Science.gov

Sample records for ablation inductively-coupled plasma

  1. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  2. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  3. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    SciTech Connect

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency.

  4. Evaluation of Inductively Couple Plasma-time-of-Flight Mass Spectrometry for Laser Ablation Analyses

    SciTech Connect

    S.J. Bajic; D.B. Aeschliman; D.P. Baldwin; R.S. Houk

    2003-09-30

    The purpose of this trip to LECO Corporation was to test the non-matrix matched calibration method and the principal component analysis (PCA) method on a laser ablation-inductively coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) system. An LA-ICP-TOFMS system allows for multielement single-shot analysis as well as spatial analysis on small samples, because the TOFMS acquires an entire mass spectrum for all ions extracted simultaneously from the ICP. The TOFMS system differs from the double-focusing mass spectrometer, on which the above methods were developed, by having lower sensitivity and lower mass resolution.

  5. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  6. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  7. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  8. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  9. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Wehe, Christoph A; Thyssen, Georgina M; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation. PMID:25947196

  10. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wehe, Christoph A.; Thyssen, Georgina M.; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation.

  11. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  12. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  13. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    PubMed

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  14. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  15. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions

    NASA Astrophysics Data System (ADS)

    Ciocan, A. C.; Mao, X. L.; Borisov, Oleg V.; Russo, R. E.

    1998-03-01

    The amount of ablated mass can influence the temperature and excitation characteristics of the inductively coupled plasma (ICP) and must be taken into account to ensure accurate chemical analysis. The ICP electron number density was investigated by using measurements of the Mg ionic to atomic resonant-line ratios during laser ablation of an aluminum matrix. The ICP excitation temperature was measured by using selected Fe lines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulse duration) at 266 nm was used for these ablation-sampling studies. Laser energy, power density, and repetition rate were varied in order to change the quantity of ablated mass into the ICP. Over the range of laser operating conditions studied herein, the ICP was not significantly influenced by the quantity of solid sample. Therefore, analytical measurements can be performed accurately and fundamental studies of laser ablation processes (such as ablation mass roll-off, fractional vaporization) can be investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  16. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.

  17. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  18. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Márquez, Ciro; Sobral, Hugo

    2013-11-01

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver-copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer-scanning electron microscopy (EDX-SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX-SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm-2.

  19. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-07-14

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

  20. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  1. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  2. Inductively coupled helium plasma torch

    DOEpatents

    Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  3. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    İzgi, Belgin; Kayar, Murat

    2015-07-01

    The polybrominated flame retardants and organotin compounds were screened in terms of bromine and tin content using laser ablation inductively coupled plasma mass spectrometry in plastics. The calibration standards were prepared using the fused-disk technique, and all samples were investigated under optimal conditions. Using a central composite experimental design, laser parameters, laser energy, pulse rate, scan rate and spot size were identified. The detection limits of the method were 1000 mgkg(-1) and 1600 mgkg(-1) for bromide and tin, whereas the relative standard deviation (%) values of the analysis were 9% and 6% (n=3) for ERM EC681k with 770 ± 70 mgkg(-1) Br and 86 ± 6 mgkg(-1) Sn respectively, and 106-115% of Br and 102-104% of Sn were observed for the tetrabromobisphenol A and butyltin trichloride spike plastics, respectively.

  4. Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia.

    PubMed

    Hsieh, Yi-Kong; Jiang, Pei-Shin; Yang, Bing-Shen; Sun, Tian-Ye; Peng, Hsu-Hsia; Wang, Chu-Fang

    2011-08-01

    In this study, we employed laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the spatial distribution of Gd-doped iron oxide nanoparticles (IONPs) in one tumor slice that had been subjected to magnetic fluid hyperthermia (MFH). The mapping results revealed the high resolution of the elemental analysis, with the distribution of Gd atoms highly correlated with that of the Fe atoms. The spatial distributions of C, P, S, and Zn atoms revealed that the effect of MFH treatment was significantly dependent on the diffusion of the magnetic fluid in the tissue. An observed enrichment of Cu atoms after MFH treatment was probably due to inflammation in the tumor. The abnormal distribution of Ni atoms suggests a probable biochemical reaction in the tumor. Therefore, this LA-ICP-MS mapping technique can provide novel information regarding the spatial distribution of elements in tumors after cancer therapy.

  5. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  6. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.

  7. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  8. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-01

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min. PMID:22304477

  9. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-01

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  10. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance.

  11. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance. PMID:26460246

  12. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  13. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  14. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches.

  15. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented. PMID:19200475

  16. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  17. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  18. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site.

  19. Trace elemental analysis of automotive paints by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Hobbs, Andria L; Almirall, José R

    2003-08-01

    Paints and coatings are frequently encountered as types of materials that are submitted to forensic science laboratories as a result of trace evidence transfers. The aim of this study was to develop a method to complement the commonly used techniques in a forensic laboratory in order to better characterize these samples for forensic purposes. A laser ablation method has been used to simultaneously sample several layers directly prior to introduction into an inductively coupled plasma-mass spectrometer for the detection and quantification of the trace metals present in the layer(s). Time-resolved analysis plots displaying the elemental response and quantification of selected metals are compared to associate/discriminate paint samples. Matrix-matched standards were successfully incorporated into the analysis scheme for quantification of lead in the solid paint samples. Preparation of new matrix-matched standards for quantification of additional elements developed for this study are also presented. A sample set of eighteen (18) survey automotive paint samples have been analyzed with the developed method in order to determine the utility of LA-ICP-MS for trace element analysis of paints.

  20. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  1. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    SciTech Connect

    Allen, L.A.

    1997-02-01

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  2. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  3. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    NASA Astrophysics Data System (ADS)

    Claverie, Fanny; Pécheyran, Christophe; Mounicou, Sandra; Ballihaut, Guillaume; Fernandez, Beatriz; Alexis, Joël; Lobinski, Ryszard; Donard, Olivier F. X.

    2009-07-01

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 µm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (Δ T~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak

  4. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.

  5. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. PMID:26526906

  6. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples.

  7. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  8. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  9. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    NASA Astrophysics Data System (ADS)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  10. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  11. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  12. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  13. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  14. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  15. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  16. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  17. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  18. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  19. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  20. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  1. Laser ablation inductively coupled plasma-mass spectrometry in combination with gel electrophoresis: a new strategy for speciation of metal binding serum proteins

    NASA Astrophysics Data System (ADS)

    Neilsen, J. L.; Abildtrup, A.; Christensen, J.; Watson, P.; Cox, A.; McLeod, C. W.

    1998-02-01

    A new hyphenated technique-crossed immunoelectrophoresis in combination with laser ablation inductively coupled plasma (ICP)-mass spectrometry—for the identification and quantitation of metal binding proteins in blood serum is described. Human serum enriched with Co was subjected to electrophoresis and the agarose gels corresponding to the first and second dimensions were interrogated and analysed using a Nd Yag laser (1064 nm) interfaced to ICP-mass spectrometry. Comparison of the distribution map for Co with the protein distribution map obtained via Coommassie Brilliant Blue staining allowed identification of main Co binding serum proteins. Signals for Co (single ion monitoring, mle 59) were transient in nature and for gels enriched with increasing concentrations of Co, peak area response was linear with concentration. Precision for replicate analyses was 6% R.S.D. and the limit of detection was - 0.29 ng.

  2. Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry.

    PubMed

    Pérez-Arantegui, J; Resano, M; García-Ruiz, E; Vanhaecke, F; Roldán, C; Ferrero, J; Coll, J

    2008-02-15

    In this work, a comparison of the performances of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) and portable X-ray fluorescence (XRF) spectrometry for the characterization of cobalt blue pigments used in the decoration of Valencian ceramics is presented. Qualitative data on the elemental composition of the blue pigments obtained using both techniques show a good agreement. Moreover, the results clearly illustrate that potters utilized different kinds of cobalt pigments in different historical periods. While both techniques seem suitable for the proposed task, they show different strengths and weaknesses. Portable X-ray fluorescence spectrometry is a cheaper and totally non-destructive technique, capable of providing fast and reliable results at the mgg(-1) level. LA-ICPMS, on the other hand, offers a much higher detection power and better spatial resolution, but its use results in some sample damage (sample consumption at the mug level), while it is a more expensive and non-portable technique.

  3. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect

    Witte, Travis

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  4. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  5. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  6. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  7. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Malherbe, Julien; Claverie, Fanny; Alvarez, Aitor; Fernandez, Beatriz; Pereiro, Rosario; Molloy, John L

    2013-09-01

    Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.e. equilibrate the elements and the added isotopically enriched standards. A comparison of this methodology using two pulsed laser ablation systems (ArF* excimer and Nd:YAG) with different wavelengths as well as two ICP-MS instruments (quadrupole and double-focusing sector field) was performed. Emphasis was put on using standard equipment to show the potential of the proposed strategy for its application in routine laboratories. Cr, Zn, Ba, Sr and Pb were successfully determined by LA-ICP-IDMS in six Standard Reference Materials (SRMs) representing different matrices of environmental interest. Experimental results showed the SRM fused glasses exhibited a low level of heterogeneity (intra- and inter-sample) for both natural abundance and isotopically enriched samples (RSD <3%, n=3, 1σ). A good agreement between experimental results and the certified values was also observed.

  8. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Malherbe, Julien; Claverie, Fanny; Alvarez, Aitor; Fernandez, Beatriz; Pereiro, Rosario; Molloy, John L

    2013-09-01

    Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.e. equilibrate the elements and the added isotopically enriched standards. A comparison of this methodology using two pulsed laser ablation systems (ArF* excimer and Nd:YAG) with different wavelengths as well as two ICP-MS instruments (quadrupole and double-focusing sector field) was performed. Emphasis was put on using standard equipment to show the potential of the proposed strategy for its application in routine laboratories. Cr, Zn, Ba, Sr and Pb were successfully determined by LA-ICP-IDMS in six Standard Reference Materials (SRMs) representing different matrices of environmental interest. Experimental results showed the SRM fused glasses exhibited a low level of heterogeneity (intra- and inter-sample) for both natural abundance and isotopically enriched samples (RSD <3%, n=3, 1σ). A good agreement between experimental results and the certified values was also observed. PMID:23953208

  9. A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples.

    PubMed

    Pickhardt, C; Becker, J S; Dietze, H J

    2000-01-01

    Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%. PMID:11220576

  10. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    Relative contributions to ion densities in the inductively coupled plasma (ICP) of particles of various sizes produced by laser ablation (LA) were investigated. Particles generated by 266 nm, ns LA of BaF2, CaF2, and a scandium aluminum alloy, characterized using SEM, consisted of hard and soft agglomerates, spherical particles, and irregularly-shaped particles. Although soft agglomerates and spherical particles were common to aerosols generated by LA in all cases, hard agglomerates appeared to be unique to the scandium aluminum alloy, while irregularly-shaped exfoliated particles were unique to the calcium and barium fluoride windows. The spatial distributions of Ca, Ba, and Sc ions in the ICP were determined from laser-induced fluorescence images taken with filters of pore sizes from 1-8 μm added in-line to the transport tube upstream from the ICP. In all cases, a significant fraction of the ions formed in the ICP originated from micron-sized particles. Differences in the penetration depths of nanometer-sized agglomerates and micron-sized particles were about 2 mm for Ca and 1 mm for Ba. Differences in the penetration depths of nanometer and micron-sized agglomerates observed in the case of aluminum scandium were much less significant. This suggests that micron-sized hard-agglomerates and nanometer-sized soft-agglomerates experience very similar vaporization patterns. Additionally, there was evidence that flow patterns in the transport tube affect the trajectories of particles entering the plasma.

  11. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    SciTech Connect

    Perkins, W.T.; Pearce, N.J.G.; Jeffries, T.E. )

    1993-01-01

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs.

  12. Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin

    NASA Astrophysics Data System (ADS)

    Zoriy, Myroslav; Matusch, Andreas; Spruss, Thilo; Becker, J. Sabine

    2007-02-01

    Platinum complexes are used for the treatment of several types of cancer. High platinum concentrations in the target tissue and low concentrations in dose-limiting tissue structures such as renal tubules are desirable to assure selective toxicity. Microlocal analysis of platinum distribution in tissue sections may thus contribute to the optimization of platinum therapy. Scanning laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 14-[mu]m thin sections of kidney tissue from a mouse treated with cis-platin 60 min prior to victimization. The sample surface was scanned (raster area 300 mm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 [mu]m, inter line distance 50 [mu]m and laser power density 3 x 109 W cm-2) in a cooled laser ablation chamber (about -15 [degree sign]C) developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICP-MS. Ion intensities of 63Cu+, 64Zn+, and 196Pt+ were measured within the tissue by LA-ICP-MS. Matrix-matched laboratory standards served for calibration of analytical data. The mass spectrometric analysis yielded an inhomogeneous distribution for Cu, Zn, and Pt in thin kidney sections. Copper was enriched in the capsule and outer cortex, zinc in the inner cortex and the platinum concentration followed a centripetal gradient with clear medullar enrichment. Thus, scanning LA-ICP-MS may be a useful tool in the preclinical development of new and less nephrotoxic platinum complexes.

  13. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  14. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  15. Diverse accumulation and distribution of nutrient elements in developing wheat grain studied by laser ablation inductively coupled plasma mass spectrometry imaging.

    PubMed

    Wu, Bei; Andersch, Franka; Weschke, Winfriede; Weber, Hans; Becker, J Sabine

    2013-09-01

    The present study focused on the elemental distribution in the developing wheat grain by using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging technique. Our studies show that the embryo accumulated high concentrations of nutrient elements, such as Fe, K, Cu, and Zn, while Ca was accumulated in the bran of the wheat grain which might be attributed to its function of structural maintenance. In the endosperm the majority of the nutrients were located in the aleurone layer. Within the grain, the embryo could be considered as a nutrient pool for macro- and micro-elements essential for the development of the seedling. Elemental images showed that considerable amounts of nutrients were stored in the scutellum of the embryo, which might be related to the high gene expression of element transporters in the scutellum. Root primordia and leaf primordia were enriched in particular elements, such as Mn and Zn respectively. In total 34 cross sections were analyzed and used for generation of a sequence of elemental distribution images to demonstrate elemental changes along the perpendicular axis of the wheat grain embryo. Further development of three-dimensional modeling will be combined with physiological studies to better understand the mechanisms of elemental distribution and storage in the wheat grain. These studies will provide fundamental knowledge on improving the nutritional value and agronomic practices.

  16. Determination of impurities in thoria (ThO 2) using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Alamelu, Devanathan; Choudhary, Ashwini Kumar; Aggarwal, Suresh Kumar

    2010-11-01

    Elemental impurities in nuclear grade thoria were determined using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) employing ArF laser (20 ns, 193 nm, 20 Hz). Three certified standards of thoria, prepared in the Department of Atomic Energy (DAE), India were used for this work. Magnesium was used as an internal standard for quantification in view of its addition during fuel fabrication. The concentrations determined for 16 different elements (Al, B, Cd, Ce, Cu, Dy, Er, Eu, Fe, Gd, Mg, Mn, Mo, Ni, Sb, Sm and V), spanning four orders of magnitude, were within 20% of the certified values in the standards. The methodology is of interest to reduce the analytical effort with regard to dissolution of thoria samples, avoid the production of radioactive liquid waste streams and relatively simple mass spectrum as compared to complex emission spectra in atomic emission spectroscopy (AES) and laser induced breakdown spectroscopy (LIBS). The development and validation of analytical methodologies based on independent physico-chemical principles is of great relevance to characterize the in-house prepared working standards for routine applications.

  17. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  18. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin.

    PubMed

    Köppen, C; Reifschneider, O; Castanheira, I; Sperling, M; Karst, U; Ciarimboli, G

    2015-12-01

    This work presents a quantitative bioimaging method for platinum based on laser ablation-inductively coupled plasma-mass spectrometry and its application for a biomedical study concerning toxic side effects of cisplatin. To trace the histopathology back to cisplatin, platinum was localized and quantified in major functional units of testicle, cochlea, kidney, nerve and brain sections from cisplatin treated mice. The direct consideration of the histology enables precise interpretation of the Pt images and the novel quantitative evaluation approach allows significantly more precise investigations than the pure image. For the first time, platinum was detected and quantified in all major injured structures including organ of Corti of cochlea and seminiferous tubule of testicle. In this way, proximal tubule in kidney, Leydig cells in testicle, stria vascularis and organ of Corti in cochlea and nerve fibers in sciatic nerves are confirmed as targets of cisplatin in these organs. However, the accumulation of platinum in almost all investigated structures also raises questions about more complex pathogenesis including direct and indirect interruption of several biological processes.

  19. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  20. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    PubMed

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  1. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna.

    PubMed

    Gholap, Deepti S; Izmer, Andrei; De Samber, Björn; van Elteren, Johannes T; Selih, Vid S; Evens, Roel; De Schamphelaere, Karel; Janssen, Colin; Balcaen, Lieve; Lindemann, Inge; Vincze, Laszlo; Vanhaecke, Frank

    2010-04-01

    Visualization of elemental distributions in thin sections of biological tissue is gaining importance in many disciplines of biological and medical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and scanning micro-X-ray fluorescence spectrometry (micro-XRF) are two widely used microanalytical techniques for elemental mapping. This article compares the capabilities of the two techniques for imaging the distribution of selected elements in the model organism Daphnia magna in terms of detection power and spatial resolution. Sections with a thickness of 10 and 20 microm of the fresh water crustacean Daphnia magna were subjected to LA-ICP-MS and micro-XRF analysis. The elemental distributions obtained for Ca, P, S and Zn allow element-to-tissue correlation. LA-ICP-MS and micro-XRF offer similar limits of detection for the elements Ca and P and thus, allow a cross-validation of the imaging results. LA-ICP-MS was particularly sensitive for determining Zn (LOD 20 microg g(-1), 15 microm spot size) in Daphnia magna, while the detection power of micro-XRF was insufficient in this context. However, LA-ICP-MS was inadequate for the measurement of the S distributions, which could be better visualized with micro-XRF (LOD 160 microg g(-1), 5 s live time). Both techniques are thus complementary in providing an exhaustive chemical profiling of tissue samples.

  2. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  3. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  4. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations. PMID:27049132

  5. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations.

  6. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder.

  7. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  8. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  9. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  10. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. PMID:26005744

  11. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  12. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  13. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  14. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Dressler, Valderi L; Pozebon, Dirce; Mesko, Marcia Foster; Matusch, Andreas; Kumtabtim, Usarat; Wu, B; Sabine Becker, J

    2010-10-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M(+)/(34)S(+) ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of

  15. Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Becker, J S; Matusch, A; Depboylu, C; Dobrowolska, J; Zoriy, M V

    2007-08-15

    Quantitative imaging analysis of endogenous an exogenous elements throughout entire organisms is required for studies of bioavailability, transport processes, distribution, contamination and to monitor environmental risks using indicator organisms. An imaging mass spectrometric technique using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was developed to analyze selenium and metal distributions in longitudinal sections (thickness, 100 microm) of entire slugs (genus arion). Slugs were fed with either a placebo or solutions containing 1000 microg mL(-1) Se. Samples (raster area, 25 mmx45 mm) were scanned together with synthetic matrix-matched standards with a focused beam of a Nd:YAG laser (wavelength, 266 nm; diameter of laser crater, 50 microm; laser power density, 3x10(9) W cm(-2)) in a large laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a double focusing sector field ICPMS. Ion intensities of selenium (78Se+, 82Se+) were measured together with 13C+, 63Cu+, and 64Zn+ within the entire tissue section. The regression coefficient of the calibration curve was 0.998. Inhomogeneous distributions for Se but also for C, Cu, and Zn were found. Selenium was enriched in the kidney (150 microg g(-1) in Se-treated animals versus 15 microg g(-1) in the placebo-treated animal, respectively) and in the digestive gland (200 microg g(-1) versus 25 microg g(-1)). Highest Se concentrations were detected in the gut of Se-treated slugs (250 microg g(-1)), and additional Se occurred in the skin of these animals. Cu was enriched in the heart and the mucous ventral skin. Interestingly, in addition to the localization in the digestive gland, Zn was detected only in the dorsal skin but not the ventral skin. The developed analytical technique allows the quantitative imaging of selenium together with selected metals in thin sections of biological tissue with limits of detection at the submicrogram per

  16. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  17. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  18. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. PMID:20552700

  19. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification.

  20. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. PMID:27566253

  1. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles.

    PubMed

    Pointurier, Fabien; Pottin, Anne-Claire; Hubert, Amélie

    2011-10-15

    For the first time, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their (235)U content was in the femtogram range. (235)U/(238)U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo "X-Series II"). LA-ICPMS results, although less precise and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (~6 × 10(-4)) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. PMID:21875035

  2. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    PubMed

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  3. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    SciTech Connect

    Messerly, Joshua D.

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  4. Intelligent autonomous inductively coupled plasma instrumental operation

    NASA Astrophysics Data System (ADS)

    Webb, Douglas P.

    The development of a framework for the automated analysis of inductively couple plasma atomic emission spectroscopy is present. Some of the research that lead to current state of this framework is presented. A small expert system that uses information about the current sample to generate a line search strategy which minimizes the number of emission lines which need to be measured, and avoids spectral overlaps when possible. A program is presented that evaluates the minimum number of spectral windows required to perform elemental analysis by ICP- AES, given a certain spectral window width. A method with the potential for rapidly ascertaining the physical properties of the sample matrix is presented. This system has the potential to help reduce sample introduction related system failures. Finally, three optimization algorithms are compared in their ability to optimize ICP- AES performance, from this an optimization module was developed for inclusion in the automated analysis framework.

  5. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  6. A simple solution to expanding available reference materials for Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis: Applications to sedimentary materials

    NASA Astrophysics Data System (ADS)

    Shaheen, Mohamed E.; Fryer, Brian J.

    2011-08-01

    Analytical data on sediments are of great importance in understanding and documenting environmental issues. For laboratories interested in in-situ chemical analysis of sediments by LA-ICP-MS, a major issue is the lack of appropriate matrix matched sediment reference materials. Those available were largely designed for partial extractions which generally do not reflect the total elemental compositions. In this work we provide a comprehensive study on chemical compositions of seven currently available sediment reference materials (Lake sediments: LKSD-1, LKSD-2, LKSD-3, Stream sediments: STSD-2, STSD-3, and Marine sediments: PACS-2, MESS-3) as determined by Solution Nebulization Inductively Coupled Plasma Mass Spectrometry (SN-ICP-MS) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) after digestion in a mixture of concentrated HNO 3 and HF acids. We also report a simple method to prepare these sediment reference materials and more generally appropriate sediment cores for LA-ICP-MS analysis using epoxy resin. This sample preparation method maintains sediment integrity for high spatial resolution analysis which is required for tracing changes in environmental conditions over short time periods. This work also demonstrates the application of fs-LA-ICP-MS as a tool for direct, rapid and high spatial resolution analysis of sediments.

  7. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  8. Optical emission spectroscopy studies of the influence of laserablated mass on dry inductively coupled plasma conditions

    SciTech Connect

    Ciocan, A.C.; Mao, X.L.; Borisov, Oleg V.; Russo, R.E.

    1997-07-01

    The amount of ablated mass can influence the temperature andexcitation characteristics of the inductively coupled plasma (ICP) andmust be taken into account to ensure accurate chemical analysis. The ICPelectron number density was investigated by using measurements of the Mgionic to atomic resonant-line ratios during laser ablation of an aluminummatrix. The ICP excitation temperature was measured by using selected Felines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulseduration) at 266 nm was used for these ablation-sampling studies. Laserenergy, power density, and repetition rate were varied in order to changethe quantity of ablated mass into the ICP. Over the range of laseroperating conditions studied herein, the ICP was not significantlyinfluenced by the quantity of solid sample. Therefore, analyticalmeasurements can be performed accurately and fundamental studies of laserablation processes (such as ablation mass roll-off, fractionalvaporization) can be investigated using inductively coupled plasma-atomicemission spectroscopy (ICP-AES).

  9. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.

    PubMed

    Hirata, Takafumi; Miyazaki, Zen

    2007-01-01

    Production of laser ablation-induced sample aerosols has been visualized using a high-speed camera device coupled with shadowgraphy technique. The time resolution of the method is 1 micros, and production of the sample grains was successfully defined by the imaging system. An argon-fluoride excimer laser operated at 193-nm wavelength was used to ablate the solid samples. When the laser was shot onto the sample (Si wafer), a dome-shaped dark area appeared at the ablation pit. This dark area reflects changes in refractive index of ambient He probably due to emission of electrons or ions from the ablation pit. The dark area expanded hemispherically from the ablation pit with a velocity close to the speed of sound (approximately 1000 m/s for He at 300 K). This was followed by the excitation or ionization of the vaporized sample, known as the plasma plume. Immediately after the formation of the plasma plume, sample aerosols were produced and released from the ablation pit along the propagation of the laser-induced shockwave. Production of the sample aerosols was significantly delayed (approximately 4 micros) from the onset of the laser shot. The typical speed of particles released from the ablation pit was 100-200 m/s, which was significantly slower than the reported velocity of the plasma plume expansion (104 m/s). Since the initial measured speed of the sample particles was rather close to the speed of sound, the sample aerosols could be rapidly decelerated to the terminal velocity by a gas drag force with ambient He. The release angle of the sample aerosols from the ablation pit was very shallow (<10 degrees ), which may be due to the downforce produced by the thermal expansion of the ambient gas above the ablation pit. The shallower release angle and the contribution of the downforce probably results in the redeposition of sample aerosols or vapor around the ablation pit. In fact, the degree of sample redeposition around the ablation pit can be effectively minimized

  10. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    NASA Astrophysics Data System (ADS)

    Hrdlička, Aleš; Otruba, Vítĕzslav; Novotný, Karel; Günther, Detlef; Kanický, Viktor

    2005-03-01

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.

  11. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  12. Use of laser ablation-inductively coupled plasma-time of flight-mass spectrometry to identify the elemental composition of vanilla and determine the geographic origin by discriminant function analysis.

    PubMed

    Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith

    2013-11-27

    A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.

  13. High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples.

    PubMed

    Gundlach-Graham, Alexander; Burger, Marcel; Allner, Steffen; Schwarz, Gunnar; Wang, Hao A O; Gyr, Luzia; Grolimund, Daniel; Hattendorf, Bodo; Günther, Detlef

    2015-08-18

    Low-dispersion laser ablation (LA) has been combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) to provide full-spectrum elemental imaging at high lateral resolution and fast image-acquisition speeds. The low-dispersion LA cell reported here is capable of delivering 99% of the total LA signal within 9 ms, and the prototype TOFMS instrument enables simultaneous and representative determination of all elemental ions from these fast-transient ablation events. This fast ablated-aerosol transport eliminates the effects of pulse-to-pulse mixing at laser-pulse repetition rates up to 100 Hz. Additionally, by boosting the instantaneous concentration of LA aerosol into the ICP with the use of a low-dispersion ablation cell, signal-to-noise (S/N) ratios, and thus limits of detection (LODs), are improved for all measured isotopes; the lowest LODs are in the single digit parts per million for single-shot LA signal from a 10-μm diameter laser spot. Significantly, high-sensitivity, multielemental and single-shot-resolved detection enables the use of small LA spot sizes to improve lateral resolution and the development of single-shot quantitative imaging, while also maintaining fast image-acquisition speeds. Here, we demonstrate simultaneous elemental imaging of major and minor constituents in an Opalinus clay-rock sample at a 1.5 μm laser-spot diameter and quantitative imaging of a multidomain Pallasite meteorite at a 10 μm LA-spot size. PMID:26122331

  14. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  15. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  16. Ion-wave stabilization of an inductively coupled plasma

    SciTech Connect

    Camparo, J.C.; Mackay, R.

    2006-04-24

    Stabilization of the rf power driving an inductively coupled plasma (ICP) has implications for fields ranging from atomic clocks to analytical chemistry to illumination technology. Here, we demonstrate a technique in which the plasma itself acts as a probe of radio wave power, and provides a correction signal for active rf-power control. Our technique takes advantage of the resonant nature of forced ion waves in the plasma, and their observation in the ICP's optical emission.

  17. Mass spectrometry of inductively coupled plasmas

    SciTech Connect

    Houk, R.S.

    1986-01-01

    The alliance of the ICP with MS shows promise of extending the sensitivity and selectivity of MS to elemental analysis of solutions. Some additional areas of research interest for ICP-MS include the following: its use as an element and isotope selective detector for chromatography, flow injection analysis, laser ablation, and other sample introduction techniques; fundamental studies of ionization other basic processes in the ICP; detection of halogens and perhaps other elements as negative ions; and auxiliary ionization of neutral analyte atoms formed from ICP ions that have recombined with electrons during the extraction process. The latter concept is particularly interesting because the present detection limits for ICP-MS are achieved even though only one analyte ion is detected for every 10/sup 5/ or 10/sup 6/ that would be going through the skimmer if no recombination occurred. 42 references, 6 figures, 2 tables.

  18. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  19. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references.

    PubMed

    Stärk, H-J; Wennrich, Rainer

    2011-02-01

    Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA-ICP-MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP-MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90-110% (for rare earth elements 97-102%). Laser ablation ICP-MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP-MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP-MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP-MS.

  20. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  1. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel

    NASA Astrophysics Data System (ADS)

    Horstwood, M. S. A.; Evans, J. A.; Montgomery, J.

    2008-12-01

    The determination of accurate Sr isotope ratios in calcium phosphate matrices by laser ablation multi-collector ICP-MS is demonstrated as possible even with low Sr concentration archaeological material. Multiple on-line interference correction routines for doubly-charged REE, Ca dimers and Rb with additional calibration against TIMS-characterised materials are required to achieve this. The calibration strategy proposed uses both inorganic and biogenic apatite matrices to monitor and correct for a 40Ca- 31P- 16O polyatomic present at levels of 0.3-1% of the non-oxide peak, which interferes on 87Sr causing inaccuracies of 0.03-0.4% in the 87Sr/ 86Sr isotope ratio. The possibility also exists for synthetic materials to be used in this calibration. After correction for interferences total combined uncertainties of 0.04-0.15% (2SD) are achieved for analyses of 13-24 μg of archaeological tooth enamel with Sr concentrations of ca. 100-500 ppm using MC-ICP-MS. In particular, for samples containing >300 ppm Sr, total uncertainties of ˜0.05% are possible utilising 7-12 ng Sr. Data quality is monitored by determination of 84Sr/ 86Sr ratios. When applied to an archaeological cattle tooth this approach shows Sr-isotope variations along the length of the tooth in agreement with independent TIMS data. The 40Ca- 31P- 16O polyatomic interference is the root cause of the bias at mass 87 during laser ablation ICP-MS analysis of inorganic and biogenic calcium phosphate (apatite) matrices. This results in inaccurate 87Sr/ 86Sr ratios even after correction of Ca dimers and doubly charged rare earth elements. This interference is essentially constant at specific ablation conditions and therefore the effect on 87Sr/ 86Sr data varies in proportion to changes in the Sr concentration of the ablated material. Complete elimination of this interference is unlikely through normal analytical mechanisms and therefore represents a limitation on the achievable accuracy of LA-(MC-)ICP-MS 87Sr/ 86Sr

  2. [Inductively coupled plasma and clinical biology. Toxicological applications].

    PubMed

    Goullé, J-P; Mahieu, L; Lainé, G; Lacroix, C; Clarot, F; Vaz, E; Proust, B

    2004-09-01

    The multi-elementary quantitation method using inductively coupled plasma mass spectrometry has been widely developed for use with biological fluids. Many elements can be quantified simultaneously in biological fluids, including: Li, Be, B, Al, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Mo, Pd, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, Pb, Bi, U. The validation procedure is described by the French Society of Clinical Biology. Results for urine are corrected after creatinine determination. We report applications in clinical toxicology and forensic toxicology. Advances in inductively coupled plasma mass spectrometry in the field of clinical biology are particularly important for toxicological analysis. This powerful tool is helpful for better patient care and for the search for cause of death.

  3. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations.

  4. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  5. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  6. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal.

  7. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  8. Electron energy distributions in a magnetized inductively coupled plasma

    SciTech Connect

    Song, Sang-Heon E-mail: Sang-Heon.Song@us.tel.com; Yang, Yang; Kushner, Mark J.

    2014-09-15

    Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

  9. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  10. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-01

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field. PMID:26913559

  11. Circuit Model for Capacitive Coupling in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.; Sugai, H.

    1998-10-01

    A crude circuit model has been developed to illustrate and account for capacitive coupling between the rf coil and the bulk plasma in a stove top inductively coupled plasma source. The circuit model is composed of three levels of capacitance: the dielectric window capacitance, sheath capacitance contiguous to the dielectric window, and the chamber to ground sheath capacitance. The model is verified by quantitative comparison with the measured rf plasma potential in the bulk plasma body, plasma feedstock gas (argon) pressures below 2 mTorr. At higher pressures above 5 mTorr, the measured results diverge from the circuit model due to the transition from a spatially uniform electron density throughout the bulk plasma at pressures less than 2 mTorr to a less spatially uniform electron density at pressures above 5 mTorr.

  12. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  13. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  14. AETHER: A simulation platform for inductively coupled plasma

    SciTech Connect

    Turkoz, Emre Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  15. Improvement of uniformity in a weakly magnetized inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.

    2015-12-01

    Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).

  16. Recouping etch rates in pulsed inductively coupled plasmas

    SciTech Connect

    Agarwal, Ankur; Stout, Phillip J.; Banna, Samer; Rauf, Shahid; Collins, Ken

    2011-01-15

    Pulsed rf plasmas are increasingly being employed for plasma etching at future technological nodes. Although the plasma uniformity usually improves with pulsing, the lower time-averaged power decreases the etch rate and the lower throughput is undesirable. It is therefore important to evaluate different strategies to restore higher etch rates while retaining the advantages of pulsed plasmas. In this work, the impact of varying pulsing modes in an inductively coupled plasma on plasma characteristics and feature profile evolution are discussed using the results from a two-dimensional reactor scale plasma model coupled to a Monte Carlo based feature profile model. Results are discussed for poly-Si etching in an Ar/Cl{sub 2} gas mixture. The consequences of source-only and bias-only pulsing modes on discharge characteristics, ion energy distributions (IEDs) to the wafer, and feature profile evolution are discussed. Although the etch depth rates were found to be higher for source-only pulsing compared to the synchronized (source and bias) pulsing mode, the higher ion energies in the afterglow period during source-only pulsing may also increase ion bombardment damage. Compensation of power may allow for increased etch depth rates while retaining the benefits of synchronized pulsing. Further, power compensation level can be varied to achieve fine tuning of the IEDs to the wafer.

  17. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  18. Quantitative aspects of inductively coupled plasma mass spectrometry.

    PubMed

    Bulska, Ewa; Wagner, Barbara

    2016-10-28

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644971

  19. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  20. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  1. Modified Babington nebulizer for inductively coupled plasma atomic emission spectrometry.

    PubMed

    Isoyama, Hirofumi; Uchida, Tetsuo; Nagashima, Takashi; Ohira, Osamu

    2003-04-01

    A PTFE Babingtonnebulizer equipped with a hood was investigated for inductively coupled plasma atomicemission spectrometry in conjunction with a PTFE cyclone chamber, in order to nebulize various sample solutions containing high salts, hydrofluoric acid and/or suspended solid. A hood of 3 mmphi (nozzle side) - 5 mmphi (outlet side) and 6 mm in length gave a comparable or higher sensitivity compared to a system with a commercially available concentric nebulizer and a glass cyclone chamber. Moreover, the present nebulizer was fully interchangeable with a concentric one at normal argon pressure, attaining sufficient stability, a short wash-out time and good nebulizing of high matrices solutions. The present system was successfully applied to the determination of trace impurities in highly pure silica powders.

  2. Laminar-flow torch for helium inductively coupled plasma spectrometry

    SciTech Connect

    Tan, H.; Chan, S.K.; Montaser, A.

    1988-11-15

    Helium inductively coupled plasmas (He ICPs) operated at atmospheric pressure, possess two advantages compared to Ar ICPs for atomic emission spectrometry (AES) and mass spectrometry (MS). First, for the elements tested so far, the detection powers for the He ICPs are superior to those for an Ar discharge. Second, the emission background spectra of the He ICPs are quite simple in the red and the near-infrared regions, thus reducing the spectral interference problems encountered with the determination of halogens and other nonmetals. Relatedly, certain mass spectral interferences noted in the detection of monoisotopic elements are eliminated when helium is used as the plasma gas instead of argon. For the most recent studies of He ICPs, the authors used a tangential-flow torch to form an annular plasma at forward power of 1500 W with a total helium gas flow of 8 L/min. The present study is concerned with the formation and preliminary characterization of a He ICP using a laminar-flow torch. The total helium gas flow for this torch is less than 2 L/min. Studies of plasmas formed in laminar-flow torches are important because of the possibility to reduce one major source of noise resulting from the rotation of the plasma gas in tangential-flow torches.

  3. Mode transition in CF4 + Ar inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian

    2013-12-01

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF4 + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and △P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF4 increases, the E to H mode transition happens at higher applied power, and meanwhile, the △P also significantly increases. Besides, the effects of CF4 gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF4 at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF4 gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  4. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  5. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  6. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-08-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  7. Etching of oxynitride thin films using inductively coupled plasma

    SciTech Connect

    Kim, Byungwhan; Lee, Dukwoo; Kim, Nam Jung; Lee, Byung Teak

    2005-05-01

    In this study, silicon oxynitride (SiON) has been etched in a C{sub 2}F{sub 6} inductively coupled plasma. The process parameters examined include a radio frequency source power, bias power, pressure, and C{sub 2}F{sub 6} flow rate. For process optimization, a statistical experimental design was employed to investigate parameter effects under various plasma conditions. The etch rate increased almost linearly with increasing the source or bias power. Main effect analysis revealed that the etch rate is dominated by the source power. The C{sub 2}F{sub 6} flow rate exerted the least impact on both etch rate and profile angle. It was estimated that the C{sub 2}F{sub 6} effect is transparent only as the etchant is supplied sufficiently. Depending on the pressure levels, the etch rate varied in a complicated way. Parameter effects on the profile angle were very small and the profile angle varied between 83 deg. and 87 deg. for all etching experiments. In nearly all experiments, microtrenching was observed. The etch rate and profile angle, optimized at 1000 W source power, 30 W bias power, 6 mTorr pressure, and 60 sccm C{sub 2}F{sub 6} flow rate, are 434 nm/min and 86 deg., respectively.

  8. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    NASA Astrophysics Data System (ADS)

    Sánchez, Raquel; Todolí, José Luis; Lienemann, Charles-Philippe; Mermet, Jean-Michel

    2013-10-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques.

  9. Feedback control of chlorine inductively coupled plasma etch processing

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-03-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2{sup 2} factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained.

  10. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    PubMed

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  11. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time—compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  12. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  13. Characteristics of pulsed dual frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.

  14. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Michalke, Bernhard

    2016-01-01

    During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter. PMID:27645737

  15. Inductively Coupled Plasma-Mass Spectrometry and the European Discovery of America

    NASA Astrophysics Data System (ADS)

    Houk, R. S.

    2000-05-01

    The background and initial experimental results in inductively coupled plasma-mass spectrometry (ICP-MS) are juxtaposed with similar events from the voyages of Christopher Columbus, particularly with the first voyage.

  16. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    SciTech Connect

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong; Kim, Hyuk; Park, Wanjae

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  17. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    SciTech Connect

    Ebert, Christopher Hysjulien

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  18. Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples.

    PubMed

    Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli

    2015-05-01

    Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g. PMID:25851038

  19. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    NASA Astrophysics Data System (ADS)

    Halliday, A. N.; Lee, Der-Chuen; Christensen, J. C.; Jones, C. E.; Hall, C. M.; Yi, Wen; Teagle, D.; Walder, A. J.

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument's capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  20. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    SciTech Connect

    Halliday, A.N.; Lee, Der-Chuen; Christensen, J.C.; Jones, C.E.; Hall, C.M.; Yi, Wen; Teagle, D.; Walder, A.J.; Freedman, P.A.

    1994-11-01

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument`s capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  1. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  2. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  3. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  4. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    SciTech Connect

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  5. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  6. Three-Dimensional Electromagnetic Plasma Modeling of Inductively Coupled Plasma Source and Antenna

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Agarwal, Ankur; Kenney, Jason; Wu, Ming-Feng; Collins, Ken

    2012-10-01

    Inductively coupled plasmas (ICP) are widely used for etching and deposition in the semiconductor industry. As device dimensions shrink with concomitant decreased tolerance for variability, it is critical to improve plasma and process uniformity in all plasma processes. In ICP systems, one of the major sources of non-uniformity is the radio-frequency (RF) antenna used to generate the electromagnetic wave. Discontinuities at current feed and grounding locations as well as electromagnetic field variations along the antenna coils can perturb the azimuthal electric field, resulting in a non-uniform plasma. For plasma modeling of ICP systems, a related problem is how capacitive coupling from the antenna is accounted for. ICP models have generally considered field variation along the antenna and capacitive coupling using simplified circuit models for the antenna structures. Modern ICP antennas are however quite complicated, making circuit approximations of the antenna too crude for system design. A three-dimensional parallel plasma model is described in this paper, where the full set of Maxwell equations are solved in conjunction with plasma transport equations for the plasma and the antenna. Several examples from the use of this model in ICP system design are presented.

  7. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  9. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  10. Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)

    NASA Technical Reports Server (NTRS)

    Coedo, A. G.; Lopez, M. T. D.

    1986-01-01

    The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel.

  11. Surface modification of polypropylene separators in lithium-ion batteries using inductively coupled plasma treatment.

    PubMed

    Son, Jinyoung; Kim, Min-Sik; Lee, Hyun Woo; Yu, Jong-Sung; Kwon, Kwang-Ho

    2014-12-01

    We describe herein an improvement in the surface wettability of plasma-treated separators for use in lithium-ion batteries. We treated the separators with an O2/Ar inductively coupled plasma to increase their surface energy. The plasma treatment on the separator and plasma diagnostic experiments were performed in an inductively coupled plasma (ICP) reactor. The fraction of Ar in the O2/Ar plasma was changed from 0% to 100%. The plasma diagnostics were performed using optical emission spectroscopy and a double Langmuir probe. To confirm the morphological change of the separator membrane by the plasma treatment, we used the scanning electron microscopy. The surface energy measurements were performed using the drop method. We found that the plasma treatment transformed the separator from a hydrophobic membrane to a hydrophilic one, thereby achieving high separator wettability. After the treatment of the separators with O2/Ar plasma, the batteries exhibited better cycle performance and rate capacity than those employing the untreated ones. PMID:25971067

  12. Feedback control of plasma electron density and ion energy in an inductively coupled plasma etcher

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Huang, H.-M.; Hsieh, C.-H.

    2009-01-15

    Here the authors report the development of a fuzzy logic based feedback control of the plasma electron density and ion energy for high density plasma etch process. The plasma electron density was measured using their recently developed transmission line microstrip microwave interferometer mounted on the chamber wall, and the rf voltage was measured by a commercial impedance meter connected to the wafer stage. The actuators were two 13.56 MHz rf power generators which provided the inductively coupled plasma power and bias power, respectively. The control system adopted the fuzzy logic control algorithm to reduce frequent actuator action resulting from measurement noise. The experimental results show that the first wafer effect can be eliminated using closed-loop control for both poly-Si and HfO{sub 2} etching. In particular, for the HfO2 etch, the controlled variables in this work were much more effective than the previous one where ion current was controlled, instead of the electron density. However, the pressure disturbance effect cannot be reduced using plasma electron density feedback.

  13. Neutral depletion in inductively coupled plasmas using hybrid-type direct simulation Monte Carlo

    SciTech Connect

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2008-02-01

    Neutral and ion transport phenomena were simulated by a hybrid-type direct simulation Monte Carlo (DSMC) method for a one-dimensional (1D) electrostatic plasma in Ar/N{sub 2} mixtures to identify the mechanism of neutral depletion. The results show that gas heating and pressure balance are the main mechanisms of neutral depletion in an inductively coupled plasma. When plasma pressure becomes comparable to neutral pressure in high density plasma sources (T{sub e}{approx}2-5 eV, n{sub e}{approx}10{sup 11}-10{sup 12} cm{sup -3}), the total pressure (neutral pressure and plasma pressure) is conserved. Therefore, the finite plasma pressure (mainly electron pressure) reduces the neutral pressure. Neutrals collide with ions that have been accelerated by the ambipolar electric field and with Franck-Condon dissociated atoms, resulting in gas heating. Significant neutral depletion (up to 90%) is found at the typical condition of inductively coupled plasma process reactors. The resulting neutral depletion enhances the plasma transport to the surrounding wall, increases the particle loss, and decreases the plasma density.

  14. Effects of coil location and injection flow rate in an inductively coupled RF plasma torch

    NASA Astrophysics Data System (ADS)

    Wei, D.; Apelian, D.; Farouk, B.

    1985-07-01

    A numerical model has been developed to investigate the effects of central carrier gas flow rate and coil location in an inductively coupled RF plasma torch. Solution algorithm is based on the primitive variable formulation of the Navier-Stokes equations and includes a pseudo two-dimensional electromagnetic field model. Computational results have shown that with increasing carrier gas flow rate, the plasma plume is penetrated and the back flow due to the magnetic pumping effects is diminished. This facilitates the delivery of powder particles into the discharge region. However, the plasma plume is also disturbed significantly thus enhancing power loss.

  15. Temperature dependence of inductively coupled plasma assisted growth of TiN thin films.

    SciTech Connect

    Meng, W. J.; Curtis, T. J.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Louisiana State Univ.

    1999-11-01

    The use of low pressure high density plasmas to assist the synthesis of ceramic thin film materials is in its infancy. Using an inductively coupled plasma assisted magnetron sputtering system, we examine the dependence of plasma-assisted growth of TiN thin films on growth temperature at different ratios of ion flux to neutral atom flux. Our results indicate that a temperature independent densification of TiN films occurs above a certain ion to neutral atom flux ratio. As an example of this temperature independent densification, we demonstrate the formation of dense B1 TiN crystalline thin films at growth temperatures down to {approx}100 K.

  16. Characteristics of pulsed internal inductively coupled plasma for next generation display processing.

    PubMed

    Kim, Tae Hyung; Lee, Seung Min; Lee, Chul Hee; Bae, Jeong Oun; Yeom, Geun Young; Kim, Kyong Nam

    2014-12-01

    RF pulsed plasma characteristics of inductively coupled plasma (ICP) sources operated with internal linear type antennas for the next generation display processing were investigated. By applying the rf pulse mode in the ICP source, with decreasing the rf pulse duty percentage, the average electron temperature was decreased and the plasma non-uniformity was improved with decreasing the rf pulse duty percentage. In the case of plasma uniformity, for the same time average rf power of 3 kW to the ICP source, the plasma non-uniformity was improved from 8.4% at 100% of rf duty percentage to 6.4% at 60% of rf duty percentage due to the increased diffusion of the plasma during the pulse-off time. When SiO2 was etched using CF4, the etch rate uniformity was also improved due to the improvement of plasma uniformity. PMID:25971107

  17. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Baxter, Douglas C; Faarinen, Mikko; Österlund, Heléne; Rodushkin, Ilia; Christensen, Morten

    2011-09-01

    A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with (198)Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L(-1) could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 μg L(-1) was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 μg L(-1), 0.35 μg L(-1) and 2.8 μg L(-1), with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) μg L(-1). This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  18. Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Major, K.; Veilleux, J.; Brisard, G.

    2016-01-01

    Lithium-ion batteries have high energy efficiency and good cycling life and are considered as one of the best energy storage device for hybrid and/or electrical vehicle. Still, several problems must be solved prior to a broad adoption by the automotive industry: energy density, safety, and costs. To enhance both energy density and safety, the current study aims at depositing binder-free cathode materials using inductively coupled thermal plasma. In a first step, lithium iron phosphate (LiFePO4) powders are synthesized in an inductively coupled thermal plasma reactor and dispersed in a conventional polyvinylidene fluoride (PVDF) binder. Then, binder-free LiFePO4 coatings are directly deposited onto nickel current collectors by solution precursor plasma spraying (SPPS). The morphology, microstructure, and composition of the synthesized LiFePO4 powders and coatings are fully characterized by electronic microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy (XPS). Quantifying Li with XPS requires the substitution of iron with manganese in the SPPS precursors (LiMPO4, where M = Fe or Mn). The plasma-derived cathodes (with and without PVDF binder) are assembled in button cells and tested. Under optimized plasma conditions, cyclic voltammetry shows that the electrochemical reversibility of plasma-derived cathodes is improved over that of conventional sol-gel-derived LiFePO4 cathodes.

  19. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  20. Equivalent circuit effects on mode transitions in H{sub 2} inductively coupled plasmas

    SciTech Connect

    Xu, Hui-Jing; Zhao, Shu-Xia Zhang, Yu-Ru; Gao, Fei; Li, Xue-Chun; Wang, You-Nian

    2015-04-15

    It is well known experimentally that the circuit matching network plays an important role in the mode transition behavior of inductively coupled plasmas. To date, however, there have been no reports of numerical models being used to study the role of the matching circuit in the transition process. In this paper, a new two-dimensional self-consistent fluid model that couples the components of an equivalent circuit module is developed to investigate the effects of the equivalent circuit on the mode transition characteristics of an inductively coupled, hydrogen plasma. The equivalent circuit consists of a current source, impedance matching network, reactor impedance, and plasma transferred impedance. The nonlinear coupling of the external circuit with the internal plasma is investigated by adjusting the matching capacitance at a fixed input current. The electron density and temperature as well as the electromagnetic fields all change suddenly, and the E to H mode transition occurs abruptly at a certain matching capacitance as the impedance matching of the external circuit is varied. We also analyze the fields and the plasma characteristics during the transition process, especially for the case of the capacitive E mode.

  1. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Lorge, Susan Elizabeth

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  2. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  3. Plasma dynamics in a discharge produced by a pulsed dual frequency inductively coupled plasma source

    SciTech Connect

    Mishra, Anurag; Lee, Sehan; Yeom, Geun Y.

    2014-11-01

    Using a Langmuir probe, time resolved measurements of plasma parameters were carried out in a discharge produced by a pulsed dual frequency inductively coupled plasma source. The discharge was sustained in an argon gas environment at a pressure of 10 mTorr. The low frequency (P{sub 2} {sub MHz}) was pulsed at 1 kHz and a duty ratio of 50%, while high frequency (P{sub 13.56} {sub MHz}) was maintained in the CW mode. All measurements were carried out at the center of the discharge and 20 mm above the substrate. The results show that, at a particular condition (P{sub 2} {sub MHz} = 200 W and P{sub 13.56} {sub MHz }= 600 W), plasma density increases with time and stabilizes at up to ∼200 μs after the initiation of P{sub 2} {sub MHz} pulse at a plasma density of (2 × 10{sup 17} m{sup −3}) for the remaining duration of pulse “on.” This stabilization time for plasma density increases with increasing P{sub 2} {sub MHz} and becomes ∼300 μs when P{sub 2} {sub MHz} is 600 W; however, the growth rate of plasma density is almost independent of P{sub 2} {sub MHz}. Interestingly, the plasma density sharply increases as the pulse is switched off and reaches a peak value in ∼10 μs, then decreases for the remaining pulse “off-time.” This phenomenon is thought to be due to the sheath modulation during the transition from “pulse on” to “pulse off” and partly due to RF noise during the transition period. The magnitude of peak plasma density in off time increases with increasing P{sub 2} {sub MHz}. The plasma potential and electron temperature decrease as the pulse develops and shows similar behavior to that of the plasma density when the pulse is switched off.

  4. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    PubMed

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  5. Chemical recoveries of technetium-99 for various procedures using inductively coupled plasma-mass spectrometry

    SciTech Connect

    Ihsanullah; East, B.W.

    1993-12-31

    The procedure for the determination of {sup 99}Tc inductively coupled plasma-mass spectrometry (ICP-MS) was based on the modification of a variety of available separation techniques. Standard Ru and Rh solutions were used for checking decontaminations and instrument response respectively. Technetium-99 and {sup 95m}Tc tracers were applied as yield monitors using ICP-MS and gamma-ray spectrometry respectively. Percent recoveries are reported for a variety of radiochemical separation procedures for water (58-83%), seaweed (10-76%), and for soil matrices (19-79%).

  6. Parametric study of compound semiconductor etching utilizing inductively coupled plasma source

    SciTech Connect

    Constantine, C.; Johnson, D.; Barratt, C.

    1996-07-01

    Inductively Coupled Plasma (ICP) sources are extremely promising for large-area, high-ion density etching or deposition processes. In this review the authors compare results for GaAs and GaN etching with both ICP and Electron Cyclotron Resonance (ECR) sources on the same single-wafer platform. The ICP is shown to be capable of very high rates with excellent anisotropy for fabrication of GaAs vias or deep mesas in GaAs or GaN waveguide structures.

  7. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Sun, Jianbo

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  8. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  9. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  10. Nanoscale dry etching of germanium by using inductively coupled CF4 plasma

    NASA Astrophysics Data System (ADS)

    Shim, Kyu-Hwan; Yang, Ha Yong; Kil, Yeon-Ho; Yang, Hyeon Deok; Yang, Jong-Han; Hong, Woong-Ki; Kang, Sukill; Jeong, Tae Soo; Kim, Taek Sung

    2012-08-01

    The nanoscale dry etching of germanium was investigated by using inductively coupled CF4 plasma and electron-beam lithography. The optimal dose of PMMA as E-beam lithography resist was ˜200 mC/cm2. When ICP Power was 200W, CF4 gas flow rate was 40 sccm, and process pressure was 20 mTorr, it had a smooth surface and good etch rate. The etching selectivity of Ge wafer to PMMA resist was as low as ˜1.5. Various sub-100 nm dry-etching patterns have been obtained. SEM pictures showed good profile qualities with a smooth etching sidewall and ultrasmall etching features.

  11. Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization

    NASA Astrophysics Data System (ADS)

    He, Wei; Guo, Zhigang; Pu, Yikang; Yan, Luting; Si, Wenjie

    2004-08-01

    Polymer coating on the surface of inorganic ceramic nanoparticles is beneficial to decrease agglomeration and improve dispersion in organic solvent in ceramic injection moulding technology. A layer of thin polymer film on zirconia nanoparticles is deposited by inductively coupled ethylene/nitrogen plasma. Transmission electron microscopy photographs indicate the presence of uniform polymer coatings and the thickness of the polymer layer is estimated as several nanometers. The chemical structure of the film is revealed as quasi-polyethylene long hydrocarbon chain by x-ray photoelectron spectroscopy examination.

  12. Speciation of volatile selenium species in plants using gas chromatography/inductively coupled plasma mass spectrometry.

    PubMed

    Meija, Juris; Montes-Bayón, Maria; Caruso, Joseph A; Leduc, Danika L; Terry, Norman

    2004-01-01

    Gas chromatography/inductively coupled plasma mass spectrometry (GC/ICP-MS) coupled with solid phase micro-extraction can provide a simple, extremely selective and sensitive technique for the analysis of volatile sulfur and selenium compounds in the headspace of growing plants. In this work, the technique was used to evaluate the volatilization of selenium in wild-type and genetically-modified Brassica juncea seedlings. By converting toxic inorganic selenium in the soil to less toxic, volatile organic selenium, B. juncea might be useful in bioremediation of selenium contaminated soil.

  13. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes. PMID:8429621

  14. Experimental investigation of the Boltzmann relation for a bi-Maxwellian distribution in inductively coupled plasmas

    SciTech Connect

    Bang, Jin Young; Chung, Chin Wook

    2009-09-15

    In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.

  15. Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS)

    SciTech Connect

    Ando, Ayumi; Kurose, Tomoko; Kitano, Katsuhisa; Hamaguchi, Satoshi; Reymond, Vivien; Kitahara, Hideaki; Takano, Keisuke; Hangyo, Masanori; Tani, Masahiko

    2011-10-01

    The electron densities of argon inductively coupled plasmas were measured by terahertz time-domain spectroscopy (THz-TDS). At a low pressure, the electron densities were also measured with a Langmuir-type double probe and the validity of THz-TDS electron-density measurement in a plasma has been corroborated. As the input radio-frequency (RF) power increases, the plasma density and gas temperature increase, which makes the probe measurement less reliable or even impossible, due to the large heat load to the probe surface. On the contrary, the THz-TDS measurement is unaffected by the gas temperature and becomes more reliable due to the higher electron density at higher input power for plasma generation.

  16. Etch Characteristics of GaN using Inductively Coupled Cl{sub 2} Plasma Etching

    SciTech Connect

    Rosli, Siti Azlina; Aziz, A. Abdul

    2008-05-20

    In this study, the plasma characteristics and GaN etch properties of inductively coupled Cl{sub 2}/Ar plasmas were investigated. It has shown that the results of a study of inductively coupled plasma (ICP) etching of gallium nitride by using Cl{sub 2}/Ar is possible to meet the requirement (anisotropy, high etch rate and high selectivity), simultaneously. We have investigated the etching rate dependency on the percentage of Argon in the gas mixture, the total pressure and DC voltage. We found that using a gas mixture with 20 sccm of Ar, the optimum etch rate of GaN was achieved. The etch rate were found to increase with voltage, attaining a maximum rate 2500 A/min at -557 V. The addition of an inert gas, Ar is found to barely affect the etch rate. Surface morphology of the etched samples was verified by scanning electron microscopy and atomic force microscopy. It was found that the etched surface was anisotropic and the smoothness of the etched surface is comparable to that of polished wafer.

  17. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  18. Diagnostics of O Atoms in Inductively Coupled O2 Plasma Employing Vacuum Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagai, Hisao; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Takashima, Seigou

    2002-10-01

    The compact measurement system for absolute densities of oxygen (O) atom has been developed employing a vacuum ultraviolet absorption spectroscopy (VUVAS) technique with a high-pressure micro-discharge hollow cathode lamp (MHCL) as a light source. The influences of self-absorption, emission line profiles of the MHCL, and the background absorption on determination of absolute O atom density were investigated. This system has been applied for measuring of absolute O atom densities in an inductively coupled O2 plasma. O atom densities were estimated to be on the order of 4 x 10^11 -4 x 10^12 cm-3, at an O2 pressure ranging from 1.3 to 26.7 Pa. The behavior of O atom density measured using VUVAS technique was consistent with that obtained by actinometry technique using 844.6 nm and 777.2 nm. Moreover, the lifetime of O atom in the afterglow plasma has been investigated. The decay curves of the O atom density were fitted with exponential functions. The extinction process of O atom in the inductively coupled O2 plasma is discussed.

  19. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    SciTech Connect

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  20. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  1. Synthesis of Ozone at Atmospheric Pressure by a Quenched Induction-Coupled Plasma Torch

    SciTech Connect

    A. Blutke; B.C. Stratton; D.R. Mikkelsen; J. Vavruska; R. Knight

    1998-01-01

    The technical feasibility of using an induction-coupled plasma (ICP) torch to synthesize ozone at atmospheric pressure is explored. Ozone concentrations up to ~250 ppm were produced using a thermal plasma reactor system based on an ICP torch operating at 2.5 MHz and ~11 kVA with an argon/oxygen mixture as the plasma-forming gas. A gaseous oxygen quench formed ozone by rapid mixing of molecular oxygen with atomic oxygen produced by the torch. The ozone concentration in the reaction chamber was measured by Fourier Transform infrared (FTIR) spectroscopy over a wide range of experimental configurations. The geometry of the quench gas flow, the quench flow velocity, and the quench flow rate played important roles in determining the ozone concentration. The ozone concentration was sensitive to the torch RF power, but was insensitive to the torch gas flow rates. These observations are interpreted within the framework of a simple model of ozone synthesis.

  2. Inductively Coupling Plasma (ICP) Treatment of Propylene (PP) Surface and Adhesion Improvement

    NASA Astrophysics Data System (ADS)

    Liu, Yenchun; Fu, Yenpei

    2009-12-01

    Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.

  3. A volume averaged global model for inductively coupled HBr/Ar plasma discharge

    NASA Astrophysics Data System (ADS)

    Chung, Sang-Young; Kwon, Deuk-Chul; Choi, Heechol; Song, Mi-Young

    2015-09-01

    A global model for inductively coupled HBr/Ar plasma was developed. The model was based on a self-consistent global model had been developed by Kwon et al., and a set of chemical reactions in the HBr/Ar plasma was compiled by surveying theoretical, experimental and evaluative researches. In this model vibrational excitations of bi-atomic molecules and electronic excitations of hydrogen atom were taken into account. Neutralizations by collisions between positive and negative ions were considered with Hakman's approximate formula achieved by fitting of theoretical result. For some reactions that were not supplied from literatures the reaction parameters of Cl2 and HCl were adopted as them Br2 and HBr, respectively. For validation calculation results using this model were compared with experimental results from literatures for various plasma discharge parameters and it showed overall good agreement.

  4. Simulation and Experimental Measurements of Inductively Coupled CF4 and CF4/Ar Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    The recently developed code SEMS (semiconductor equipment modeling software)is applied to the simulation of CF4 and CF4/Ar inductively coupled plasmas (ICP). This work builds upon the earlier nitrogen, transformer coupled plasma (TCP) SEMS research by demonstrating its accuracy for more complex reactive mixtures, moving closer to the realization of a virtual plasma reactor. Attention is given to the etching of and/or formation of carbonaceous films on the quartz dielectric window and diagnostic aperatures. The simulations are validated through comparisons with experimental measurements using FTIR (Fourier Transform Infrared) and UV absorption spectroscopy for CFx and SiFx neutral radicals, QMS (quadrupole mass spectrometry) for the ions, and Langmuir probe measurements of electron number density and temperature in an ICP GEC reference cell.

  5. Viscous effects on motion and heating of electrons in inductively coupled plasma reactors

    SciTech Connect

    Chang, C.H.; Bose, D.

    1999-10-01

    A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor.

  6. [Nonradioactive iodine-labeled antibodies-inductively coupled plasma mass spectrometry for immunoassay].

    PubMed

    Li, Jing-Xi; Wang, Xiao-Ru; Zhuang, Zhi-Xia; Cui, Wei-Gang

    2010-03-01

    In the present study, the system of nonradioactive iodine-labeled-antibodies linking inductively coupled plasma mass spectrometry for immunoassay was reported. The goat-anti-Escherichia coli and goat anti rabbit were considered as simulant antigen and antibody respectively in order to establish a new method of immunoassay by inductively coupled plasma mass spectrometry which has the advantage of high sensitivity, low detection limit and preferable linearity range. During the experiment, the N-bromosuccinimide, a mild oxidant, was used to oxidize the non-radioactive iodine (127 I) that labeled the protein. The method of nonradioactive iodine labeled protein was established and the best labeling condition was explored. The compound of I was purified by Sephadex G50 column chromatography, then the stability and activity were examined. The results showed that the labeling program was simple, reaction time was within two minutes, the labeling yield achieved 63.12% and none of I shed from the compound after 96 hours. The simulant antigen and antibody reacted on polystyrene microtiter plate and the I was detected by ICP-MS, the detection limit of the method was 0.12 mg x L(-1), relative standard deviation (n = 9) was less than 3% and the linearly dependent coefficient was 0.998 7. This system can also be used in analysis of other protein, nucleic acid and so on.

  7. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  8. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect

    Shin, H.; Srivastava, S. N.; Ruzic, D. N.

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  9. Anisotropic pattern transfer in ultrananocrystalline diamond films by inductively coupled plasma etching.

    PubMed

    Park, Jong Cheon; Kim, Seong Hak; Cha, Seung Uk; Jeong, Geun; Kim, Tae Gyu; Kim, Jin Kon; Cho, Hyun

    2014-12-01

    High density plasma etching of ultrananocrystalline diamond (UNCD) films wasperformed in O2 and O2/Ar inductively coupled plasma (ICP) discharges. The O2/Ar ICP discharges produced higher etch rates due to enhanced physical component of the etching, and a maximum etch rate of -280 nm/min was obtained in 10 sccm O2/5 sccm Ar discharges. Very high etch selectivities up to -140:1 were obtained for the UNCD over Al mask layer. Anisotropic pattern transfer with a vertical sidewall profile was achieved in the 10 sccm O2/5 sccm Ar discharges at a relatively low source power (300 W) and a moderate rf chuck power (200 W). PMID:25971013

  10. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    SciTech Connect

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J.

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  11. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  12. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Rauscher, H.; Gilliland, D.; Brétagnol, F.; Rossi, F.

    2008-05-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  13. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  14. E→H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  15. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  16. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  17. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    PubMed

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries.

  18. On anomalous temporal evolution of gas pressure in inductively coupled plasma

    SciTech Connect

    Seo, B. H.; Chang, H. Y.; You, S. J.; Kim, J. H.; Seong, D. J.

    2013-04-01

    The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

  19. Characterization of Inductively Coupled Plasmas in High Power, High Pressure Regime

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Kenney, Jason; Agarwal, Ankur; Nichols, Michael; Rogers, James; Rauf, Shahid

    2015-09-01

    Inductively coupled plasmas (ICP) are widely used in the microelectronic industry for thin film etching. ICPs have typically been operated at low gas pressures (<50 mTorr) and they have been well-characterized in this regime. Several applications requiring high etch rates (e.g., vertical NAND etch) have recently extended the use of ICPs to the high power (>4000 W) and high pressure (>100 mTorr) regime. ICP operation in this high-power, high-pressure regime imposes a tremendous challenge of achieving good plasma uniformity over large substrates. This necessitates a good theoretical understanding of the underlying physics, thorough experimental characterization, and more accurate numerical models for hardware design guidance. In this study, we will focus on the characterization of ICP in the high-power, high-pressure regime. Computational modeling is done using CRTRS, our in-house 2D/3D plasma model. The fluid plasma model is coupled to a circuit model to self-consistently account for the capacitive coupling from the coils that is expected to dominate in this operating regime. Properties of Ar plasma will be discussed and compared with experiments. The impact of critical operating parameters such as ICP power, pressure, flow rate, and current ratio (in multi-coil antenna structures) on plasma characteristics will be examined. Results in relevant processing gases will also be discussed.

  20. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    PubMed

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  1. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  2. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    PubMed

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented. PMID:27250421

  3. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  4. Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.

    2000-01-01

    Fluorocarbon gases, such as CF4, and their mixtures are widely used in contemporary low-pressure and high-density plasma processing techniques. In such plasmas Langmuir probe is one of the most commonly employed diagnostic techniques to obtain electron number density (ne), electron temperature (Te), electron energy distribution function (EEDF), mean electron energy (Ee), ion number density (ni), and plasma potential (Vp). In this paper we report probe data for planar inductively coupled plasmas in CF4/O2/Ar mixtures. By varying the relative concentrations in the mixture, radial profiles of ne, ni, Te, Ee, Vp, EEDF were measured in the mid-plane of the plasma at 10 mTorr and 20 mTorr of gas pressures, and 200 W and 300 W of RF powers. Data show that ne and ni decrease with increase of CF4 content and decrease of gas-pressure but they increase with increase of RF-power, whereas Vp increases with decrease of gas-pressure and remains independent of RF-power. However, they all peak at the center of the plasma and decrease towards the edge while Te follows the other way and increases a little with increase of power. The measured EEDFs exhibit Druyvesteyn-like distribution at all pressures and powers. Data are analyzed and will be presented.

  5. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  6. Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching

    SciTech Connect

    Muttalib, Muhammad Firdaus A. Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B.

    2014-07-01

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

  7. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  8. Investigation of Asymmetries in Inductively Coupled Plasma Etching Reactors Using a 3-Dimensional Hybrid Model

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.; Grapperhaus, Michael J.

    1996-10-01

    Inductively Coupled Plasma (ICP) reactors have the potential for scaling to large area substrates while maintaining azimuthal symmetry or side-to-side uniformity across the wafer. Asymmetric etch properties in these devices have been attributed to transmission line properties of the coil, internal structures (such as wafer clamps) and non-uniform gas injection or pumping. To investigate the origins of asymmetric etch properties, a 3-dimensional hybrid model has been developed. The hybrid model contains electromagnetic, electric circuit, electron energy equation, and fluid modules. Continuity and momentum equations are solved in the fluid module along with Poisson's equation. We will discuss results for ion and radical flux uniformity to the substrate while varying the transmission line characteristics of the coil, symmetry of gas inlets/pumping, and internal structures. Comparisons will be made to expermental measurements of etch rates. ^*Work supported by SRC, NSF, ARPA/AFOSR and LAM Research.

  9. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  10. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry.

    PubMed

    Todorov, Todor I; Gray, Patrick J

    2016-01-01

    This work shows a method for the determination of iodine in a variety of food samples and reference materials using inductively coupled plasma-mass spectrometry (ICP-MS) following alkaline extraction. Optimisation of the addition of organic carbon showed that a minimum of 3% 2-propanol was necessary for a constant ratio of iodine to internal standard. The limit of quantification (LOQ), calculated as 30σ for the method, was 36 ng g(-1) in solid food samples. For method validation, seven standard reference materials (SRM) and 21 fortified food samples were used. The precision (%RSD) of the measurements was in the 2-7% range. Accuracies for the SRMs were 85-105%, while the fortified food samples showed 81-119% recoveries, including a number of samples fortified at 50% of the LOQ.

  11. Determination of total iodine in food samples using inductively coupled plasma-mass spectrometry.

    PubMed

    Benkhedda, Karima; Robichaud, André; Turcotte, Stéphane; Béraldin, Franca J; Cockell, Kevin A

    2009-01-01

    A method was developed and validated for the extraction and determination of total iodine (I) in food composite samples, representing different foods available on the Canadian market, by inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, samples were digested in a closed microwave system using a mixture of nitric acid and perchloric acid. The detection limit for iodine determination was 29 nglg and precisions of 10 and 1.3% were obtained for 10 replicate measurements of 100 and 1000 ng/g standards, respectively. The method was validated using Certified Reference Materials and spike recovery measurements in food samples and was applied for the determination of iodine in a variety of food composite samples from the Canadian Total Diet Study. The high sample throughput of ICP-MS makes the method suitable for analysis of large numbers of food samples with varying matrixes, such as for Total Diet Studies.

  12. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  13. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  14. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  15. III-Nitride Dry Etching - Comparison of Inductively Coupled Plasma Chemistries

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y-B.; Han, J.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Shul, R.J.

    1998-11-10

    A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.

  16. Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Zhang, S.; Hu, X. N.; Ding, R. J.; He, L.

    2016-05-01

    To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.

  17. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  18. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  19. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  20. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  1. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  2. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    PubMed

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health.

  3. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    PubMed

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  4. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  5. Analysis of cadmium and copper in cyanide plating solutions by the inductively coupled argon plasma spectrometer

    SciTech Connect

    Osbourn, G.R.

    1991-10-01

    The purpose of this work was to develop spectrometric methods for the analysis of copper and cadmium in cyanide plating solutions. If the methods were faster and/or more accurate than the classical volumetric methods being used, spectrometric methods could replace volumetric methods for routine production support. Spectrometric methods were developed on an inductively coupled argon plasma spectrometer. The spectrometric method developed for copper analysis proved as accurate as the classical chemical method, and faster, 20 minutes compared to two or three hours. Because of this significant savings, along with the reliability, the new method has replaced the classical method for routine production support. In contrast, the spectrometric method for cadmium proved to be slower, 30 minutes compared to 10 minutes, than the classical method. The spectrometric method is, however, accurate and reliable and will be retained as an alternate back-up method. 2 refs., 2 figs., 2 tabs.

  6. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  7. [A genetic algorithm approach to qualitative analysis in inductively coupled plasma-atomic emission spectroscopy].

    PubMed

    Peng, Bin; Liu, Ke-ling; Li, Zhi-min; Wang, Yue-song; Huang, Tu-jiang

    2002-06-01

    Genetic algorithm (GA) is used in automatic qualitative analysis by a sequential inductively coupled plasma spectrometer (ICP-AES) and a computer program is developed in this paper. No any standard samples are needed, and spectroscopic interferences can be eliminated. All elements and their concentration ranges of an unknown sample can be reported. The replication rate Pr, crossover rate Pc, and mutation rate of the genetic algorithm were adjusted to be 0.6, 0.4 and 0 respectively. The analytical results of GA are in good agreement with the reference values. It indicates that, combined with the intensity information, the GA can be applied to spectroscopic qualitative analysis and expected to become an effective method in qualitative analysis in ICP-AES after further work. PMID:12938334

  8. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  9. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  10. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    SciTech Connect

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  11. W and WC layers deposition by shielded inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Colpo, P.; Meziani, T.; Sauvageot, P.; Ceccone, G.; Gibson, P. N.; Rossi, F.; Monge-Cadet, P.

    2002-09-01

    Tungsten and carbon tungsten films have been deposited by a plasma enhanced chemical vapor deposition (PECVD) technique. The plasma-assisted deposition was performed by inductively coupled plasma source (ICP). A Faraday shield was arranged within the plasma chamber to prevent electrically conductive film deposition on the dielectric chamber wall that would screen the electromagnetic field. External electrical parameters and ion densities of the shielded inductive plasma source are measured and compared to classical ICPs source characteristics. Tungsten deposition has been performed from WF6 diluted in argon and hydrogen. A deposition rate of 5 mum/h was obtained. Hardness measurements show that the tungsten hardness can be increased from 5 to 20 GPA by biasing the substrate. WC films were deposited by adding methane or acetylene to the WF6/H2 mixture. The hardness of the WC films depends strongly on the methane or acetylene flow rate, i.e., on the film carbon content. The WC hardness has been correlated to the crystallographic structure. The first hardness maximum peak corresponds to a solid solution of carbon in the tungsten. Correlation between the deposition parameters, such as the gas composition, dc bias and coating properties has been investigated by means of AES, XRD, and nanoindentation analysis. copyright 2002 American Vacuum Society.

  12. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  13. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  14. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  15. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    NASA Astrophysics Data System (ADS)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  16. Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors

    NASA Astrophysics Data System (ADS)

    Yu, Ben; Wu, Hanming; Krishnan, Anantha

    1996-10-01

    A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.

  17. Electron energy probability function and L-p similarity in low pressure inductively coupled bounded plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Chatterjee, Sanghamitro; Charles, Christine; Boswell, Roderick

    2015-02-01

    Particle-In-Cell (PIC) simulations are carried out to investigate the effect of discharge length (L) and pressure (p) on Electron Energy Probability Function (EEPF) in a low pressure radio frequency (rf) inductively coupled plasma at 13.56 MHz. It is found that for both cases of varying L (0.1 - 0.5 m) and p (1 - 10 mTorr), the EEPF is a bi-Maxwellian with a step in the bounded direction (x) and in the symmetric unbounded directions (y, z) the EEPF are a Maxwellian with a hot tail. The plasma space potential decreases with increase in both L and p, the trapped electrons having energies in the range 0 to 20 eV. In a conventional discharge bounded in all directions, we infer that L and p are similarity parameters for low energy electrons trapped in the bulk plasma that have energies below the plasma space potential (eVp). The simulation results are consistent with a particle balance model.

  18. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  19. External control of electron energy distributions in a dual tandem inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-01

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  20. Langmuir Probe Measurements of Inductively Coupled Plasma in CF4/AR/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i)), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad lip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.

  1. Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF (radio frequency) power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad dip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.

  2. Mode transition in CF{sub 4} + Ar inductively coupled plasma

    SciTech Connect

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian

    2013-12-15

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF{sub 4} + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and △P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF{sub 4} increases, the E to H mode transition happens at higher applied power, and meanwhile, the △P also significantly increases. Besides, the effects of CF{sub 4} gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF{sub 4} at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF{sub 4} gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  3. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  4. External control of electron energy distributions in a dual tandem inductively coupled plasma

    SciTech Connect

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M. Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-28

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  5. Experimental investigation on plasma parameter profiles on a wafer level with reactor gap lengths in an inductively coupled plasma

    SciTech Connect

    Kim, Ju-Ho; Chung, Chin-Wook; Kim, Young-Cheol

    2015-07-15

    The gap length effect on plasma parameters is investigated in a planar type inductively coupled plasma at various conditions. The spatial profiles of ion densities and the electron temperatures on the wafer level are measured with a 2D probe array based on the floating harmonic method. At low pressures, the spatial profiles of the plasma parameters rarely changed by various gap lengths, which indicates that nonlocal kinetics are dominant at low pressures. However, at relatively high pressures, the spatial profiles of the plasma parameter changed dramatically. These plasma distribution profile characteristics should be considered for plasma reactor design and processing setup, and can be explained by the diffusion of charged particles and the local kinetics.

  6. Growth of graphene-based films using afterglow of inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Mineo; Tomatsu, Masakazu; Kondo, Hiroki; Hori, Masaru

    2014-10-01

    Plasma-enhanced CVD (PECVD) employing methane/hydrogen gases has been used to grow diamond and carbon nanostructures. In the case of graphene growth using PECVD, excessive supply of carbon precursors and ion bombardment on the growing surface would cause secondary nuclei, resulting in small size of graphene grain and degradation in crystallinity. To overcome this issue, in this work, afterglow of inductively coupled plasma (ICP) was used for the growth of graphene. The CVD system is simple and consists of a reaction chamber and a remote radical source that uses an ICP in cylindrical geometry. Methane/hydrogen gases were fed through a quartz tube of 26 mm inner diameter and 20 cm in length. A five-turn rf (13.56 MHz) coil was mounted on the quartz tube. Substrates (Ni-coated Si and Cu foil) were located in the afterglow region of ICP. Growth experiments were carried out for 1-10 min at temperature of 700 C, rf power of 400 W, and total pressure of 100 mTorr. We have successfully fabricated graphene-based films, which was confirmed by the Raman spectrum and SEM image of deposit. We will discuss the planar graphene growth mechanism in terms of precursors and their surface reaction, in conjunction with the growth experiments using microwave plasma and ICP in planar geometry.

  7. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond

    SciTech Connect

    Fávaro de Oliveira, Felipe; Momenzadeh, S. Ali; Wang, Ya; Denisenko, Andrej; Konuma, Mitsuharu; Markham, Matthew; Edmonds, Andrew M.; Wrachtrup, Jörg

    2015-08-17

    Near-surface nitrogen-vacancy (NV) centers in diamond have been successfully employed as atomic-sized magnetic field sensors for external spins over the last years. A key challenge is still to develop a method to bring NV centers at nanometer proximity to the diamond surface while preserving their optical and spin properties. To that aim we present a method of controlled diamond etching with nanometric precision using an oxygen inductively coupled plasma process. Importantly, no traces of plasma-induced damages to the etched surface could be detected by X-ray photoelectron spectroscopy and confocal photoluminescence microscopy techniques. In addition, by profiling the depth of NV centers created by 5.0 keV of nitrogen implantation energy, no plasma-induced quenching in their fluorescence could be observed. Moreover, the developed etching process allowed even the channeling tail in their depth distribution to be resolved. Furthermore, treating a {sup 12}C isotopically purified diamond revealed a threefold increase in T{sub 2} times for NV centers with <4 nm of depth (measured by nuclear magnetic resonance signal from protons at the diamond surface) in comparison to the initial oxygen-terminated surface.

  8. Continuum flow sampling mass spectrometer for elemental analysis with an inductively coupled plasma ion source

    SciTech Connect

    Olivares, J.A.

    1985-01-01

    The sampling of ions from an atmospheric pressure inductively coupled plasma for mass spectrometry (ICP-MS) with a supersonic nozzle and skimmer is shown to follow similar behavior found for neutral beam studies and of ion extraction from other plasmas and flames. The dependence of count rates for metal oxide and doubly charged ions on ICP operating parameters, and sampling interface configuration are discussed for this instrument. A simple method is described for the approximate measurement of the ion energy distribution in ICP-MS. The average ion kinetic energy, kinetic energy spread, and maximum kinetic energy are evaluated from a plot of ion signal as a function of retarding voltage applied to the quadrupole mass analyzer. The effects of plasma operating parameters on ion signals and energies are described. The interference on the ionization of cobalt by five salts, NaCl, MgCl/sub 2/, NH/sub 4/I, NH/sub 4/Br and NH/sub 4/Cl, in an ICP is first considered theoretically and subsequently the theoretical trends are established experimentally by ICP-MS. The interference trends are found to be in the order of the most easily ionized element in the matrix salt, i.e., Na > Mg > I > Br > Cl.

  9. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-01

    Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  10. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N.

    2016-02-01

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a "minor" effect on the ion flux and the shape of the IVDF.

  11. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  12. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  13. Investigations of the use of inductively coupled plasma emissions for chemical analysis

    NASA Astrophysics Data System (ADS)

    Heine, D. R.

    Investigations of applications of the inductively coupled plasma (ICP) for analytical atomic emission spectroscopy are performed. Emissions below 185 nm, analysis of wear metals in lubricating oils, and use of the ICP as a selective detector for high performance liquid chromatography (HPLC) are studied. A unique plasma coolant tube containing a side arm which allows direct observation of the discharge is used to investigate emissions in the vacuum ultraviolet spectral region between 120 and 185 nm. Emission from elements which do not emit radiation in the visible region are observed. A heated sample introduction system attached to a Babington nebulizer is investigated as a means to aerosolize lubricating oils for introduction into the ICP. This allows direct analysis of wear metals in oil samples without requiring the usual sample dilutions. The ICP is used as a selective detector for HPLC. Nucleotides separated by anion exchange chromatography are determined in the ICP by observing phosphorous emissions. Methanol and acetonitrile used for reverse phase HPLC are successfully run in the IPC.

  14. Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations.

    PubMed

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2016-08-16

    We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.

  15. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil.

  16. Controlling VUV photon fluxes in low-pressure inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2015-06-01

    Low-pressure (a few to hundreds of millitorrs) inductively coupled plasmas (ICPs), as typically used in microelectronics fabrication, often produce vacuum-ultraviolet (VUV) photon fluxes onto surfaces comparable to or exceeding the magnitude of ion fluxes. These VUV photon fluxes are desirable in applications such as sterilization of medical equipment but are unwanted in many materials fabrication processes due to damage to the devices by the high-energy photons. Under specific conditions, VUV fluxes may stimulate etching or synergistically combine with ion fluxes to modify polymeric materials. In this regard, it is desirable to control the magnitude of VUV fluxes or the ratio of VUV fluxes to those of other reactive species, such as ions, or to discretely control the VUV spectrum. In this paper, we discuss results from a computational investigation of VUV fluxes from low-pressure ICPs sustained in rare gas mixtures. The control of VUV fluxes through the use of pressure, pulsed power, and gas mixture is discussed. We found that the ratio, β, of VUV photon to ion fluxes onto surfaces generally increases with increasing pressure. When using pulsed plasmas, the instantaneous value of β can vary by a factor of 4 or more during the pulse cycle due to the VUV flux more closely following the pulsed power.

  17. Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations.

    PubMed

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2016-08-16

    We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization. PMID:27457191

  18. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    PubMed

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample. PMID:24767449

  19. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  20. Some Temperature Effects on AISI-304 Nitriding in an Inductively Coupled RF Plasma

    SciTech Connect

    Valencia-Alvarado, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.; Munoz-Castro, A. E.; Piedad-Beneitez, A. de la; Rosa-Vazquez, J. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.

    2006-12-04

    Some recent results obtained from nitriding AISI 304 stainless steel samples, 1.2 cm in diameter and 0.5 cm thick are reported here in the case of an 85% hydrogen and 15% nitrogen mixture work gas. The process was carried out from 300 to 400 W for (13.56 MHz) inductively coupled plasma within a 60 cm long pyrex glass tube 3.5 cm in diameter where the samples were biased up to -300 V with respect to earth. The resulting hardness appears to be a function of the substrate temperature which varied from 200 deg. C at a 0 V bias to 550 deg. C at -300 V. The plasma density at 400 W reached 3x1010 cm-3 with a 4 eV electron temperature. Prior to nitriding, all the samples were polished with 0.05 {mu}m diamond paste, leading to a 30 nm average roughness (Ra). After nitriding at -300 V, the Ra rose until {approx}400 nm while hardness values of 1500 HV under 300 g loads were measured. X ray diffraction indicates that the extended phase amplitude ({gamma}N), Fe and Cr nitride depends on the substrate temperature.

  1. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    NASA Astrophysics Data System (ADS)

    Wei, Xiaolong; Xu, Haojun; Li, Jianhai; Lin, Min; Su; Chen

    2015-05-01

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density ( N e ) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N e achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N e of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10-50 Pa, power in 300-700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4-5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  2. Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro

    2007-11-01

    Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.

  3. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe

    2014-10-01

    Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as the working gas. Two-dimensional compressible axisymmetric Navier-Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for the 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermochemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.

  4. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    PubMed

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample.

  5. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  6. Ion Energy Distributions and their Relative Abundance in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Study of kinetics of ions and neutrals produced in high density inductively coupled plasma (ICP) discharges is of great importance for achieving a high degree of plasma assisted deposition and etching. In this paper, we present the ion energy distributions (IEDs) of various ions arriving at the grounded lower electrode. The ions were energy as well as mass analyzed by a combination of electrostatic analyzer-quadrupole mass spectrometer for pure Ar and CF4/Ar mixtures. The measurements have been made at gas pressures ranging from 30 to 100 mTorr. In addition, the IEDs were measured when the wafer-supporting electrode was also rf-powered and the effect of the self-bias was observed in the energy distributions of ions. The shapes of the IEDs are discussed an related to the sheath properties and measured electrical waveforms, as a function of pressure and applied power. Relative ion intensities were obtained by integration of each ion kinetic energy distribution function over its energy range.

  7. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  8. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  9. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  10. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Won; Lee, Yun-Seong; Chang, Hong-Young; An, Sang-Hyuk

    2014-08-01

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  11. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hormes, J.; Roy, A.; Bovenkamp, G.-L.; Simon, K.; Kim, C.-Y.; Börste, N.; Gai, S.

    2013-04-01

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.

  12. The Spatial Effects of Antenna Configuration in a Large Area Inductively Coupled Plasma System for Flat Panel Displays

    NASA Astrophysics Data System (ADS)

    Seon-Geun, Oh; Young-Jun, Lee; Jae-Hong, Jeon; Jong-Hyeon, Seo; Hee-Hwan, Choe

    2014-08-01

    Spatial distributions of plasma parameters such as electron density, electron temperature and electric potential were investigated using a commercial simulation software (COMSOLTM) to predict the effects of antenna configuration in a large area inductively coupled plasma (ICP) system for flat panel displays. Nine planar antenna sets were evenly placed above a ceramic window. While the electron density was influenced by both the input current and gas pressure, the electron temperature and electric potential were dominantly affected by the gas pressure.

  13. Dynamics of inductively-coupled pulsed chlorine plasmas in the presence of continuous substrate bias

    NASA Astrophysics Data System (ADS)

    Malyshev, M. V.; Donnelly, V. M.

    2000-08-01

    We report an analysis of the dynamics of a pulsed power, inductively-coupled chlorine plasma operated with continuous radio frequency (rf) bias applied to the substrate stage. A comparison of pulsed plasmas operated with and without 12.5 MHz rf bias is performed through an investigation of the time dependences of electron (ne) and positive ion (ni+) densities and electron temperatures (Te), measured with a Langmuir probe in a 10 mTorr Cl2 plasma. There is no significant difference in the plasma characteristics with or without bias during the on portion of the power modulation of the source. Once the source power is turned off, Te initially decreases rapidly, and ne and ni+ decay slowly, independent of the presence of the rf bias. About 25 µs into this decay, when Te is about 0.5 eV (and would continue to decay in the absence of the rf bias), the presence of the rf bias (70-100 W) causes Te to increase rapidly and reach values higher than those recorded at the end of the on portion. Meanwhile, ne and ni+ continue to decay, independent of substrate bias. Only much later in the afterglow are charge densities affected by bias. About 50 µs into the off period, ne with added substrate bias is lower than with no bias. If the off period is sufficiently long, the plasma in the presence of the rf bias transforms into a so-called reactive ion etching (RIE) mode that is generated and sustained solely by the capacitively-coupled bias power. This occurs rather abruptly when ni+ decays to the level of positive ion density for RIE operation (i.e. with the stage powered and the source power off). Since ne at this instant has decayed well below the electron density during RIE operation, it rapidly increases when this transition occurs. The behaviour of Te in the off portion of the pulsed plasma indicates that the presence of rf bias prevents the sheath collapse that occurs without bias. Since this will prevent negative ions (Cl-) from reaching the wafer, the reduced plasma

  14. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  15. Homogeneous and Heterogeneous Reaction Mechanisms in CH3F-O2 Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Donnelly, Vincent M.; Karakas, Erdinc; Kaler, Sanbir; Lou, Qiaowei; Economou, Demetre J.

    2013-09-01

    CH3F/O2 containing plasmas are used in selective Si3N4 etching over Si or SiO2. Fundamental plasma studies in these gas mixtures are scarce. In this work, optical emission rare gas actinometry and a global chemistry model were employed to study inductively couple plasmas in CH3F/O2 gas mixtures. For constant CH3F and O2 flow rates, the absolute H, F and O atom densities increased linearly with power. The feedstock gas was highly dissociated and most of the fluorine and oxygen was contained in reaction products HF, CO, CO2, H2O and OH. Measured number densities as a function of O2 addition to CH3F/O2 changed abruptly for H, O, and particularly F atoms (factor of 4) at 48% O2 A corresponding transition was also observed in electron density, electron temperature and gas temperature, as well as in C, CF and CH optical emission. These abrupt transitions were attributed to the reactor wall reactivity, changing from a polymer-coated surface to a polymer-free surface, and vice-versa, as the O2 content in the feed gas crossed 48%. Homogeneous chemistry dominates above 48% O2; a kinetic model with no adjustable parameters is in excellent agreement with the absolute F and H and relative HF number density dependence on power and pressure. CH3F/O2 containing plasmas are used in selective Si3N4 etching over Si or SiO2. Fundamental plasma studies in these gas mixtures are scarce. In this work, optical emission rare gas actinometry and a global chemistry model were employed to study inductively couple plasmas in CH3F/O2 gas mixtures. For constant CH3F and O2 flow rates, the absolute H, F and O atom densities increased linearly with power. The feedstock gas was highly dissociated and most of the fluorine and oxygen was contained in reaction products HF, CO, CO2, H2O and OH. Measured number densities as a function of O2 addition to CH3F/O2 changed abruptly for H, O, and particularly F atoms (factor of 4) at 48% O2 A corresponding transition was also observed in electron density

  16. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency.

  17. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Alfuhaid, S. A.; Cambier, J.-L.; Panesi, M.

    2015-10-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  18. An inductively coupled plasma carbon emission detector for aqueous carbohydrate separations by liquid chromatography.

    PubMed

    Peters, H L; Levine, K E; Jones, B T

    2001-02-01

    An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV-visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.

  19. Determination of trace elements in granites by inductively coupled plasma mass spectrometry.

    PubMed

    Liang, Q; Jing, H; Gregoire, D C

    2000-03-01

    Proposed is a simple and reliable method for the dissolution of granite and the determination of 38 elements by inductively coupled plasma mass spectrometry. One hundred milligrams of sample are digested with 1 ml of HF and 0.5 ml of HNO(3) in screw top PTFE-lined stainless steel bombs at 190 degrees C for 12 h. Insoluble residues are dissolved using 8 ml of 40% HNO(3) (v/v) heated to 110 degrees C for 3 h. Six granite standard reference materials (GSR-1, JG-2, G-2, NIM-G, SG-3, SG-1a) were studied. Analytical calibration was accomplished using aqueous standard solutions. Rhodium was used as an internal standard to correct for matrix effects and instrument drift. We report data for: Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, Hf, Ta, W, Pb, Th, U and 14 of the rare earth elements. The recoveries for most of these elements in granite ranged from 90 to 110%.

  20. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  1. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Noor, Zairin; Sumitro, Sutiman Bambang; Hidayat, Mohammad; Rahim, Agus Hadian; Sabarudin, Akhmad; Umemura, Tomonari

    2012-01-01

    Clinical research indicates that negative calcium balance is associated with low bone mass, rapid bone loss, and high fracture rates. However, some studies revealed that not only calcium is involved in bone strengthening as risk factor of fracture osteoporosis. Thus, in this report, the difference of metallic and nonmetallic elements in osteoporosis and normal bones was studied by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The influence of these elements on bone metabolic processes is also discussed. Inclusion criteria of bone samples consist of postmenopausal woman, trabecular bone fracture, normal and osteoporosis BMD value, and no history of previous disease. The results showed that the concentration of B, Al, S, V, Co, Mo, Te, Ba, La, Ni, As, and Ca/P ratio is higher in osteoporosis than normal. These atomic minerals have negative role to imbalance between bone resorption and bone formation activity. Conversely, concentrations of Na, Mg, P, K, Ca, Cr, Pd, Ag, Mn, Fe, Cu, Zn, Rb, Sr, Pb, and Se are lower in osteoporosis than in normal bones. Among these atoms, known to have important roles in bone structure, we found involvement of atomic mineral and calcium which are considerable to contribute to osteoporotic phenomena. PMID:22654598

  2. Suppression of analyte signal by various concomitant salts in inductively coupled plasma mass spectrometry

    SciTech Connect

    Olivares, J.A.; Houk, R.S.

    1986-01-01

    The interference on the ionization of cobalt by five salts, NaCl, MgCl/sub 2/, NH/sub 4/I, NH/sub 4/Br, and NH/sub 4/Cl, in an inductively coupled plasma (ICP) is first looked at theoretically, and subsequently the theoretical trends are established experimentally by mass spectrometry (ICP-MS). The interference trends are found to be in the order of the most easily ionized element in the matrix salt, i.e., Na > Mg > I > Br > Cl. Quantitatively the theoretical values for the amount of salt needed to produce a particular interference are 1-2 orders of magnitude higher than the experimentally determined values. The results reported here indicate that ICP-MS is somewhat more susceptible to ionization suppression effects than ICP atomic emission spectrometry. It is also found that the most easily ionized element in the salt dominates the matrix ion spectrum observed from the ICP in the order mentioned above. Total ion current measurements by ICP-MC at solute levels above 1% are complicated by orifice plugging and transport loss of the salt and analyte in the desolvation system for the ultrasonic nebulizer used. 27 references, 7 figures, 3 tables.

  3. Determination of total iodine in foods and dietary supplements using inductively coupled plasma-mass spectrometry.

    PubMed

    Sullivan, Darryl; Zywicki, Richard

    2012-01-01

    A method was developed and validated for the determination of total iodine in a wide variety of food products and dietary supplements. The method involves a unique sample digestion with a KOH solution in an oven or by using an open-vessel microwave system. After digestion, a stabilizer is added and the solution is taken to volume, then filtered and analyzed either directly or after dilution. The amount of iodine is determined with inductively coupled plasma-mass spectrometry (ICP-MS). The method was validated by experiments to determine its precision, accuracy, linearity, specificity, ruggedness, and robustness. The LOQ of this method is 25-50 microg/kg. The method demonstrated an average RSD of 2.27% during analysis of milk powder and 4.30% during analysis of a dietary supplement tablet reference material. The accuracy of the method as determined with these same reference materials was 100 and 94.2%, respectively. The method has been used successfully on commodity foods, processed foods, dairy products, pet food, infant formula, animal feed, mineral premixes, and a variety of dietary supplements.

  4. Iodine speciation in biological samples by capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Michalke, B; Schramel, P

    1999-09-01

    A hyphenation of capillary electrophoresis (CE) to inductively coupled plasma mass spectrometry (ICP-MS) was employed for the speciation of iodine. The separation method used a buffer sandwich of phosphate (pH 2.3), NaOH, sodium dodecyl sulfate (SDS) and borate buffer (pH 8.3) for stacking, aiming at sufficient separation of iodide, iodate, thyroxine (T4) and triiodothyronine (T3). These four iodine species were separated within 15 min and subsequently detected during a pressure-driven detection step (baseline-separated) at 19.5, 29.1, 36.6 and 42.2 s. The detection limits were determined at 0.08 microg I/L (iodide), 0.3 microg I/L (iodate), 3.5 microg I/L (thyroxine) and 2.5 microg I/L (triiodothyronine). This method was applied on iodine speciation in human serum ("healthy" and after thyroid gland operation) and urine. The serum from the healthy person contained iodide (13 microg I/L), T4 (61 microg I/L) and T3 (7.5 microg I/L), whereas the serum from the thyroid-operated person lacked T3. As no "free" I-hormones are known in serum, the role of the thyroid hormone binding globulin (TBG) was investigated. We found that spiked T4 or T3 immediately bound to TBG. Investigations on human urine showed only a peak for iodide.

  5. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Terol, A; Ardini, F; Basso, A; Grotti, M

    2015-02-01

    The coupling of high temperature liquid chromatography (HTLC) and inductively coupled plasma mass spectrometry (ICPMS) for the determination of selenium metabolites in urine samples is reported for the first time. In order to achieve "ICPMS-friendly" chromatographic conditions, the retention on a graphite stationary phase of the major selenium urinary metabolites using only plain water with 2% methanol as the mobile phase was investigated. Under the optimal conditions (T=80°C, Ql=1.2 mL min(-1)), methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), methyl 2-acetamido-2-deoxy-1-seleno-β-d-glucosopyranoside (selenosugar 2) and trimethylselenonium ion were efficiently separated in less than 7 min, without any interferences due to other common selenium species (selenite, selenate, selenocystine and selenomethionine) or detectable effect of the urine matrix. The limits of detection were 0.3-0.5 ng Se mL(-1), and the precision of the analytical procedure was better than 3% (RSD%, n=5). The HTLC-ICPMS method was applied to the analysis of urine samples from two volunteers before and after ingestion of Brazil nuts or selenium supplements. The developed procedure proved to be adequate for the analytical task, providing results consistent with previous studies. PMID:25582485

  6. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao; Ye, Meiying

    2016-08-26

    We reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed. Rapid separation of Hg(2+) and methylmercuric (MeHg) ion within 36s under an electric field of 800Vcm(-1) was achieved in the 2-cm twenty-channels with a background electrolyte of 5mmolL(-1) borate buffer (pH 9.2). Detection limits of Hg(2+) and MeHg by the proposed system were decreased to 6.8-7.1ngL(-1). Good agreement between determined values and certified values of a certified reference fish was obtained with recoveries ranged between 94-98%. All results prove its advantages including high sensitivity, high efficiency and low operation cost, which are beneficial to routine analysis of metal speciation in environmental, biological and food fields. PMID:27488720

  7. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  8. Antimony speciation by inductively coupled plasma mass spectrometry using solid phase extraction cartridges.

    PubMed

    Yu, Chunhai; Cai, Qiantao; Guo, Zhong-Xian; Yang, Zhaoguang; Khoo, Soo Beng

    2002-10-01

    A novel and simple method for inorganic antimony speciation is described based on selective solid phase extraction (SPE) separation of antimony(III) and highly sensitive inductively coupled plasma mass spectrometric (ICP-MS) detection of total antimony and antimony(V) in the aqueous phase of the sample. Non-polar SPE cartridges, such as the Isolute silica-based octyl (C8) sorbent-containing cartridge, selectively retained the Sb(III) complex with ammonium pyrrolidine dithiocarbamate (APDC), while the uncomplexed Sb(V) remained as a free species in the solution and passed through the cartridge. The Sb(III) concentration was calculated as the difference between total antimony and Sb(V) concentrations. The detection limit was 1 ng L(-1) antimony. Factors affecting the separation and detection of antimony species were investigated. Acidification of samples led to partial or complete retention of Sb(V) on C8 cartridge. Foreign ions tending to complex with Sb(III) or APDC did not interfere with the retention behavior of the Sb(III)-APDC complex. This method has been successfully applied to antimony speciation of various types of water samples.

  9. Inductively coupled plasma-mass spectrometry: An emerging method for analysis of long-lived radionuclides

    SciTech Connect

    Ross, R.R.; Noyce, J.R.; Lardy, M.M.

    1993-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a relatively new technique that can analyze for most of the elements in the periodic table at parts per billion (ng/mL) to parts per trillion (pg/mL). Already in use several years for trace analysis of stable isotopes, ICP-MS is becoming a powerful, complementary method to the counting of decay radiations for the analysis of radionuclides. Most radionuclides with half-lives longer than approximately 1x10{sup 3} years can be quantitatively detected on ICP-MS instruments that have an electrothermal vaporization unit for the injection of sample aliquants. Radionuclides with half-lives greater than approximately 1x10{sup 4} years can be measured routinely with greater sensitivity and more quickly by ICP-MS than by radiation counting. Examples from the literature of applying ICP-MS to radionuclides are the bioassay of uranium in urine, measurement of {sup 237}Np in soil and silt, and analysis for {sup 99}Tc in sea water, seaweed, and marine sediment. This paper discusses the instrumentation, advantages and limitations, and present and potential applications of ICP-MS for radionuclide measurements.

  10. Analysis of fertilizers for major, micro, and trace elements by inductively coupled plasma emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, J. B., Jr.

    The concentrations of nine elements (B, Ca, Cu, Fe, K, Mg, Mn, P, and Zn) in 34 Magruder Fertilizer Standards were determined by inductively coupled plasma (ICP) emission spectroscopy, and the results compared favorably with the known concentrations for all the elements. In addition to these nine fertilizer elements, six others (AI, Cd, Cr, Na, Ni, and Pb) were determined in the same analysis, although results could only be compared to similar analyses made by two other laboratories employing ICP. All 15 elements were also determined in 12 spent acids used to manufacture liquid fertilizer and analysis results compared among the three laboratories. Analysis by ICP spectroscopy of fertilizer materials with wide ranges of elemental contents was found to be a rapid analysis technique which can give comparable results with those obtained by the more laborious AOAC procedures as well as the opportunity to determine other than only the important fertilizer elements. Collaborative study is recommended for ICP determination of the elements of importance in fertilizers for adaptation of the ICP technique by the Association of Official Analytical Chemists.

  11. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  12. Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry.

    PubMed

    de Carvalho, Rui M; dos Santos, Jéssica A; Silva, Jessee A S; do Prado, Thiago G; da Fonseca, Adriel Ferreira; Chaves, Eduardo S; Frescura, Vera L A

    2015-08-01

    The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3). The relative standard deviation for all target elements was below 8% indicating an adequate precision and the limit of detection ranged from 0.03 μg g(-1) (Cd) to 24.0 μg g(-1) (Fe). The concentrations of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sr, and Zn in the different layers (0-10, 10-20, 20-40, and 40-60 cm) were determined in two types of soils, located in Paraná State in Brazil. The soil layers analysis revealed a different behavior of metals concentrations in soil samples under NT and NV. The obtained results showed a clear impact of anthropogenic action with respect to specific metals due to many years of uncontrolled application rates of limestone and phosphate fertilizers.

  13. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  14. [Matrix effects in inductively coupled plasma mass spectrometry by use of organic solvents].

    PubMed

    Cao, S; Chen, H; Zeng, X

    2000-08-01

    Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Pb and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Pb and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples by ICP-MS was developed.

  15. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  16. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  17. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. PMID:21111176

  18. Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Libo; Xu, Hai; Li, Linjun; Yang, Yang; Fu, Qiang; Bao, Xinhe; Loh, Kian Ping

    2016-06-01

    The chemical vapor deposition (CVD) of graphene on Cu has attracted much attention because of its industrial scalability. Herein, we report inductively coupled plasma-assisted CVD of epitaxially grown graphene on (111)-textured Cu film alloyed with a small amount of Ni, where large area high quality graphene film can be grown in less than 5 min at 800 °C, thus affording industrial scalability. The epitaxially grown graphene films on (111)-textured Cu contain grains which are predominantly aligned with the Cu lattice and about 10% of 30°-rotated grains (anti-grains). Such graphene films are exclusively monolayer and possess good electrical conductivity, high carrier mobility, and room temperature quantum Hall effect. Magnetoresistance measurements reveal that the reduction of the grain sizes from 150 nm to 50 nm produce increasing Anderson localization and the appearance of a transport gap. Owing to the presence of grain boundaries in these anti-grains, epitaxially grown graphene films possess n-type characteristics and exhibit ultra-high sensitivity to adsorbates.

  19. The survival of gunshot residues in cremated bone: an inductively coupled plasma optical emission spectrometry study.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Poppa, Pasquale; Gibelli, Daniele; Cattaneo, Cristina

    2013-07-01

    Gunshot residue (GSR) has been sought and demonstrated on many types of material and with many techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) could be a useful method on difficult substrates, but a systematic study on burnt material has never been performed. Hence, this study aims at evaluating the usefulness and reliability of this method on burnt samples. Sixteen adult bovine ribs (eight with soft tissues, eight totally skeletonized) were shot using two kinds of projectile (both 9 mm full metal-jacketed or unjacketed). Then, every sample was led to complete calcination in an electric oven. The area of the gunshot entrance wound was swabbed and analyzed by ICP-OES; the results were also correlated with a previously published parallel study by scanning electron microscopy (SEM) equipped with an SEM-energy dispersive X-ray analyzer. ICP-OES proved to be very sensitive and reliable even on degraded material and can be an appropriate nondestructive method for detecting residues on difficult and delicate substrates such as burnt bone. PMID:23692414

  20. Determination of metals in marine species by microwave digestion and inductively coupled plasma mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal

    2007-10-01

    A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO 3, 2 ml of H 2O 2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.

  1. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    SciTech Connect

    Kubota, Tomohiro; Nukaga, Osamu; Ueki, Shinji; Sugiyama, Masakazu; Inamoto, Yoshimasa; Ohtake, Hiroto; Samukawa, Seiji

    2010-09-15

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm{sup 2} in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within {+-}6% within a 100 mm diameter. Silicon etching using a F{sub 2}-based neutral beam was done at an etch rate of about 47 nm/min, while Cl{sub 2}-based neutral beam realized completely no undercut. The uniformity of etch rate was less than {+-}5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  2. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies.

    PubMed

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2010-01-01

    The potential of inductively-coupled plasma mass spectrometry (ICP-MS) and its complementarity to soft- ionization MS techniques are discussed in the context of the analysis for biomolecules. ICP-MS offers detection limits in the attomolar range, regardless of the molecular environment of the target element. The sensitivity is hardly affected by the sample matrix, chromatographic mobile phase, or co-eluted compounds. The abundance sensitivity over six decades and the linear dynamic range over nine decades make simultaneous multi-isotopic analysis routinely possible. The manuscript discusses the state-of-the-art of ICP-MS for the detection of proteins in gel electrophoresis and of peptides in 2D high-performance liquid chromatography. The possibilities of quantification to the degree of some post-translational modifications are highlighted. Attention is also paid to the role of ICP-MS in protein quantification via metal-coded labeling and to the use of differentially-labeled antibodies for the multiplexed biomarker analysis. The key role of ICP-MS in the emerging area of metallomics is briefly discussed.

  3. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  4. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  5. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  6. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  7. The survival of gunshot residues in cremated bone: an inductively coupled plasma optical emission spectrometry study.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Poppa, Pasquale; Gibelli, Daniele; Cattaneo, Cristina

    2013-07-01

    Gunshot residue (GSR) has been sought and demonstrated on many types of material and with many techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) could be a useful method on difficult substrates, but a systematic study on burnt material has never been performed. Hence, this study aims at evaluating the usefulness and reliability of this method on burnt samples. Sixteen adult bovine ribs (eight with soft tissues, eight totally skeletonized) were shot using two kinds of projectile (both 9 mm full metal-jacketed or unjacketed). Then, every sample was led to complete calcination in an electric oven. The area of the gunshot entrance wound was swabbed and analyzed by ICP-OES; the results were also correlated with a previously published parallel study by scanning electron microscopy (SEM) equipped with an SEM-energy dispersive X-ray analyzer. ICP-OES proved to be very sensitive and reliable even on degraded material and can be an appropriate nondestructive method for detecting residues on difficult and delicate substrates such as burnt bone.

  8. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    PubMed

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. PMID:26946007

  9. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  10. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    PubMed

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard.

  11. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    SciTech Connect

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J.; Mohrman, G.B.; Besmer, M.G.

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  12. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  13. Determination of ammonium and organic bound nitrogen by inductively coupled plasma emission spectroscopy.

    PubMed

    Jaber, A M Y; Mehanna, N A; Sultan, S M

    2009-06-15

    The continuous flow sample introduction technique with a hydride generator system in conjunction with an inductively coupled plasma emission spectrometer (ICP-AES-HG), is used in this study for quantitative determination of ammonium and organic bound nitrogen in aqueous and solid samples. Ammonia vapor released from ammonium salt after treatment with concentrated NaOH is transferred by argon to plasma for detection at 174.273 nm using axial argon plasma mode. The calibration curves were linear within a range of 25-1000 mg L(-1)N as ammonium molybdate with correlation coefficients of better than 0.99 and limits of detection of about 10-25mg L(-1)N. The percent recovery of N (25-500 mg L(-1)N) in soft (distilled) water and high salt content (1.7 mol L(-1) NaCl) matrices was found to be in the range of about 97-102% with %RSD in the range of 4.6-0.62. The sensitivity, limit of detection, and blank contribution from the atmospheric nitrogen, were tremendously improved in this method compared with the available ICP-AES spray chamber counterpart. Furthermore, the ICP-AES-HG method gave results for real samples (soil, fertilizer, waste water) containing about 50-1800 mg L(-1)N in good agreement with those obtained by the standard Kjeldahl method. No statistical differences at the 95% confidence level on applying the t-test were observed between the values obtained by the two methods. Thus, the ICP-AES-HG method is reliable and faster than the conventional tedious Kjeldahl method, superior to the ICP-AES spray chamber method, and almost free from matrix interference which is usually a critical factor in atomic emission spectroscopic techniques.

  14. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  15. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  16. Determination of microamounts of hafnium in zirconium using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry during their separation by ion exchange on Diphonix chelating resin.

    PubMed

    Smolik, Marek; Jakóbik-Kolon, Agata

    2009-04-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICPMS) methods were applied to check the possibility of determination of hafnium in zirconium at a level lower than 100 ppm. A zirconium matrix of hafnium content lower than 10 ppm was obtained using a worked-out separation method exploiting ion exchange on Diphonix resin. Both methods give results in good agreement with each other as well as with those for certified reference material BCR-098 (Zircaloy-4). They were utilized in determination of Hf in the samples collected during separation of microamounts of hafnium from zirconium by the mentioned ion exchange. These results proved the earlier described method of separation on Diphonix resin to be effective even when the initial concentration of hafnium in zirconium decreases from 2.4% to 0.0082%.

  17. Determination of hafnium at the 10(-4)% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry.

    PubMed

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Hafnium at the very low level of 1-8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29-253%). The ion exchange method exploiting Diphonix(®) resin proved sufficient efficiency in Zr-Hf separation when the initial concentration ratio of the elements ([Zr]0/[Hf]0) ranged from 1200 to ca. 143,000.

  18. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  19. Controlling the relative rates of adlayer formation and removal during etching in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Fuller, Nicholas Colvin Masi

    Laser desorption (LD) of the adlayer coupled with laser induced fluorescence (LIF) and plasma induced emission (PIE) of desorbed adsorbates is used to investigate the relative rates of chlorination and sputtering during the etching of Si in inductively coupled Cl2-Ar plasmas. Such an analysis is a two-fold process: surface analysis and plasma characterization. Surface analysis of Si etching using LD-LIF and LD-PIE techniques combined with etch rate measurements have revealed that the coverage of SiCl2 and etch rate increases and coverage of Si decreases abruptly for a chlorine fraction of 75% and ion energy of 80 eV. The precise Cl2 fraction for which these abrupt changes occur increases with an increase in ion energy. These changes may be caused by local chemisorption-induced reconstruction of Si <100>. Furthermore, the chlorination and sputtering rates are increased by ˜ an order of magnitude as the plasma is changed from Ar-dominant to Cl-dominant. Characterization of the plasma included determination of the dominant ion in Cl2 plasmas using LIF and a Langmuir probe and measurement of the absolute densities of Cl2, Cl, Cl+, and At + in Cl2-Ar discharges using optical emission actinometry. These studies reveal that Cl+ is the dominant positive ion in the H-mode and the dissociation of Cl2 to Cl increases with an increase in Ar fraction due to an increase in electron temperature. Furthermore, for powers exceeding 600 W, the neutral to ion flux ratio is strongly dependent on Cl2 fraction and is attributed mostly to the decrease in Cl density. Such dependence of the flux ratio on Cl2 fraction is significant in controlling chlorination and sputtering rates not only for Si etching, but for etching other key technological materials. ICP O2 discharges were also studied for low-kappa polymeric etch applications. These studies reveal that the electron temperature is weakly dependent on rf power and O2 dissociation is low (˜2%) at the maximum rf power density of 5.7 Wcm

  20. Tantalum carbide etch characterization in inductively coupled Ar/Cl{sub 2}/HBr plasmas

    SciTech Connect

    Kawai, H.; Rauf, S.; Luckowski, E.; Ventzek, P. L. G.

    2006-09-15

    The etching properties of tantalum carbide (TaC) in inductively coupled Ar/HBr/Cl{sub 2} plasmas are investigated in this article. Both etching experiments on patterned and blanket wafers and an integrated plasma equipment-feature scale computational model are utilized in this investigation. Results show that TaC etching is adequately described by the classical reactive ion etching mechanism, whereby etching occurs due to the synergistic effect of Cl or Br atoms and energetic ions. TaC etches faster in the presence of Cl relative to Br. The TaC etch rate is small in gas mixtures containing 5% of Cl{sub 2} or HBr and 95% of Ar, and it increases considerably as Cl{sub 2} or HBr concentration is increased. Although this etch rate increase is partially due to the availability of more Cl or Br, the chemical nature of chlorine (Cl{sub 2}{sup +},Cl{sup +}) or bromine (Br{sup +}) ions also plays a strong role. The TaC etch rate increases little if Cl{sub 2} or HBr fraction in Ar/Cl{sub 2} or Ar/HBr gas mixture, respectively, is increased beyond 25%. The TaC etch rate increases with rf bias power under all conditions. Scanning electron micrographs of TaC films etched using a patterned mask show that TaC sidewalls are tapered at about 77 deg. {+-}3 deg. and the angle does not change appreciably with gas mixture or rf bias power. It is determined that an angle dependent ion etching yield captures well the observed trends in TaC sidewall slope.

  1. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  2. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  3. Plasma sterilization of Geobacillus Stearothermophilus by O{mathsf2}:N{mathsf2} RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Sasaki, T.; Rossi, F.

    2006-05-01

    The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.

  4. Inelastic collisional deactivation in plasma-related non-spectroscopic matrix interferences in inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad S.; Barnes, Ramon M.

    1999-07-01

    Inelastic collisional deactivation of the analyte excited state is demonstrated as a dominant cause for non-spectroscopic matrix interference in inductively coupled plasma atomic emission spectrometry (ICP-AES) for commonly used plasma operating conditions in routine analysis. A mathematical simulation of the inelastic collisional model was examined. Comparison between the theoretical model and experimental results using atomic and ionic lines of the analytes Zn, Ba, Mg, Mn and Sr validates the inelastic collisional deactivation model as a dominant cause for non-spectroscopic matrix effect. Matrices evaluated were NH 4Cl, NH 4SCN, (NH 4) 2SO 4, and H 2SO 4 to represent difficult-to-ionize matrices (DIE) and NaCl and CaCl 2 to represent easy-to-ionize element matrices (EIE).

  5. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    PubMed

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-01

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height.

  6. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  7. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M.

    2006-01-09

    Transporting metallic ions from the magnetron cathode to the substrate is essential for an efficient thin-film deposition process. This letter examines how inductively coupled plasma superimposed onto a high-power pulsed magnetron discharge can influence the mobility of titanium ions. To this effect, time-resolved optical emission and absorption spectrometry are conducted and the current at the substrate is measured. With this new hybrid technique, ions are found to reach the substrate in two successive waves. Metal ions, only present in the second wave, are found to accelerate proportionally to the power supplied to the inductively coupled plasma. All the measurements in this study are made at 10 and 30 mTorr, with 10 {mu}s long pulses at the magnetron cathode.

  8. Depolymerization of the waste polymers in municipal solid waste streams using induction-coupled plasma technology

    NASA Astrophysics Data System (ADS)

    Guddeti, Ravikishan Reddy

    2000-10-01

    A significant, valuable percentage of today's municipal solid waste stream consists of polymeric materials, for which almost no economic recycling technology currently exists. This polymeric waste is incinerated, landfilled or recycled via downgraded usage. Thermal plasma treatment is a potentially viable means of recycling these materials by converting them back into monomers or into other useful compounds. The technical, laboratory scale, feasibility of using an induction-coupled RF plasma [ICP] heated reactor for this purpose has been demonstrated in the present study. Polyethylene [PE], polypropylene [PP] and polyethylene terephthalate [PET], the model polymers chosen for the study, were injected axially through the center of an ICP torch. 68% of PE, 78% of PP and 75% of PET were converted into gaseous products. Ethylene and propylene were the primary gaseous products of decomposition of the former two polymers and acetylene was the primary product of the depolymerization of PET. The amount of propylene obtained in PE depolymerization was significantly higher than anticipated and was believed to be due to beta-scission reactions occurring at the high plasma temperatures. Statistical design of experiments was used to determine the influence of individual variables. Analysis of results showed that plasma plate power, central gas flow rate, probe gas flow rate, powder feed rate and the interaction between the quench gas flow rate and power input were the key process parameters affecting the yield of monomer in the product gas stream. Depolymerization of a PE + PP mixture yielded concentrations of propylene and ethylene close to those predicted from weighting the concentrations of products from the individual polymers. 75.5 wt.% of the mixture was converted into monomers. TEM analysis of the carbon residues collected from different locations of the reactor indicated the formation of some novel carbon structures, including carbon nanotubes. The presence of these

  9. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  10. Determination of iodine in seafood by inductively coupled plasma/mass spectrometry.

    PubMed

    Julshamn, K; Dahl, L; Eckhoff, K

    2001-01-01

    A method was developed for determination of total iodine content in different standard reference materials (SRMs) and seafood products by inductively coupled plasma/mass spectrometry (ICP/MS). If iodine is present as iodide and nitric acid is used in the wet digestion system, the observed signal is not stable when iodine is measured by ICP/MS at m/z 127. To stabilize the iodine signal, 3% ammonia solution (1 + 1, v/v) was added to the digest. The limit of quantitation of the method, defined as 6 times the standard deviation in the blank solution (n = 20) was estimated to be 15 mg/kg (using 0.2 g dry mass and a dilution factor of 50). The precision, expressed as repeatability of the iodine concentration, varied between 3.2 and 12% in SRMs, with concentrations of 4.70-0.17 mg/kg dry matter. The described method was compared with a method using tetramethylammonium hydroxide extraction. Both methods showed good precision and trueness by analyses of SRMs. The 2 methods were used to determine iodine in seafood from the Barents Sea, the Norwegian Sea, and the North Sea. The results showed great variation between different fish species as well as between individuals within a species. The lowest values of iodine were recorded in muscle of ling (Molva molva) with a mean of 0.07 mg/kg fresh weight and a variation between 0.03 and 0.11 mg/kg fresh weight. The highest values were found in cod (Gadus morhua) from the Barents Sea, with a mean of 2.5 mg/kg and a variation between 0.7 and 12.7 mg/kg fresh weight.

  11. Iodine determination in food samples using inductively coupled plasma isotope dilution mass spectrometry.

    PubMed

    Rädlinger, G; Heumann, K G

    1998-06-01

    Two different sample treatment methods are used in connection with inductively coupled plasma isotope dilution mass spectrometry for accurate and precise determinations of iodine traces in food samples. 129I-enriched iodate is applied as a spike compound for the isotope dilution step. Extraction of iodine by tetramethylammonium hydroxide (TMAH) solution at high temperatures in a closed vessel is one of the sample treatment methods. The other one is a complete decomposition of the sample with a mixture of perchloric acid and nitric acid using microwave assistance. By analyzing different certified reference materials (three milk powders with different iodine levels, BCR CRM 63, 150, and 151; bovine liver BCR CRM 185), the accuracy of ICP-IDMS with both sample treatment methods could be demonstrated. The relative standard deviation was typically in the range of 0.6-2.8% for iodine concentrations between 0.1 microgram g-1 and 5 micrograms g-1. The detection limit was 8 ng g-1 using sample weights of 0.8 g. In a round robin test, using two different types of infant food samples, the results of the two ICP-IDMS methods and of an ICP-MS method without the isotope dilution technique, but applying the TMAH extraction procedure, agree very well with the mean of results of all participating laboratories also using ICP-MS/TMAH. However, the ICP-IDMS method is faster, more precise, widely independent of matrix effects, and, therefore, relatively accurate, which makes this method especially attractive for use as a routine method.

  12. Enhancement of ion transmission and reduction of background and interferences in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, Ke

    1992-06-09

    An inductively coupled plasma - mass spectrometer (ICP-MS) (four stages of differential pumping) is described. The large sampling orifice (1.31 mm dia.) improves signals for metal ions and resists plugging. The ion lens deflects ions off center and then back on center into the differential pumping orifice; there is no photon stop in the center. Ion trajectories calculations SIMION show that only those ions that leave the skimmer on center are transmitted, whereas most other lenses used in ICP-MS transmit only ions that leave the skimmer off axis. Background with the Daly detector is 4 counts s{sup {minus}1}. This ICP-MS yields low levels of many troublesome polyatomic ions. Signals from refractory metal oxide ions are about 1% of the corresponding metal ion signals. Grounding the first electrode of the ion lens reduces matrix effects to {approx_lt} 20% loss in signal for Co{sup +}, Y{sup +} or Cs{sup +} in presence of 10 mM Sr, Tm or Pb. This latter lens setting causes only 30% loss in sensitivity compared to biassing the first lens. Matrix effects can also be mitigated by re-adjusting the voltage on the first lens with matrix present. Floating the metal cones at various potentials can improve the ion transmission by a factor of at least four to six. Also, floating the cones extends the upper end of linearity. Net result is more sensitivity and higher ion beam intensity than with a grounded skimmer and sampler. Furthermore, mass discrimination can be reduced.

  13. Enhancement of ion transmission and reduction of background and interferences in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, Ke.

    1992-06-09

    An inductively coupled plasma - mass spectrometer (ICP-MS) (four stages of differential pumping) is described. The large sampling orifice (1.31 mm dia.) improves signals for metal ions and resists plugging. The ion lens deflects ions off center and then back on center into the differential pumping orifice; there is no photon stop in the center. Ion trajectories calculations SIMION show that only those ions that leave the skimmer on center are transmitted, whereas most other lenses used in ICP-MS transmit only ions that leave the skimmer off axis. Background with the Daly detector is 4 counts s{sup {minus}1}. This ICP-MS yields low levels of many troublesome polyatomic ions. Signals from refractory metal oxide ions are about 1% of the corresponding metal ion signals. Grounding the first electrode of the ion lens reduces matrix effects to {approx lt} 20% loss in signal for Co{sup +}, Y{sup +} or Cs{sup +} in presence of 10 mM Sr, Tm or Pb. This latter lens setting causes only 30% loss in sensitivity compared to biassing the first lens. Matrix effects can also be mitigated by re-adjusting the voltage on the first lens with matrix present. Floating the metal cones at various potentials can improve the ion transmission by a factor of at least four to six. Also, floating the cones extends the upper end of linearity. Net result is more sensitivity and higher ion beam intensity than with a grounded skimmer and sampler. Furthermore, mass discrimination can be reduced.

  14. Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report

    SciTech Connect

    Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

    2013-06-01

    The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

  15. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    NASA Astrophysics Data System (ADS)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  16. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  17. Alleviation of interferences and reduction of sample memory in inductively coupled plasma mass spectrometry

    SciTech Connect

    Smith, F.G.

    1991-06-27

    A simple variation sample preparation and introduction allows the measurement of chlorine isotope ratios by inductively coupled plasma mass spectroscopy (ICP-MS). Dissolution of the sample in D{sub 2}O rather than H{sub 2}O attenuates the major polyatomic ion {sup 36}ArH{sup +} and frees m/z = 37 for determination of {sup 37}Cl{sup +}. The isotope ratio {sup 35}Cl/{sup 37}Cl in a 50 mg L{sup {minus}1} solution of Cl as LiCl is determined with a relative standard deviation (RDS) of 0.21%. A method for the determination of boron is a variety of biological samples is described. Sample material is fused with Na{sub 2}CO{sub 3} and boron is separated from matrix components by using Amberlite IRA-743 boron selective ion-exchange resin. Boron is eluted with 1% HNO{sub 3} and samples are introduced to an ICP-mass spectrometer with a direct injection nebulizer (DIN). Xenon is added at 10 or 37 mL min{sup {minus}1} to the aerosol gas flow of an argon ICP-mass spectrometer. Addition of Xe substantially reduces polyatomic ions such as N{sub 2}{sup +}, HN{sub 2}{sup +}, NO{sup +}, ArH{sup +}, ClO{sup +}, ArC{sup +}, ClOH{sup +}, ArN{sup +}, and ArO{sup +} and facilitates the measurement of Si, K, V, Cr, and Fe. Isotope ratios are determined with RSDs from 0.6% to 1.6%. 210 refs., 14 figs., 19 tabs.

  18. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- < SO42 - < NO3- for anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  19. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Perring, Loïc; Basic-Dvorzak, Marija

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99+/-5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. PMID:12324843

  20. Analysis of metal pollutants in the Houston Ship Channel by inductively coupled plasma/mass spectrometry.

    PubMed

    Saleh, M A; Wilson, B L

    1999-09-01

    Trace metal pollutants in the surface water of the Houston Ship Channel were determined using inductively coupled plasma/mass spectrometry (ICP/MS). Metal concentrations varied according to sampling sites. Barium, cobalt, chromium, molybdenum, silver, beryllium, antimony, lead, and mercury concentrations were relatively similar throughout the channel averaging 83.25, 0.55, 6. 31, 6.66, 0.02, 0.017, 3.61, 0.68, and 0.055 microg/L, respectively. Titanium, manganese, copper, zinc, nickel, and selenium concentrations were found to be higher at stations closer to the Galveston Bay (as the water is turning from relatively fresh water to sea water) with concentration ranges of 102.5-351.7, 0.3-25, 0. 3-25, 30-280, 16-77, 6.2-26.5, and 0.0-6.2 microg/L, respectively. Aluminum was found to be much higher at the Buffalo Bayou station (341 microg/L) followed by the San Jacinto station (104 microg/L) with an average of 42 microg/L in the other two stations. Vanadium was found to be unusually high at the Washburn Tunnel station (116 microg/L) and at much lower concentrations in the other three stations, averaging 6.5 microg/L. Iron was also higher at the Buffalo Bayou station (143 microg/L) but was absent at the Lynchburg Ferries station. Arsenic was not found at the Lynchburg and San Jacinto stations. However, arsenic had similar concentrations of 1. 983 and 1.835 microg/L at Buffalo Bayou and Washburn Tunnel, respectively. Cadmium was higher at the Lynchburg Ferries station (3. 3 microg/L) and ranged from 0.3 to 0.96 microg/L in the other locations. Thallium was not found in any of the stations.

  1. Determination of plutonium in urine: evaluation of electrothermal vaporization inductively coupled plasma mass spectroscopy

    SciTech Connect

    Pietrzak, R.; Kaplan, E.

    1996-11-01

    Mass spectroscopy has the distinct advantage of detecting atoms rather than radioactive decay products for nuclides of low specific activity. Electrothermal vaporization (ETV) is an efficient means of introducing small volumes of prepared samples into an inductively coupled mass spectrometer to achieve the lowest absolute detection limits. The operational characteristics and capabilities of electrothermal vaporization inductively coupled mass spectrometer mass spectroscopy were evaluated. We describe its application as a detection method for determining Pu in urine, in conjunction with a preliminary separation technique to avoid matrix suppression of the signal.

  2. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  3. Positive and negative chlorine ion kinetics in inductively-coupled Cl{sub 2}BCl{sub 3} plasmas

    SciTech Connect

    Fleddermann, C.B.; Hebner, G.A.

    1997-05-01

    Discharges in gas mixtures of Cl{sub 2}, BCl{sub 3}, Ar, and N{sub 2} are used by the integrated circuit industry for metal etching, and are as yet not well understood, especially in inductively-coupled plasma (ICP) sources which are rapidly becoming the industry standard for etching tools. An essential parameter that must be measured in these plasmas is the density of ions, both positive and negative, formed in the plasma. In the work presented here, LIF and laser photodetachment were used to measure relative metastable chlorine ion CL{sup +}* density and temperature and absolute Cl{sup {minus}} density as a function of gas mixture.

  4. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  5. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  6. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    SciTech Connect

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  7. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  8. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  9. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect

    McIntyre, Sally M.

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  10. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas.

    PubMed

    Li, Yang; Wang, Cong; Yao, Zhao; Kim, Hong-Ki; Kim, Nam-Young

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  11. Axially and radially viewed inductively coupled plasmas — a critical review

    NASA Astrophysics Data System (ADS)

    Brenner, I. B.; Zander, A. T.

    2000-08-01

    The present status of axially viewed inductively coupled plasmas (ICP) is reviewed with special emphasis placed on the analytical performance of currently available systems. Descriptions are given of the various designs of the plasma-spectrometer configuration. Conventional figures of merit such as limits of detection, background behavior, interferences due to easily ionized elements (EIE), Ca and acids, and the Mg II 280.270 nm/Mg I 285.213 nm intensity ratio, are used to compare the performance of axially viewed and radially viewed ICPs. Various modes of sample introduction, including conventional pneumatic and ultrasonic nebulization (USN), thermospray and a direct injection probe will be described. For axially viewed ICPs, limits of detection (LOD) are improved by factors varying from approximately 2 to 30. Additional improvements by factors of 2-20 can be obtained using USN. The improvement factors generally depend on energy potentials of the spectral lines and the element. Although limits of detection in the presence of Ca and Na are degraded relative to an aqueous solution 10-30-fold, USN LODs using an axially viewed ICP are improved relative to those obtained using a pneumatic nebulizer for solutions containing Ca and Na. With normal aerosol load and under robust plasma conditions (as evidenced by Mg II/Mg I intensity ratios >8), EIE, Ca and mineral acid induced interferences are relatively small and are similar in axial and conventional radial configurations. However, interferences due to Ca are larger than those caused by Na due to the larger amount of energy required to dissociate the matrix. Matrix effects increase considerably when an USN is employed. For robust plasmas, ICP operating conditions and performance for multi-element quantitative analysis do not differ significantly from those of conventional radial configurations. In cases where robustness decreases, matrix interferences should be taken into account when establishing optimum conditions for

  12. Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study

    SciTech Connect

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-28

    A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  13. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  14. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  15. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  16. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  17. Determination of phosphorus impurity that directly affects quantification of microbial genomic DNA using inductively coupled plasma optical emission spectrometry.

    PubMed

    Yang, Hyo-Jin; Yang, Inchul; Choi, Jun-Hyuk; Kang, Dukjin; Han, Myung-Sub; Kim, Sook-Kyung

    2014-04-01

    We prepared genomic DNA from human placenta, Escherichia coli, and Bacillus subtilis using various DNA extraction methods and quantified the genomic DNA using ultraviolet (UV) spectrophotometry, capillary electrophoresis (CE), and inductively coupled plasma optical emission spectrometry (ICP-OES). Application of ICP-OES unexpectedly led to a serious overestimation of phosphorus in B. subtilis genomic DNA prepared using cetyltrimethyl ammonium bromide (CTAB). Further investigations using reversed-phase high-performance liquid chromatography (RP-HPLC), ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), and (31)P nuclear magnetic resonance (NMR) identified the phosphorus impurity as lipoteichoic acid (LTA). PMID:24486318

  18. The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    SciTech Connect

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-12-31

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

  19. Simulation for Large-Area, Inductively-Coupled Plasma Systems Using an Ar/Cl2 Gas Mixture.

    PubMed

    Oh, Seon-Geun; Lee, Young-Jun; Jeon, Jae-Hong; Kim, Young-Jin; Seo, Jong-Hyun; Choe, Hee-Hwan

    2015-11-01

    As research and development of high-performance devices are becoming increasingly important in the flat panel display industry, new structures and processes are essential to improve the performance of the TFT backplane. Also, high-density plasma systems are needed for new device fabrications. Chlorine-based, inductively-coupled plasma systems are widely used for highly-selective, anisotropic etching of polysilicon layers. In this paper, a plasma simulation for a large-area ICP system (8th glass size and 9 planar antenna set) was conducted using Ar/Cl2 gas. Transport models and Maxwell Equations were applied to calculate the plasma parameters such as electron density, electron temperature and electric potential. In addition, the spatial distribution of ions such as Ar+, Cl2+, Cl-, Cl+ were investigated respectively. PMID:26726552

  20. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Struzeski, Tedmund M.

    1998-01-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.

  1. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated.

  2. The deposition of chromium by the use of an inductively-coupled radio-frequency plasma torch

    SciTech Connect

    Carson, L.; Chumbley, L.S.

    1997-11-15

    This paper discusses attempts to deposit a layer of hard Cr metal, with properties similar to those of layers currently obtained by electrolytic methods, onto a metallic substrate using an inductively-coupled, radio-frequency plasma torch (ICP-RF) torch. Preliminary studies indicated that it might be possible to produce a suitable layer using a number of chromium-based compounds. For this study, Cr powders and a chromium precursor were injected into the high temperature region of the plasma plume, where thermal decomposition of the feed material produced Cr atoms that deposited onto the surface of metal substrates placed below the plasma torch. The films produced were examined to determine thickness, chemical compositions, and adherence. Since the goal of the project was to develop a coating method that was not only industrially suitable but also environmentally safe, care was taken to monitor the emissions produced by the system during deposition.

  3. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  4. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    PubMed Central

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  5. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge.

  6. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. PMID:27216665

  7. Inductively Coupled Plasma Etching of III-V Antimonides in BCl(3)/Ar and Cl(2)/Ar

    SciTech Connect

    Leavitt, R.P.; Lester, L.F.; Shul, R.J.; Willison, C.G.; Zhang, L.

    1998-11-04

    Inductively coupled plasma (ICP) etching characteristics of GaSb and AIGaAsSb have been investigated in BC13/Ar and Clz/Ar plasmas. The etch rates and selectivity between GaSb and AIGaAsSb are reported as functions of plasma chemistry, ICP power, RF self-bias, and chamber pressure. It is found that physical sputtering resorption of the etch products plays a dominant role in BC13/Ar ICP etching, while in Clz/Ar plasma, the chemical reaction dominates the etching. GaSb etch rates exceeding 2 ~rnhnin are achieved in Clz/Ar plasmas with smooth surfaces and anisotropic profiles. In BC13/Ar plasmas, etch rates of 5100 Mmin and 4200 Mmin are obtained for GaSb and AIGaAsSb, respectively. The surfaces of both GaSb and AIGaAsSb etched in BC13/Ar plasmas remain smooth and stoichiometric over the entire range of plasma conditions investigated. This result is attributed to effective removal of etch products by physical sputtering. For a wide range of plasma conditions, the selectivity between GaSb and AIGaAsSb is close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-IR laser diodes.

  8. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  9. Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing

    NASA Astrophysics Data System (ADS)

    Tial, Mai Kai Suan; Irie, Hiromitsu; Maruyama, Yuji; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo

    2016-07-01

    In this work, the fundamentals of planar-type Ar inductively coupled thermal plasmas (ICTPs) with oxygen molecular gas on a substrate have been studied. Previously, aiming at large-area material processing, we developed a planar-type ICTP torch with a rectangular quartz vessel instead of a conventional cylindrical tube. For the adoption of such planar-type ICTP to material processing, it is necessary to sustain the ICTP with molecular gases on a substrate stably and uniformly. To determine the uniformity of the ICTP formed on the substrate, spectroscopic observation was carried out at 3 mm above the substrate. Results showed that the radiation intensities of specified O atomic lines were almost uniformly detected along the surface of the substrate. This means that excited O atoms, which are important radicals for thermal plasma oxidation, are present in the planar-type ICTP uniformly on the substrate.

  10. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    PubMed

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  11. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  12. Measurements of Ion Energy and Ion Flux Distributions in Inductively Coupled Plasmas in CF4/O2/Ar Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Kim, J. S.; Cappelli, M. A.; Sharma, Surendra; Partridge, Harry (Technical Monitor)

    1999-01-01

    We report mass spectrometric studies of energy distributions and absolute concentrations of ions generated in CF4/O2/Ar inductively coupled rf plasmas. The ions were collected through a 100 mm orifice in the grounded and water cooled lower electrode in a GEC cell configuration. The measurements were made at gas pressures in the 10-50 mTorr range and rf coil power in the 100-300 W range. The observed ions are CF3(+), CF2(+), CF(+), C(+), F(+), COF(+), CO(+), O2(+), and O(+). The relative abundance of these ions varies with pressure and rf power. The energy distribution and absolute concentrations are correlated with electron number density and floating plasma potential measured by a compensated Langmuir probe.

  13. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  14. Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma.

    PubMed

    Lindner, Helmut; Murtazin, Ayrat; Groh, Sebastian; Niemax, Kay; Bogaerts, Annemie

    2011-12-15

    An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., ∼50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule

  15. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  16. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  17. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  18. Langmuir Probe Measurements of Inductively Coupled CHF3/Ar and Ar/CHF3/O2 Plasmas

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, M.

    2000-01-01

    Plasma parameters, such as, electron number density (ne), electron temperature (Te), y electron energy distribution function (EEDF), mean electron energy (Ee), ion number density (ni), and plasma potential (Vp), have been measured by using Langmuir probe in low-pressure (10-50 mTorr) inductively coupled CHF3/Ar and CHF3/Ar/O2 plasmas generated in the GEC cell. The measurements were made at the center of the plasma, keeping the lower electrode grounded, for various CHF3/Ar and Ar/CHF3/O2 mixtures operating at 10-50 mTorr pressures and two input RF power levels, 200 and 300 W. EEDF data show a strong Druyvesteyn distribution with relatively lower number of low energy electrons as compared to a Maxwell distribution and a large electron population with energies higher than the plasma potential. The results further show that at low CHF3 concentrations (less than 50%) the electron number density remains nearly constant with increase in pressure. At higher CHF3 concentrations, however, it decreases with increase in pressure. Plasma potential and electron temperature increase with decrease in pressure and with increase in CHF3 concentration. An analysis of the above observations and mechanisms will be presented.

  19. Fast and smooth etching of indium tin oxides in BCl{sub 3}/Cl{sub 2} inductively coupled plasmas

    SciTech Connect

    Andagana, H. B.; Cao, X. A.

    2010-03-15

    The etching characteristics of evaporation-deposited indium tin oxide (ITO) films in BCl{sub 3}/Cl{sub 2} inductively coupled plasmas have been studied. High etch rates >200 nm/min were obtained at large BCl{sub 3}/Cl{sub 2} gas flow ratios and high rf chuck powers, suggesting that the etching process is limited by sputter desorption of InCl{sub x} and SnCl{sub x} compounds. The addition of a small amount of CF{sub 4}, which acts as reducing agent, increased the etch rate by 30% and resulted in very smooth etched surfaces. It has also been found that the material crystallinity has a pronounced influence on ITO etch rate. ITO films annealed at 500 deg. C exhibited the maximum etch resistance.

  20. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  1. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used.

  2. Detection of gunshot residue in blowfly larvae and decomposing porcine tissue using inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Lagoo, Lisa; Schaeffer, Luther S; Szymanski, David W; Smith, Ruth Waddell

    2010-05-01

    Blowfly larvae and porcine tissue contaminated with gunshot residue (GSR) were collected during summer and winter months, over a 37-day and a 60-day sampling period, respectively. Wound samples were microwave-digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for the detection of antimony, barium, and lead. During summer, the 37-day sampling period encompassed all stages of decomposition, except skeletonization. The three elements were detected in larvae only on days 3 and 4 after death but were detected at significant levels in tissue samples throughout the entire sampling period. In winter, no significant decomposition was observed throughout the 60-day sampling. Although temperatures were too low for blowfly activity, the three elements were detected in the tissue samples at relatively constant, significant levels. Hence, GSR determination in tissue was more dependent on decomposition stage rather than time since death.

  3. Investigating Uranium Concentrations in Groundwaters in the State of Idaho Using Kinetic Phosphorescence Analysis and Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John

    2016-11-01

    The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high. PMID:27682901

  4. Determination of selenium species in human urine by high performance liquid chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Quijano, M A; Gutiérrez, A M; Pérez-Conde, M C; Cámara, C

    1999-08-23

    A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.

  5. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion

    NASA Astrophysics Data System (ADS)

    Panteeva, S. V.; Gladkochoub, D. P.; Donskaya, T. V.; Markova, V. V.; Sandimirova, G. P.

    2003-02-01

    An improved lithium metaborate fusion technique for inductively coupled plasma mass spectrometric analysis of felsic rocks is proposed. The method involves the dissolution of fused sample material with HF followed by treatment with HNO 3. The decomposition method developed was used for the determination of trace elements in ancient felsic volcanic rocks and granites of Southern Siberia and further applied to petrologic modeling and the geodynamic setting of the rock origin. Data for geological reference materials STM-1, G-2, GSP-1, AGV-1 and BCR-1 were used for method validation and experimental results obtained agreed well with certified values. Detection limits determined ranged from 0.021 to 0.24 μg/g for Y, Pr, middle and heavy rare earth elements (REE), Ta, U and from 0.44 to 2.07 μg/g for Rb, Sr, Zr, Nb, Ba, light REE, Hf and Th.

  6. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  7. Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y.B.; Hays, D.C.; Jung, K.B.; Pearton, S.J.; Shul, R.J.

    1999-01-05

    The role of additive noble gases He, Ar and Xe to C&based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with C12/Xe, while the highest rates for AIN and GaN were obtained with C12/He. Efficient breaking of the 111-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of -80 for InN to GaN and InN to AIN were obtained.

  8. Etching characteristics of LiNbO{sub 3} in reactive ion etching and inductively coupled plasma

    SciTech Connect

    Ren, Z.; Yu, S.; Heard, P. J.; Marshall, J. M.; Thomas, P. A.

    2008-02-01

    The etching characteristics of congruent LiNbO{sub 3} single crystals including doped LiNbO{sub 3} and proton-changed LiNbO{sub 3} have been studied in reactive ion etching (RIE) and inductively coupled plasma (ICP) etching tools, using different recipes of gas mixtures. The effects of parameters including working pressure, RIE power, and ICP power are investigated and analyzed by measurement of etching depth, selectivity, uniformity, etched surface state, and sidewall profile by means of focused ion beam etching, energy-dispersive x-ray analysis, secondary ion mass spectroscopy, scanning electron microscopy, and surface profilometry. The effects of a sample carrier wafer coating have also been investigated. Optimized processes with high etching rates, good mask selectivity, and a near-vertical profile have been achieved. Ridge waveguides on proton-exchanged LiNbO{sub 3} have been fabricated and optically measured.

  9. Assessment of lead, cadmium and mercury in seafood marketed in Puglia and Basilicata (Italy) by inductively coupled plasma mass spectrometry.

    PubMed

    Miedico, Oto; Iammarino, Marco; Pompa, Ciro; Tarallo, Marina; Chiaravalle, Antonio Eugenio

    2015-01-01

    Lead, cadmium and mercury are non-essential heavy metals that may interfere with biological systems, exhibiting high toxicity to human and marine biota. Due to bioaccumulation of heavy metals in the food chain, seafood may concentrate high levels of these contaminants since they are often at the top of aquatic food chain. In this study, 342 seafood samples, subdivided into four categories (bivalve molluscs, cephalopod molluscs, blue-fish and other sea fish), were analysed by inductively coupled plasma mass spectrometry, in order to assess the levels of lead, cadmium and mercury. Contamination levels higher than allowable limits were verified. In particular, two bivalve mollusc samples were non-compliant for lead and cadmium, four cephalopod mollusc samples non-compliant for cadmium and 14 samples (4 blue-fish and 10 other sea fish) non-compliant for mercury. This survey confirmed the necessity to perform routinely controls related to this type of food inspection.

  10. Fundamental study on filter effect of confronting divergent magnetic fields applied to low-pressure inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotake; Ogino, So

    2016-07-01

    The electron motion under confronting divergent magnetic fields (CDMFs) applied to inductively coupled plasmas was simulated using a Monte Carlo method. The CDMFs induced by two coaxial dc coils confined electrons in one side of the separatrix of the CDMFs. However, electrons diffused across the separatrix mainly in two ways. One was the displacement of their gyrocenters due to scattering near the outer part of the separatrix. This process tended to occur for high-energy electrons with correspondingly large gyroradii. The other was passage through the weak magnetic field around the center. This process was allowed for low-energy electrons. The position-dependent selectivity about the electron energy was pointed out as a seed property for applications of the separatrix as a magnetic filter or shutter. The mechanism by which the functions of the separatrix emerge was explained from a viewpoint of electron motion under the CDMFs.

  11. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  12. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  13. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  14. Effect of hydrogenation on the memory properties of Si nanocrystals obtained by inductively coupled plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cha, Young-Kwan; Park, Sangjin; Park, Youngsoo; Yoo, In-Kyeong; Cha, Daigil; Shin, Jung H.; Choi, Suk-Ho

    2006-11-01

    Effect of hydrogenation on memory properties has been studied for metal-oxide-semiconductor (MOS) structures with Si nanocrystals fabricated using inductively coupled plasma chemical vapor deposition and subsequent annealing. Hydrogenation induces a drastic increase of a dip in the quasistatic capacitance-voltage (C-V) curve of the MOS capacitor, caused by the reduction of the interface states due to hydrogen passivation. This is consistent with high-frequency C-V measurements showing more well-defined curves with less distortion in hydrogenated samples. After hydrogenation, the MOS device shows a significantly larger decrease of flatband voltage shift in electron charging than in hole charging, indicating more effective passivation of the defect states related to the electron charging. A longer retention time is found for electron charging after hydrogenation, but almost no change of charge loss rate for hole charging. These results suggest that an asymmetry exists in the effect of hydrogenation between electron and hole storage.

  15. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li

    2015-10-01

    A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations.

  16. Determination of selenium species in human urine by high performance liquid chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Quijano, M A; Gutiérrez, A M; Pérez-Conde, M C; Cámara, C

    1999-08-23

    A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week. PMID:18967706

  17. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry.

    PubMed

    Varga, Zsolt; Katona, Róbert; Stefánka, Zsolt; Wallenius, Maria; Mayer, Klaus; Nicholl, Adrian

    2010-03-15

    A novel and simple analytical procedure has been developed for the trace-level determination of lanthanides (rare-earth elements) in uranium-bearing materials by inductively coupled plasma sector-field mass spectrometry (ICP-SFMS). The method involves a selective extraction chromatographic separation of lanthanides using TRU resin followed by ICP-SFMS analysis. The limits of detection of the method proposed is in the low pg g(-1) range, which are approximately two orders of magnitude better than that of without chemical separation. The method was validated by the measurement of reference material and applied for the analysis of uranium ore concentrates (yellow cakes) for nuclear forensic purposes, as a potential application of the methodology. PMID:20152406

  18. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  19. Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction.

    PubMed

    Chen, Haiting; Chen, Jianguo; Jin, Xianzhong; Wei, Danyi

    2009-12-30

    A sensitive method for speciation analysis of inorganic mercury (Hg(2+)) and methyl mercury (MeHg(+)) has been developed by using high performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) after cloud point extraction. The analytes were complexed with sodium diethyldithiocarbamate (DDTC) and preconcentrated by a non-ionic surfactant Triton X-114. Mercury species were effectively separated by HPLC in less than 6 min. The enhancement factors for 25 mL sample solution were 42 and 21, and the limits of detection were 4 and 10 ng L(-1) for Hg(2+) and MeHg(+), respectively. The developed method was successfully applied to the determination of trace amount of mercury species in environmental and biological samples.

  20. Determination of Silicon in Gasoline by Directly Measuring under Organic Phase Using Inductively Coupled Plasma Optical Emission Spectroscopy.

    PubMed

    Zhang, Wen-mei; Wen, Huan; Lü, Huan-ming; Liu, Hui-qin; Lin, Zhi-sheng; Wang, Rong-hua

    2015-03-01

    A simple and accurate method was developed for determining silicon in gasoline using inductively coupled plasma optical emission spectroscopy (ICP-OES). For sample inroduction a Burgener nubulizer and a Cyclonic spray chamber were used. A gasoline sample was diluted with isooctane and then introduced into the cooled spray chamber of the ICP-OES. Good linearity was achieved in the silicon concentration range 0.1 - 10.0 mg x kg(-1), and the correlation coefficient was 0.999 96. The detection limit for silicon was 0.012 mg x kg(-1) and the silicon recoveries from gasoline samples were 95.8% - 98.4%, with relative standard deviations of less than 3.0% The method was proved to be simple, reliable and highly sensitive, and suitable for determining silicon in samples of motor gasoline, ethanol-gasoline and methanol-gasoline fuel mixtures those containing not more than 15% (V/V) oxygenates.

  1. Cl{sub 2}-based dry etching of the AlGaInN system in inductively coupled plasmas

    SciTech Connect

    Cho, Hyun; Vartuli, C.B.; Abernathy, C.R.; Donovan, S.M.; Pearton, S.J.; Shul, R.J.; Han, J.

    1997-12-01

    Cl{sub 2}-based Inductively Coupled Plasmas with low additional dc self- biases(-100V) produce convenient etch rates(500-1500 A /min) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas(Ar, N{sub 2}, H{sub 2}), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl{sub 2} in the discharge for all three mixtures, and to have an increase(decrease) in etch rate with source power(pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

  2. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching.

    PubMed

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  3. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  4. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  5. Determination of Silicon in Gasoline by Directly Measuring under Organic Phase Using Inductively Coupled Plasma Optical Emission Spectroscopy.

    PubMed

    Zhang, Wen-mei; Wen, Huan; Lü, Huan-ming; Liu, Hui-qin; Lin, Zhi-sheng; Wang, Rong-hua

    2015-03-01

    A simple and accurate method was developed for determining silicon in gasoline using inductively coupled plasma optical emission spectroscopy (ICP-OES). For sample inroduction a Burgener nubulizer and a Cyclonic spray chamber were used. A gasoline sample was diluted with isooctane and then introduced into the cooled spray chamber of the ICP-OES. Good linearity was achieved in the silicon concentration range 0.1 - 10.0 mg x kg(-1), and the correlation coefficient was 0.999 96. The detection limit for silicon was 0.012 mg x kg(-1) and the silicon recoveries from gasoline samples were 95.8% - 98.4%, with relative standard deviations of less than 3.0% The method was proved to be simple, reliable and highly sensitive, and suitable for determining silicon in samples of motor gasoline, ethanol-gasoline and methanol-gasoline fuel mixtures those containing not more than 15% (V/V) oxygenates. PMID:26117893

  6. Analysis of potassium iodate reduction in tissue homogenates using high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Cao, Xiaoxiao; Ma, Wei; Liu, Liejun; Xu, Jing; Wang, Haiyan; Li, Xiuwei; Wang, Jiangqing; Zhang, Jianhua; Wang, Zexi; Gu, Yunyou

    2015-10-01

    Potassium iodate (KIO3) and potassium iodide (KI) are the major salt iodization agents used worldwide. Unlike iodide (I(-)), iodate (IO3(-)) should be reduced to I(-) before it can be effectively used by the thyroid. In this study, we developed a new method for analyzing IO3(-) and I(-) in tissue homogenates using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We further applied the method to demonstrate the KIO3 reduction process by tissues in vitro. The effects of KIO3 on the total antioxidative activity (TAA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also investigated here. Finally, we found that IO3(-) can be reduced to I(-) by tissue homogenates and IO3(-) irreversibly decreases the antioxidant capability of tissues. Our studies suggest that KIO3 might have a big effect on the redox balance of tissue and would further result in oxidative stress of organisms.

  7. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  8. Etching characteristics of high-k dielectric HfO{sub 2} thin films in inductively coupled fluorocarbon plasmas

    SciTech Connect

    Takahashi, Kazuo; Ono, Kouichi; Setsuhara, Yuichi

    2005-11-15

    Inductively coupled fluorocarbon (CF{sub 4}/Ar and C{sub 4}F{sub 8}/Ar) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} in CF{sub 4}/Ar plasmas exceeded those in C{sub 4}F{sub 8}/Ar plasmas. The tendency for etch rates to become higher in fluorine-rich (high F/C ratio) conditions indicates that HfO{sub 2} can be chemically etched by fluorine-containing species. In C{sub 4}F{sub 8}/Ar plasmas with a high Ar dilution ratio, the etch rate of HfO{sub 2} increased with increasing bias power. The etch rate of Si, however, decreased with bias power, suggesting that the deposition of carbon-containing species increased with increasing the power and inhibited the etching of Si. The HfO{sub 2}/Si selectivity monotonically increased with increasing power, then became more than 5 at the highest tested bias power. The carbon-containing species to inhibit etching of Si play an important role in enhancing the HfO{sub 2}/Si selectivity in C{sub 4}F{sub 8}/Ar plasmas.

  9. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    SciTech Connect

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-09-15

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency ν{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ≈0.38R for the discharge condition at which ν{sub m}/ω≪1, while it occurs when δ≈√(2)√(ω/ν{sub m})R for the discharge condition at which ν{sub m}/ω≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  10. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    SciTech Connect

    Logue, Michael D. Kushner, Mark J.

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  11. Characterization of inductively coupled Ar and Ar/CH4 plasma using tuned single Langmuir probe and fluid simulation

    NASA Astrophysics Data System (ADS)

    Cha, Ju-Hong; Han, Moon-Ki; Seo, Kwon-Sang; Kim, Dong-Hyun; Lee, Hae June; Lee, Ho-Jun

    2015-09-01

    An inductively coupled plasma source driven by 13.56 MHz was prepared for the deposition of a-C:H and hydro-fluorocarbon thin film. Properties of the plasma source are investigated by fluid simulation including Navier-Stokes equations and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe at first and second harmonic frequency were 49dB and 46dB respectively. Dependencies of plasma parameters on process parameters were well agreed with simulation results. It was found that gas flow field significantly affect spatial distribution of electron density and temperature even in inert gas feeding case. Higher electron density and lower temperature was observed near the gas inlet area. Ar/CH4 plasma simulation results shown that hydrocarbon radical densities have their lowest value at the vicinity of gas feeding line due to high flow velocity. For input power density of 0.07 W/cm3 , CH radical density follows electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density. The result suggest that optimization of discharge power is important for controlling deposition film quality in high density plasma sources.

  12. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    NASA Astrophysics Data System (ADS)

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-09-01

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency νm) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ ≈0.38R for the discharge condition at which νm/ω ≪1, while it occurs when δ ≈√2 √ω /νm R for the discharge condition at which νm/ω ≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  13. Inductively-coupled plasmas in pure O2: measurements of densities of O atoms, electrons and vibrationally excited Omolecules

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Carbone, Emile; Booth, Jean-Paul; Chabert, Pascal; LPP-Plasmas froids Team

    2014-10-01

    Inductively-coupled plasmas containing O2 (pure or mixtures) are widely used in materials processing. Various simulations have been developed but experimental validation is still sparse. We present here a comprehensive data set for O2 plasmas over a wide range of pressure and RF power to address this need. The plasma is excited with a 4-turn planar coil through a dielectric window at 13.56 MHz in an anodized aluminium reactor. The electron density was measured with a microwave resonator hairpin probe. It increases continuously with RF power, but with pressure it passes through a broad maximum around 40 mTorr. Ground-state O atom densities were determined using Two-Photon Absorption Laser-Induced Fluorescence combined with absolute calibration using Xe TALIF. The atom density increases with gas pressure, but with RF power it first increases but progressively saturates tot about 20% of the initial (no plasma) gas density. A novel high-sensitivity ultra-broad-band absorption spectroscopy setup allowed O2 molecules to be detected in high vibrational states (up to v = 18) via the Schumann-Runge bands. Molecular Ovibrational temperatures up to 12,000 K were observed, whereas the rotational temperature did not exceed 500 K. This indicates that electron-impact pumping of vibrational levels is important, whereas V-T transfer is slow. These processes must be included to accurately model the O2 plasma system.

  14. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H; Cai, Yong

    2016-01-15

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (As(III)), arsino-glutathione (As(GS)3), arsenate (As(V)), monomethylarsonous acid (MMA(III)), monomethylarsino-glutathione (MMA(III)(GS) 2), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III) (from DMA(III)I)), S-(dimethylarsinic)cysteine (DMA(III) (Cys)), dimethylarsino-glutathione (DMA(III)(GS)), dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), dimethyldithioarsinic acid (DMDTA(V)), dimethylarsinothioyl glutathione (DMMTA(V)(GS)). The developed method was applied for the analysis of cancer cells that were incubated with darinaparsin (DMA(III)(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration.

  15. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  16. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    PubMed

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq.

  17. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    PubMed

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  18. Etching characteristics and mechanism of indium tin oxide films in an inductively coupled HBr/Ar plasma

    SciTech Connect

    Kwon, Kwang-Ho; Efremov, Alexander; Ham, Yong-Hyun; Min, Nam Ki; Lee, Hyun Woo; Hong, Mun Pyo; Kim, Kwangsoo

    2010-01-15

    The investigations of etch characteristics and mechanisms for indium tin oxide (In{sub 2}O{sub 3}){sub 0.9}:(SnO{sub 2}){sub 0.1} (ITO) thin films using HBr/Ar inductively coupled plasma were carried out. The ITO etch rate was measured in the range of 0%-100% Ar in the HBr/Ar mixture at fixed gas pressure (6 mTorr), input power (700 W), and bias power (200 W). Plasma parameters and composition were examined with a combination of plasma diagnostics by double Langmuir probe and global (zero-dimensional) plasma model. It was found that the ITO etch rate follows the behavior of Br atom flux but contradicts with that for H atoms and positive ions. This suggests that the ITO etch process is not limited by the ion-surface interaction kinetics and appears in the reaction-rate-limited etch regime with the Br atoms as the main chemically active species.

  19. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible. PMID:26233382

  20. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation.

    PubMed

    Göttlicher, Markus; Rohnke, Marcus; Helth, Arne; Leichtweiß, Thomas; Gemming, Thomas; Gebert, Annett; Eckert, Jürgen; Janek, Jürgen

    2013-11-01

    Low temperature metal oxidation induced by plasma in the absence of liquid electrolytes can be useful for the surface preparation of orthopedic devices since residues from these may be harmful and need to be removed before implantation. In this study the oxidation of Ti-40Nb for biomedical application was achieved by employing an inductively coupled radio frequency oxygen plasma. The correlation between the growth mode of the surface oxide and the electric conductivity ratio of the plasma and the oxide phase were studied by varying the sample temperature, oxygen gas pressure and additional bias potential. The plasma treated samples were characterised by confocal laser microscopy, SEM, EBSD, XPS, TEM and ToF-SIMS. The surface energy was determined by contact angle measurements using the Owens-Wendt-Rabel-Kaelble method. Well adhering oxide layers consisting of TiO2 and Nb2O5 with thicknesses between 50 and 150 nm were obtained. Surface roughness values and microstructure indicate that the growth mode of the oxide can be well controlled by the sample temperature and oxygen gas pressure. At temperatures above 450°C a migration of Ti ions towards the surface controls the growth process. A bias potential higher than +50 V causes rough and defective surfaces with high surface energies. PMID:23891813

  1. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  2. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    PubMed

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature. PMID:25971011

  3. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  4. Fundamental properties of a planar type of inductively coupled thermal plasma with current modulation

    NASA Astrophysics Data System (ADS)

    Tial, Mai Kai Suan; Tanaka, Yasunori; Akao, Mika; Uesugi, Yoshihiko; Ishijima, Tatsuo

    2016-09-01

    A novel planar type of induction thermal plasma system with current modulation has been developed using a rectangular quartz vessel instead of a conventional cylindrical tube for thermal plasma processing for large-area material surface. To expand the generated thermal plasma laterally, the rectangular coil is used around the planar torch. Electrical properties including effective electrical impedance and instantaneous effective power of the thermal plasma at a pressure of 30 Torr at an input power about 10 kW were studied for the developed Ar planar type of induction thermal plasma. The spatial distribution of Ar excitation temperature in a planar torch was measured to elucidate fundamental aspects of a planar thermal plasma. Furthermore, the effect of coil current modulation was studied for changes in electrical properties and temperature, and their controllability in a planar thermal plasma.

  5. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  6. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  7. Quantitative determination of mass-resolved ion densities in H{sub 2}-Ar inductively coupled radio frequency plasmas

    SciTech Connect

    Sode, M.; Schwarz-Selinger, T.; Jacob, W.

    2013-03-07

    Inductively coupled H{sub 2}-Ar plasmas are characterized by an energy-dispersive mass spectrometer (plasma monitor), a retarding field analyzer, optical emission spectroscopy, and a Langmuir probe. A procedure is presented that allows determining quantitatively the absolute ion densities of Ar{sup +}, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and ArH{sup +} from the plasma monitor raw signals. The calibration procedure considers the energy and mass-dependent transmission of the plasma monitor. It is shown that an additional diagnostic like a Langmuir probe or a retarding field analyzer is necessary to derive absolute fluxes with the plasma monitor. The conversion from fluxes into densities is based on a sheath and density profile model. Measurements were conducted for a total gas pressure of 1.0 Pa. For pure H{sub 2} plasmas, the dominant ion is H{sub 3}{sup +}. For mixed H{sub 2}-Ar plasmas, the ArH{sup +} molecular ion is the most dominant ion species in a wide parameter range. The electron density, n{sub e}, is around 3 Multiplication-Sign 10{sup 16} m{sup -3} and the electron temperature, T{sub e}, decreases from 5 to 3 eV with increasing Ar content. The dissociation degree was measured by actinometry. It is around 1.7% nearly independent on Ar content. The gas temperature, estimated by the rotational distribution of the Q-branch lines of the H{sub 2} Fulcher-{alpha} diagonal band (v Prime =v Double-Prime =2) is estimated to (540 {+-} 50) K.

  8. Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon

    NASA Astrophysics Data System (ADS)

    Tinck, Stefan; Bogaerts, Annemie

    2016-06-01

    In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck–Condon heating through HBr(vib) dissociation, at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.

  9. 3-dimensional Modeling of Electromagnetic and Physical Sources of Aziumuthal Nonuniformities in Inductively Coupled Plasmas for Deposition

    NASA Astrophysics Data System (ADS)

    Lu, Junqing; Keiter, Eric R.; Kushner, Mark J.

    1998-10-01

    Inductively Coupled Plasmas (ICPs) are being used for a variety of deposition processes for microelectronics fabrication. Of particular concern in scaling these devices to large areas is maintaining azimuthal symmetry of the reactant fluxes. Sources of nonuniformity may be physical (e.g., gas injection and side pumping) or electromagnetic (e.g., transmission line effects in the antennas). In this paper, a 3-dimensional plasma equipment model, HPEM-3D,(M. J. Kushner, J. Appl. Phys. v.82, 5312 (1997).) is used to investigate physical and electromagentic sources of azimuthal nonuniformities in deposition tools. An ionized metal physical vapor deposition (IMPVD) system will be investigated where transmission line effects in the coils produce an asymmetric plasma density. Long mean free path transport for sputtered neutrals and tensor conducitivities have been added to HPEM-3D to address this system. Since the coil generated ion flux drifts back to the target to sputter low ionization potential metal atoms, the asymmetry is reinforced by rapid ionization of the metal atoms.

  10. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  11. Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Bissett, Mark A.; Barlow, Anders J.; Shapter, Joe G.; Quinton, Jamie S.

    2011-08-01

    In this work a simple and up-scalable technique for creating arrays of high purity carbon nanotubes via plasma enhanced chemical vapor deposition is demonstrated. Inductively coupled plasma enhanced chemical vapor deposition was used with methane and argon mixtures to grow arrays in a repeatable and controllable way. Changing the growth conditions such as temperature and growth time led to a transition between single and multi-walled carbon nanotubes and was investigated. This transition from single to multi-walled carbon nanotubes is attributed to a decrease in catalytic activity with time due to amorphous carbon deposition combined with a higher susceptibility of single-walled nanotubes to plasma etching. Patterning of these arrays was achieved by physical masking during the iron catalyst deposition process. The low growth pressure of 100 mTorr and lack of reducing gas such as ammonia or hydrogen or alumina supporting layer further show this to be a simple yet versatile procedure. These arrays were then characterized using scanning electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was also observed that at high temperature (550 °C) single-walled nanotube growth was preferential while lower temperatures (450 °C) produced mainly multi-walled arrays.

  12. Low temperature synthesis of single-walled carbon nanotubes in an inductively coupled plasma chemical vapor deposition system.

    PubMed

    Weng, Cheng-Hui; Yang, Chao-Shun; Lin, Hsuan; Tsai, Chuen-Horng; Leou, Keh-Chyang

    2008-05-01

    In this work, we present a parametric study on the low temperature synthesis of single-walled carbon nanotubes (SWNTs) in an inductively coupled plasma (ICP) CVD system using dry bi-layered catalytic thin-films (Fe/Al and Ni/Al, deposited by electron-beam evaporation method) as the catalysts. With a low substrate temperature of 550 degrees C and above, SWNTs were successfully synthesized on both catalysts, as revealed from the characteristic peaks of SWNTs in the micro-Raman spectra. By the reduction of plasma power and the shortening of the process times, the lowest synthesis temperature of SWNTs achieved in our system was approached to 500 degrees C on Ni/Al catalysts; on the other hands, the lowest temperature for Fe/Al catalysts was 550 degrees C. Our results suggest that as compared with Fe/Al, Ni/Al is more favorable for plasma-enhanced CVD (PECVD) synthesis of SWNTs at low temperatures. This work can be used for further improvements and better understanding on the production processes of SWNTs by PECVD methods. PMID:18572678

  13. High-power, low-pressure, inductively coupled RF plasma source using a FET-based inverter power supply

    NASA Astrophysics Data System (ADS)

    Komizunai, Shota; Oikawa, Kohei; Saito, Yuta; Takahashi, Kazunori; Ando, Akira

    2015-01-01

    A high-density plasma of density greater than 1019 m-3 is successfully produced in 1.5 Pa argon by an inductively coupled RF discharge with a 70-mm-diameter source cavity, where a 10-turn water-cooled RF loop antenna is wound onto the source tube and an axial magnetic field of ˜70 G is applied by two solenoids to reduce plasma loss onto the source cavity. The RF antenna is powered from a frequency-tunable field-effect-transistor-based inverter power supply, which does not require variable capacitors to match the impedance, at a frequency of ˜350 kHz and the RF power can be increased up to ˜8 kW. It is also demonstrated that the source is operational with an axial magnetic field provided by permanent magnet (PM) arrays; then the density in the case of the PM arrays is higher than that in the case of the solenoids. The role of the magnetic filter downstream of the source tube is demonstrated; a radially uniform plasma density exceeding 1018 m-3 and an electron temperature of ˜1-2 eV are obtained at ˜100 mm downstream of the open exit of the source tube.

  14. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  15. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  16. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  17. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Code of Federal Regulation (40 CFR Part 136 Table 1B for NPDES, and Part 141 § 141.23 for drinking... Safety and Health Standards, General Industry, (29 CFR 1910), Occupational Safety and Health... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7...

  18. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Code of Federal Regulation (40 CFR Part 136 Table 1B for NPDES, and Part 141 § 141.23 for drinking... Safety and Health Standards, General Industry, (29 CFR 1910), Occupational Safety and Health... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7...

  19. Determination of boron in silicon-bearing alloys, steel, and other alloys by pyrohydrolysis and inductively-coupled argon-plasma spectroscopy.

    PubMed

    Hamner, R M; De'aeth, L A

    1980-06-01

    Boron is quantitatively separated from silicon-bearing and other inorganic materials by pyrohydrolysis. Microgram amounts of boron are separated by passing oxygen-saturated steam over a sample mixed with vanadium oxide and copper oxide. The distillate is collected in dilute potassium hydroxide solution and determined by inductively-coupled argon-plasma spectroscopy. PMID:18962720

  20. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  1. Ignition Delay in a Pulsed Inductively Coupled Plasma (ICP) in Tandem with an Auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Donnelly, Vincent M.; Liu, Lei; Sridhar, Shyam; Economou, Demetre J.

    2015-09-01

    Plasma ignition delays were observed in a ``main'' ICP, in tandem with an ``auxiliary'' ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~ 99.5%. The ignition delay could be manipulated by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion (n+) densities. These measurements revealed that the plasma was re-ignited shortly after the decaying n+ in the main ICP reached the density (n+,aux) measured when only the auxiliary ICP was powered. At that time, the depressed electron density increased sharply resulting in plasma re-ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for n+ to reach n+,aux during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  2. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-01

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass

  3. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-01

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass

  4. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  5. Reduced electron temperature in a magnetized inductively-coupled plasma with internal coil

    SciTech Connect

    Arancibia Monreal, J.; Chabert, P.; Godyak, V.

    2013-10-15

    The effect of magnetic filtering on the electron energy distribution function is studied in an inductive discharge with internal coil coupling. The coil is placed inside the plasma and driven by a low-frequency power supply (5.8 MHz) which leads to a very high power transfer efficiency. A permanent dipole magnet may be placed inside the internal coil to produce a static magnetic field around 100 Gauss. The coil and the matching system are designed to minimize the capacitive coupling to the plasma. Capacitive coupling is quantified by measuring the radiofrequency (rf) plasma potential with a capacitive probe. Without the permanent magnet, the rf plasma potential is significantly smaller than the electron temperature. When the magnet is present, the rf plasma potential increases. The electron energy distribution function is measured as a function of space with and without the permanent magnet. When the magnet is present, electrons are cooled down to low temperature in the downstream region. This region of low electron temperature may be useful for plasma processing applications, as well as for efficient negative ion production.

  6. Reduced electron temperature in a magnetized inductively-coupled plasma with internal coil

    NASA Astrophysics Data System (ADS)

    Arancibia Monreal, J.; Chabert, P.; Godyak, V.

    2013-10-01

    The effect of magnetic filtering on the electron energy distribution function is studied in an inductive discharge with internal coil coupling. The coil is placed inside the plasma and driven by a low-frequency power supply (5.8 MHz) which leads to a very high power transfer efficiency. A permanent dipole magnet may be placed inside the internal coil to produce a static magnetic field around 100 Gauss. The coil and the matching system are designed to minimize the capacitive coupling to the plasma. Capacitive coupling is quantified by measuring the radiofrequency (rf) plasma potential with a capacitive probe. Without the permanent magnet, the rf plasma potential is significantly smaller than the electron temperature. When the magnet is present, the rf plasma potential increases. The electron energy distribution function is measured as a function of space with and without the permanent magnet. When the magnet is present, electrons are cooled down to low temperature in the downstream region. This region of low electron temperature may be useful for plasma processing applications, as well as for efficient negative ion production.

  7. Photoluminescence Observation of GaN Thin Films Treated by Inductively-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Itoh, Noriyoshi; Nakano, Yoshitaka; Sugai, Hideo

    2011-10-01

    This paper reports observations of photoluminescence from plasma-treated GaN thin films. A 10 mTorr Ar ICP was used, and irradiation of 313 nm ultraviolet (UV) light from Hg-Xe light source induced the photoluminescence of the GaN film. In both in-situ and ex-situ observations, significant yellow luminescence was observed visually, and the ex-situ observed luminescence ranges in a wavelength of 500-800 nm corresponding to defect-states-related transition. The measurements also revealed that the luminescence also contains UV emission at a wavelength of ~365 nm attributed to transition related to near band edges. In order to examine effects of the plasma on the luminescence, the ex-situ observation was made as a function of the plasma treatment time. As the treatment time increased, both the UV and the luminescence intensity decreased, and the decrease in the emission became significant when the 313 nm UV light was irradiated onto the plasma-exposed GaN surface. These results suggested that plasma-induced defect formation leads to the luminescence degradation, and that the photoluminescence observation will be useful for damage monitoring of the GaN surface. This work is partly supported by the 2nd stage Knowledge Cluster Initiative and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  8. A control-oriented self-consistent model of an inductively-coupled plasma

    NASA Astrophysics Data System (ADS)

    Keville, Bernard; Turner, Miles

    2009-10-01

    An essential first step in the design of real time control algorithms for plasma processes is to determine dynamical relationships between actuator quantities such as gas flow rate set points and plasma states such electron density. An ideal first principles-based, control-oriented model should exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This presentation describes a control-oriented model of a cylindrical low pressure planar inductive discharge with a stove top antenna. The model consists of equivalent circuit coupled to a global model of the plasma chemistry to produce a self-consistent zero-dimensional model of the discharge. The non-local plasma conductivity and the fields in the plasma are determined from the wave equation and the two-term solution of the Boltzmann equation. Expressions for the antenna impedance and the parameters of the transformer equivalent circuit in terms of the isotropic electron distribution and the geometry of the chamber are presented.

  9. Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Poletayev, Sergey D.; Fomchenkov, Sergey; Khonina, Svetlana N.; Skidanov, Roman V.; Kazanskiy, Nikolay L.

    2016-08-01

    Indium tin oxide (ITO) films have been a subject of extensive studies in fabrication of micro-electronic devices for opto-electronic applications ranging from anti-reflection coatings to transparent contacts in photovoltaic devices. In this paper, a new and effective way of reactive ion etching of a conducting indium-tin oxide (ITO) film with Carbon tetrachloride (CCl4) has been investigated. CCl4 plasma containing an addition of gases mixture of dissociated argon and oxygen were used. Oxygen is added to increase the etchant percentage whereas argon was used for stabilization of plasma. The etching characteristics obtained with these gaseous mixtures were explained based on plasma etch chemistry and etching regime of ITO films. An etch rate as high as ∼20 nm/min can be achieved with a controlled process parameter such as power density, total flow rate, composition of reactive gases gas and pressure. Our Investigation represents some of the extensive work in this area.

  10. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    SciTech Connect

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N{sub 2}-Ar and O{sub 2}-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N{sub 2}-Ar and O{sub 2}-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N{sub 2}-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O{sub 2} -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O{sub 2}-Ar discharges, the dissociation fraction of O{sub 2} molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  11. Etching studies of silica glasses in SF{sub 6}/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication

    SciTech Connect

    Lallement, L.; Gosse, C.; Cardinaud, C.; Peignon-Fernandez, M.-C.; Rhallabi, A.

    2010-03-15

    To fabricate microlaboratories, commercially available silica glasses represent a good alternative to the expensive quartz or fused silica substrates. Therefore, the authors have here investigated the behavior of four of them--Vycor, Pyrex, D263, and AF45--in SF{sub 6} and SF{sub 6}/Ar inductively coupled plasmas. Using Vycor, a material close to pure SiO{sub 2}, as a reference, they demonstrated that the etch rate negatively correlates with the global content in metallic oxides. However, no such clear trend was found for the surface roughness and they hypothesize that the large asperities (>500 nm) sometimes observed might be due to local variation in the glass surface composition. Furthermore, investigations on the influence of the plasma conditions (i.e., source power, dc self-bias, gas mixture, and pressure) on the etch rate, surface chemistry, and surface morphology, as well as positive ion current and fluorine concentration measurements, enable them to unravel an ion enhanced chemical etching mechanism, where stronger ion assistance is needed when more metallic oxides are present. By increasing the ion to neutral flux ratio, they consequently could, for all the materials, reduce the surface roughness to less than 5 nm while maintaining etch rates around 150 nm/min. These conditions have further been used to optimize pattern transfer experiments.

  12. Infinitely high selective inductively coupled plasma etching of an indium tin oxide binary mask structure for extreme ultraviolet lithography

    SciTech Connect

    Park, Y. R.; Ahn, J. H.; Kim, J. S.; Kwon, B. S.; Lee, N.-E.; Kang, H. Y.; Hwangbo, C. K.; Ahn, Jinho; Seo, Hwan Seok

    2010-07-15

    Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics with a completely different configuration than those of conventional photolithography. This study investigated the etching properties of indium tin oxide (ITO) binary mask materials for EUVL, such as ITO (absorber layer), Ru (capping/etch-stop layer), and a Mo-Si multilayer (reflective layer), by varying the Cl{sub 2}/Ar gas flow ratio, dc self-bias voltage (V{sub dc}), and etch time in inductively coupled plasmas. The ITO absorber layer needs to be etched with no loss in the Ru layer on the Mo-Si multilayer for fabrication of the EUVL ITO binary mask structure proposed here. The ITO layer could be etched with an infinitely high etch selectivity over the Ru etch-stop layer in Cl{sub 2}/Ar plasma even with a very high overetch time.

  13. Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Dressler, Valderi L.; Pozebon, Dirce; Curtius, Adilson J.

    1998-10-01

    A method for the determination of Cu, As, Se, Cd, In, Hg, Tl, Pb and Bi in waters and in biological materials by inductively coupled plasma mass spectrometry, after an on-line separation, is described. The matrix separation and analyte preconcentration is accomplished by retention of the analytes complexed with the ammonium salt of O,O-diethyl dithiophosphoric acid in a HNO 3 solution on C 18 immobilized on silica in a minicolumn. Methanol, as eluent, is introduced in the conventional pneumatic nebulizer of the instrument. In order to use the best compromise conditions, concerning the ligand and acid concentrations, the analytes were determined in two separate groups. The enrichment factors were in the range from 5 to 61, depending on the analyte. The limits of detection varied from 0.43 ng L -1 for Bi to 33 ng L -1 for Cu. The sample consumption is only 2.3 mL for each group and the sampling frequency is 21 h -1. The accuracy was tested by analysing five certified reference materials: water, riverine water, urine, bovine muscle and bovine liver. The agreement between obtained and certified concentrations was very good, except for As. The relatively small volume of methanol, used as eluent, minimizes the problems produced by the introduction of organic solvent into the plasma.

  14. Real-time analysis of metals in stack gas using argon/air inductively coupled plasma with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Meyer, Gerhard; Seltzer, Michael D.

    1999-02-01

    The design and operation of an instrument capable of continuous, real-time detection of hazardous air pollutant metals in the effluent of boilers, incinerators, and furnaces is reported. A commercially available inductively coupled argon plasma spectrometer, modified for introduction of sample air, provides sensitivity for several metals comparable to that of EPA-approved manual methods, with an analysis result reported every 1 to 2 minutes. Achievable detection limits for the present list of hazardous air pollutant metals range from 0.1 to 20 (mu) g/dry standard cubic meter. Air is isokinetically extracted from a stack or duct and introduced into the argon plasma through an innovative sample transport interface. Data is reported after every measurement cycle and immediately archived to a control computer, where the information is available to a local area network. The entire instrument is automated, and is enclosed in a shelter that can be placed as near as possible to the stack. The measurement of sample losses in the transport line is also discussed.

  15. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa.

  16. Radio frequency-power and the ring-mode to red-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Coffer, J. G.; Camparo, J. C.

    2012-04-01

    The optical output of an alkali-metal inductively coupled plasma (alkali-ICP) plays an important role in both atomic magnetometers and atomic clocks, producing these devices' atomic signals through optical pumping. Unfortunately, though the alkali-ICP's optical pumping efficiency grows exponentially with temperature, at relatively high temperatures (˜140 °C) the discharge transitions from "ring mode" to "red mode," which is a spectral change in the plasma's output that corresponds broadly to a transition from "good emission" for optical pumping to "poor emission." Recently, evidence has accumulated pointing to radiation trapping as the mechanism driving the ring-mode to red-mode transition, suggesting that the phenomenon is primarily linked to the alkali vapor's temperature. However, observations of the transition made in the 1960 s, demonstrating that the ICP temperature associated with the transition depended on rf-power, would appear to cast doubt on this mechanism. Here, we carefully investigate the influence of rf-power on the ring-mode to red-mode transition, finding that rf-power only affects the transition through discharge heating. Thus, the present work shows that the primary effect of rf-power on the ring-mode to red-mode transition can be understood in terms of the radiation trapping mechanism.

  17. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa. PMID:15228328

  18. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    DOE PAGES

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated inmore » order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.« less

  19. Radio frequency-power and the ring-mode to red-mode transition in an inductively coupled plasma

    SciTech Connect

    Coffer, J. G.; Camparo, J. C.

    2012-04-15

    The optical output of an alkali-metal inductively coupled plasma (alkali-ICP) plays an important role in both atomic magnetometers and atomic clocks, producing these devices' atomic signals through optical pumping. Unfortunately, though the alkali-ICP's optical pumping efficiency grows exponentially with temperature, at relatively high temperatures ({approx}140 deg. C) the discharge transitions from ''ring mode'' to ''red mode'', which is a spectral change in the plasma's output that corresponds broadly to a transition from ''good emission'' for optical pumping to ''poor emission.'' Recently, evidence has accumulated pointing to radiation trapping as the mechanism driving the ring-mode to red-mode transition, suggesting that the phenomenon is primarily linked to the alkali vapor's temperature. However, observations of the transition made in the 1960 s, demonstrating that the ICP temperature associated with the transition depended on rf-power, would appear to cast doubt on this mechanism. Here, we carefully investigate the influence of rf-power on the ring-mode to red-mode transition, finding that rf-power only affects the transition through discharge heating. Thus, the present work shows that the primary effect of rf-power on the ring-mode to red-mode transition can be understood in terms of the radiation trapping mechanism.

  20. Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard

    NASA Astrophysics Data System (ADS)

    Raut, Narendra M.; Huang, Li-Shing; Aggarwal, Suresh K.; Lin, King-Chuen

    2003-05-01

    Determination of lanthanides by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) using modified mathematical correction method has been studied. Normally, the ICP-MS analysis of middle and heavier lanthanides becomes difficult by severe spectroscopic overlap of M +, MO + or MOH + ions from lighter lanthanides and Ba. A correction method based on a single element oxide yield measurement, is a simple approach to correct for the above spectroscopic overlaps. But the uncertainty in the oxide and hydroxide yields measurement of lanthanides and barium over a long period of time can lead to inaccurate results even under fixed plasma conditions. To correct this, thorium was adopted as an oxide and hydroxide correction standard. Using a ratio of lanthanide oxide yield to thorium oxide yield, the lanthanide correction factors (LCF) were established and incorporated in the mathematical correction scheme. The same factors were also established for hydroxide correction. The proposed modified correction scheme was applied to the determination of lanthanides by ICP-MS from the USGS Standard Rock samples AGV-1 and G-2. The results are in good agreement with the reported values. The method also proved to be useful in isotopic ratio measurement of lanthanides having severe isobaric overlaps.

  1. Characterization of intrinsic a-Si:H films prepared by inductively coupled plasma chemical vapor deposition for solar cell applications.

    PubMed

    Jeong, Chaehwan; Boo, Seongjae; Jeon, Minsung; Kamisako, Koichi

    2007-11-01

    The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.

  2. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis. PMID:23816124

  3. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  4. Sulfur Limits of Detection and Spectral Interference Corrections for DWPF Sludge Matrices by Inductively Coupled Plasma Emission Spectrometry

    SciTech Connect

    JURGENSEN, AR

    2004-04-20

    The Savannah River Technology Center (SRTC) has been requested to perform sulfur (S) analysis on digested radioactive sludge and supernatant samples by Inductively Coupled Plasma Emission Spectrometry (ICP-ES). The amount of sulfur is a concern because there are sulfur limits for the incoming feed, due to glass melter, process vessel, and off-gas line corrosion concerns and limited sulfur solubility in the glass wasteform. Recent changes in the washing strategy and stream additions change the amount of sulfur in the sludge. Increasing the sulfur concentration in the sludge challenges the current limits, so accurately determining the amount of sulfur present in a sludge batch is paramount. There are two important figures of merit that need to be evaluated for this analysis. The first is the detection limit (LOD), the smallest concentration of an element that can be detected with a defined certainty. This issue is important since the sulfur concentration in these process streams is l ow. Another critical analytical parameter is the effect on the S quantitation from potential spectral interferences. Spectral interferences are caused by background emission from plasma recombination events, scattered and stray light from the line emission of high concentration elements, or molecular band emission and from direct or tailing spectral line overlap from a matrix element. Any existing spectral overlaps could give false positives or increase the measured S concentrations in these matrices.

  5. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy

    SciTech Connect

    Song, M. A.; Lee, Y. W.; Chung, T. H.

    2011-02-15

    The properties of low-pressure inductively coupled nitrogen-argon plasmas were investigated by using a Langmuir probe combined with optical emission spectroscopy (OES) under the conditions of pressures in the range of 1-30 mTorr and applied rf powers of 200-600 W. In the experiments, the argon was introduced as an actinometer and as an adding gas. The effect of the argon content in the gas mixture was examined in the range of 5%-80%. The electron energy probability function (EEPF), the electron density, and the electron temperature were obtained by using an rf-compensated Langmuir probe. The dissociation fractions were obtained from the OES actinometry. The electron temperature was also obtained by OES corona model and compared with that measured by the probe. The second positive and first negative systems of spectral bands from nitrogen molecules were analyzed to estimate the vibrational and rotational temperatures. The effects of the control parameters on the plasma parameters and dissociation fraction were investigated. While the calculated nitrogen atom density increased with power, it exhibited a maximum value near the Ar content of 30%.

  6. Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment

    SciTech Connect

    Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun

    2012-12-15

    An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H{sub 2}O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

  7. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    SciTech Connect

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.

  8. Determination of platinum and rhodium in environmental matrixes by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry.

    PubMed

    Vanhaecke, F; Resano, M; Pruneda-Lopez, M; Moens, L

    2002-12-01

    Electrothermal vaporization from a graphite furnace was used in combination with inductively coupled plasma mass spectrometry (ICPMS) for the determination of Pt and Rh in environmental matrixes. Solid samples of tunnel dust, grass, and atmospheric aerosol collected on a cellulose filter could be analyzed directly, such that sample dissolution-which is not self-evident for the determination of platinum group metals-could be avoided. By heating the graphite furnace according to a multistep temperature program, spectral interferences were avoided, since a "dry" plasma was obtained, while "parent" ions such as Cu, Zn, and Pb, giving origin to interfering molecular ions, were vaporized during the thermal pretreatment step. For tunnel dust, the most demanding sample matrix, a mixture of HCl and HF was used as a modifier to stimulate the vaporization of matrix components during the thermal pretreatment step and, hence, to alleviate matrix-induced analyte signal suppression during the actual vaporization step. Calibration was accomplished by means of single standard addition with an aqueous standard solution. The results obtained agreed within the experimental uncertainty with the corresponding reference values (certified values or results obtained using pneumatic nebulization ICPMS), while relative standard deviations of < or = 15% were typical for both Pt and Rh. In all samples, a Pt/Rh ratio of approximately 6-8 was established. For a typical sample mass of 2 mg, limits of detection were 0.35 ng/g for Pt and 0.05 ng/g for Rh.

  9. Effects of impedance matching network on the discharge mode transitions in a radio-frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Yuan, G. Y.; Gao, W.; Sun, J. C.

    2008-06-15

    In inductively coupled plasma sources, discharge transitions from electrostatic mode (E mode) to electromagnetic mode (H mode) and from H mode to E mode occur. In previous studies, only a few works paid attention to the effects of the impedance matching network. Cunge et al. [Plasma Sources Sci. Technol. 8, 576 (1999)] investigated the E-H and H-E mode transitions under two different impedance matching situations, but no physical mechanism or interpretation was presented. This issue is remained to be systematically and quantitatively investigated, and the underlying mechanism to be unveiled. In this paper, the effects of the impedance matching network were experimentally studied in electropositive argon gas by varying the series capacitance in an inversely L-shaped matching network. The positive and negative feedback regions are established according to the effect of varying the series capacitance on the output power of the rf power supply. It was found that under the same experimental parameters, the discharge mode transitions are apt to be discontinuous and continuous in the positive and negative feedback regions, respectively. In addition, the critical coil rf current (or applied power) at the mode transition, the hysteretic loop width, and the difference in applied power during the discharge mode transition vary with the series capacitance. The critical coil rf current at the E-H mode transition is not always higher than that at the H-E mode transition.

  10. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    SciTech Connect

    Mortazavi, M.; Urzay, J. Mani, A.

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  11. Actinometry of inductively coupled Cl{sub 2}/N{sub 2} plasmas for dry etching of GaAs

    SciTech Connect

    Brueckl, Tobias; Zull, Heribert

    2005-07-15

    Inductively coupled plasma dry etching of GaAs with Cl{sub 2}/N{sub 2}-containing plasmas and investigations of these plasmas with optical emission spectroscopy and actinometry are presented. The results of actinometry were revised to allow the comparison of relative ground-state densities at different pressures. The obtained relative ground-state densities of N{sub 2}, Cl{sub 2}, and Cl (I) are presented as functions of the process parameters [rf power, pressure, and Cl{sub 2}/(Cl{sub 2}+N{sub 2}) ratio]. Cl (I) relative ground-state densities were found to be linearly connected to the pressure and the Cl{sub 2}/(Cl{sub 2}+N{sub 2}) ratio. GaAs etch rates up to 3 {mu}m/min were obtained, while etch rates of the photoresist mask did not exceed 0.95 {mu}m/min. The impact of the rf power changes on the etch rates was negligible. Plotting the etch rates against the process parameters revealed a linear relationship between the etch rates and the pressure and between the etch rates and the Cl{sub 2}/(Cl{sub 2}+N{sub 2}) ratio. Therefore a correlation between the Cl (I) relative ground-state density measured in plasmas without wafer and GaAs and the photoresist mask etch rate was found. All GaAs dry etching examined in this investigation was found to take place in a reactant-limited regime with Cl (I) as the rate-limiting species.

  12. Investigation of a rf inductively coupled plasma ion source capable of highly uniform and collimated ion-beam generation

    SciTech Connect

    Kanarov, V.; Hayes, A.; Yevtukhov, R.; Kameyama, I.; Siegfried, D.; Waahlin, E.

    2006-03-15

    In accordance with advanced data storage device fabrication requirements, we have evaluated a new broad-beam rf ion source for ion beam etching and deposition application. This source utilizes a novel reentrant shaped plasma inductively coupled plasma generator for improved radial plasma density uniformity and a dynamic magnetic field for improved static etch uniformity. It has the capability of reproducibly generating extremely uniform ion beams from 500 to 1500 eV with divergence angle <3 deg. and high directionality [Kanarov et al. (patent pending)]. For a 150 mm diameter wafer, an etch uniformity of <1% {sigma}/mean in static condition or <0.5% with wafer rotation is obtained over an ion incident angle range of 0 deg. - 65 deg. Recently, we have investigated extending the operation of this source to the critical low energy range, 100-500 eV, required for fabricating thin film magnetic head sensors. It was found that, under optimum operating conditions, excellent static etch uniformity (1%-1.5% {sigma}/mean) could be obtained at high ion beam current densities, up to 0.5 mA/cm{sup 2}, over the entire low-energy range while still achieving low divergence angles (<5 deg.) and high beam directionality. The ion beam performance was consistent with results obtained by simulation and by experiment using a 19-hole array ion optic test stand with scanning ion probe [E. Waahlin (unpublished)]. In this article we will describe the design of the ion source and then present the experimental performance data including plasma density distribution measured by an array of flat Langmuir probes, beam divergence distribution obtained by a 'pepper-pot' etch measurement technique, and etching rate distributions.

  13. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water.