low-lying metastable levels (4CF at 3.54 eV and 3CF2 at 2.46 eV). Recent calculations (Rozum et al 2006 J. Phys. Chem. Ref. Data in press) indicate that electron-impact excitation of the ground-state radicals into these states could be fast. A recent study of inductively-coupled plasmas (ICP) in low-pressure CF4 (Booth et al 2005 Plasma Sources Sci. Technol. 14 273) indicated the presence of a fast electron-impact induced loss process for ground-state CF and CF2 molecules, which could be attributed to this process. In the current study 4CF and 3CF2 were detected in the afterglow of ICP in pure CF4 at pressures between 3 and 33 mTorr, from their weak forbidden optical emission back to their respective ground-states. From the lifetimes of these optical emission signals, determined as a function of gas pressure, the quenching coefficients at the chamber walls and the metastable destruction rates by gas-phase processes (giving unknown products) were estimated. Another prominent and long-lived feature of the afterglow is strong emission from the d state of C2 molecules: the emitting C2 molecules may be produced by chemiluminescent reactions or by excitation transfer from 3CF2.

  7. Vibrational kinetics in Cl2 and O2 low-pressure inductively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Foucher, Mickael; Marinov, Daniil; Chabert, Pascal; Annusova, Anna; Guerra, Vasco; Agarwal, Ankur; Rauf, Shahid

    2015-09-01

    Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N2 and H2 plasmas, very little attention has been paid to this subject. We have implemented a novel high-sensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10-5 over a 250 nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O2 and pure Cl2. In O2 plasmas we surprisingly observe highly vibrationally excited O2 (v'' up to 18) via B-X Schumann-Runge bands. Cl2 molecules show a broad UV absorption spectrum in the region 250-400 nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O2. We are currently working on global models with vibrational kinetics to explain these results. Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials.

  8. Surface hardening of VT-22 alloy by inductively coupled plasma nitriding and magnetron deposition of TiN films

    NASA Astrophysics Data System (ADS)

    Kharkov, Maxim M.; Kaziev, Andrey V.; Tumarkin, Alexander V.; Drobinin, Vyacheslav E.; Stepanova, Tatiana V.; Pisarev, Alexander A.

    2017-01-01

    The surface of VT-22 Russian grade titanium alloy samples was modified by inductively coupled plasma (ICP) nitriding followed by magnetron deposition of TiN coatings. Different operating conditions of ICP nitriding and magnetron deposition were considered. The microhardness depth profiles were measured for samples after nitriding. The performance of TiN coatings was examined with a scratch tester.

  9. Comparative Sulfur Analysis Using Thermal Combustion or Inductively Coupled Plasma Methodology and Mineral Composition of Common Livestock Feedstuffs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the ability of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total sulfur (S) content in plant-, animal-, and mineral-based feedstuffs commonly fed to livestock. Analyses of a wide range of feedstuffs by CNS and ICP for total ...

  10. ISOTOPE DILUTION ANALYSIS OF BROMATE IN DRINKING WATER MATRIXES BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection byproduct in drinking water which is formed during the ozonation of source water containing bromide. This paper described the analysis of bromate via ion chromatography-inductively coupled plasma mass spectrometry. The separation of bromate from interfer...

  11. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    PubMed

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample.

  12. Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal

    2012-10-01

    Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.

  13. Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations.

    PubMed

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2016-08-16

    We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.

  14. Some Temperature Effects on AISI-304 Nitriding in an Inductively Coupled RF Plasma

    SciTech Connect

    Valencia-Alvarado, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.; Munoz-Castro, A. E.; Piedad-Beneitez, A. de la; Rosa-Vazquez, J. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.

    2006-12-04

    Some recent results obtained from nitriding AISI 304 stainless steel samples, 1.2 cm in diameter and 0.5 cm thick are reported here in the case of an 85% hydrogen and 15% nitrogen mixture work gas. The process was carried out from 300 to 400 W for (13.56 MHz) inductively coupled plasma within a 60 cm long pyrex glass tube 3.5 cm in diameter where the samples were biased up to -300 V with respect to earth. The resulting hardness appears to be a function of the substrate temperature which varied from 200 deg. C at a 0 V bias to 550 deg. C at -300 V. The plasma density at 400 W reached 3x1010 cm-3 with a 4 eV electron temperature. Prior to nitriding, all the samples were polished with 0.05 {mu}m diamond paste, leading to a 30 nm average roughness (Ra). After nitriding at -300 V, the Ra rose until {approx}400 nm while hardness values of 1500 HV under 300 g loads were measured. X ray diffraction indicates that the extended phase amplitude ({gamma}N), Fe and Cr nitride depends on the substrate temperature.

  15. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  16. Sensitive sandwich immunoassay based on single particle mode inductively coupled plasma mass spectrometry detection.

    PubMed

    Liu, Rui; Xing, Zhi; Lv, Yi; Zhang, Sichun; Zhang, Xinrong

    2010-11-15

    A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions ((197)Au(+)) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3 σ) of 0.1 ng mL(-1) was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL(-1) and a RSD of 8.1% (2.0 ng mL(-1)). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.

  17. Matrix effects during phosphorus determination with quadrupole inductively coupled plasma mass spectrometry.

    PubMed

    Kovacevic, Miroslav; Goessler, Walter; Mikac, Nevenka; Veber, Marjan

    2005-09-01

    A quadrupole inductively coupled plasma mass spectrometer was evaluated for use in the detection of phosphorus. The influences of nitric acid and methanol (simulating the composition of a sample solution after nitric acid digestion) on phosphorus determination were studied using two different measuring methods at different plasma conditions: detection of phosphorus ions at m/z 31 and detection of phosphorus oxide ions at m/z 47. The existence of polyatomic interferences at m/z 31 and 47 was explored. Nitric acid and methanol are shown to be the sources of polyatomic ions and therefore cause poorer detection limits. Better detection limits were achieved in such matrices when phosphorus was detected as 31P+. The presence of methanol improves the system sensitivity towards phosphorus sevenfold; however, this positive effect is hindered by the high background signal due to carbon-based polyatomic ions. For samples with an organic matrix an appropriate mineralization procedure should be applied (high excess of nitric acid and high temperature) to quantitatively oxidize organic compounds to carbon dioxide, which is easily removed from the sample, in order to achieve correct results.

  18. Multivariate statistical characterization of the tolerance of argon inductively coupled plasmas to organic solvents

    NASA Astrophysics Data System (ADS)

    Lopez Molinero, A.; Castillo, J. R.; Chamorro, P.; Muniozguren, J. M.

    1997-01-01

    The tolerance of Argon-inductively coupled plasmas to the introduction of organic solvents, defined by Matsunaga's parameter and by "limiting aspiration rate", has been correlated with their nature by statistical methods. The main physical variables of solvents obtained from the technical literature were used as independent variables to perform principal component analysis (PCA) and factorial discriminant analysis (FDA). Thus the variables which had the greatest influence on heat exchange nebulization and transport processes were determined. Organic solvents were classified into different groups characterized by their tolerance in plasma operation. In the PCA study, the second principal component was the most significative to differentiate between the tolerance of solvents and it showed a high correlation with surface tension, viscosity and heat of vaporization. Scores of the organic solvents belonging to the same class can be adjusted to straight lines and their positions in the plane (expressed as ordinates in the origin) as well as the slope values are characteristics of organic solvent groups. The results of FDA confirms those obtained with PCA. Multivariable regression was applied to obtain predictive equations of the limiting aspiration rate for organic solvents, in terms of their main physical variables.

  19. Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro

    2007-11-01

    Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.

  20. Anisotropic etching of amorphous perfluoropolymer films in oxygen-based inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ono, Takao; Akagi, Takanori; Ichiki, Takanori

    2009-01-01

    An amorphous perfluoropolymer, "Cytop™" (Asahi Glass Co., Ltd.), is a preferable material for the fabrication of micro total analysis system devices because of its superior optical transparency over a wide wavelength range and low refractive index of 1.34, which is almost the same as that of water, as well as excellent chemical stability. To establish the precise microfabrication technology for this unique resin, the dry etching of the amorphous perfluoropolymer in Ar/O2 low-pressure inductively coupled plasma has been studied. A relatively high etch rate of approximately 6.3 μm/min at maximum and highly anisotropic etched features was attained. Plasma measurements by a single Langmuir probe technique and actinometry revealed that etching is dominated by ion-assisted surface desorption above a 10% O2 mixing ratio, whereas the supply of active oxygen species is the rate-limiting process below 10%. Moreover, angled x-ray photoelectron spectroscopy measurements of an etched trench pattern revealed that a high anisotropy is attributed to the formation of a carbon-rich sidewall protection layer.

  1. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil.

  2. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  3. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  4. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  5. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  6. Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2007-04-30

    Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)](-) was stable in solution. Secondly, various mobile phases were examined to separate Cl(-) from chromium species by IC to avoid Cl(-) interference. The separation of [Cr(EDTA)](-) and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20mM NH(4)NO(3) and 10mM NH(4)H(2)PO(4) at pH 7.0 without Cl(-) interference. Detection limits for chromium species were below 0.2 microg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters.

  7. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  8. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    PubMed

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research.

  9. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  10. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    SciTech Connect

    Kubota, Tomohiro; Nukaga, Osamu; Ueki, Shinji; Sugiyama, Masakazu; Inamoto, Yoshimasa; Ohtake, Hiroto; Samukawa, Seiji

    2010-09-15

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm{sup 2} in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within {+-}6% within a 100 mm diameter. Silicon etching using a F{sub 2}-based neutral beam was done at an etch rate of about 47 nm/min, while Cl{sub 2}-based neutral beam realized completely no undercut. The uniformity of etch rate was less than {+-}5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  11. The survival of gunshot residues in cremated bone: an inductively coupled plasma optical emission spectrometry study.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Poppa, Pasquale; Gibelli, Daniele; Cattaneo, Cristina

    2013-07-01

    Gunshot residue (GSR) has been sought and demonstrated on many types of material and with many techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) could be a useful method on difficult substrates, but a systematic study on burnt material has never been performed. Hence, this study aims at evaluating the usefulness and reliability of this method on burnt samples. Sixteen adult bovine ribs (eight with soft tissues, eight totally skeletonized) were shot using two kinds of projectile (both 9 mm full metal-jacketed or unjacketed). Then, every sample was led to complete calcination in an electric oven. The area of the gunshot entrance wound was swabbed and analyzed by ICP-OES; the results were also correlated with a previously published parallel study by scanning electron microscopy (SEM) equipped with an SEM-energy dispersive X-ray analyzer. ICP-OES proved to be very sensitive and reliable even on degraded material and can be an appropriate nondestructive method for detecting residues on difficult and delicate substrates such as burnt bone.

  12. Inductively coupled plasma-atomic emission spectrometer warning diagnosis procedure using blank solution data

    NASA Astrophysics Data System (ADS)

    Sartoros, Christine; Salin, Eric D.

    1998-05-01

    Lines available while running a blank solution were used to monitor the analytical performance of an inductively coupled plasma atomic emission spectrometry (ICP-AES) system in real time. Using H and Ar lines and their signal-to-background ratios (SBRs), simple rules in the form of a prediction table were developed by inspection of the data. These rules could be used for predicting changes in radio-frequency power, carrier gas flow rates, and sample introduction rate. The performance of the prediction table was good but not excellent. Another set of rules in the form of a decision tree was developed in an automated fashion using the C4.5 induction engine. The performance of the decision tree was superior to that of the prediction table. It appears that blank spectral information can be used to predict with over 90% accuracy when an ICP-AES is breaking down. However this is not as definitive at identifying the exact fault as some more exhaustive approaches involving the use of standard solutions.

  13. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties.

    PubMed

    Agati, M; Amiard, G; Le Borgne, V; Castrucci, P; Dolbec, R; De Crescenzi, M; El Khakani, M A; Boninelli, S

    2016-11-22

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2-3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620-950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  14. Simultaneous multielemental analysis of some environmental and biological samples by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Hee, S.S.Q.; Boyle, J.R.

    1988-05-15

    The Parr bomb technique is found to be the preferred acid digestion method for multielemental analysis by simultaneous inductively coupled plasma atomic emission spectroscopy (ICP-AES) when compared with microwave and hot plate methods for many environmental and biological specimens, but especially for the latter. One digestion alone often did not produce quantitative results compared with a sequential digestion scheme. The digestions were then refined to be as similar as possible for the various substrates studied. The interference of carbon on As and Se had to be corrected at less than or equal to 3000 ..mu..g of C/mL in the analysis solution, and thus the C content had to be monitored to assess the efficiency of the digestions and to determine if interelemental correction for C presence was required. The C correction was adequate in the range 3000-10,000 ..mu..g of C/ml. The use of modified k values was demonstrated to provide accuracy and had to be used for ICP-AES spectrometers where background corrections were performed first for fixed channels. The results on Cincinnati soils and feces of Cincinnati children showed that Si and Ti were possible tracer elements for soil ingestion by the children.

  15. Determination of total iodine in foods and dietary supplements using inductively coupled plasma-mass spectrometry.

    PubMed

    Sullivan, Darryl; Zywicki, Richard

    2012-01-01

    A method was developed and validated for the determination of total iodine in a wide variety of food products and dietary supplements. The method involves a unique sample digestion with a KOH solution in an oven or by using an open-vessel microwave system. After digestion, a stabilizer is added and the solution is taken to volume, then filtered and analyzed either directly or after dilution. The amount of iodine is determined with inductively coupled plasma-mass spectrometry (ICP-MS). The method was validated by experiments to determine its precision, accuracy, linearity, specificity, ruggedness, and robustness. The LOQ of this method is 25-50 microg/kg. The method demonstrated an average RSD of 2.27% during analysis of milk powder and 4.30% during analysis of a dietary supplement tablet reference material. The accuracy of the method as determined with these same reference materials was 100 and 94.2%, respectively. The method has been used successfully on commodity foods, processed foods, dairy products, pet food, infant formula, animal feed, mineral premixes, and a variety of dietary supplements.

  16. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  17. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2016-12-12

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics.

  18. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-09-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  19. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-01-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  20. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    PubMed

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard.

  1. Slurry nebulization for the analysis of gypsum and cement by inductively coupled plasma spectrometry.

    PubMed

    McCrindle, Robert I; Marjanovic, Ljiljana

    2002-12-01

    The usual form of presentation for a sample to be analyzed by an inductively coupled plasma-optical emission spectrometer is in the form of a liquid. For the analysis of solids, this involves a dissolution step and in the case of complex matrices this may be long and difficult. Should it be possible to analyse the sample without prior dissolution, then the problems associated with obtaining a solution would be resolved. A method for analyzing samples is to make use of slurry nebulization. Samples with complex matrices, such as cement and gypsum were selected and analysed as in the form of a slurry. Using different concentrations of a certified reference materials, calibration curves were obtained, from which the unknown samples could be determined directly. Use of aqueous solutions for calibration was also investigated. The method was evaluated using other reference materials or results obtained by an independent laboratory using different technique for the analysis. The slurry method was found to be accurate and precise.

  2. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    PubMed Central

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; De Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-01-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon. PMID:27874057

  3. Characterization of microconcentric nebulizer uptake rates for capillary electrophoresis inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2003-05-01

    There is demonstrated interest in combining capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) for speciation determinations. When self-aspirating nebulizers are used for this application, it is important to offset the suction effect to avoid degradation of the separation. In this study, sample uptake rates for three microconcentric nebulizers of the same model, in combination with a cyclonic spray chamber, were characterized and compared for future utilization in CE-ICP-MS interfaces. The specific model studied was a MicroMist with a nominal uptake rate of 100 μl/min at 1 l/min argon gas flow rate per the manufacturer's specifications. Sample uptake rates at various nebulizer gas flows were measured by aspirating water from a weighed container and calculating the uptake rate in microliter per minute. The nebulizers studied provided good reproducibility from day to day, but a comparison of the different nebulizers reflected a significant difference in performance. A characteristic observed during the study was that uptake rates decreased with increasing nebulizer gas flow. This can be used for sample introduction for CE-ICP-MS. Interestingly, very different performance was observed when comparing the three different nebulizers of the same model. Uptake rates showed strong dependence on argon gas flow rates and the dimensions of the sample uptake tubing.

  4. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-11-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  5. Rapidly removing grinding damage layer on fused silica by inductively coupled plasma processing

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Zhou, Lin; Xie, Xuhui; Shi, Baolu; Xiong, Haobin

    2016-10-01

    During the conventional optical shaping process of fused silica, lapping is generally used to remove grinding damage layer. But this process is of low efficiency, it cannot meet the demand of large aperture optical components. Therefore, Inductively Coupled Plasma Processing (ICPP) was proposed to remove grinding damage layer instead of lapping. ICPP is a non-contact, deterministic figuring technology performed at atmospheric pressure. The process benefits from its ability to simultaneously remove sub-surface damage (SSD) while imparting the desired figure to the surface with high material remove rate. The removing damage capability of ICPP has preliminarily been confirmed on medium size optical surfaces made of fused silica, meanwhile serious edge warping was found. This paper focused on edge effect and a technique has been designed to compensate for these difficulties. Then it was demonstrated on a large aperture fused silica mirror (Long320mm×Wide370mm×High50mm), the removal depth was 30.2μm and removal rate got 6.6mm3/min. The results indicate that ICPP can rapidly remove damage layer on the fused silica induced by the previous grinding process and edge effect is effective controlled.

  6. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  7. Comparison of sample preservation methods for clinical trace element analysis by inductively coupled plasma mass spectrometry.

    PubMed

    Bornhorst, Joshua A; Hunt, John W; Urry, Francis M; McMillin, Gwen A

    2005-04-01

    The effects of chemical additives and storage temperatures on measurement of 16 trace elements in urine by inductively coupled plasma mass spectrometry (ICP-MS) were evaluated. A 24-hour urine specimen was supplemented with concentrations of the elements. Aliquots containing 1 of 4 chemical additives were stored at 3 different temperatures in sealed polypropylene containers. Elemental concentrations were determined by ICP-MS for the resulting samples after 1, 2, 8, and 65 days of storage. Initial element concentrations measured within 8 hours of specimen preparation were consistent with expected concentrations (except for aluminum). For most elements, preservation and storage conditions yielded consistent measured concentrations throughout the experiment. Notable exceptions were for aluminum (general rise over time) and mercury (general decrease over time). Adding boric acid and potassium pyrosulfate resulted in sample contamination; elemental contamination was concentration-dependent for both. Although little microbial contamination was observed during the experiment, refrigeration of samples is recommended to curtail bacterial growth in nonsterile specimens. In light of these results, refrigerated urine storage without the use of chemical additives is an effective preservation method for ICP-MS analysis of many trace elements.

  8. Determination of vanadium by reaction cell inductively coupled plasma mass spectrometry.

    PubMed

    Bednar, A J

    2009-04-30

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have included the addition of interference reduction technologies, such as collision and reaction cells, to improve its detection capability for certain elements that suffer from polyatomic interferences. The principle behind reaction cell (RC)-ICP-MS is to remove a particular polyatomic interference by dissociation or formation of a different polyatomic species that no longer interferes with the analyte of interest. However, some interferences cannot be removed by commonly reported reaction gases, such as hydrogen, oxygen, or methane, necessitating using more reactive and hazardous gases, such as ammonia. The current study investigates oxygen as a reaction gas in RC-ICP-MS to specifically react with vanadium analyte ions, rather than the interferents, to produce a polyatomic analyte species and thereby provide a way to analyze for vanadium in complex environmental matrices. The technique has been tested on a series of river water, tap water, and synthetic laboratory samples, and shown to be successful in vanadium analyses in high chloride and sulfate matrices. The zinc isobaric interference on the new vanadium oxide analyte at m/z 67 is also investigated, and can be corrected by using a standard mathematical correction equation. The results of this study further increase the utility of RC-ICP-MS analytical techniques for complex environmental matrices.

  9. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, Tonya

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  10. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  11. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  12. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Noor, Zairin; Sumitro, Sutiman Bambang; Hidayat, Mohammad; Rahim, Agus Hadian; Sabarudin, Akhmad; Umemura, Tomonari

    2012-01-01

    Clinical research indicates that negative calcium balance is associated with low bone mass, rapid bone loss, and high fracture rates. However, some studies revealed that not only calcium is involved in bone strengthening as risk factor of fracture osteoporosis. Thus, in this report, the difference of metallic and nonmetallic elements in osteoporosis and normal bones was studied by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The influence of these elements on bone metabolic processes is also discussed. Inclusion criteria of bone samples consist of postmenopausal woman, trabecular bone fracture, normal and osteoporosis BMD value, and no history of previous disease. The results showed that the concentration of B, Al, S, V, Co, Mo, Te, Ba, La, Ni, As, and Ca/P ratio is higher in osteoporosis than normal. These atomic minerals have negative role to imbalance between bone resorption and bone formation activity. Conversely, concentrations of Na, Mg, P, K, Ca, Cr, Pd, Ag, Mn, Fe, Cu, Zn, Rb, Sr, Pb, and Se are lower in osteoporosis than in normal bones. Among these atoms, known to have important roles in bone structure, we found involvement of atomic mineral and calcium which are considerable to contribute to osteoporotic phenomena. PMID:22654598

  13. Analysis of fertilizers for major, micro, and trace elements by inductively coupled plasma emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, J. B., Jr.

    The concentrations of nine elements (B, Ca, Cu, Fe, K, Mg, Mn, P, and Zn) in 34 Magruder Fertilizer Standards were determined by inductively coupled plasma (ICP) emission spectroscopy, and the results compared favorably with the known concentrations for all the elements. In addition to these nine fertilizer elements, six others (AI, Cd, Cr, Na, Ni, and Pb) were determined in the same analysis, although results could only be compared to similar analyses made by two other laboratories employing ICP. All 15 elements were also determined in 12 spent acids used to manufacture liquid fertilizer and analysis results compared among the three laboratories. Analysis by ICP spectroscopy of fertilizer materials with wide ranges of elemental contents was found to be a rapid analysis technique which can give comparable results with those obtained by the more laborious AOAC procedures as well as the opportunity to determine other than only the important fertilizer elements. Collaborative study is recommended for ICP determination of the elements of importance in fertilizers for adaptation of the ICP technique by the Association of Official Analytical Chemists.

  14. Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Xin; Hu, Hankun; Zheng, Baogeng; Arslan, Zikri; Huang, Hung-Chung; Mao, Weidong; Liu, Yi-Ming

    2017-01-28

    Cordyceps sinensis (C. sinensis) is a natural product that has diverse nutritional and medicinal values. Since the availability of natural C. sinensis becomes limited its authentication and quality control is of high significance. Herein we report on profiling of metals in C. sinensis by using inductively coupled plasma mass spectrometry (ICP-MS). The analysis reveals that C. sinensis contains a wide array of essential elements, including P, Mg, Zn, Cu, Fe, etc. Toxic metals detected are Cd, Pb, and As. In all five samples analyzed Pb contents are below 2.0 ppm. Arsenic level in C. sinensis caterpillar is significantly higher than that in its mycelium and varies from 3.0 to 32 ppm likely due to soil contamination. It's for the first time demonstrated in this work that clustering analysis on the proposed metal profiles consisting of 24 elements is very useful to identify "abnormal" C. sinensis samples, thus adding another dimension to the effective means for authentication and quality assessment of this highly demanded previous natural product.

  15. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Amais, Renata S.; Amaral, Clarice D. B.; Fialho, Lucimar L.; Schiavo, Daniela; Nóbrega, Joaquim A.

    2016-12-01

    The reactivity and analytical performance of O2 as cell gas in inductively coupled plasma tandem mass spectrometry was investigated. Selected analytes in a wide mass range were divided in three groups according to their reactivity: G1 represents elements with high oxygen affinity (Ce, La, P, Sc, Ti, and Y), G2 contains elements that may partially react with oxygen (As, Ba, Mo, Si, Sr, and V), and G3 comprises elements expected to be less reactive towards oxygen (Al, Bi, Cu, Mg, Pb, and Pd). On-mass and mass-shift modes were evaluated by monitoring atomic and metal oxide ions, respectively. Analytical signal profiles, oxide percentages, sensitivities and limits of detection for oxygen flow rates varying from 0.1 to 1.0 mL min- 1 were also studied. Group 1 elements plus As and V presented better sensitivities and LODs when measuring oxides, which were the major species for all flow rates evaluated. Molybdenum and Si oxides presented intermediate behavior and MoO fraction was up to 47% and limit of detection was the same as that obtained in on-mass mode. For others G2 and G3 elements, on-mass mode presented higher sensitivity and better LODs, with estimated oxide contents lower than 10%. In most cases, increasing oxygen flow rates led to lower sensitivities and worse LODs.

  16. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  17. Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Libo; Xu, Hai; Li, Linjun; Yang, Yang; Fu, Qiang; Bao, Xinhe; Loh, Kian Ping

    2016-06-01

    The chemical vapor deposition (CVD) of graphene on Cu has attracted much attention because of its industrial scalability. Herein, we report inductively coupled plasma-assisted CVD of epitaxially grown graphene on (111)-textured Cu film alloyed with a small amount of Ni, where large area high quality graphene film can be grown in less than 5 min at 800 °C, thus affording industrial scalability. The epitaxially grown graphene films on (111)-textured Cu contain grains which are predominantly aligned with the Cu lattice and about 10% of 30°-rotated grains (anti-grains). Such graphene films are exclusively monolayer and possess good electrical conductivity, high carrier mobility, and room temperature quantum Hall effect. Magnetoresistance measurements reveal that the reduction of the grain sizes from 150 nm to 50 nm produce increasing Anderson localization and the appearance of a transport gap. Owing to the presence of grain boundaries in these anti-grains, epitaxially grown graphene films possess n-type characteristics and exhibit ultra-high sensitivity to adsorbates.

  18. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  19. Element fingerprinting of marine organisms by dynamic reaction cell inductively coupled plasma mass spectrometry.

    PubMed

    Cubadda, Francesco; Raggi, Andrea; Coni, Ettore

    2006-02-01

    A method for the determination of sixteen elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, Zn) in seafood by dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS) is presented. A preliminary study of polyatomic interferences was carried out in relation to the chemical composition of marine organisms belonging to different taxa. Acid effects and other matrix effects in marine organisms submitted to closed-vessel microwave digestion were investigated as well. Ammonia was the reactive gas used in the DRC to remove polyatomic ions interfering with 27Al, 52Cr, 56Fe and 51V. Optimal conditions for the simultaneous determination of analytes were identified in order to develop a fast multielement method. A suite of real samples (mussels and various fish species) were used during method development along with three certified reference materials: BCR CRM 278R (mussel tissue), BCR CRM 422 (cod muscle) and DORM-2 (dogfish muscle). The proposed analytical approach can be used in conjunction with suitable chemometric procedures to address quality and safety issues in aquaculture and fisheries. As an example, a case study is described in which mussels from three farming sites in the Venice Lagoon were distinguished by multivariate analysis of element fingerprints.

  20. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    SciTech Connect

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J.; Mohrman, G.B.; Besmer, M.G.

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  1. Determination of metals in marine species by microwave digestion and inductively coupled plasma mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal

    2007-10-01

    A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO 3, 2 ml of H 2O 2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.

  2. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  3. Inductively coupled plasma-mass spectrometry: An emerging method for analysis of long-lived radionuclides

    SciTech Connect

    Ross, R.R.; Noyce, J.R.; Lardy, M.M.

    1993-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a relatively new technique that can analyze for most of the elements in the periodic table at parts per billion (ng/mL) to parts per trillion (pg/mL). Already in use several years for trace analysis of stable isotopes, ICP-MS is becoming a powerful, complementary method to the counting of decay radiations for the analysis of radionuclides. Most radionuclides with half-lives longer than approximately 1x10{sup 3} years can be quantitatively detected on ICP-MS instruments that have an electrothermal vaporization unit for the injection of sample aliquants. Radionuclides with half-lives greater than approximately 1x10{sup 4} years can be measured routinely with greater sensitivity and more quickly by ICP-MS than by radiation counting. Examples from the literature of applying ICP-MS to radionuclides are the bioassay of uranium in urine, measurement of {sup 237}Np in soil and silt, and analysis for {sup 99}Tc in sea water, seaweed, and marine sediment. This paper discusses the instrumentation, advantages and limitations, and present and potential applications of ICP-MS for radionuclide measurements.

  4. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Terol, A; Ardini, F; Basso, A; Grotti, M

    2015-02-06

    The coupling of high temperature liquid chromatography (HTLC) and inductively coupled plasma mass spectrometry (ICPMS) for the determination of selenium metabolites in urine samples is reported for the first time. In order to achieve "ICPMS-friendly" chromatographic conditions, the retention on a graphite stationary phase of the major selenium urinary metabolites using only plain water with 2% methanol as the mobile phase was investigated. Under the optimal conditions (T=80°C, Ql=1.2 mL min(-1)), methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), methyl 2-acetamido-2-deoxy-1-seleno-β-d-glucosopyranoside (selenosugar 2) and trimethylselenonium ion were efficiently separated in less than 7 min, without any interferences due to other common selenium species (selenite, selenate, selenocystine and selenomethionine) or detectable effect of the urine matrix. The limits of detection were 0.3-0.5 ng Se mL(-1), and the precision of the analytical procedure was better than 3% (RSD%, n=5). The HTLC-ICPMS method was applied to the analysis of urine samples from two volunteers before and after ingestion of Brazil nuts or selenium supplements. The developed procedure proved to be adequate for the analytical task, providing results consistent with previous studies.

  5. Inductively coupled plasma-MS in drug development: bioanalytical aspects and applications.

    PubMed

    van Heuveln, Fred; Meijering, Henri; Wieling, Jaap

    2012-08-01

    The vast majority of today's modern bioanalytical methods for pharmacokinetic, pharmacodynamic and immunogenicity purposes are based on LC-MS/MS and immunoanalytical approaches. Indeed, these methodologies are suitable for a wide range of molecules from small to large. For a smaller but not insignificant group of compounds, LC-MS/MS is not suitable - or in some cases much less suitable - as a reliable bioanalytical methodology, and inductively coupled plasma (ICP)-MS is a more appropriate methodology. ICP-MS is one of these less widely used techniques in drug development. This methodology is predominantly used for elemental bioanalysis for pharmacokinetics, for imaging purposes, for mass-balance, food-effect and biomarker studies. In addition, in the last couple of years an increasing number of applications has been published, where ICP-MS and its various hyphenations (LC-ICP-MS, CE-ICP-MS) have been used for speciation/metabolism and proteomics studies. Here, the analytical potential, the quantitative bioanalytical aspects, the various modes of operation and the challenges of the application of ICP-MS in life sciences applications are given. This includes an overview of recent applications in this area in scientific literature, the various hyphenation possibilities and their application areas and the analysis of the various sample matrices applicable to these fields. It also provides a brief outlook of where the potential of this technique lies in the future of regulated bioanalysis and drug development.

  6. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  7. Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Cai, Wei-Jun; Chung, Chuan-Hsiung; Huang, Kuo-Fang; Chen, Bao-Shan; Li, Yen

    2014-02-21

    We describe a method for rapid, precise and accurate determination of calcium ion (Ca(2+)) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 μL aliquot of seawater was spiked with an appropriate (43)Ca enriched solution for (44)Ca/(43)Ca ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 μL solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca(2+) values, possibly due to a contribution of interference from Mg(2+) and Sr(2+) in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca(2+) determination with small sample size, high throughput, excellent internal precision and external reproducibility.

  8. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  9. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  10. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  11. Controlling the relative rates of adlayer formation and removal during etching in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Fuller, Nicholas Colvin Masi

    Laser desorption (LD) of the adlayer coupled with laser induced fluorescence (LIF) and plasma induced emission (PIE) of desorbed adsorbates is used to investigate the relative rates of chlorination and sputtering during the etching of Si in inductively coupled Cl2-Ar plasmas. Such an analysis is a two-fold process: surface analysis and plasma characterization. Surface analysis of Si etching using LD-LIF and LD-PIE techniques combined with etch rate measurements have revealed that the coverage of SiCl2 and etch rate increases and coverage of Si decreases abruptly for a chlorine fraction of 75% and ion energy of 80 eV. The precise Cl2 fraction for which these abrupt changes occur increases with an increase in ion energy. These changes may be caused by local chemisorption-induced reconstruction of Si <100>. Furthermore, the chlorination and sputtering rates are increased by ˜ an order of magnitude as the plasma is changed from Ar-dominant to Cl-dominant. Characterization of the plasma included determination of the dominant ion in Cl2 plasmas using LIF and a Langmuir probe and measurement of the absolute densities of Cl2, Cl, Cl+, and At + in Cl2-Ar discharges using optical emission actinometry. These studies reveal that Cl+ is the dominant positive ion in the H-mode and the dissociation of Cl2 to Cl increases with an increase in Ar fraction due to an increase in electron temperature. Furthermore, for powers exceeding 600 W, the neutral to ion flux ratio is strongly dependent on Cl2 fraction and is attributed mostly to the decrease in Cl density. Such dependence of the flux ratio on Cl2 fraction is significant in controlling chlorination and sputtering rates not only for Si etching, but for etching other key technological materials. ICP O2 discharges were also studied for low-kappa polymeric etch applications. These studies reveal that the electron temperature is weakly dependent on rf power and O2 dissociation is low (˜2%) at the maximum rf power density of 5.7 Wcm

  12. Tantalum carbide etch characterization in inductively coupled Ar/Cl{sub 2}/HBr plasmas

    SciTech Connect

    Kawai, H.; Rauf, S.; Luckowski, E.; Ventzek, P. L. G.

    2006-09-15

    The etching properties of tantalum carbide (TaC) in inductively coupled Ar/HBr/Cl{sub 2} plasmas are investigated in this article. Both etching experiments on patterned and blanket wafers and an integrated plasma equipment-feature scale computational model are utilized in this investigation. Results show that TaC etching is adequately described by the classical reactive ion etching mechanism, whereby etching occurs due to the synergistic effect of Cl or Br atoms and energetic ions. TaC etches faster in the presence of Cl relative to Br. The TaC etch rate is small in gas mixtures containing 5% of Cl{sub 2} or HBr and 95% of Ar, and it increases considerably as Cl{sub 2} or HBr concentration is increased. Although this etch rate increase is partially due to the availability of more Cl or Br, the chemical nature of chlorine (Cl{sub 2}{sup +},Cl{sup +}) or bromine (Br{sup +}) ions also plays a strong role. The TaC etch rate increases little if Cl{sub 2} or HBr fraction in Ar/Cl{sub 2} or Ar/HBr gas mixture, respectively, is increased beyond 25%. The TaC etch rate increases with rf bias power under all conditions. Scanning electron micrographs of TaC films etched using a patterned mask show that TaC sidewalls are tapered at about 77 deg. {+-}3 deg. and the angle does not change appreciably with gas mixture or rf bias power. It is determined that an angle dependent ion etching yield captures well the observed trends in TaC sidewall slope.

  13. The effect of pre-evaporation on ion distributions in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Shulan; Beauchemin, Diane

    2006-02-01

    The connecting tube (2 or 5-mm i. d., 11-cm long) between the spray chamber and the torch was heated (to 400 °C) to investigate the effect of pre-evaporation on the distribution of ions in inductively coupled plasma mass spectrometry (ICP-MS). Axial and radial profiles of analyte ions (Al +, V +, Cr +, Ni +, Zn +, Mn +, Zn +, As +, Se +, Mo +, Cd +, Sb +, La +, Pb +) in 1% HNO 3 as well as some polyatomic ions (LaO +, ArO +, ArN +, CO 2+) were simultaneously obtained on a time-of-flight ICP-MS instrument. Upon heating the connecting tube, the optimal axial position of all elements shifted closer to the load coil. Without the heated tube, 3.5 mm was the compromise axial position for multielemental analysis, which was optimal for 6 analytes. With the heated tube, this position became 1.5 mm, which was then optimal for 9 of the 14 analytes. Furthermore, the radial profiles, which were wide with a plateau in their middle without heating, became significantly narrower and Gaussian-like with a heated tube. This narrowing, which was most important for the 5-mm tube, slightly (by a factor of two at the most) yet significantly (at the 95% confidence level) improved the sensitivity of all elements but Mn upon optimisation of the axial position for compromise multi-element analysis. Furthermore, a concurrent decrease in the standard deviation of the blank was significant at the 95% confidence level for 9 of the 14 analytes. For most of the analytes, this translated into a two-fold to up to an order of magnitude improvement in detection limit, which is commensurate with a reduction of noise resulting from the smaller droplets entering the plasma after traversing the pre-evaporation tube.

  14. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  15. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  16. Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.; Murphy, Deirdre M.; Beckett, Ronald

    1992-01-01

    An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.

  17. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M.

    2006-01-09

    Transporting metallic ions from the magnetron cathode to the substrate is essential for an efficient thin-film deposition process. This letter examines how inductively coupled plasma superimposed onto a high-power pulsed magnetron discharge can influence the mobility of titanium ions. To this effect, time-resolved optical emission and absorption spectrometry are conducted and the current at the substrate is measured. With this new hybrid technique, ions are found to reach the substrate in two successive waves. Metal ions, only present in the second wave, are found to accelerate proportionally to the power supplied to the inductively coupled plasma. All the measurements in this study are made at 10 and 30 mTorr, with 10 {mu}s long pulses at the magnetron cathode.

  18. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  19. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    PubMed

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-05

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height.

  20. Depolymerization of the waste polymers in municipal solid waste streams using induction-coupled plasma technology

    NASA Astrophysics Data System (ADS)

    Guddeti, Ravikishan Reddy

    2000-10-01

    A significant, valuable percentage of today's municipal solid waste stream consists of polymeric materials, for which almost no economic recycling technology currently exists. This polymeric waste is incinerated, landfilled or recycled via downgraded usage. Thermal plasma treatment is a potentially viable means of recycling these materials by converting them back into monomers or into other useful compounds. The technical, laboratory scale, feasibility of using an induction-coupled RF plasma [ICP] heated reactor for this purpose has been demonstrated in the present study. Polyethylene [PE], polypropylene [PP] and polyethylene terephthalate [PET], the model polymers chosen for the study, were injected axially through the center of an ICP torch. 68% of PE, 78% of PP and 75% of PET were converted into gaseous products. Ethylene and propylene were the primary gaseous products of decomposition of the former two polymers and acetylene was the primary product of the depolymerization of PET. The amount of propylene obtained in PE depolymerization was significantly higher than anticipated and was believed to be due to beta-scission reactions occurring at the high plasma temperatures. Statistical design of experiments was used to determine the influence of individual variables. Analysis of results showed that plasma plate power, central gas flow rate, probe gas flow rate, powder feed rate and the interaction between the quench gas flow rate and power input were the key process parameters affecting the yield of monomer in the product gas stream. Depolymerization of a PE + PP mixture yielded concentrations of propylene and ethylene close to those predicted from weighting the concentrations of products from the individual polymers. 75.5 wt.% of the mixture was converted into monomers. TEM analysis of the carbon residues collected from different locations of the reactor indicated the formation of some novel carbon structures, including carbon nanotubes. The presence of these

  1. Multielemental analyses of environmental and geological samples by inductively coupled plasma mass spectrometry

    SciTech Connect

    Wu, Xiaowen.

    1993-01-01

    The technique of inductively coupled plasma-mass spectrometry (ICP-MS) has been applied to determine trace elements in environmental (drinking water and tree rings) and geological (soil) samples. Most of this monograph is focused on analysis in these samples of rare-earth elements and lead, which have lower detection limits in ICP-MS than in other analytical techniques. A brief history of ICP-MS and discussions of fundamental principles of the instrument, interferences of the method, and common analytical protocols are provided. The application of the technique to four projects is described: (1) Quantitative analysis of rare-earth elements in individual tree rings of fire-scarred trees was performed. The result showed that the concentrations of La, Pr, and Nd are highest in the ring corresponding to the fire year. (2) Lead pollution in drinking water from New York City was investigated by measuring lead concentration and the isotope ratio of [sup 206]Pb/[sup 207]Pb in drinking water samples and in the suspected polluting sources. It was found that lead in drinking water mainly comes from lead pipe and plumbing materials containing high concentrations of lead. In addition, optimization of the operating parameters and enhancement of lead signal were also discussed in the chapter. (3) Lead concentration in soil and in annual-growth rings of trees from streets in Brookyln, New York were analyzed. The change of lead concentration in the rings from 1952 to 1991 correlates with the consumption of lead in gasoline in the United States during the same period. The study showed that tree rings can be used as an indirect historical indicator of environmental changes during the tree's lifetime. (4) Rare-earth-element ratios in archaeological tree samples were measured to determine the original locations of the samples. In Appendix I, application of proton induced X-ray emission (PIXE) to analysis of wood samples is briefly discussed.

  2. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- < SO42 - < NO3- for anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  3. Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS.

    PubMed

    Chen, Jing-Huan; Wang, Kai-en; Jiang, Shiuh-Jen

    2007-11-01

    A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I(-) and IO(3)(-)) and bromine (Br(-) and BrO(3)(-)) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used is 10 mmol/L Tris (pH 8.0), while the applied voltage is set at -8 kV. Detection limits are 1 and 20-50 ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1 microg/mL I(-), IO(3)(-) and 1 microg/mL Br(-), BrO(3)(-) mixture is in the range of 3-5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10 min. The spike recoveries are in the range of 94-105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br(-), IO(3)(-), I(-), and Br(-), respectively.

  4. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.

    PubMed

    Mitrano, Denise M; Lesher, Emily K; Bednar, Anthony; Monserud, Jon; Higgins, Christopher P; Ranville, James F

    2012-01-01

    The environmental prevalence of engineered nanomaterials, particularly nanoparticulate silver (AgNP), is expected to increase substantially. The ubiquitous use of commercial products containing AgNP may result in their release to the environment, and the potential for ecological effects is unknown. Detecting engineered nanomaterials is one of the greatest challenges in quantifying their risks. Thus, it is imperative to develop techniques capable of measuring and characterizing exposures, while dealing with the innate difficulties of nanomaterial detection in environmental samples, such as low-engineered nanomaterial concentrations, aggregation, and complex matrices. Here the authors demonstrate the use of inductively coupled plasma-mass spectrometry, operated in a single-particle counting mode (SP-ICP-MS), to detect and quantify AgNP. In the present study, two AgNP products were measured by SP-ICP-MS, including one of precisely manufactured size and shape, as well as a commercial AgNP-containing health food product. Serial dilutions, filtration, and acidification were applied to confirm that the method detected particles. Differentiation of dissolved and particulate silver (Ag) is a feature of the technique. Analysis of two wastewater samples demonstrated the applicability of SP-ICP-MS at nanograms per liter Ag concentrations. In this pilot study, AgNP was found at 100 to 200 ng/L in the presence of 50 to 500 ng/L dissolved Ag. The method provides the analytical capability to monitor Ag and other metal and metal oxide nanoparticles in fate, transport, stability, and toxicity studies using a commonly available laboratory instrument. Rapid throughput and element specificity are additional benefits of SP-ICP-MS as a measurement tool for metal and metal oxide engineered nanoparticles.

  5. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  6. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  7. Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report

    SciTech Connect

    Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

    2013-06-01

    The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

  8. Development of a model for characterizing pneumatically generated primary aerosols for inductively coupled plasma emission spectrometry

    SciTech Connect

    Msimanga, N.D.G.

    1992-01-01

    The study of aerosols plays a key role in the development of analytical atomic spectroscopy. While work has been carried out with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to improve transport efficiency, analyte signal, limits of detection, and to reduce matrix interferences, little study has focused on sample introduction processes. This study has focused on the characterization and optimization of pneumatic nebulizers used for liquid sample introduction to the ICP. Pneumatic nebulization is the most common means of sample introduction in atomic spectrometry. The pneumatic nebulizers most commonly used today for ICP spectrometry are the cross-flow type or all-glass concentric nebulizers. Aerosols undergo certain processes after the primary formation process before reaching the atomizer, the secondary and tertiary stages. In this work all three stages were looked at, focusing on the primary aerosols. The primary aerosol is the first stage in the formation of the aerosols and takes place at the tip of the nebulizer, as the liquid stream is shattered by the gas flow. The drop size diameters of primary aerosols were measured using a Fraunhofer Laser Diffraction instrument. The Sauter mean diameter (D3.2), which describes the volume of the aerosol with a given surface area, was determined for nebulizers at spray chambers operated under a variety of conditions. The characterization and optimization of sample introduction involved a study of aerosol technology, a study of different instruments for measuring the mean drop size, a description of the instrument, and the influence of some parameters on the D3.2. An empirical model summarizing the characteristics of the primary aerosols is proposed. Modeling is carried out using nonlinear software. The data for modelling were acquired using water, n-butanol, and methanol as the liquid solvents. The model was tested on data obtained from nebulizers with different cross-sectional areas.

  9. Determination of plutonium in urine: evaluation of electrothermal vaporization inductively coupled plasma mass spectroscopy

    SciTech Connect

    Pietrzak, R.; Kaplan, E.

    1996-11-01

    Mass spectroscopy has the distinct advantage of detecting atoms rather than radioactive decay products for nuclides of low specific activity. Electrothermal vaporization (ETV) is an efficient means of introducing small volumes of prepared samples into an inductively coupled mass spectrometer to achieve the lowest absolute detection limits. The operational characteristics and capabilities of electrothermal vaporization inductively coupled mass spectrometer mass spectroscopy were evaluated. We describe its application as a detection method for determining Pu in urine, in conjunction with a preliminary separation technique to avoid matrix suppression of the signal.

  10. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  11. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  12. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  13. Radical kinetics in an inductively-coupled plasma in CF4

    SciTech Connect

    Booth, J.P.; Abada, H.; Chabert, P.; Graves, D.B.

    2004-12-01

    Radiofrequency discharges in low pressure fluorocarbon gases are used for anisotropic and selective etching of dielectric materials (SiO2 and derivatives), a key step in the manufacture of integrated circuits. Plasmas in these gases are capable not only of etching, but also of depositing fluorocarbon films, depending on a number of factors including the ion bombardment energy, the gas composition and the surface temperature: this behavior is indeed responsible for etch selectivity between materials and plays a role in achieving the desired etched feature profiles. Free radical species, such as CFx and fluorine atoms, play important but complex roles in these processes. We have used laser-induced fluorescence (LIF), with time and space resolution in pulsed plasmas, to elucidate the kinetics of CF and CF2 radicals, elucidating their creation, destruction and transport mechanisms within the reactor. Whereas more complex gas mixtures are used in industrial processes, study of the relatively simple system of a pure CF4 plasma is more appropriate for the study of mechanisms. Previously the technique was applied to the study of single-frequency capacitively-coupled 'reactive ion etching' reactors, where the substrate (placed on the powered electrode) is always bombarded with high-energy CF{sub x}{sup +} ions. In this case it was found that the major source of CFx free radicals was neutralization, dissociation and backscattering of these incident ions, rather than direct dissociation of the feedstock gas. Subsequently, an inductively-coupled plasma (ICP) in pure CF4 was studied. This system has a higher plasma density, leading to higher gas dissociation, whereas the energy of ions striking the reactor surfaces is much lower (in the absence of additional RF biasing). The LIF technique also allows the gas temperature to be measured with good spatial and temporal resolution. This showed large gas temperature gradients within the ICP reactor, which must be taken into account

  14. Spatial and temporal evolution of negative ions in a pulsed inductively coupled hydrogen plasma source across a magnetic filter

    NASA Astrophysics Data System (ADS)

    Nulty, Stuart; Corr, Cormac

    2015-09-01

    Low-temperature electronegative plasmas have important applications in high-energy sources for fusion energy, plasma thrusters and materials processing. Neutral beam injection systems and space thruster technology such as the PEGASUS propulsion system rely on efficiently producing extractable negative ions. In this work we investigate the production of hydrogen negative ions in a pulsed inductively coupled plasma across a magnetic filter. The electron energy distribution function, plasma density and electron temperature are determined using an RF compensated Langmuir probe, and time-resolved laser photo-detachment is used to measure the negative ion fraction. The spatial and temporal evolution of these plasma parameters within the plasma source will be presented. Using a pulsed plasma and a magnetic filter, the electron temperature can be efficiently controlled and a higher density of negative ions compared to electrons can be obtained at certain locations within the source.

  15. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds as the total metal (e.g., total arsenic), using inductively coupled plasma-atomic emission spectrometry.

  16. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  17. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  18. Novel Imprinted Polymer for the Preconcentration of Cadmium with Determination by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yilmaz, Vedat; Yilmaz, Hayriye; Arslan, Zikri; Leszczynski, Jerzy

    2017-01-01

    A novel Cd(II)-imprinted polymer was prepared with chemical immobilization approach by using N-methacryloyl-L-histidine as a vinylated chelating agent for on-line solid phase extraction of Cd(II) for determination by inductively coupled plasma mass spectrometry. Cd(II)-monomer complex was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was leached with 1.0 mol L(-1) HNO3 to generate the cavities in the polymer for Cd(II) ions. The experimental conditions, including load pH, solution flow rate, and eluent concentration for effective sorption of Cd(II) were optimized using a minicolumn of the imprinted polymer. A volume of 5.0 mL sample 5 μg L(-1) Cd(II) solution at pH 6.5 was loaded onto the column at 2.0 mL min(-1) by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 0.75 mol L(-1) HNO3. The relative selectivity coefficients of the imprinted polymer for Cd(II) were 38.5, 3.5, 3.0, 2.5 and 6.0 in the presence of Cu(II), Ni(II), Zn(II), Co(II) and Pb(II), respectively. Computational calculations revealed that the selectivity of the imprinted polymer was mediated by the stability of Cd(II)-N-methacryloyl-L-histidine complex which was far more stable than those of commonly used monomers, such as 4-vinyl pyridine, methacrylic acid and vinylimidazole. The detection limit (3s) and relative standard deviation (%) were found to be 0.004 μg L(-1) and 3.2%, respectively. The method was validated by analysis of seawater certified reference material (CASS-4) and successfully applied to the determination of Cd(II) in coastal seawater and estuarine water samples.

  19. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    SciTech Connect

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  20. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  1. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were

  2. Controlling VUV photon fluxes in pulsed inductively coupled Ar/Cl2 plasmas and potential applications in plasma etching

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2017-02-01

    UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from producing damage to stimulating synergistic reactions. Although in plasma etching processes, the rate and quality of the feature are typically controlled by the characteristics of the ion flux, to truly optimize these ion and photon driven processes, it is desirable to control the relative fluxes of ions and photons to the wafer. In prior works, it was determined that the ratio of VUV photon to ion fluxes to the substrate in low pressure inductively coupled plasmas (ICPs) sustained in rare gases can be controlled by combinations of pressure and pulse power, while the spectrum of these VUV photons can be tuned by adding additional rare gases to the plasma. In this work, VUV photon and ion fluxes are computationally investigated for Ar/Cl2 ICPs as used in etching of silicon. We found that while the overall ratio of VUV photon flux to ion flux are controlled by pressure and pulse power, by varying the fraction of Cl2 in the mixture, both the ratio of VUV to ion fluxes and the spectrum of VUV photons can be tuned. It was also found that the intensity of VUV emission from Cl(3p 44s) can be independently tuned by controlling wall surface conditions. With this ability to control ratios of ion to photon fluxes, photon stimulated processes, as observed in halogen etching of Si, can be tuned to optimize the shape of the etched features.

  3. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  4. Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design

    NASA Astrophysics Data System (ADS)

    Cheng, Jia; Zhu, Yu; Ji, Linhong

    2012-12-01

    The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the “trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.

  5. Screening Samples for Arsenic by Inductively Coupled Plasma-Mass Spectrometry for Treaty Samples

    DTIC Science & Technology

    2014-02-01

    hydrolysis products chlorovinyl arsonous acid (CVAA). One of the missions of the Forensic Analytical Center is to screen samples for compliance with the... Forensic Analytical Center (ECBC-FAC) is a designated lab under the Organization for the Prohibition of Chemical Weapons (OPCW). This organization is...FAC Forensic Analytical Center GC-MS gas chromatography-mass spectrometry HPLC high-performance liquid chromatography ICP-MS inductively coupled

  6. A hybrid model in inductively coupled plasma discharges with bias source: Description of model and experimental validation in Ar discharge

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Liu, Yong-Xin; Gao, Fei; Wang, You-Nian

    2015-09-01

    Traditional fluid simulation and Particle-in-Cell/Monte-Carlo collision (PIC/MCC) are very time consuming in inductively coupled plasma. In this work, a hybrid model, i.e. global model coupled bidirectional with parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate inductively coupled plasma discharge with bias source. The global model is applied to calculate plasma density in bulk plasma. The sheath model is performed to consistently calculate the electric field, ion kinetic and the sheath thickness above the bias electrode. Moreover, specific numbers of ions are tracked and ultimately ion energy distribution functions (IEDFs) incident into bias electrode are obtained from MCC module. It is found that as the bias amplitude increases, the energy width of both IEDFs becomes wider, and the total outlines of IEDFs move towards higher energy. The results from the model are validated by experimental measurement and a qualitative agreement is obtained. The advantage of this model is that plasma density, ion flux and IEDF, which are widely concerned in the actual process, could be obtained within an hour. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11205025 and 11335004) and (Grant No.11405018), the Important National Science and Technology Specific Project (Grant No. 2011ZX02403-001).

  7. Spatially resolved measurement of Ar excited species in magnetized inductively coupled plasma using multi-port optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Gi; Ha, Chang-Seung; Han, Moon-Ki; Seo, Kwon-Sang; Kim, Dong-Hyun; Lee, Hae June; Lee, Ho-Jun; Koo, Il Gyo; Lee, Soojin; Seong, Hyo-Seong

    2013-09-01

    Optical emission spectrometry (OES), which is the spectral analysis of the light emanating from plasma, is probably the most widely used method for monitoring and diagnosis of plasma processes. This technique has the advantage of being external to the reactor and vacuum system. However, the OES method is limited to measure spatial distribution of species accurately. In this work, multi-port optical emission spectroscopy system was developed to improve the space-resolved ability. This multi-port OES system consists of Si wafers, optical fibers, prisms and windows. The Si wafers are used for making the same condition while this device is put in the etching or deposition reactor. The emission light from plasma is collected and transferred through the optical fibers. The spatial distribution of Ar excited species is measured using this device in inductively coupled plasma with and without external axial magnetic field. The off-axis density profile of electron, Ar ion and excited species are appeared in weakly magnetized inductively coupled plasma. Also the emission intensity was changed in this experimental condition. Two-dimensional simulation was studied to verify this experimental result. This was supported by SEMES cooperative research project.

  8. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect

    McIntyre, Sally M.

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  9. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  10. Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study

    SciTech Connect

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-28

    A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  11. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  12. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  13. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  14. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  15. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, H.E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  16. Simulation for Large-Area, Inductively-Coupled Plasma Systems Using an Ar/Cl2 Gas Mixture.

    PubMed

    Oh, Seon-Geun; Lee, Young-Jun; Jeon, Jae-Hong; Kim, Young-Jin; Seo, Jong-Hyun; Choe, Hee-Hwan

    2015-11-01

    As research and development of high-performance devices are becoming increasingly important in the flat panel display industry, new structures and processes are essential to improve the performance of the TFT backplane. Also, high-density plasma systems are needed for new device fabrications. Chlorine-based, inductively-coupled plasma systems are widely used for highly-selective, anisotropic etching of polysilicon layers. In this paper, a plasma simulation for a large-area ICP system (8th glass size and 9 planar antenna set) was conducted using Ar/Cl2 gas. Transport models and Maxwell Equations were applied to calculate the plasma parameters such as electron density, electron temperature and electric potential. In addition, the spatial distribution of ions such as Ar+, Cl2+, Cl-, Cl+ were investigated respectively.

  17. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated.

  18. Atmospheric inductively coupled Ar/H2 plasmas jet for low-temperature deposition of Cu Thin Film on Polyimide

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zheng, Wei; Meng, Yuedong; Nagatsu, Masaaki

    2013-09-01

    For fabrication of future flexible electronic devices and depositing Cu thin films on polyimide substrate at low temperature, an atmospheric inductively coupled plasma jet driven by a 13.56 MHz radio frequency (RF) power is developed. In previous studies, we found that by adding a fractional amount of H2 gas into Ar plasma, quality of Cu film was significantly improved. But under air atmosphere, the oxidization of deposited film is inevitable. So we developed the technology in nitrogen atmosphere. We invested the plasma jet properties of Ar plasma in air, Ar/ H2 plasma in air and Ar/ H2 plasma in nitrogen atmosphere, to discuss the effect of adding H2 to Ar plasma and nitrogen background on plasma properties. The plasma gas temperature diagnoses and chemical reaction research during deposition were performed by OES. The plasma jet non-equilibrium numeral simulations were also carried out for thermal and transport properties during deposition. The effects on Cu films quality were studied by means of XPS and SEM. All the plasma properties and the results of Cu film would give us an insight on the mechanism and the possibility of improving the process.

  19. Characterization of transmission line effects and ion-ion plasma formation in an inductively coupled plasma etch reactor

    NASA Astrophysics Data System (ADS)

    Khater, Marwan H.

    2000-10-01

    The plasma and processing uniformity are greatly affected by the gas flow distribution and the source geometry in inductively coupled plasma (ICP) etch reactors. However, a reasonably uniform source design, along with uniform gas distribution, does not always guarantee uniform plasma, because transmission line (i.e. standing wave) effects also impact its performance. In this work, we demonstrate that the gas flow distribution can have a major impact on both the plasma density profiles and etch rate uniformity at low pressures where one might expect diffusion to make gas flow distribution less important. We also present an ICP source design with a geometry that enables better control over the field profiles azimuthal symmetry despite transmission line effects. B-dot probe measurements of the free space electromagnetic fields for the new source and a comparably dimensioned standard planar coil showed improved azimuthal symmetry for the new source. We have also developed a three-dimensional electromagnetic model for ICP sources that accounts for current variations along the source length due to standing wave effects. The electromagnetic field profiles obtained from the model showed good agreement with the measured field profiles. Langmuir probe measurements showed that the new ICP source generated high density (1011--1012 cm-3) plasmas at low pressures with significantly improved azimuthal symmetry of power deposition and plasma generation. In addition, polysilicon etch rate profiles on 150 mm wafers also showed improved azimuthal symmetry and uniformity with the new ICP source. The new source was then used to investigate chlorine discharge properties and their spatial profiles in continuous wave (CW) and pulsed operation. Time-resolved Langmuir probe measurements showed that electron-free or "ion-ion" chlorine plasma forms during the afterglow (i.e. power-off) due to electron attachment. Such electron-free plasma can provide both positive and negative ion fluxes to a

  20. Analysis of trace impurities in organometallic semiconductor grade reagent materials using electrothermal vaporization - inductively coupled plasma spectrometry

    SciTech Connect

    Argentine, M.D.

    1993-12-31

    Trace impurity determinations in volatile, pyrophoric organometallic materials is complicated owing to its chemical nature. Furthermore, trends toward high semiconductor circuit density demand that impurity determinations are performed at increasingly low levels. Volatility of the impurities is also desired as it plays a significant role in impurity incorporation in semiconductor products. Determination of both volatile and nonvolatile impurities in semiconductor-grade organometallic reagent materials has been accomplished using electrothermal vaporization-inductively coupled plasma spectrometry. Solid or liquid materials can be dispensed directly onto a graphite microboat, and application of an appropriate time-temperature ramp allows separation of impurities based on volatility. Temporal separation allows quantitative capabilities on both volatile and nonvolatile signals in a single ETV run. Calibration efforts for volatile impurities have been compared with results from exponential dilution and direct vapor sampling techniques. Nonvolatile impurity determinations can be reasonably performed with aqueous external standard calibration. Inductively coupled plasma-mass spectrometry provides an alternate and more sensitive, multielement detection method. Several spectroscopic and non-spectroscopic difficulties with volatile impurity detection remain. Nonetheless, qualitative and semiquantitative (<50% RSD) determination of most impurities may be performed in a single ETV run.

  1. Multielemental analysis of purpleback flying squad using high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS).

    PubMed

    Ichihashi, H; Kohno, H; Kannan, K; Tsumura, A; Yamasaki, S I

    2001-08-01

    Forty-four elements were analyzed in 21 tissues of purpleback flying squid, Sthenoteuthis oualaniensis, by high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS) and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Greater concentrations of V, Fe, Co, Ni, Cu, Ag, Cd, Pb, and Bi were found in liver, pancreas, and ink sac than in other tissues. Ink sac concentrated remarkable levels of Ca and Sr in addition to the above-mentioned elements. Several alkalis, alkaline earth, and rare earth elements preferentially accumulated in muscle. Among the hard tissues, accumulation of V and U in beak, Ni, Zn, and Cd in gladius and Cr in skin was prominent. K, Rb, Cs, Pb, Bi and some transition elements (V, Co, Cu, Zn, Ag, Cd) were significantly (p < 0.05) higher in the livers of adult than in juvenile squids. Sodium, alkaline earth, and rare earth elements were higher in the livers of juveniles than in adult squids.

  2. Controlled dissolution of silicon dioxide layers for depth resolved multielement analysis by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lorge, Susan E.; Houk, R. S.

    2009-11-01

    Dissolution procedures were developed to control the number of surface layers removed, in an attempt to achieve depth resolved analysis by inductively coupled plasma-mass spectrometry (ICP-MS). NIST 612 glass was chosen because it is a homogeneous material with many elements at interesting concentrations, ~ 50 ppm. Varying dissolution time and HF concentration resulted in the reproducible removal of SiO 2 layers as thin as 70 Å deep. Dissolved trace metals were determined after dilution by inductively coupled plasma-mass spectrometry (ICP-MS) with a magnetic sector instrument. The amount removed was determined from the concentration of a major element, Ca. With the exception of Zn, trace metal concentrations agreed reasonably well with their certified values for removal depths of 500, 300 and 150 Å. Zinc concentration was significantly high in all dissolutions indicating either a contamination problem or that Zn is removed at a faster rate than Ca. For the dissolutions that removed 70 Å of SiO 2, Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb and U recovery results agreed with their certified values (~ 50 ppm); Ti, As, Mo, Ba, and Th could not be determined because net intensities were below 3 σ of the blank; and measured concentrations for Cu, Pb and Zn were well above the certified values.

  3. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen

    2015-12-01

    An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%.

  4. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    Micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry was optimized for the determination and separation of a mixture of cobalt containing species. Four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) representing the various forms of vitamin B12 as well as the harmful corrinoid analogue cobinamide dicyanide were separated using reversed-phase microcapillary chromatography with columns containing C18 packing material with a 2-μm particle size. Selection of organic solvents for the separation took into consideration compatibility with the inductively coupled plasma mass spectrometer being used for element specific detection. Optimized method conditions included use of a methanol gradient and make-up solution for the nebulizer. Some issues associated with dead volume were overcome by the extension of the gradient program. The total analysis time was 52 min. The column-to-column variability was evaluated and was found to be very reasonable (9% RSD on average), confirming that this method is rugged and that the technology should be easily transferred to other laboratories.

  5. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  6. Comparison of Analytical Methods for the Determination of Uranium in Seawater Using Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Choe, Key-Young

    2016-04-20

    Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The method which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride

  7. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge.

  8. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (Te) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (ne) is in the range 108--1010 -cm at the skimmer tip and drops abruptly to 106--108 cm-3 near the skimmer tip and drops abruptly to 106--108 cm-3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 104--105 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  9. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  10. Measurements of Ion Energy and Ion Flux Distributions in Inductively Coupled Plasmas in CF4/O2/Ar Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Kim, J. S.; Cappelli, M. A.; Sharma, Surendra; Partridge, Harry (Technical Monitor)

    1999-01-01

    We report mass spectrometric studies of energy distributions and absolute concentrations of ions generated in CF4/O2/Ar inductively coupled rf plasmas. The ions were collected through a 100 mm orifice in the grounded and water cooled lower electrode in a GEC cell configuration. The measurements were made at gas pressures in the 10-50 mTorr range and rf coil power in the 100-300 W range. The observed ions are CF3(+), CF2(+), CF(+), C(+), F(+), COF(+), CO(+), O2(+), and O(+). The relative abundance of these ions varies with pressure and rf power. The energy distribution and absolute concentrations are correlated with electron number density and floating plasma potential measured by a compensated Langmuir probe.

  11. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  12. Effect of surface temperature on plasma-surface interactions in an inductively coupled modified gaseous electronics conference reactor

    SciTech Connect

    Zhou Baosuo; Joseph, Eric A.; Sant, Sanket P.; Liu Yonghua; Radhakrishnan, Arun; Overzet, Lawrence J.; Goeckner, Matthew J.

    2005-11-15

    The effect of wall temperature, from 50 to 200 deg. C, on gas phase chemistry and substrate etching rates has been studied in inductively coupled CF{sub 4} plasma under two distinctive initial wall conditions, namely 'clean' and 'seasoned'. During plasma etching, we found that the gas phase chemistry exhibits a weak dependence on the initial wall cleanliness when the wall is either cold (50 deg. C) or hot (200 deg. C). In the mid-temperature range, the wall cleanliness can strongly affect gas phase chemistry. The study of temperature dependence of the fluorocarbon film deposition on the substrate indicates that ion-assisted incorporation, direct ion incorporation and ion-assisted desorption are the major factors determining film growth and removal. Ion-assisted incorporation and desorption are surface-temperature-dependent, while direct ion incorporation is independent of the surface temperature.

  13. Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma.

    PubMed

    Lindner, Helmut; Murtazin, Ayrat; Groh, Sebastian; Niemax, Kay; Bogaerts, Annemie

    2011-12-15

    An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., ∼50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule

  14. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  15. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  16. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  17. Rapid identification and analysis of airborne plutonium using a combination of alpha spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Farmer, Dennis E; Steed, Amber C; Sobus, Jon; Stetzenbach, Klaus; Lindley, Kaz; Hodge, Vernon F

    2003-10-01

    Recent wildland fires near two U.S. nuclear facilities point to a need to rapidly identify the presence of airborne plutonium during incidents involving the potential release of radioactive materials. Laboratory turn-around times also need to be shortened for critical samples collected in the earliest stages of radiological emergencies. This note discusses preliminary investigations designed to address both these problems. The methods under review are same day high-resolution alpha spectroscopy to screen air filter samples for the presence of plutonium and inductively coupled plasma mass spectrometry to perform sensitive plutonium analyses. Thus far, using modified alpha spectroscopy techniques, it has been possible to reliably identify the approximately 5.2 MeV emission of 239Pu on surrogate samples (air filters artificially spiked with plutonium after collection) even though the primary alpha-particle emissions of plutonium are, as expected, superimposed against a natural alpha radiation background dominated by short-lived radon and thoron progeny (approximately 6-9 MeV). Several processing methods were tested to prepare samples for analysis and shorten laboratory turn-around time. The most promising technique was acid-leaching of air filter samples using a commercial open-vessel microwave digestion system. Samples prepared in this way were analyzed by both alpha spectroscopy (as a thin-layer iron hydroxide co-precipitate) and inductively coupled plasma mass spectrometry. The detection levels achieved for 239Pu--approximately 1 mBq m(-3) for alpha spectroscopy screening, and, < 0.1 mBq m(-3) for inductively coupled plasma mass spectrometry analysis--are consistent with derived emergency response levels based on EPA's Protective Action Guides, and samples can be evaluated in 36 to 72 h. Further, if samples can be returned to a fixed-laboratory and processed immediately, results from mass spectrometry could be available in as little as 24 h. When fully implemented

  18. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry

    PubMed Central

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H.; Cai, Yong

    2016-01-01

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (AsIII), arsino-glutathione (As(GS)3), arsenate (AsV), monomethylarsonous acid (MMAIII), monomethylarsino-glutathione (MMAIII(GS)2), monomethylarsonic acid (MMAV), dimethylarsinous acid (DMAIII (from DMAIIII)), S-(dimethylarsinic)cysteine (DMAIII(Cys)), dimethylarsino-glutathione (DMAIII(GS)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), dimethylarsinothioyl glutathione (DMMTAV(GS)). The developed method was applied for the analysis of cancer cells that were incubated with Darinaparsin (DMAIII(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration. PMID:26708625

  19. Electron heating during E-H transition in inductively coupled RF plasmas

    NASA Astrophysics Data System (ADS)

    Wegner, Th; Küllig, C.; Meichsner, J.

    2015-08-01

    A planar inductively coupled RF discharge (13.56 MHz) in argon and oxygen was exemplarily studied using space and phase resolved optical emission spectroscopy. The characteristic excitation rate pattern due to the electron heating during the sheath expansion was found for both gases in the E-mode. Furthermore, an intensive pattern in oxygen appears during the sheath collapse. This is associated with the electron heating caused by electric field reversal due to the strong electronegativity. The transition from the E- to the H-mode may be stepwise or continuous, depending on the gas type and total gas pressure. In the H-mode, significant differences in the excitation rate patterns exist. A broad and weakly modulated pattern is found over the RF cycle in argon, whereas in oxygen two separated patterns appear representing the electron heating for each half cycle. The reason may be the different excitation processes of the investigated resonant states and the influence of metastable argon atoms as well as attachment/detachment processes and dissociative recombination in oxygen. The E-H transition in oxygen at 5 Pa develops continuously and was studied in detail through the excitation rate. During the transition, the E- and H-mode are present and a hybrid mode was observed.

  20. Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching

    SciTech Connect

    Yap, K.P.; Lamontagne, B.; Delage, A.; Janz, S.; Bogdanov, A.; Picard, M.; Post, E.; Chow-Chong, P.; Malloy, M.; Roth, D.; Marshall, P.; Liu, K.Y.; Syrett, B.

    2006-05-15

    We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 {mu}m positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 {mu}m deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanning electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing.

  1. Direct determination of trace elements in tungsten products using an inductively coupled plasma optical emission charge coupled device detector spectrometer

    NASA Astrophysics Data System (ADS)

    Xiuhuan, Yang; Jinfang, Wei; Hongtao, Liu; Baoying, Tang; Zhanxia, Zhang

    1998-09-01

    An echelle inductively coupled plasma optical emission spectrometer equipped with a segmented array of charge coupled device detectors was used for the direct determination of trace impurities in tungsten products. No sample preparation was necessary. The multicomponent spectral fitting software provided by the instrument was used for the correction of spectral interference and background. The detection limits of the trace elements Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, P, Pb, Sb, Sn, Ti and V in tungsten matrix were obtained under optimized operating conditions. The accuracy of the proposed method was assessed using three National Reference Materials. As a result of their ultra-trace concentrations in the reference materials, As, Pb and Sn could not be determined satisfactorily. The concentrations found for the other elements agreed quite well with those of the certified values of the reference materials.

  2. Intelligent Analysis of Samples by Semiquantitative Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Technique: A Review.

    PubMed

    Krzciuk, Karina

    2016-07-03

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a popular and routine analytical method that has been used for determination of trace elements since the 1980s. It provides fast quantitative analysis and allows the determination of more than 70 elements with good accuracy and very low detection limits, but requires an intricate calibration procedure. In analyses of samples for which very low detection limits are not required a semiquantitative ICP-MS analysis mode can be used. This approach is more time- and cost-effective, and it uses a simple calibration procedure. This article presents a critical review of the semiquantitative (SQ) mode of ICP-MS and describes current and future applications of SQ analysis.

  3. Determination of impurities in titanium nitride by slurry introduction axial viewed inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Ni, Zheming; Qiu, Deren; Tao, Guangyi; Yang, Pengyuan

    2005-03-01

    A method of slurry nebulization for inductively coupled plasma optical emission spectrometry (ICP-OES) applied to the analysis of titanium niride(TiN) was reported. The TiN slurry sample was prepared with adding dispersant polyacrylate amine or polyethylene imine for the stabilization and homogenization of suspension, and the amount of additives was optimized. A Babington type cross-flow nebulizer with V-groove was used for nebulization of the slurry for avoidance of blockage from the particles. The stability of slurry was characterized via zeta potential measurement, scanning electron microscope observation, particle size distrbution measurement and signal stability testing. For nm size TiN, calibration curves could be established by aqueous standards and the analytical results were in good accordance with the alkaline fusion method. For μm size TiN, a negative deviation was observed for most of elements and this deviation can be corrected by using Ti intrinsic internal standard method.

  4. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  5. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  6. Determination of selenium species in human urine by high performance liquid chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Quijano, M A; Gutiérrez, A M; Pérez-Conde, M C; Cámara, C

    1999-08-23

    A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.

  7. Use of dried blood spots and inductively coupled plasma mass spectrometry for multi-element determination in blood.

    PubMed

    Vacchina, Véronique; Huin, Vincent; Hulo, Sébastien; Cuny, Damien; Broly, Franck; Renom, Gilles; Perini, Jean-Marc

    2014-07-01

    The paper describes the development of an inductively coupled plasma mass spectrometry (ICP MS) method for multitrace element determination in dried blood spots (DBSs). The analytical conditions were optimized using Seronorm™ L-3 and L-1 Certified Reference Materials. The best results were obtained by sampling blood drops on a decontaminated PVDF filter membrane. After drying under metal-free conditions, the DBSs underwent acidic digestion and were analyzed with ICP MS. The method was then validated for As, Cd, Cu, Pb, Mo, Se and Zn. Using a matrix-matched calibration curve, the recovery levels ranged from 96% to 117%. The repeatability and reproducibility were generally below 15%. Limits of quantification ranging from 0.5 to 50 μg/L. In order to investigate the analytical procedure under real sampling conditions, the results obtained from DBSs and liquid blood aliquots (less subject to contamination) from two adult subjects were compared.

  8. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used.

  9. Determination of trace impurities in uranium, thorium and plutonium matrices by solvent extraction and inductively coupled plasma atomic emission spectrometry.

    PubMed

    Gopalkrishnan, M; Radhakrishnan, K; Dhami, P S; Kulkarni, V T; Joshi, M V; Patwardhan, A B; Ramanujam, A; Mathur, J N

    1997-02-01

    Studies on the determination of trace metallic impurities in nuclear materials such as uranium, thorium and plutonium are described. The bulk of the matrix is separated by batch extraction from their nitric acid solutions using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (KSM-17, equivalent to PC88-A). The final aqueous phase containing the metallic impurities is fed to a high-temperature source inductively coupled plasma and the analysis is carried out employing a computer-controlled multichannel direct-reading spectrometer. The studies also included the recovery of impurities at various acidities and spectral interferences of the above matrices over the analyte elements. Based on the above studies, methods were standardized for the determination of 19 elements, viz. Al, B, Be, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Si, Zn, Ce, Dy, Eu, Gd and Sm, in U/Th/Pu solutions. The relative standard deviation for various elements is in the range 1-5%.

  10. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  11. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  12. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  13. The effects of analyte mass and collision gases on ion beam formation in an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica J.; Edmund, Alisa J.; Farnsworth, Paul B.

    2016-11-01

    Planar laser induced fluorescence (PLIF) was used to evaluate the effect of matrix components on the formation and focusing of a Ba ion beam in a commercial inductively coupled plasma mass spectrometer. Cross sections of the ion beams were taken in the second vacuum stage, in front of the entrance to the mass analyzer. Under normal operating conditions, the addition of Pb shifted the position of the Ba ion beam to the right. PLIF was also used to evaluate the effect of a collision reaction interface (CRI) on Ca and Ba ion beams. A wider velocity distribution of ions and a decrease in overall intensity were observed for the CRI images. The fluorescence and mass spectrometer signals decreased with increased CRI flow rates. These effects were most obvious for Ca ions with He gas.

  14. Screening hydrolysis products of sulfur mustard agents by high-performance liquid chromatography with inductively coupled plasma mass spectrometry detection.

    PubMed

    Kroening, Karolin K; Richardson, Douglas D; Afton, Scott; Caruso, Joseph A

    2009-04-01

    Sulfur mustard (HD), bis(2-chloroethyl)sulfide, is one of a class of mustard agents which are chemical warfare agents. The main chemical warfare hydrolysis degradation products of sulfur mustards are: thiodiglycol, bis(2-hydroxyethylthio)methane, 1,2-bis(2-hydroxyethylthio)ethane, 1,3-bis(2-hydroxyethylthio)propane, and 1,4-bis(2-hydroxyethylthio)butane. The aim of this study is to identify these five hydrolysis degradation products utilizing reversed-phase high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) for element-specific sulfur detection using a collision/reaction cell and electrospray ionization mass spectrometry to confirm the identification. To date, this is the first study utilizing ICP-MS with (32)S element-specific detection for the analysis of vesicant chemical warfare agent degradation products.

  15. Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Liheng; Verma, Amit; (Grace Xing, Huili; Jena, Debdeep

    2017-03-01

    Dry etching behavior of unintentionally-doped (\\bar{2}01) β-Ga2O3 has been studied in a BCl3/Ar chemistry using inductively-coupled-plasma reactive ion etching (ICP-RIE). The effects of various etch parameters like ICP and RIE powers, BCl3/Ar gas ratio and chamber pressure on etch rate are studied systematically. Higher ICP, RIE powers and lower pressure conditions are found to enhance the etch rate. A synergic etching mechanism between chemical and physical components is proposed and used to obtain fast Ga2O3 etch rates more than 160 nm/min, nearly-vertical sidewalls and smooth etched surfaces. The findings of this work will enable Ga2O3 vertical devices for power electronics.

  16. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  17. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  18. Differentiation of bullet type based on the analysis of gunshot residue using inductively coupled plasma mass spectrometry.

    PubMed

    Udey, Ruth N; Hunter, Brian C; Smith, Ruth Waddell

    2011-09-01

    Porcine tissue samples shot with two different types of bullets, jacketed and nonjacketed, were collected in the fresh state and throughout moderate decomposition. Wound samples were microwave-digested and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) to detect all elements present at measurable levels in gunshot residue (GSR). Elements detected included antimony (Sb), barium (Ba), and lead (Pb), which are considered characteristic of GSR, as well as iron (Fe) and copper (Cu). These five elements were used to differentiate shot tissue and unshot tissue, as well as tissue shot by the two different bullet types, both in the fresh state and throughout moderate decomposition. The concentrations of Cu, Sb, and Pb were able to distinguish the two bullet types in fresh tissue samples at the 95% confidence level. Cu and Pb were able to differentiate the bullet types throughout moderate decomposition at the 99% confidence level.

  19. Detection of gunshot residue in blowfly larvae and decomposing porcine tissue using inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Lagoo, Lisa; Schaeffer, Luther S; Szymanski, David W; Smith, Ruth Waddell

    2010-05-01

    Blowfly larvae and porcine tissue contaminated with gunshot residue (GSR) were collected during summer and winter months, over a 37-day and a 60-day sampling period, respectively. Wound samples were microwave-digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for the detection of antimony, barium, and lead. During summer, the 37-day sampling period encompassed all stages of decomposition, except skeletonization. The three elements were detected in larvae only on days 3 and 4 after death but were detected at significant levels in tissue samples throughout the entire sampling period. In winter, no significant decomposition was observed throughout the 60-day sampling. Although temperatures were too low for blowfly activity, the three elements were detected in the tissue samples at relatively constant, significant levels. Hence, GSR determination in tissue was more dependent on decomposition stage rather than time since death.

  20. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  1. Inductively coupled BCl3/Cl2 /Ar plasma etching of Al-rich AlGaN

    DOE PAGES

    Douglas, Erica A.; Sanchez, Carlos A.; Kaplar, Robert J.; ...

    2016-12-01

    Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects ofmore » small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.« less

  2. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  3. Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques.

    PubMed

    Gonzálvez, A; Armenta, S; Pastor, A; de la Guardia, M

    2008-07-09

    Different sample preparation methods were evaluated for the simultaneous multielement analysis of wine samples by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Microwave-assisted digestion in closed vessel, thermal digestion in open reactor, and direct sample dilution were considered for the determination of Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, and Bi in 12 samples of red wine from Valencia and Utiel-Requena protected designation of origin. ICP-MS allows the determination of 17 elements in most of the samples, and using ICP-OES, a maximum of 15 elements were determined. On comparing the sample pretreatment methodology, it can be concluded that the three assayed procedures provide comparable results for the concentration of Li, Na, Mg, Al, K, Ca, Mn, Fe, Zn, and Sr by ICP-OES. Furthermore, ICP-MS data found for Cu, Pb, and Ba were comparable. Digestion treatment provides comparable values using both total decomposition in open system and microwave-assisted treatment for Cu by ICP-OES and for Cr, Ni, and Zn by ICP-MS. Open vessel total digestion provides excess values for Cr, Mn, Fe, and Zn by ICP-OES and defect values for Se. However, direct measurement of diluted wine samples provided uncomparable results with the digestion treatment for Mn, Cu, Pb, Zn, Ba, and Bi by ICP-OES and for Mg, Cr, Fe, Ni, and Zn by ICP-MS. Therefore, it can be concluded that microwave-assisted digestion is the pretreatment procedure of choice for elemental analysis of wine by ICP-based techniques.

  4. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  5. Inductively-coupled plasmas in pure Cl, Oand mixtures: measurements of atoms, ClxOyand electron densities

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Carbone, Emile; Booth, Jean-Paul; Chabert, Pascal; LPP-Plasmas froids Team

    2014-10-01

    Inductively-coupled plasmas in Cl/O (often with HBr) are widely used in the microelectronics industry for the etching of silicon CMOS gates. Many simulations describing these plasmas (global and 2-dimensional fluid models such as HPEM) have been developed but experimental validation is sparse. This paper addresses this gap with a large quantity of experimental data in plasmas of Cl, Oand their mixtures. The plasma is excited by a 4-turn planar coil powered at 13.56 MHz through a dielectric window, and contained in a cylindrical anodized aluminium reactor (55 cm diameter, 10 cm high). Electron densities were measured with a microwave hairpin resonator. In all cases the electron density passes through a maximum with pressure. The ground-state O and Cl atom density was measured by Two-Photon Absorption Laser-Induced Fluorescence (TALIF) combined with specific absolute calibration techniques. Broad-band absorption spectroscopy was used to measure the density of Cland vibrationally excited Omolecules, excited state Cl atoms and a range of oxychlorides products. To our knowledge this is the first time that these oxychloride densities and vibrationally excited molecules have been measured in low-pressure plasmas.

  6. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    SciTech Connect

    Logue, Michael D. Kushner, Mark J.

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  7. Three-coil inductively coupled plasma (ICP) source with individually controlled coil currents supplied from a single power generator

    NASA Astrophysics Data System (ADS)

    Dorf, Leonid; Rauf, Shahid; Liu, Jonathan; Kenney, Jason; Lane, Steven; Nguyen, Andrew; Ramaswamy, Kartik; Collins, Ken

    2013-09-01

    As requirements on plasma uniformity get more stringent in the semiconductor industry, an ICP source with 3 coils becomes warranted. Designing a power distribution/50 Ω-tuning network (PDN) that delivers the power from a single generator to 3 coils is complicated, due to inductive coupling between the coils, and between coils and plasma. Our PDN comprises several capacitors, including 2 variable ones, C1,2, connected in parallel to 2 coils. A set of equations for coils/plasma currents was solved over a wide parameter space to determine practical values/ranges for all capacitors. It was shown that by moving along a pre-determined programming path in C1,2 space, one can attain various coil current ratios (CCR) without crossing resonance curves. The latter causes coil current reversal, which may result in plasma instabilities and affect uniformity. Based on modeling results, the PDN was built and tested using a specially made 3-coil source. A wide range of CCR was achieved by varying C1,2, including maxima or minima in any 2 coils. With slight adjustments (to account for parasitics and actual plasma coupling), the model correctly predicted experimentally observed CCR for each tested C1,2 pair. Likewise, the theoretical resonance structure was reproduced experimentally with good agreement.

  8. Inductively-coupled plasmas in pure O2: measurements of densities of O atoms, electrons and vibrationally excited Omolecules

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Carbone, Emile; Booth, Jean-Paul; Chabert, Pascal; LPP-Plasmas froids Team

    2014-10-01

    Inductively-coupled plasmas containing O2 (pure or mixtures) are widely used in materials processing. Various simulations have been developed but experimental validation is still sparse. We present here a comprehensive data set for O2 plasmas over a wide range of pressure and RF power to address this need. The plasma is excited with a 4-turn planar coil through a dielectric window at 13.56 MHz in an anodized aluminium reactor. The electron density was measured with a microwave resonator hairpin probe. It increases continuously with RF power, but with pressure it passes through a broad maximum around 40 mTorr. Ground-state O atom densities were determined using Two-Photon Absorption Laser-Induced Fluorescence combined with absolute calibration using Xe TALIF. The atom density increases with gas pressure, but with RF power it first increases but progressively saturates tot about 20% of the initial (no plasma) gas density. A novel high-sensitivity ultra-broad-band absorption spectroscopy setup allowed O2 molecules to be detected in high vibrational states (up to v = 18) via the Schumann-Runge bands. Molecular Ovibrational temperatures up to 12,000 K were observed, whereas the rotational temperature did not exceed 500 K. This indicates that electron-impact pumping of vibrational levels is important, whereas V-T transfer is slow. These processes must be included to accurately model the O2 plasma system.

  9. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    SciTech Connect

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-09-15

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency ν{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ≈0.38R for the discharge condition at which ν{sub m}/ω≪1, while it occurs when δ≈√(2)√(ω/ν{sub m})R for the discharge condition at which ν{sub m}/ω≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  10. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.

  11. Influence of Discharge Parameters on Tuned Substrate Self-Bias in an Radio-Frequency Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Ding, Zhenfeng; Sun, Jingchao; Wang, Younian

    2005-12-01

    The tuned substrate self-bias in an rf inductively coupled plasma source is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. The influencing parameters such as the substrate axial position, different coupling coils and inserted resistance are experimentally studied. To get a better understanding of the experimental results, the axial distributions of the plasma density, electron temperature and plasma potential are measured with an rf compensated Langmuir probe; the coil rf peak-to-peak voltage is measured with a high voltage probe. As in the case of changing discharge power, it is found that continuity, instability and bi-stability of the tuned substrate bias can be obtained by means of changing the substrate axial position in the plasma source or the inserted resistance. Additionally, continuity can not transit directly into bi-stability, but evolves via instability. The inductance of the coupling coil has a substantial effect on the magnitude and the property of the tuned substrate bias.

  12. Etching characteristics and mechanism of indium tin oxide films in an inductively coupled HBr/Ar plasma

    SciTech Connect

    Kwon, Kwang-Ho; Efremov, Alexander; Ham, Yong-Hyun; Min, Nam Ki; Lee, Hyun Woo; Hong, Mun Pyo; Kim, Kwangsoo

    2010-01-15

    The investigations of etch characteristics and mechanisms for indium tin oxide (In{sub 2}O{sub 3}){sub 0.9}:(SnO{sub 2}){sub 0.1} (ITO) thin films using HBr/Ar inductively coupled plasma were carried out. The ITO etch rate was measured in the range of 0%-100% Ar in the HBr/Ar mixture at fixed gas pressure (6 mTorr), input power (700 W), and bias power (200 W). Plasma parameters and composition were examined with a combination of plasma diagnostics by double Langmuir probe and global (zero-dimensional) plasma model. It was found that the ITO etch rate follows the behavior of Br atom flux but contradicts with that for H atoms and positive ions. This suggests that the ITO etch process is not limited by the ion-surface interaction kinetics and appears in the reaction-rate-limited etch regime with the Br atoms as the main chemically active species.

  13. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    PubMed

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  14. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 1019 m-3 in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  15. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  16. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  17. New method for removal of spectral interferences for beryllium assay using inductively coupled plasma atomic emission spectrometry.

    PubMed

    Maxwell, Sherrod L; Bernard, Maureen A; Nelson, Matthew R; Youmans, Linda D

    2008-07-15

    Beryllium (Be) has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S. Department of Energy (DOE) facilities is required to identify potential health risks and to protect U.S. DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES) that allows lower detection limits. The ion exchange separation removes uranium (U), plutonium (Pu), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin and TEVA Resin reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material (CRM) standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. This new method offers improvements over other separation methods that have been used by removing large amounts of all the significant spectral interferences with greater simplicity and effectiveness. The effective removal of spectral interferences allows lower method detection limits (MDL) using inductively coupled atomic emission spectrometry. A vacuum box system is employed to reduce analytical time and reduce labor costs.

  18. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  19. Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon

    NASA Astrophysics Data System (ADS)

    Tinck, Stefan; Bogaerts, Annemie

    2016-06-01

    In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck-Condon heating through HBr(vib) dissociation, at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.

  20. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  1. Speciation of trace elements in human serum by micro anion exchange chromatography coupled with inductively coupled plasma mass spectrometry.

    PubMed

    Malavolta, Marco; Piacenza, Francesco; Basso, Andrea; Giacconi, Robertina; Costarelli, Laura; Pierpaoli, Sara; Mocchegiani, Eugenio

    2012-02-01

    Speciation analysis of essential trace elements in human serum provides important information on nutritional status and homeostatic mechanisms regulating transport processes, acute phase reactions, and protection against oxidative damage. Anion exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) has proved to be a useful tool in speciation. Here we describe a fast method that can be applied to carry out the speciation of Fe, Cu, Zn, and Se in as little as 1 microl [corrected] of serum. The method employs monolithic anion exchange micro columns installed on a tandem HPLC system coupled on-line with an ICP-MS detector. The chromatographic separation is similar to those reported previously but with considerable gain in terms of time and sample requirement. Reproducibility is acceptable for most species. Using our method, we were able to find species-specific differences between different commercially available trace element reference materials. Because the method chosen to collect blood might interfere with speciation, the proposed methodology was used to compare heparinized plasma, ethylenediaminetetraacetic acid (EDTA) plasma, and serum from adult healthy volunteers. As expected, EDTA strongly affects speciation analysis (especially for Fe and Zn), whereas changes due to the use of lithium-heparin (Li-He) as anticoagulant appear to be minimized.

  2. High-power, low-pressure, inductively coupled RF plasma source using a FET-based inverter power supply

    NASA Astrophysics Data System (ADS)

    Komizunai, Shota; Oikawa, Kohei; Saito, Yuta; Takahashi, Kazunori; Ando, Akira

    2015-01-01

    A high-density plasma of density greater than 1019 m-3 is successfully produced in 1.5 Pa argon by an inductively coupled RF discharge with a 70-mm-diameter source cavity, where a 10-turn water-cooled RF loop antenna is wound onto the source tube and an axial magnetic field of ˜70 G is applied by two solenoids to reduce plasma loss onto the source cavity. The RF antenna is powered from a frequency-tunable field-effect-transistor-based inverter power supply, which does not require variable capacitors to match the impedance, at a frequency of ˜350 kHz and the RF power can be increased up to ˜8 kW. It is also demonstrated that the source is operational with an axial magnetic field provided by permanent magnet (PM) arrays; then the density in the case of the PM arrays is higher than that in the case of the solenoids. The role of the magnetic filter downstream of the source tube is demonstrated; a radially uniform plasma density exceeding 1018 m-3 and an electron temperature of ˜1-2 eV are obtained at ˜100 mm downstream of the open exit of the source tube.

  3. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  4. Experimental measurement of plasma parameters and electron energy distribution in ferrite-core side type Ar/He inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Han, Duksun; Bang, Jin-Young; Lee, Hyo-Chang; Chung, Chin-Wook

    2012-10-01

    Spatial distributions of a plasma density and an effective electron temperature (Teff) were studied from the measurement of an electron energy probability function (EEPF) in the side type ferrite-core inductively coupled plasma with an argon-helium mixture. As the helium gas was diluted at the fixed total gas pressure of 5 mTorr in an argon discharge, the distribution of the plasma density was changed from a concave to a flat, and finally became a convex, while all spatial profiles of Teff were the hollow shapes with the helium dilution. This evolution of the plasma uniformity with the helium gas could be explained by the increased energy relaxation length and the changed plasma potential, indicating the transition of the electron kinetics from the local to non-local kinetics. From this result, it is expected that the addition of helium gas could be applied as a method to control the plasma uniformity in a large area plasma processing.

  5. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  6. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...