Science.gov

Sample records for ablation rate measurements

  1. Sensors measure surface ablation rate of reentry vehicle heat shield

    NASA Technical Reports Server (NTRS)

    Russel, J. M., III

    1966-01-01

    Sensors measure surface erosion rate of ablating material in reentry vehicle heat shield. Each sensor, which is placed at precise depths in the heat shield is activated when the ablator surface erodes to the location of a sensing point. Sensor depth and activation time determine ablator surface erosion rate.

  2. Measurements of Ablation Pressure and Mass Ablation Rate Using a Target Pendulum and a Thin Foil Target at 10 μm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Tateyama, Ryuzi; Ogura, Kazuki; Mima, Kunioki; Nakai, Sadao; Yamanaka, Chiyoe

    1983-04-01

    The ablation pressure and the mass ablation rate for a 10 μm CO2 laser were measured using two methods: a ballistic target pendulum and shifted X-ray emission images which are equivalent to X-ray back-lighting. The measured ablation pressure was 10 Mbar and the mass ablation rate was 106 g/cm2\\cdotsec at the absorbed laser intensity of 5× 1013 W/cm2. Comparing the ablation mass rate measured by the pendulum with that derived from the penetration depth of the hot electrons using K_α line emission, we could identify the hot electron driven ablation as the dominant process.

  3. A method for rapid measurement of laser ablation rate of hard dental tissue

    NASA Astrophysics Data System (ADS)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to

  4. Dentin ablation-rate measurements in endodontics witj HF and CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Makropoulou, Mersini I.; Serafetinides, Alexander A.; Khabbaz, Marouan; Sykaras, Sotirios; Tsikrikas, G. N.

    1996-01-01

    Recent studies focused on the ability of the laser light to enlarge the root canal during the endodontic therapy. The aim of this research is the experimental and theoretical study of the ablation rate of two infrared laser wavelengths on dentin. Thirty freshly extracted human teeth were longitudinally sectioned at thicknesses ranged from 0.5 to 2 mm, and irradiated on the root canal dentin. The measured ablation rates in dentinal wall of the root canal showed that the HF laser at 2.9 micrometer can more effectively penetrate into the tissue, whereas the carbon dioxide laser at 10.6 micrometer leads to high thermal damage of the ablation crater surroundings.

  5. Convergent ablator performance measurements

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.; Olson, R. E.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile {rho}(r) and effective backlighter profile I{sub 0}(y) at each time step to be uniquely determined subject to the constraints that {rho}(r) is localized in radius space and I{sub 0}(y) is delocalized in object space. Moments of {rho}(r) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  6. Convergent ablator performance measurements

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-01

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile ρ(r ) and effective backlighter profile I0(y) at each time step to be uniquely determined subject to the constraints that ρ(r ) is localized in radius space and I0(y) is delocalized in object space. Moments of ρ(r ) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  7. Excimer laser ablation of thick SiOx-films: Etch rate measurements and simulation of the ablation threshold

    NASA Astrophysics Data System (ADS)

    Ihlemann, J.; Meinertz, J.; Danev, G.

    2012-08-01

    Excimer laser ablation of 4.5 μm thick SiOx-films with x ≈ 1 is investigated at 193 nm, 248 nm, and 308 nm. Strong absorption enables precisely tunable removal depths. The ablation rates correlate with laser penetration depths calculated from low level absorption coefficients. The experimental ablation thresholds are in agreement with numerical simulations on the basis of linear absorption and one-dimensional heat flow. This behaviour is similar to that of strongly UV-absorbing polymers, leading to well controllable micro machining prospects. After laser processing, SiOx can be converted to SiO2, opening a route to laser based fabrication of micro optical components.

  8. Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials

    NASA Technical Reports Server (NTRS)

    Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Benel, Gabriel (Inventor); Thomson, Clint (Inventor)

    2014-01-01

    A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.

  9. Selective Near-UV Ablation of Subgingival Dental Calculus: Measurement of Removal Rates

    SciTech Connect

    Schoenly, J.E.; Seka, W.; Rechmann, P.

    2010-04-22

    A noncontact profilometer (laser triangulation) was used to measure the removal rates of subgingival dental calculus irradiated with a frequency-doubled Ti:sapphire laser (60-ns pulse duration, 400-nm wavelength, 10-Hz repetition rate, 7-mJ pulse energy). Profilometer traces before and after irradiation were used to create a removal map with 4-μm axial and 15-μm transverse resolution. Twenty-three teeth (15 with calculus and 8 pristine) were irradiated at 90° and 45° under a cooling water spray with a super-Gaussian beam (~300-μm diameter). Subgingival calculus was selectively removed at 5.6 and 4.0 J/cm2 for 90° and 45°, respecetively, within a range of rates, between 2 to 9 μm/pulse. These ablation rates were constant during these exposures. For comparison, pristine cementum irradiated for 10 min at the same peak fluence and pulse repetition rate showed only craters, 15 to 50 μm deep, corresponding to an equivalent removal rate three orders of magnitude smaller than that obtained for calculus. Pristine enamel was not removed under the same irradiation conditions.

  10. Measurement of the Si Mass Ablation Rate in Direct-Drive Implosions on the OMEGA Laser System

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Igumenshchev, I. V.; Craxton, R. S.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Sangster, T. C.; Froula, D. H.

    2014-10-01

    The Si mass ablation rate in direct-drive inertial confinement fusion implosions was measured using a pinhole x-ray framing camera on the OMEGA Laser System. In targets consisting of a Si layer over a CH layer, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher- Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers. The emergence of the interface peak was used to measure the burnthrough time of the outer layer, giving its average mass ablation rate. By repeating this experiment for different outer-layer thicknesses, time-resolved measurements of the mass ablation rate were obtained. Simulations validated the methods and verified that the measurement techniques are not sensitive to perturbation growth at the ablation surface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission imagesa)

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Hu, S. X.; Craxton, R. S.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Froula, D. H.

    2014-11-01

    A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface.

  12. Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images.

    PubMed

    Davis, A K; Michel, D T; Hu, S X; Craxton, R S; Epstein, R; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Froula, D H

    2014-11-01

    A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface. PMID:25430192

  13. Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-01

    Measurements of the conduction-zone length (110 ±20 μ m at t =2.8 ns ), the averaged mass ablation rate of the deuterated plastic (7.95 ±0.3 μ g /ns ), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ˜10 % and the length of the conduction zone by nearly a factor of 2.

  14. Measurements of the conduction-zone length and mass ablation rate in cryogenic direct-drive implosions on OMEGA

    SciTech Connect

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-14

    Measurements of the conduction-zone length (110 ± 20 μm at t = 2.8 ns), the averaged mass ablation rate of the deuterated plastic (7.95 ± 0.3 μg/ns), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ~10% and the length of the conduction zone by nearly a factor of 2.

  15. Experimental measurement of ablation rate of wood pieces, undergoing fast pyrolysis by contact with a heated wall

    SciTech Connect

    Lede, J.; Panagopoulos, J.; Villermaux, J.

    1983-01-01

    The conventional pyrolysis of biomass yields about equal amounts of gases, char and tar. When pyrolysis is carried out in severe heating conditions, the reaction products can be almost entirely gaseous and contain significant amounts of light unsaturated hydrocarbons. Authors involved in such research, generally recommend several types of conditions: small wood particles, high temperatures, high heating rates, high heat fluxes, etc. Few of them have associated the idea of ablation regime, to the observation of the fast pyrolysis reaction. Actually, the apparent rate of reaction is a function of two competitive processes within the wood particle: the rate of heat transfer and the rate of chemical decomposition of wood itself. If chemical processes are very fast, the heat transfer is rate controlling: this is the so called ablation regime characterized by a thin superficial layer of reacting wood). Such a regime can be represented by the rate at which the reacting layer moves towards the cold unreacted core of the piece of wood (ablation rate v) and the thickness of this reacting layer (e).

  16. Measurements of the Conduction-Zone Length and Mass Ablation Rate to Study the Hydrodynamic Coupling in Cryogenic Direct-Drive Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Regan, S. P.; Sangster, T. C.; Epstein, R.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-11-01

    The ablation-front trajectory and the averaged mass ablation rate is measured in direct-drive cryogenic target implosions on the OMEGA Laser System by imaging the soft x rays emitted by the coronal plasma. The length of the conduction zone is determined by coupling x-ray and scattered-light measurements. These measurements are compared to hydrodynamic simulations to study the modeling of the hydrodynamic coupling for various beam and target radii. Reducing the beam focal-spot radius relative to the target radius is a method that is being studied to reduce cross-beam energy transfer and increase the hydrodynamic efficiency. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  18. Photogrammetric recession measurements of an ablating surface

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T. (Inventor); Heineck, James T. (Inventor)

    2012-01-01

    An instrument and method for measuring the time history of recession of an ablating surface of a test article during testing in a high enthalpy thermal test facility, such as an arcjet. The method advances prior art by providing time-history data over the full ablating surface without targets and without any modifications to the test article. The method is non-intrusive, simple to implement, requires no external light source, and does not interfere with normal operations of the arcjet facility.

  19. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  20. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  1. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern. PMID:21806249

  2. X-ray ablation rates in inertial confinement fusion capsule materials

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Rochau, G. A.; Landen, O. L.; Leeper, R. J.

    2011-03-01

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm2/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm2/ns; and for HDC, the rates range from 2 to 9 mg/cm2/ns. The ablation rates follow an approximate T3 dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T3.5. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  3. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser

    SciTech Connect

    Burdt, Russell A.; Yuspeh, Sam; Najmabadi, Farrokh; Sequoia, Kevin L.; Tao Yezheng; Tillack, Mark S.

    2009-08-01

    The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3x10{sup 11} to 2x10{sup 12} W/cm{sup 2}. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z=50) used in these experiments.

  4. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the second in a series of three papers examining nanomaterial formation in laser ablation in liquids (LAL). Here we study the effect of the laser wavelength and fluence on the mass yield and size distribution of nanoparticles prepared by laser ablation of a platinum target immersed in water. For all wavelengths tested, laser fluences in the range of 10-70 J/cm{sup 2} resulted in spheroidal, nonagglomerated platinum nanoparticles with sizes ranging from 1 to 30 nm. Nanoparticle size distributions are found to be composed of two modes that are attributed to thermal vaporization and explosive boiling mechanisms. The peak of the smaller size mode remains nearly constant at 3 nm for all laser conditions, which is suggested to be due to the strong confinement of the vapor plume by the liquid. The larger size mode peaks in the range of 5-15 nm with a population that is strongly dependent on the laser parameters. It is concluded that changes in the mean size reported in many earlier studies on LAL of metal targets are a result of the relative quantity of nanoparticles from each mechanism rather than direct control over the ablation process. Additionally, it was observed that the yield of platinum nanoparticles was significantly larger for 1064 nm wavelength at fluences greater than 10 J/cm{sup 2}. The maximum ablation rate was approximately 4.4 mg/h, with an estimated ablation and collection efficiency of 0.9 {mu}g/J. Dependence of the mass yield on wavelength and fluence is seen to be dependent primarily on the extent of the explosive mechanism.

  5. DISPARATE EVOLUTION OF RIGHT AND LEFT ATRIAL RATE DURING ABLATION OF LONG-LASTING PERSISTENT ATRIAL FIBRILLATION

    PubMed Central

    Hocini, Mélèze; Nault, Isabelle; Wright, Matthew; Veenhuyzen, George; Narayan, Sanjiv M.; Jaïs, Pierre; Lim, Kang-Teng; Knecht, Sébastien; Matsuo, Seiichiro; Forclaz, Andrei; Miyazaki, Shinsuke; Jadidi, Amir; O’Neill, Mark D.; Sacher, Frédéric; Clémenty, Jacques; Haïssaguerre, Michel

    2010-01-01

    Objectives To assess whether additional ablation in the right atrium(RA) improves termination rate in long-lasting persistent atrial fibrillation(PsAF). Background Prolongation of atrial fibrillation(AF) cycle length(CL) measured from the left atrial appendage predicts favorable outcome during catheter ablation of PsAF. However, in some patients despite prolongation of AFCL in the left atrium(LA) with ablation, AF persists. We hypothesized that this is due to RA drivers and these patients may benefit from RA ablation. Methods 148 consecutive patients undergoing catheter ablation of PsAF(duration 25±32 months) were studied. AFCL was monitored in both atria during stepwise ablation commencing in the LA. Ablation was performed in the RA when all LA sources in AF had been ablated and a RA-LA gradient existed. The procedural endpoint was AF termination. Results Two distinct patterns of AFCL change emerged during LA ablation. In 104patients(70%), there was parallel increase of AFCL in LA and RA culminating in AF termination (baseline: LA 153ms[140,170], RA 155ms[143,171]; after ablation: LA 181ms[170,200], RA 186ms[175,202]). In 24 patients(19%), RA AFCL did not prolong, creating a right-to-left frequency gradient, (baseline: LA 142ms[143,153], RA 145 ms[139,162]; after ablation: LA 177 ms[165–185], RA 152ms[147,175]). These patients had a longer AF history (23versus12 months, p=0.001), and larger RA diameter (42versus39mm, p=0.005) and RA ablation terminated AF in 55%. In the remaining 20 patients, biatrial ablation failed to terminate AF. Conclusions A divergent pattern of AFCL prolongation after LA ablation resulting in a right-to-left gradient demonstrating that the right atrium is driving AF in about 20 % of PsAF. PMID:20202517

  6. Experimental study for ablation rate of solid rocket motor internal insulation

    NASA Astrophysics Data System (ADS)

    He, Guoqiang; Chen, Jinghui; Ji, Chengwu; Kuang, Yueng; Wu, Zhonghua

    1993-08-01

    A test motor for screening and evaluating candidate insulation materials was designed and a technique for determining the average ablation rate of internal insulation materials was developed on the basis of many experiments. In subscale motor tests, material samples are placed inside this motor and internal pressure, velocity and angle of gases scouring are adjusted to approximate the full-scale motor conditions. Factors of insulation ablative rate, combustion gases pressure, gases velocity, angle of gases scouring, bonding seam and typical defects (craze, debonding, blowhole, inclusion), have been studied experimentally. The results are in agreement with measuring results of the full-scale motor.

  7. Experimental study for ablation rate of solid rocket motor internal insulation

    NASA Astrophysics Data System (ADS)

    He, Guoqiang; Chen, Jinghui; Ji, Chengwu; Kuang, Yueng; Wu, Zhonghua

    1993-08-01

    A test motor for selecting and evaluating candidate insulation materials was designed and a technique for determining their average ablation rate was developed. In subscale motor tests, the material samples were placed inside this motor, and the internal pressure, velocity, and angle of gas scouring were adjusted to approximate the full-scale motor conditions. Factors of insulation ablation rate, combustion gas pressure, gas velocity, angle of gas scouring, and bonding seam and typical defects (craze, debonding, blowhole, inclusion) were studied experimentally. The results are in agreement with the measured results from a full scale motor.

  8. Streaked radiography measurements of convergent ablator performance (invited)

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other ablator rocket parameters have been measured using a single streaked x-ray radiograph. A regularization technique has been used to determine the ablator density profile {rho}(r) at each time step; moments of {rho}(r) then provide the areal density, average radius, and mass of the unablated, or remaining, ablator material, with the velocity determined from the time derivative of the average radius. The technique has been implemented on experiments at the OMEGA laser facility.

  9. Ablation of Atrial Fibrillation: Patient Selection, Periprocedural Anticoagulation, Techniques, and Preventive Measures After Ablation.

    PubMed

    Link, Mark S; Haïssaguerre, Michel; Natale, Andrea

    2016-07-26

    Atrial fibrillation (AF) is the most common arrhythmia encountered by cardiologists and is a major cause of morbidity and mortality. Risk factors for AF include age, male sex, genetic predisposition, hypertension, diabetes mellitus, sleep apnea, obesity, excessive alcohol, smoking, hyperthyroidism, pulmonary disease, air pollution, heart failure, and possibly excessive exercise. The management of AF involves decisions about rate versus rhythm control. Asymptomatic patients are generally managed with rate control and anticoagulation. Symptomatic patients will desire rhythm control. Rhythm control options are either antiarrhythmic agents or ablation, with each having its own risks and benefits. Ablation of AF has evolved from a rare and complex procedure to a common electrophysiological technique. Selection of patients to undergo ablation is an important aspect of AF care. Patients with the highest success rates of ablation are those with normal structural hearts and paroxysmal AF, although those with congestive heart failure have the greatest potential benefit of the procedure. Although pulmonary vein isolation of any means/energy source is the approach generally agreed on for those with paroxysmal AF, optimal techniques for the ablation of nonparoxysmal AF are not yet clear. Anticoagulation reduces thromboembolic complications; the newer anticoagulants have eased management for both the patient and the cardiologist. Aggressive management of modifiable risk factors (hypertension, diabetes mellitus, sleep apnea, obesity, excessive alcohol, smoking, hyperthyroidism, pulmonary disease, air pollution, and possibly excessive exercise) after ablation reduces the odds of recurrent AF and is an important element of care. PMID:27462054

  10. X-ray ablation measurements and modeling for ICF applications

    SciTech Connect

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths ({approx} micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  11. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  12. Evaluation of Finite-Rate GasSurface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  13. Impact of open de-ionized water thin film laminar immersion on the liquid-immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate

    NASA Astrophysics Data System (ADS)

    Dowding, C. F.; Lawrence, J.

    2009-11-01

    Debris control and surface quality are potential major benefits of sample liquid immersion when laser micromachining; however, the use of an immersion technique potentially modifies the ablation mechanism when compared to an ambient air interaction. To investigate the machining characteristics, bisphenol A polycarbonate has been laser machined in air and under a controllable open liquid film. To provide quantitative analysis, ablation threshold, ablation rate and the attenuation coefficient of the immersing de-ionized (DI) water fluid were measured. In ambient air the threshold fluence was measured to be 37 mJ cm -2. Thin film immersion displayed two trends: threshold fluences of 58.6 and 83.9 mJ cm -2. The attenuation of DI water was found to be negligible; thus, the change in ablation rate resulted from increased confinement of the vapour plume by the liquid medium, generating higher Bremsstrahlung attenuation of the beam, lowering the laser etch rate. Simultaneously, splashing motivated by the confined ablation plume allowed release of plume pressure before plume etching commenced. This contributed to the loss of total etching efficiency. Two interaction scenarios were obsereved as a result of splashing: (i) intermediate threshold fluence, where splashing occured after every pulse in a mode that interrupted the flow entirely, leaving an ambient air interaction for the following pulse; (ii) high threshold fluence, where splashing occured for every pulse in a mode that allowed the flow to recommence over the image before the next pulse causing every pulse to experience Bremsstrahlung attenuation. Since attenuation of the immersion liquid was negligible, it is the action of the constrained ablation plume within a thin flowing immersion liquid, the resultant Bremsstrahlung attenuation and splashing events that are the critical mechanisms that modify the primary ablation characteristics.

  14. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  15. Effect of Current Rise-time on the Formation of Precursor Structures and Mass Ablation Rate in Cylindrical Wire Array Z-Pinches

    SciTech Connect

    Bott, S. C.; Eshaq, Y.; Ueda, U.; Haas, D. M.; Beg, F. N.; Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki, F. A.

    2009-01-21

    We present the first study to directly compare the mass ablation rates of cylindrical wire arrays as a function of the current rise-rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250 ns) and COBRA (1 MA, 100 ns) generators, and results are used to infer the change in the mass ablation rate induced by the rise-rate of the drive current. Laser shadowography, gated XUV imaging and x-ray diodes are used to compare the dynamical behavior both generators, and x-pinch radiography and XUV spectroscopy and provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model based on a fixed ablation rate, and the close correlation achieved suggests that the effective ablation velocity is not a strong function of the current rise rate.

  16. Spike rate of multi-unit muscle sympathetic nerve fibers after catheter-based renal nerve ablation.

    PubMed

    Tank, Jens; Heusser, Karsten; Brinkmann, Julia; Schmidt, Bernhard M; Menne, Jan; Bauersachs, Johann; Haller, Hermann; Diedrich, André; Jordan, Jens

    2015-10-01

    Patients with treatment-resistant arterial hypertension exhibited profound reductions in single sympathetic vasoconstrictor fiber firing rates after renal nerve ablation. In contrast, integrated multi-unit muscle sympathetic nerve activity (MSNA) changed little or not at all. We hypothesized that conventional MSNA analysis may have missed single fiber discharges, thus, obscuring sympathetic inhibition after renal denervation. We studied patients with difficult-to-control arterial hypertension (age 45-74 years) before, 6 (n = 11), and 12 months (n = 8) after renal nerve ablation. Electrocardiogram, respiration, brachial, and finger arterial blood pressure (BP), as well as the MSNA and raw MSNA signals were analyzed. We detected MSNA action-potential spikes using 2 stage kurtosis wavelet denoising techniques to assess mean, median, and maximum spike rates for each beat-to-beat interval. Supine heart rate and systolic BP did not change at 6 (ΔHR: -2 ± 3 bpm; ΔSBP: 2 ± 9 mm Hg) or at 12 months (ΔHR: -1 ± 3 mm Hg, ΔSBP: -1 ± 9 mm Hg) after renal nerve ablation. Mean burst frequency and mean spike frequency at baseline were 34 ± 3 bursts per minute and 8 ± 1 spikes per second. Both measurements did not change at 6 months (-1.4 ± 3.6 bursts/minute; -0.6 ± 1.4 spikes/second) or at 12 months (-2.5 ± 4.0 bursts/minute; -2.0 ± 1.6 spikes/second) after renal nerve ablation. After renal nerve ablation, BP decreased in 3 of 11 patients. BP and MSNA spike frequency changes were not correlated (slope = -0.06; P = .369). Spike rate analysis of multi-unit MSNA neurograms further suggests that profound sympathetic inhibition is not a consistent finding after renal nerve ablation. PMID:26324745

  17. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    SciTech Connect

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-28

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  18. Acoustical measurements during Erbium:YAG laser ablation of porcine calcified tissues

    NASA Astrophysics Data System (ADS)

    Saaf, Randall R.; Wong, Brian J.; Milner, Thomas E.; Peavy, George M.; Anvari, Bahman

    1998-07-01

    The Erbium:YAG laser ((lambda) equals 2.94 micrometer) has been suggested for use in dental, orthopedic, and middle ear surgery due to decreased thermal trauma, precise ablation characteristics, and potential fiber optic delivery. While there has been much focus on the thermal and photoacoustic events that occur during pulsed laser ablation of hard tissue, there are few studies that examine the acoustic energy generated by these devices during ablation from an audiologic standpoint. In this study, the porcine otic capsule, nasal bone, and teeth were irradiated with an Erbium:YAG laser. Frequencies of 5 and 10 Hz shot repetition rate were used with .5 to 4 W average power. Additionally, a burst mode consisting of three pulses was used with .2 to 1.4 J total energy. During ablation, acoustic measurements were made using a sound level meter held 20 mm away from the target site. A constant spot size of 500 micrometer was maintained for each laser blast. With each set of laser parameters, the sound intensity (dB SPL) exceeded 70 dB. Peak intensity measurements of 95 dB were measured. The clinical significance of these findings is discussed and the acoustical aspects of middle ear function and noise trauma are reviewed.

  19. Direct investigation of the ablation rate evolution during laser drilling of high-aspect-ratio micro-holes

    NASA Astrophysics Data System (ADS)

    Mezzapesa, Francesco P.; Sibillano, Teresa; Columbo, Lorenzo L.; Di Niso, Francesca; Ancona, Antonio; Dabbicco, Maurizio; De Lucia, Francesco; Lugarà, Pietro M.; Scamarcio, Gaetano

    2012-03-01

    The recent development of ultrafast laser ablation technology in precision micromachining has dramatically increased the demand for reliable and real-time detection systems to characterize the material removal process. In particular, the laser percussion drilling of metals is lacking of non-invasive techniques able to monitor into the depth the spatial- and time-dependent evolution all through the ablation process. To understand the physical interaction between bulk material and high-energy light beam, accurate in-situ measurements of process parameters such as the penetration depth and the removal rate are crucial. We report on direct real time measurements of the ablation front displacement and the removal rate during ultrafast laser percussion drilling of metals by implementing a contactless sensing technique based on optical feedback interferometry. High aspect ratio micro-holes were drilled onto steel plates with different thermal properties (AISI 1095 and AISI 301) and Aluminum samples using 120-ps/110-kHz pulses delivered by a microchip laser fiber amplifier. Percussion drilling experiments have been performed by coaxially aligning the diode laser probe beam with the ablating laser. The displacement of the penetration front was instantaneously measured during the process with a resolution of 0.41 μm by analyzing the sawtooth-like induced modulation of the interferometric signal out of the detector system.

  20. Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation

    SciTech Connect

    Modestov, Mikhail; Bychkov, Vitaly; Valiev, Damir; Marklund, Mattias

    2009-10-15

    The main characteristics of the linear Darrieus-Landau instability in the laser ablation flow are investigated. The dispersion relation of the instability is found numerically as a solution to an eigenvalue stability problem, taking into account the continuous structure of the flow. The results are compared to the classical Darrieus-Landau instability of a usual slow flame. The difference between the two cases is due to the specific features of laser ablation: sonic velocities of hot plasma and strong temperature dependence of thermal conduction. It is demonstrated that the Darrieus-Landau instability in laser ablation is much stronger than in the classical case. In particular, the maximum growth rate in the case of laser ablation is about three times larger than that for slow flames. The characteristic length scale of the Darrieus-Landau instability in the ablation flow is comparable to the total distance from the ablation zone to the critical zone of laser light absorption. The possibility of experimental observations of the Darrieus-Landau instability in laser ablation is discussed.

  1. Influence and measurement of mass ablation in ICF implosions

    SciTech Connect

    Spears, B K; Hicks, D; Velsko, C; Stoyer, M; Robey, H; Munro, D; Haan, S; Landen, O; Nikroo, A; Huang, H

    2007-09-05

    Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount of residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.

  2. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  3. Material properties of lithium fluoride for predicting XUV laser ablation rate and threshold fluence

    NASA Astrophysics Data System (ADS)

    Blejchař, Tomáś; Nevrlý, Václav; Vašinek, Michal; Dostál, Michal; Pečínka, Lukáś; Dlabka, Jakub; Stachoň, Martin; Juha, Libor; Bitala, Petr; Zelinger, Zdeněk.; Pira, Peter; Wild, Jan

    2015-05-01

    This paper deals with prediction of extreme ultraviolet (XUV) laser ablation of lithium fluoride at nanosecond timescales. Material properties of lithium fluoride were determined based on bibliographic survey. These data are necessary for theoretical estimation of surface removal rate in relevance to XUV laser desorption/ablation process. Parameters of XUV radiation pulses generated by the Prague capillary-discharge laser (CDL) desktop system were assumed in this context. Prediction of ablation curve and threshold laser fluence for lithium fluoride was performed employing XUV-ABLATOR code. Quasi-random sampling approach was used for evaluating its predictive capabilities in the means of variance and stability of model outputs in expected range of uncertainties. These results were compared to experimental data observed previously.

  4. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    PubMed

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  5. Lung Radiofrequency Ablation: In Vivo Experimental Study with Low-Perfusion-Rate Multitined Electrodes

    SciTech Connect

    Crocetti, Laura Lencioni, Riccardo; Bozzi, Elena; Sbrana, Alberto; Bartolozzi, Carlo

    2008-05-15

    The purpose of this study was to investigate the feasibility and safety of lung radiofrequency (RF) ablation by using low-perfusion-rate, expandable, multitined electrodes in an in vivo animal model. Ten New Zealand White rabbits underwent RF ablation using low-perfusion-rate, expandable, multitined electrodes (Starburst Talon; RITA Medical Systems, Mountain View, CA) and a 200-W RF generator. The electrode was positioned under fluoroscopy guidance and a single percutaneous RF ablation was performed. Saline perfusate was doped with nonionic iodinated contrast agent to render it visible on computed tomography (CT). The pump infused the saline doped with contrast agent into the lateral tines at a rate of 0.1ml/min. The planned ablation was of 3 min, with the hooks deployed to 2 cm at a target temperature of 105{sup o}C. An immediate posttreatment CT scan documented the distribution of the doped saline and the presence of immediate complications. The animals were monitored for delayed complications and sacrificed within 72 h (n = 4), 2 weeks (n = 3), or 4 weeks (n = 3). Assessment of ablation zone and adjacent structures was done at autopsy. Major complications consisted of pneumothorax requiring drainage (n = 2) and skin burn (n = 1). Immediately after the procedure the area of ablation was depicted at CT as a round, well-demarcated area, homogeneously opacified by iodinated contrast medium (mean size, 2.3 {+-} 0.8 cm). The presence of a sharply demarcated area of coagulation necrosis (mean size, 2.1 {+-} 0.4 cm) without severe damage to adjacent structures was confirmed at autopsy. In one case, euthanized at 4 weeks, in whom pneumothorax and pleural effusion were depicted, pleural fibrinous adhesions were demonstrated at autopsy. In conclusion, lung RF ablation performed in an in vivo animal model using low-perfusion-rate, expandable, multitined electrodes is feasible and safe. No severe damage to adjacent structures was demonstrated.

  6. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  7. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A.

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  8. Experimental measurement of ablation effects in plasma armature railguns

    SciTech Connect

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  9. Experimental measurement of ablation effects in plasma armature railguns

    NASA Astrophysics Data System (ADS)

    Parker, J. V.; Parsons, W. M.

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  10. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect

    Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong; Phillips, Jon R.

    2012-07-17

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

  11. Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of Thin-Layered Ablator

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Bowman, Michael P.

    1996-01-01

    Flight vehicles are typically instrumented with subsurface thermocouples to estimate heat transfer at the surface using inverse analysis procedures. If the vehicle has an ablating heat shield, however, temperature time histories from subsurface thermocouples no longer provide enough information to estimate heat flux at the surface. In this situation, the geometry changes and thermal energy leaves the surface in the form of ablation products. The ablation rate is required to estimate heat transfer to the surface. A new concept for a capacitive sensor has been developed to measure ablator depth using the ablator's dielectric effect on a capacitor's fringe region. Relying on the capacitor's fringe region enables the gage to be flush mounted in the vehicle's permanent structure and not intrude into the ablative heat shield applied over the gage. This sensor's design allows nonintrusive measurement of the thickness of dielectric materials, in particular, the recession rates of low-temperature ablators applied in thin (0.020 to 0.060 in. (0.05 to 0.15 mm)) layers. Twenty capacitive gages with 13 different sensing element geometries were designed, fabricated, and tested. A two-dimensional finite-element analysis was performed on several candidate geometries. Calibration procedures using ablator-simulating shims are described. A one-to-one correspondence between system output and dielectric material thickness was observed out to a thickness of 0.055 in. (1.4 mm) for a material with a permittivity about three times that of air or vacuum. A novel method of monitoring the change in sensor capacitance was developed. This technical memorandum suggests further improvements in gage design and fabrication techniques.

  12. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids.

    PubMed

    Streubel, René; Barcikowski, Stephan; Gökce, Bilal

    2016-04-01

    Utilizing a novel laser system consisting of a 500 W, 10 MHz, 3 ps laser source which is fully synchronized with a polygon scanner reaching scanning speeds up to 500 m/s, we explore the possibilities to increase the productivity of nanoparticle synthesis by laser ablation in liquids. By exploiting the high scanning speed, laser-induced cavitation bubbles are spatially bypassed at high repetition rates and continuous multigram ablation rates up to 4 g/h are demonstrated for platinum, gold, silver, aluminum, copper, and titanium. Furthermore, the applicable, ablation-effective repetition rate is increased by two orders of magnitude. The ultrafast ablation mechanisms are investigated for different laser fluences, repetition rates, interpulse distances, and ablation times, while the resulting trends are successfully described by validating a model developed for ultrafast laser ablation in air to hold in liquids as well. PMID:27192268

  13. Measuring direct drive ICF remaining ablator areal density using a gas Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Rubery, Michael; Horsfield, Colin; Herrmann, Hans; Kim, Yongho; Hoffmann, Nelson; Mack, Joseph; Young, Carl; Evans, Scott; Sedillo, Tom; Caldwell, Steven; Grafil, Elliot; Stoeffl, Wolfgang; Milnes, James; Atomic Weapons Establishment PLC Team; Los Alamos National Laboratory Team; Lawrence Livermore National Laboratory Team; Photek Ltd Team

    2013-10-01

    Neutrons from a compressed direct drive ICF target produce γ rays through inelastic interactions with ablator material. The inelastic γ intensity is proportional to the remaining ablator areal density at bang time and the neutron yield. Remaining ablator areal density is an important metric for the quality of the implosion and is strongly correlated with fuel temperature and compression. This contribution describes how a background signal routinely measured on the gas Cherenkov detectors can be used to infer the intensity of the low-energy inelastic gammas from the ablator on the same trace as the DT fusion γ signal, which is directly proportional to the neutron yield; therefore allowing the remaining ablator areal density to be measured in a self consistent manner. Results from recent experiments at the Omega laser facility designed to prove the technique are discussed. In addition, Monte Carlo modelling shows the technique can be used to measure remaining ablator areal density for both plastic and glass capsules.

  14. Patient reported outcome measures for cardiac ablation procedures: a multicentre pilot to develop a new questionnaire

    PubMed Central

    Withers, Kathleen L.; White, Judith; Carolan-Rees, Grace; Patrick, Hannah; O'Callaghan, Peter; Murray, Stephen; Cunningham, David; Wood, Kathryn A.; Lencioni, Mauro; Griffith, Michael

    2014-01-01

    Aim To assess the feasibility of administering Patient Reported Outcomes Measures (PROMs) in patients treated with ablation for cardiac arrhythmias, and to conduct the first stage of development and testing of a new PROM tool. Methods and results A new tool was developed by a multidisciplinary team and tested alongside an adaptation of the patient perception of arrhythmia questionnaire (PPAQ) and EQ-5D-5L in a multicentre retrospective audit involving 791 consecutive cardiac arrhythmia patients treated with catheter ablation at three UK centres over 13 months. Data were recorded in the National Cardiac Rhythm Management Database, part of the National Institute for Cardiovascular Outcomes Research. The response rate was 71.9% (n = 569). Patients reported significant improvements across all outcomes and impacts, with reductions in symptoms of 51.7% (heart racing), 33.9% (fatigue) 31.8% (heart flutters), 43.5% (dizziness), 38.6% (breathlessness), 44.2% (chest pressure), 33.1% (trouble concentrating), 15.9% (headache), 28.3% (neck pressure), and 23.4% (fainting) (P < 0.001). The mean number of social days affected reduced by 7.49 days/month (P < 0.001); mean work/school days affected/month reduced by 6.26 (P < 0.001); mean GP/hospital visits reduced by 1.36 days/month (P < 0.001). The procedure met patient expectations in 72% of responders. Conclusions The high response rate suggests that the use of PROMs in this patient group is feasible, with rates equalling those of the National PROMs Programme. The results showed that patients experienced significant improvements in their quality of life following ablation, while feedback allowed the tools to be improved. Further work is required to validate these tools; however, the findings suggest that PROMs could be useful in the audit of ablation techniques. PMID:24627541

  15. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  16. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, Frank S.

    2003-01-01

    A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also

  17. Holmium:YAG (λ=2120nm) vs. Thulium fiber laser (λ=1908nm) ablation of kidney stones: thresholds, rates, and retropulsion

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-03-01

    The Holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but its efficient operation is limited to relatively low pulse rates (~10 Hz) during lithotripsy. On the contrary, the Thulium Fiber Laser (TFL) is limited to low pulse energies, but can operate at very high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion effects for different Ho:YAG and TFL operation modes. The TFL (λ=1908 nm) was operated with pulse energies of 5-35 mJ, 500-μs pulse duration, and pulse rates of 10-400 Hz. The Ho:YAG laser (λ=2120 nm) was operated with pulse energies of 30-550 mJ, 350-μs pulse duration, and pulse rate of 10 Hz. Laser energy was delivered through small-core (200-270-μm) optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 J/cm2and 20.8 J/cm2, respectively. Stone retropulsion with Ho:YAG laser increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies < 175 mJ at 10 Hz, and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies (e.g. 100-200 mJ) and high pulse rates (100-150 Hz) may also provide higher ablation rates, when retropulsion is not the primary concern.

  18. Recombinant TSH Stimulated Remnant Ablation Therapy in Thyroid Cancer: The Success Rate Depends on the Definition of Ablation Success—An Observational Study

    PubMed Central

    van der Horst-Schrivers, Anouk N. A.; Sluiter, Wim J.; Muller Kobold, Anneke C.; Wolffenbuttel, Bruce H. R.; Plukker, John T. M.; Bisschop, Peter H.; de Klerk, John M.; Al Younis, Imad; Lips, Paul; Smit, Jan W.; Brouwers, Adrienne H.; Links, Thera P.

    2015-01-01

    Introduction Patients with differentiated thyroid cancer (DTC) are treated with (near)-total thyroidectomy followed by remnant ablation. Optimal radioiodine-131 (131I) uptake is achieved by withholding thyroid hormone (THW), pretreatment with recombinant human Thyrotropin Stimulating Hormone (rhTSH) is an alternative. Six randomized trials have been published comparing THW and rhTSH, however comparison is difficult because an uniform definition of ablation success is lacking. Using a strict definition, we performed an observational study aiming to determine the efficacy of rhTSH as preparation for remnant ablation. Patients and Methods Adult DTC patients with, tumor stage T1b to T3, Nx, N0 and N1, M0 were included in a prospective multicenter observational study with a fully sequential design, using a stopping rule. All patients received remnant ablation with 131I using rhTSH. Ablation success was defined as no visible uptake in the original thyroid bed on a rhTSH stimulated 150 MBq 131I whole body scan (WBS) 9 months after remnant ablation, or no visible uptake in the original thyroid bed on a post therapeutic WBS when a second high dose was necessary. Results After interim analysis of the first 8 patients, the failure rate was estimated to be 69% (90% confidence interval (CI) 20-86%) and the inclusion of new patients had to be stopped. Final analysis resulted in an ablation success in 11 out of 17 patients (65%, 95% CI 38-86%). Conclusion According to this study, the efficacy of rhTSH in the preparation of 131I ablation therapy is inferior, when using a strict definition of ablation success. The current lack of agreement as to the definition of successful remnant ablation, makes comparison between different ablation strategies difficult. Our results point to the need for an international consensus on the definition of ablation success, not only in routine patient’s care but also for scientific reasons. Trial Registration Dutch Trial Registration NTR2395 PMID

  19. Development of Naphthalene PLIF for Making Quantitative Measurements of Ablation Products Transport in Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Combs, Christopher; Clemens, Noel

    2014-11-01

    Ablation is a multi-physics process involving heat and mass transfer and codes aiming to predict ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. Low-temperature sublimating ablators such as naphthalene can be used to create a limited physics problem and simulate ablation at relatively low temperature conditions. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of naphthalene to visualize the transport of ablation products in a supersonic flow. In the current work, naphthalene PLIF will be used to make quantitative measurements of the concentration of ablation products in a Mach 5 turbulent boundary layer. For this technique to be used for quantitative research in supersonic wind tunnel facilities, the fluorescence properties of naphthalene must first be investigated over a wide range of state conditions and excitation wavelengths. The resulting calibration of naphthalene fluorescence will be applied to the PLIF images of ablation from a boundary layer plug, yielding 2-D fields of naphthalene mole fraction. These images may help provide data necessary to validate computational models of ablative thermal protection systems for reentry vehicles. Work supported by NASA Space Technology Research Fellowship Program under grant NNX11AN55H.

  20. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    PubMed

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis. PMID:26260774

  1. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    NASA Technical Reports Server (NTRS)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.

  2. Coupling effects of the number of pulses, pulse repetition rate and fluence during laser PMMA ablation

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Feng, Y.; Yi, X.-S.

    2000-10-01

    Poly(methyl methacrylate) (PMMA) was ablated using a 248-nm long-pulsed KrF excimer laser operating at a pulse repetition rate (PRR) of 2 and 10 Hz, and fluence varying from 0.4 to 2 J/cm 2. The coupling effects of multiple shots, PRR, and fluence are found and discussed on the etching depth data and topography of PMMA. An increase in either PRR, or fluence or the number of pulses can accelerate the etching efficiency in terms of ablation rate, as a result of strengthened thermal effects. Quality of the craters such as roughness, porosity and contamination is sensitively dependent on the specific laser operating conditions. Basically, increasing the PRR and the number of pulses gives rise to a crater with smoother and less porous bottom.

  3. Charge Exchange and Ablation Rates of a Titanium Wire Plasma Corona

    SciTech Connect

    Terry, Robert E.

    2009-01-21

    Wire ablation rates are important features in any examination of precursors or transparent mode implosions of wire arrays. When ion temperatures in a Ti wire plasma corona exceed a few eV, the process of resonant charge exchange competes with elastic scattering. Ions pushed into the corona from an anode bias wire array can be expected to drive a fast neutral wind into the surrounding volume, while a cathode bias wire array would not show the strong neutral wind.

  4. A Comparative Study of Fibroid Ablation Rates Using Radio Frequency or High-Intensity Focused Ultrasound

    SciTech Connect

    Meng Xin; He Guangbin; Zhang Jun; Han Zenghui; Yu Ming; Zhang Miaomiao; Tang Yu; Fang Ling; Zhou Xiaodong

    2010-08-15

    This study compared the technical success of fibroid devascularization using high-intensity focused ultrasound (HIFU) and radio frequency (RF) to provide an experimental basis for the clinical selection of a suitable, minimally invasive method for treating uterine fibroids. Patients were randomly divided into two groups and treated with HIFU or RF accordingly. The two groups of patients were divided again into subgroups A, B, and C based on fibroid diameter and subgroups A', B', and C' based on fibroid blood supply grades. The fibroid diameters in subgroups A, B, and C were 2.0 cm {<=} D < 4.0 cm, 4.0 cm {<=} D<6.0 cm and 6.0 cm {<=} D<8.0 cm, respectively, and fibroid blood supplies were classified into three grades corresponding to subgroups A', B', and C', respectively. The complete ablation rates of the two treatments were compared by contrast-enhanced ultrasound. Both treatments were effective, but the general complete ablation rate of RF was higher than that of HIFU (p < 0.05). The comparison between the two treatments in subgroup A and subgroup A' showed that the complete ablation rate of HIFU was as good as that of RF (p > 0.05). In other subgroups, the complete ablation rates of RF were better than those of HIFU (p < 0.05). No severe complications were observed after these two treatments. RF can be applied for the majority of fibroids. As a noninvasive therapy, HIFU could be the preferred method for the treatment of small, hypovascular fibroids.

  5. In vitro investigation of intra-canal dentine-laser beam interaction aspects: I. Evaluation of ablation capability (ablation rate and efficiency).

    PubMed

    Minas, Nova Hambersom; Meister, Joerg; Franzen, Rene; Gutknecht, Norbert; Lampert, Friedrich

    2010-11-01

    The aim of this study was to determine the amount of intra-canal dentine removed with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser using different endodontic tips and different power settings. Ninety intact extracted bovine teeth were selected as samples. After sectioning the roots and preparing the testing cylinders, we divided the samples into three main groups (A, B, C), with further subdivision of each group to be irradiated with three different powers (1500 mW, 1750 mW and 2000 mW). An Er,Cr:YSGG laser system (2.78 microm, 140 micros, 20 Hz and 65% water to 35% air ratio) was used for irradiation, and the loss of intra-canal dentine mass was calculated by the difference between the initial and final sample masses. Data were analysed with Kolmogorov-Smirnov, analysis of variance (ANOVA) and Tukey tests. At a significance level of alpha = 1%, the results showed statistically significant differences (P < 0.0001) between different tip groups, regarding both the ablation rate and the ablation efficiency criteria. With regard to the three irradiation power settings, statistically significant difference were recorded only between groups C and A, for the ablation rate criteria. The intra-canal ablation ability of the Er,Cr:YSGG laser improved with increasing power and/or tip diameter. The latter exhibited a stronger influence on ablation rate and efficiency. Laser intra-canal ablation is an important addition to the field of endodontics; nevertheless, further investigations and system improvements are required. PMID:19636663

  6. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  7. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  8. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  9. Influence of peak power in ablation rate of dental hard tissues: mathematical model

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.

    1996-12-01

    Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.

  10. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  11. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained. PMID:25689218

  12. The direct measurement of ablation pressure driven by 351-nm laser radiation

    NASA Astrophysics Data System (ADS)

    Fratanduono, D. E.; Boehly, T. R.; Celliers, P. M.; Barrios, M. A.; Eggert, J. H.; Smith, R. F.; Hicks, D. G.; Collins, G. W.; Meyerhofer, D. D.

    2011-10-01

    The instantaneous scaling of ablation pressure to laser intensity is directly inferred for ramp compression of diamond targets irradiated by 351-nm light. Continuously increasing pressure profiles from 100 to 970 GPa are produced by direct-drive laser ablation at intensities up to 7 × 1013 W/cm2. The free-surface velocity on the rear of the target is used to directly infer the instantaneous ablation-pressure profile at the front of the target. The laser intensity on target is determined by laser power measurements and fully characterized laser spots. The ablation pressure is found to depend on the laser intensity as P(GPa )=42(±3)[I(TW/cm2)]0.71(±0.01).

  13. Ablation of atheroma by laser energy: a comparative study of the efficacy of different temporal rates of energy deposition

    NASA Astrophysics Data System (ADS)

    Ramsay, Donald J.; Walker, Philip J.; Dadswell, Nicola G.; May, James; Piper, James A.; Wacher, Christine

    1990-06-01

    Laser angioplasty continues to attract interest as a potential method for treating atherosclerotic arterial disease. Current efforts are aimed at finding the most effective combination of laser and delivery system. High energy pulsed ultraviolet or infrared lasers demonstrate good photoablative properties but there remain practical difficulties with the optical fibre delivery. Continuous wave lasers are widely used in conjunction with "hot-tip" fibres for thermal ablation but their direct (optical) ablation efficiency is low, causing significant surrounding thermal damage in soft tissue. While considerable attention has been directed previously at the ablative effects for different laser wavelengths, little systematic study has been made of the efficacy for different temporal rates of energy deposition. We have compared the efficacy for tissue ablation in cadaveric human aorta of three different laser systems with similar wavelengths in the visible (green) but different temporal rates of energy deposition. The laser sources were the continuous wave argon ion laser (514.5 nm), the high pulse energy, frequency doubled Nd:YAG laser (532 nm) and the copper vapour laser. The copper vapour laser is a high repetition rate, high average power, pulsed laser emitting in the green (511 nm) and yellow (578 nm) which has temporal characteristics intermediate between those of the Nd:YAG laser and the argon ion laser, and has the potential to be effective both for direct optical ablation and hot-tip thermal ablation.

  14. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  15. Sensor for Injection Rate Measurements

    PubMed Central

    Marcic, Milan

    2006-01-01

    A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzle hole. The differences in injection rates lead to uneven thermal loads of Diesel engine combustion chambers. All today known measuring method, such as Bosch and Zeuch give accurate results of the injection rate in diesel single-hole nozzles. With multihole nozzles they tell us nothing about possible differences in injection rates between individual holes of the nozzle. At deformational measuring method, the criterion of the injected fuel is expressed by the deformation of membrane occurring due to the collision of the pressure wave against the membrane. The pressure wave is generated by the injection of the fuel into the measuring space. For each hole of the nozzle the measuring device must have a measuring space of its own into which fuel is injected as well as its measuring membrane and its own fuel outlet. During measurements procedure the measuring space must be filled with fuel to maintain an overpressure of 5 kPa. Fuel escaping from the measuring device is conducted into the graduated cylinders for measuring the volumetric flow through each hole of the nozzle.The membrane deformation is assessed by strain gauges. They are glued to the membrane and forming the full Wheatstone's bridge. We devoted special attention to the membrane shape and temperature compensation of the strain gauges.

  16. Comparison of High Rate Laser Ablation and Resulting Structures Using Continuous and Pulsed Single Mode Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Knebel, T.; Streek, A.; Exner, H.

    This paper compares high rate laser ablation and resulting structures of aluminum by using both a continuous wave and a ns-pulsed single mode fiber laser of high average laser power. Two different scan technologies were applied for fast deflection of the laser beams. In this work, 2.5D laser processing was studied by using a high aperture galvanometer scanner with a maximum scan speed of 18 m/s. By contrast, considerably higher scan speeds up to 1,000 m/s were achieved by using the in-house developed polygon scanner system. The ablation rates and the processing rates per unit area were analyzed by means of the depths of line-scan ablation tracks and laser processed cavities. In addition, SEM photograph of the machining samples will be presented in order to evaluate the machining quality. Finally the feasibility of this high rate technology for industrial application is demonstrated by machining examples.

  17. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

    PubMed Central

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.

    2016-01-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  18. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  19. Measurement of ablative laser propulsion parameters for aluminum, Co-Ni ferrite and polyurethane polymer

    NASA Astrophysics Data System (ADS)

    Jamil, Yasir; Saeed, Humaima; Raza Ahmad, M.; Ahmad Khan, Shakeel; Farooq, Hashim; Shahid, Muhammad; Zia, K. M.; Amin, Nasir

    2013-01-01

    Laser ablation propulsion is a form of beam-powered propulsion in which a pulsed laser ablates a target material thus producing thrust. We report in this work the measurements of various parameters related to laser-induced micropropulsion in toluene diisocyanate-based polyurethane polymer, aluminum and Co-Ni ferrite. The targets were irradiated by a Q-switched pulsed Nd-YAG laser at 1064 nm (pulse duration 5 ns) under atmospheric conditions. A contact-free optical triangulation method was used to measure the laser ablation induced thrust in the samples. The measurements and calculations depict that Co-Ni ferrite is better in terms of critical propulsion parameters C m and I sp. It has been observed that the propulsion parameters depend on the energy per pulse of the incident laser beam.

  20. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed. PMID:24105399

  1. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  2. Femtosecond x-ray diffuse scattering measurements of semiconductor ablation dynamics

    NASA Astrophysics Data System (ADS)

    Lindenberg, A. M.; Engemann, S.; Gaffney, K. J.; Sokolowski-Tinten, K.; Larsson, J.; Reis, D.; Lorazo, P.; Hastings, J. B.

    2008-05-01

    Femtosecond time-resolved small and wide-angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the build-up of these fluctuations is measured in real-time. Small-angle scattering measurements reveal the first steps in the nucleation of nanoscale voids below the surface of the semiconductor and support MD simulations of the ablation process.

  3. Debris on Khumbu Glacier at the base of Mt. Everest (Nepal) and its relation to rates of ablation and erosion

    NASA Astrophysics Data System (ADS)

    Barker, A. D.; Brugh, T.; Hallet, B.; Conway, H.; Rasmussen, A.

    2011-12-01

    The crest of the Himalaya is defined by massive peaks, shear rock faces and broad rivers of ice that typically disappear under a thick debris cover at lower elevations flanked by extensive morainal ramparts. Supraglacial debris alters the rate of ice ablation and therefore affects the glacier's response to climate change. At the base of Mount Everest, the Khumbu glacier and its debris cover are sustained by input of both snow and erosion-generated debris. Little is known, however, about the rate of ablation and erosion in the glaciated basin. Herein, we investigate the flux of ice and debris through use of existing data and field studies to guide estimates of contemporary erosion rates for the Khumbu basin. We determined the thickness of debris accumulating in the lower reaches through field mapping and using two geophysical techniques: electrical resistivity tomography (Wenner and Dipole-Dipole arrays) and ground penetrating radar (40 MHz frequency). During the spring of 2011, we collected continuous debris thickness profiles totaling 1.75 km in length. The results detail the spatial distribution of debris thickness under the very irregular glacier surface. The maximum thickness measured was 12 m, and, in general, the debris thickness increases downglacier, ranging from centimeters near Everest base camp to meters near Lobuche with thickest debris cover corresponding to low spots in the glacier surface topography. These debris thickness data complement and augment the sparse data already available, as well as help us develop an understanding of the spatial debris distribution that can be applied to other glaciers in the region. Additionally, the flux of debris that is advected with the ice is determined using existing surface velocity fields. We are currently developing a model of the evolution of ice and debris through time.

  4. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  5. Time-resolved measurements of in-flight ablator performance using streaked x-ray radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien; Spears, Brian; Sorce, Chuck; Celliers, Peter; Landen, Otto; Collins, Gilbert; Boehly, Thomas

    2007-11-01

    Determining ablator performance during an implosion is a critical part of the NIF tuning campaign. In particular, it is vital to have an accurate, in-flight measure of the velocity, areal density, and mass of the ablator. We present a new technique which achieves time-resolved measurements of all these parameters in a single, area-backlit, streaked radiograph. This is accomplished by tomographically inverting the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, thickness, areal density, and mass of the ablator can then be determined simply by taking moments of this density profile. Application of this technique is demonstrated on Cu-doped Be capsule implosions at Omega. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  6. Impact of Tricuspid Regurgitation on the Success of Atrioventricular Node Ablation for Rate Control in Patients With Atrial Fibrillation: The Node Blast Study.

    PubMed

    Reddy, Yeruva Madhu; Gunda, Sampath; Vallakati, Ajay; Kanmanthareddy, Arun; Pillarisetti, Jayasree; Atkins, Donita; Bommana, Sudharani; Emert, Martin P; Pimentel, Rhea; Dendi, Raghuveer; Berenbom, Loren D; Lakkireddy, Dhanunjaya

    2015-09-15

    Atrioventricular node (AVN) ablation is an effective treatment for symptomatic patients with atrial arrhythmias who are refractory to rhythm and rate control strategies where optimal ventricular rate control is desired. There are limited data on the predictors of failure of AVN ablation. Our objective was to identify the predictors of failure of AVN ablation. This is an observational single-center study of consecutive patients who underwent AVN ablation in a large academic center. Baseline characteristics, procedural variables, and outcomes of AVN ablation were collected. AVN "ablation failure" was defined as resumption of AVN conduction resulting in recurrence of either rapid ventricular response or suboptimal biventricular pacing. A total of 247 patients drug refractory AF who underwent AVN ablation at our center with a mean age of 71 ± 12 years with 46% being males were included. Ablation failure was seen in 11 (4.5%) patients. There were no statistical differences between patients with "ablation failure" versus "ablation success" in any of the baseline clinical variables. Patients with moderate-to-severe tricuspid regurgitation (TR) were much more likely to have ablation failure than those with ablation success (8 [73%] vs 65 [27%]; p = 0.003). All 11 patients with ablation failure had a successful redo procedure, 9 with right and 2 with the left sided approach. On multivariate analysis, presence of moderate-to-severe TR was found to be the only predictor of failure of AVN ablation (odds ratio 9.1, confidence interval 1.99 to 42.22, p = 0.004). In conclusion, moderate-to-severe TR is a strong and independent predictor of failure of AVN ablation. PMID:26174606

  7. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  8. Probing timescales during back side ablation of Molybdenum thin films with optical and electrical measurement techniques.

    PubMed

    Bartl, D; Ametowobla, M; Schmid, F; Letsch, A; Hafner, M; Nolte, S; Tünnermann, A

    2013-07-15

    In this study we present a new measurement technique to investigate the timescales of back side ablation of conductive films, using Molybdenum as an application example from photovoltaics. With ultrashort laser pulses at fluences below 0.6 J/cm(2), we ablate the Mo film in the shape of a fully intact Mo 'disc' from a transparent substrate. By monitoring the time-dependent current flow across a specifically developed test structure, we determine the time required for the lift-off of the disc. This value decreases with increasing laser fluence down to a minimum of 21 ± 2 ns. Furthermore, we record trajectories of the discs using a shadowgraphic setup. Ablated discs escape with a maximum velocity of 150 ± 5 m/s whereas droplets of Mo forming at the center of the disc can reach velocities up to 710 ± 11 m/s. PMID:23938494

  9. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  10. Percutaneous Radiofrequency Ablation and Transcatheter Arterial Chemoembolization for Hypervascular Hepatocellular Carcinoma: Rate and Risk Factors for Local Recurrence

    SciTech Connect

    Murakami, Tomonori Ishimaru, Hideki; Sakamoto, Ichiro; Uetani, Masataka; Matsuoka, Yohjiro; Daikoku, Manabu; Honda, Sumihisa; Koshiishi, Takeshi; Fujimoto, Toshifumi

    2007-07-15

    Purpose. To analyze local recurrence-free rates and risk factors for recurrence following percutaneous radiofrequency ablation (RFA) or transcatheter arterial chemoembolization (TACE) for hypervascular hepatocellular carcinoma (HCC). Methods. One hundred and nine nodules treated by RFA and 173 nodules treated by TACE were included. Hypovascular nodules were excluded from this study. Overall local recurrence-free rates of each treatment group were calculated using the Kaplan-Meier method. The independent risk factors of local recurrence and the hazard ratios were analyzed using Cox's proportional-hazards regression model. Based on the results of multivariate analyses, we classified HCC nodules into four subgroups: central nodules {<=}2 cm or >2 cm and peripheral nodules {<=}2 cm or >2 cm. The local recurrence-free rates of these subgroups for each treatment were also calculated. Results. The overall local recurrence-free rate was significantly higher in the RFA group than in the TACE group (p = 0.013). The 24-month local recurrence-free rates in the RFA and TACE groups were 60.0% and 48.9%, respectively. In the RFA group, the only significant risk factor for recurrence was tumor size >2 cm in greatest dimension. In the TACE group, a central location was the only significant risk factor for recurrence. In central nodules that were {<=}2 cm, the local recurrence-free rate was significantly higher in the RFA group than in the TACE group (p < 0.001). In the remaining three groups, there was no significant difference in local recurrence-free rate between the two treatment methods. Conclusion. A tumor diameter of >2 cm was the only independent risk factor for local recurrence in RFA treatment, and a central location was the only independent risk factor in TACE treatment. Central lesions measuring {<=}2 cm should be treated by RFA.

  11. Meteor wake in high frame-rate images--implications for the chemistry of ablated organic compounds

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Stenbaek-Nielsen, Hans C.

    2004-01-01

    Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.

  12. Data Report on Material Ablation and Shock Pressure Measurements at ZBL

    SciTech Connect

    Lawrence Livermore National Laboratory

    2007-01-03

    A series of tests were conducted on Z-Beamlet Laser (ZBL) to provide data that can be used to determine the laser coupling coefficient and validate code capabilities. The gauges and cables in the chamber were shielded with conduit and resulted in high fidelity signals. The stress measurements show a clear trend of peak stress attenuation with propagation distance, as would be expected. The aluminum sample stresses measured were in the 4 to 8 Kbar range. This constitutes a good data set for model validation. VISAR was considered as a diagnostic for this test series but predicted stress levels were uncertain and we had good success previously with PVDF at this test facility; plus, the aggressive test schedule and limited number of shots left little opportunity to set up this diagnostic. Shock profile measurements were made with both PVDF and Quartz gauges. The PVDF gauge and the Quartz gauge measured very similar shock pulses transmitted through 1.5-mm thick 2024-T3 samples at a nominal fluence of 400 J/cm{sup 2}. The similarity in the two profiles indicates good correlation between measurement techniques and the differences between the sensor areas allow one to evaluate different parts of the beam. The laser beam ablated the front surfaces of the samples. Surface profile measurements of the ablated surface were used to estimate the depth of material removed. Ablated sample surface and crater formation indicate a non-uniform hot spot in the center of the sample.

  13. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  14. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    SciTech Connect

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  15. Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations

    NASA Astrophysics Data System (ADS)

    Macchi, Edoardo Gino; Gallati, Mario; Braschi, Giovanni; Cigada, Alfredo; Comolli, Lorenzo

    2015-05-01

    Radiofrequency thermal ablation is the first therapeutic option for the minimally invasive treatment of liver tumors. This medical procedure employs the Joule heat produced by a RF electromagnetic field to kill tumor cells. The outcome of the procedure is strongly affected by the temperature distribution near the RF applicator, however the measurement of this distribution, even in ex vivo experiments, is not straightforward since most traditional local temperature measurement techniques are not well-suited, due to both electromagnetic interferences and the sensor heat sink effect. Given the importance of the temperature field knowledge, in this paper special care was devoted to its measurement employing both infrared thermal imaging and NTC thermistors. Several RF ablation tests on ex vivo porcine liver tissue were carried out measuring the space-time evolution of temperature during the procedure (with spatial resolution ≤1 mm) and producing useful data for the design and the calibration of a numerical model. Electro-thermal numerical simulations of the experimental tests were performed using a mathematical model suitable for the heating phase of the procedure (up to 95 °C). The simulations results allowed to check the physical consistency of the measured data and suggested that a constant thermal conductivity is satisfactory for modeling the temperature evolution during RF ablation.

  16. Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations

    NASA Astrophysics Data System (ADS)

    Macchi, Edoardo Gino; Gallati, Mario; Braschi, Giovanni; Cigada, Alfredo; Comolli, Lorenzo

    2014-09-01

    Radiofrequency thermal ablation is the first therapeutic option for the minimally invasive treatment of liver tumors. This medical procedure employs the Joule heat produced by a RF electromagnetic field to kill tumor cells. The outcome of the procedure is strongly affected by the temperature distribution near the RF applicator, however the measurement of this distribution, even in ex vivo experiments, is not straightforward since most traditional local temperature measurement techniques are not well-suited, due to both electromagnetic interferences and the sensor heat sink effect. Given the importance of the temperature field knowledge, in this paper special care was devoted to its measurement employing both infrared thermal imaging and NTC thermistors. Several RF ablation tests on ex vivo porcine liver tissue were carried out measuring the space-time evolution of temperature during the procedure (with spatial resolution ≤1 mm) and producing useful data for the design and the calibration of a numerical model. Electro-thermal numerical simulations of the experimental tests were performed using a mathematical model suitable for the heating phase of the procedure (up to 95 °C). The simulations results allowed to check the physical consistency of the measured data and suggested that a constant thermal conductivity is satisfactory for modeling the temperature evolution during RF ablation.

  17. Optical properties measurement of the laser-ablated tissues for the combined laser ablation with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    Laser ablation therapy combined with photodynamic therapy (PDT) is studied for treatment of advanced cancers. The clinical outcome of PDT may be improved by the accurate knowledge about the light distribution within tissue. Optical properties [absorption coefficient (μa), scattering coefficient (μs), anisotropy factor (g), refractive index, etc.] of tissues help us realizing a light propagation through the tissue. It is important to understand of the effect of laser coagulation formed by laser ablation to PDT. The aim of this study is to estimate of influence of coagulated region to PDT for effective PDT combined laser ablation therapy. We evaluated the optical property of mouse tumor tissue in native and coagulated state using a double integrating sphere system and an inverse Monte Carlo method in the wavelength range from 350 to 1000 nm. After laser ablation, the μa and reduced scattering coefficient spectra of coagulated tissues were increased in the wavelength range from 350 to 1000 nm. The optical penetration depth of coagulated tissues is 1.2-2.9 times lower than the native state in the wavelength range from 350 to 1000 nm. The intensity of the light energy inside the coagulated tissue falls to about 60% of its original value at the end of coagulated layer. The evaluation of light energy distribution by the determination of the tissues optical properties could be useful for optimization of the treatment procedure in combined laser ablation with PDT.

  18. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in the in vivo porcine liver

    NASA Astrophysics Data System (ADS)

    Ramaekers, P.; de Greef, M.; van Breugel, J. M. M.; Moonen, C. T. W.; Ries, M.

    2016-02-01

    This study investigated whether an MR-guided pulsed HIFU ablation strategy could be implemented under clinical conditions, using a transducer designed for uterine fibroid ablation, to obtain an ablation rate that is sufficiently high for clinical abdominal HIFU therapy in highly perfused organs. A pulsed HIFU ablation strategy, aimed at increasing the energy absorption in the HIFU focal area by local shock wave formation in the non-linear pressure regime, was compared to an energy-equivalent continuous wave sonication strategy in the linear pressure regime. Both ablation strategies were used for transcutaneous sonication of pre-defined treatment cells in the livers of 5 pigs in vivo. Temperature evolution in both the target area as well as the pre-focal muscle layer was monitored simultaneously using MR thermometry. Local energy absorption and thermal dose volumes were shown to be increased using the pulsed ablation strategy, while preserving healthy tissue in the near field of the acoustic beam. Respiratory motion compensation of both acoustic energy delivery and MR thermometry was applied through gating based on MR navigator echoes. Histopathology showed that confluent vacuolated thermal lesions were created when the pulsed ablation strategy was used. Additionally, it was shown that the heat sink effect caused by the presence of larger vessels could be overcome. The pulsed HIFU ablation strategy achieved an ablation rate of approximately 4 ml per hour in the in vivo porcine liver, without causing undesired damage to healthy tissues in the near field.

  19. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in the in vivo porcine liver.

    PubMed

    Ramaekers, P; de Greef, M; van Breugel, J M M; Moonen, C T W; Ries, M

    2016-02-01

    This study investigated whether an MR-guided pulsed HIFU ablation strategy could be implemented under clinical conditions, using a transducer designed for uterine fibroid ablation, to obtain an ablation rate that is sufficiently high for clinical abdominal HIFU therapy in highly perfused organs. A pulsed HIFU ablation strategy, aimed at increasing the energy absorption in the HIFU focal area by local shock wave formation in the non-linear pressure regime, was compared to an energy-equivalent continuous wave sonication strategy in the linear pressure regime. Both ablation strategies were used for transcutaneous sonication of pre-defined treatment cells in the livers of 5 pigs in vivo. Temperature evolution in both the target area as well as the pre-focal muscle layer was monitored simultaneously using MR thermometry. Local energy absorption and thermal dose volumes were shown to be increased using the pulsed ablation strategy, while preserving healthy tissue in the near field of the acoustic beam. Respiratory motion compensation of both acoustic energy delivery and MR thermometry was applied through gating based on MR navigator echoes. Histopathology showed that confluent vacuolated thermal lesions were created when the pulsed ablation strategy was used. Additionally, it was shown that the heat sink effect caused by the presence of larger vessels could be overcome. The pulsed HIFU ablation strategy achieved an ablation rate of approximately 4 ml per hour in the in vivo porcine liver, without causing undesired damage to healthy tissues in the near field. PMID:26757987

  20. Spatial coherence measurements of non-resonant and resonant high harmonics generated in laser ablation plumes

    SciTech Connect

    Ganeev, R. A.; Abdelrahman, Z. Frank, F.; Witting, T.; Okell, W. A.; Fabris, D.; Hutchison, C.; Marangos, J. P.; Tisch, J. W. G.

    2014-01-13

    We present measurements of the spatial coherence of the high-order harmonics generated in laser-produced ablation plumes. Harmonics were generated using 4 fs, 775 nm pulses with peak intensity 3 × 10{sup 14} W cm{sup −2}. Double-slit fringe visibilities in the range of ≈0.6–0.75 were measured for non-resonant harmonics in carbon and resonantly enhanced harmonics in zinc and indium. These are somewhat higher than the visibility obtained for harmonics generated in argon gas under similar conditions. This is attributed to lower time-dependent ionization of the plasma ablation targets compared to argon during the high harmonics generation process.

  1. Laboratory Measurements of Micrometeoroid Impacts into Solid Ice and Gas Ablation Targets

    NASA Astrophysics Data System (ADS)

    Munsat, T. L.; Britt, D. T.; Dee, R.; Gudipati, M. S.; Horanyi, M.; James, D.; Janches, D.; Kempf, S.; Nelson, A. O.; Plane, J. M. C.; Shu, A. J.; Sternovsky, Z.; Thomas, E.; Ulibarri, Z.

    2015-12-01

    The dust accelerator facility at the SSERVI Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT) has recently implemented two major target upgrades: a cryogenic ice target and a high-pressure gas target. Each target can be exposed to micron and submicron particles accelerated to speeds up to 100 km/s. The ice target consists of a LN2 cryogenic system connected to both a water-ice deposition system and a movable freezer/holder for a pre-mixed liquid cartridge. Impact products and chemistry are assessed with an integrated time-of-flight mass spectrometer. Such a system enables a program of research into the evolution of ice under micrometeoroid bombardment and the synthesis of complex organic molecules through micrometeoroid impacts. We present the early results from studies of hypervelocity iron particle impacts into frozen mixtures of H2O, NH3, and olivine grains which contain nanophase Fe, a possible catalyst for organic chemical reactions, under conditions of low-pressure background CO or CO2 gas. The gas target consists of a differentially pumped chamber kept at pressures up to 0.5 Torr, such that high-velocity (~10-60 km/s) micrometeoroids are completely ablated within the 40 cm long measurement region. The chamber is configured with segmented electrodes to perform temporally- and spatially-resolved measurements of charge production during ablation, and localized light-collection optics enable an assessment of the light production. We present the latest results of experiments to determine the ionization efficiency of Fe particles ablating in N2, air, CO2, and He gas, and modifications to standard ablation models made possible from these experimental results. Such studies are critical for the interpretation of remote sensing measurements, including radar and lidar, which in turn make possible the assessment of the interplanetary dust particle flux.

  2. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  3. Compact And Robust Laser Impulse Measurement Device, With Ultrashort Pulse Laser Ablation Results

    NASA Astrophysics Data System (ADS)

    Kremeyer, Kevin; Lapeyre, John; Hamann, Steven

    2008-04-01

    An impulse measurement device and analysis package was conceived, designed, constructed, tested, and demonstrated to be capable of: measuring nanoNewton-seconds to milliNewton-seconds of impulse due to laser-ablation; being transported as carry-on baggage; set-up and tear-down times of less than an hour; target exchange times of less than two minutes (targets can be ablated at multiple positions for thousands of shots); measurements in air and in vacuum; error of just a few percent; repeatability over a wide range of potential systematic error sources; and time between measurements, including ring-down and analysis, of less than 30 seconds. The instrument consists of a cantilever (i.e. leaf spring), whose time-dependent displacement/oscillation is measured and analyzed to determine the impulse imparted by a laser pulse to a target. These shapes are readily/commercially available, and any target material can be used, provided it can be fashioned in the form of a cantilever, or as a coating/film/tape, suitable for mounting on a cantilever of known geometry. The instrument was calibrated both statically and dynamically, and measurements were performed on brass, steel, and Aluminum, using laser pulses of ˜7 ns, ˜500 ps, and ˜500 fs. The results agree well with those published in the literature, with surface effects, atmosphere, and pre-/post-pulses demonstrating interesting effects and indicating areas for further study. These parameters should be carefully controlled and held constant during a series of measurements. The impulse imparted by ablation due to laser filaments in air was also explored.

  4. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. S.; Dietrich, R. C.; Matusch, A.; Pozebon, D.; Dressler, V. L.

    2008-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C +, 33S + and 34S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.

  5. Measurement of electron density by Stark broadening in an ablative pulsed plasma thruster

    SciTech Connect

    Liu Feng; Nie Zongfu; Xu Xu; Zhou Qianhong; Li Linsen; Liang Rongqing

    2008-09-15

    Electron density was measured by Stark broadening in an ablative pulsed plasma thruster. The asymmetrical deconvolution is used to obtain Stark broadening. The result shows that the electron density in the discharge channel is 2.534x10{sup 22} m{sup -3} when the discharge energy is 5 J and the measured electron temperature is 18 000 K, and it is in excellent agreement with other experimental and theoretical data. The electron density in the discharge channel increases very minimally with increasing discharge energy.

  6. Ablation efficiency and relative thermal confinement measurements using wavelengths 1,064, 1,320, and 1,444 nm for laser-assisted lipolysis.

    PubMed

    Youn, Jong-In; Holcomb, J David

    2013-02-01

    Laser-assisted lipolysis is routinely used for contouring the body and the neck while modifications of the technique have recently been advocated for facial contouring. In this study, wavelength-dependence measurements of laser lipolysis effect were performed using different lasers at 1,064, 1,320, and 1,444 nm wavelengths that are currently used clinically. Fresh porcine skin with fatty tissue was used for the experiments with radiant exposure of 5-8 W with the same parameters (beam diameter = 600 μm, peak power = 200 mJ, and pulse rate = 40 Hz) for 1,064, 1,320 and 1,444 nm laser wavelengths. After laser irradiation, ablation crater depth and width and tissue mass loss were measured using spectral optical coherence tomography and a micro-analytical balance, respectively. In addition, thermal temporal monitoring was performed with a thermal imaging camera placed over ex vivo porcine fat tissue; temperature changes were recorded for each wavelength. This study demonstrated greatest ablation crater depth and width and mass removal in fatty tissue at the 1,444 nm wavelength followed by, in order, 1,320 and 1,064 nm. In the evaluation of heat distribution at different wavelengths, reduced heat diffusion was observed at 1,444 nm. The ablation efficiency was found to be dependent upon wavelength, and the 1,444 nm wavelength was found to provide both the highest efficiency for fatty tissue ablation and the greatest thermal confinement. PMID:22534741

  7. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chefonov, O. V.; Ovchinnikov, A. V.; Il'ina, I. V.; Agranat, M. B.

    2016-03-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 1011 – 1013 W cm-2.

  8. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Phillips, Jon R.

    2012-07-01

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to

  9. Plasma-mediated ablation of biofilm contamination

    NASA Astrophysics Data System (ADS)

    Guo, Zhixiong; Wang, Xiaoliang; Huang, Huan

    2010-12-01

    Ultra-short pulsed laser removal of thin biofilm contamination on different substrates has been conducted via the use of plasma-mediated ablation. The biofilms were formed using sheep whole blood. The ablation was generated using a 1.2 ps ultra-short pulsed laser with wavelength centered at 1552 nm. The blood contamination was transformed into plasma and collected with a vacuum system. The single line ablation features have been measured. The ablation thresholds of blood contamination and bare substrates were determined. It is found that the ablation threshold of the blood contamination is lower than those of the beneath substrates including the glass slide, PDMS, and human dermal tissues. The ablation effects of different laser parameters (pulse overlap rate and pulse energy) were studied and ablation efficiency was measured. Proper ablation parameters were found to efficiently remove contamination with maximum efficiency and without damage to the substrate surface for the current laser system. Complete removal of blood contaminant from the glass substrate surface and freeze-dried dermis tissue surface was demonstrated by the USP laser ablation with repeated area scanning. No obvious thermal damage was found in the decontaminated glass and tissue samples.

  10. Patient-specific left atrial wall-thickness measurement and visualization for radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Inoue, Jiro; Skanes, Allan C.; White, James A.; Rajchl, Martin; Drangova, Maria

    2014-03-01

    INTRODUCTION: For radiofrequency (RF) catheter ablation of the left atrium, safe and effective dosing of RF energy requires transmural left atrium ablation without injury to extra-cardiac structures. The thickness of the left atrial wall may be a key parameter in determining the appropriate amount of energy to deliver. While left atrial wall-thickness is known to exhibit inter- and intra-patient variation, this is not taken into account in the current clinical workflow. Our goal is to develop a tool for presenting patient-specific left atrial thickness information to the clinician in order to assist in the determination of the proper RF energy dose. METHODS: We use an interactive segmentation method with manual correction to segment the left atrial blood pool and heart wall from contrast-enhanced cardiac CT images. We then create a mesh from the segmented blood pool and determine the wall thickness, on a per-vertex basis, orthogonal to the mesh surface. The thickness measurement is visualized by assigning colors to the vertices of the blood pool mesh. We applied our method to 5 contrast-enhanced cardiac CT images. RESULTS: Left atrial wall-thickness measurements were generally consistent with published thickness ranges. Variations were found to exist between patients, and between regions within each patient. CONCLUSION: It is possible to visually determine areas of thick vs. thin heart wall with high resolution in a patient-specific manner.

  11. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation.

    PubMed

    Rapp, Stephan; Kaiser, Michael; Schmidt, Michael; Huber, Heinz P

    2016-08-01

    Ultrashort pulsed lasers offer a high potential in precise and efficient material processing and deep understanding of the fundamental laser-material interaction aspects is of great importance. The transient pulse reflectivity in conjunction with the transient absorption influences decisively the laser-material interaction. Direct measurements of the absorption properties by ultrafast time-resolved ellipsometry are missing to date. In this work, a unique pump-probe ellipsometry microscope is presented allowing the determination of the transient complex refractive index with a sub-ps temporal resolution. Measurements on molybdenum show ultrafast optical penetration depth changes of -6% to + 77% already within the first 10 ps after the laser pulse impact. This indicates a significant absorption variation of the pump pulse or subsequent pulses irradiating the sample on this timescale and paves the road towards a better understanding of pulse duration dependent laser ablation efficiency, double or burst mode laser ablation and lattice modifications in the first ps after the laser pulse impact. PMID:27505728

  12. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  13. Laser ablation of optically thin absorbing liquid layer predeposited onto a transparent solid substrate

    SciTech Connect

    Kudryashov, S. I.; Lyon, K.; Shukla, S.; Murry, D.; Allen, S. D.

    2006-09-01

    Ablation of optically thin liquid 2-propanol layers of variable thickness on IR-transparent solid Si substrate by a nanosecond CO{sub 2} laser has been experimentally studied using time-resolved optical interferometric and microscopy techniques. Basic ablation parameters - threshold fluences for surface vaporization and explosive homogeneous boiling of the superheated liquid, ablation depths, vaporization (ablation) rates, and characteristic ablation times versus laser fluence - were measured as a function of alcohol layer thickness. The underlying ablation mechanisms, their thermodynamics, and microscopic details are discussed.

  14. Hydrodynamic Instability Growth Measurements at the Ablator-Fuel Interface in Layered ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Weber, Chris; Casey, Dan; Bunn, Tom; Carlson, Lane; Dylla-Spears, Rebecca; Kozioziemski, Bernie; Macphee, Andy; Sater, Jim; Robey, Harry; Smalyuk, Vladimir

    2015-11-01

    Based on the well-established Hydro-growth Radiography (HGR) concept we have successfully developed and fielded a new target platform to measure instability growth at the ablator-fuel interface in layered capsule implosions on the NIF. We present the results of a proof-of-principle experiment for which mode 60 perturbations with an amplitude of 4.4 μm peak-to-valley were laser-machined at the inside of a 0.8-scale plastic ablator capsule. A 55 μm thick, polycrystalline DT ice layer was grown on top of these perturbations. High quality radiography data were recorded at 4 times, showing the growth of these perturbations in both the linear and non-linear stage. We find good agreement with preliminary HYDRA simulations that include small-scale perturbations introduced by the laser machining. Future directions will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE- AC52-07NA27344.

  15. Atrioventricular Junction Ablation for Atrial Fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2016-04-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:26968669

  16. Atrioventricular junction ablation for atrial fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2014-11-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:25443238

  17. Ice thickness, ablation, and other glaciological measurements on upper Fremont Glacier, Wyoming

    USGS Publications Warehouse

    Naftz, D.L.; Smith, M.E.

    1993-01-01

    Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990-1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. Annual ablation (including snow, firn, and ice) measured for the 1990-1991 period averaged about 0.93 m/a. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. -from Authors

  18. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility.

    PubMed

    Smalyuk, V A; Tipton, R E; Pino, J E; Casey, D T; Grim, G P; Remington, B A; Rowley, D P; Weber, S V; Barrios, M; Benedetti, L R; Bleuel, D L; Bradley, D K; Caggiano, J A; Callahan, D A; Cerjan, C J; Clark, D S; Edgell, D H; Edwards, M J; Frenje, J A; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Haan, S W; Hamza, A; Hatarik, R; Hsing, W W; Izumi, N; Khan, S; Kilkenny, J D; Kline, J; Knauer, J; Landen, O L; Ma, T; McNaney, J M; Mintz, M; Moore, A; Nikroo, A; Pak, A; Parham, T; Petrasso, R; Sayre, D B; Schneider, M B; Tommasini, R; Town, R P; Widmann, K; Wilson, D C; Yeamans, C B

    2014-01-17

    We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294  eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations. PMID:24484021

  19. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility.

    PubMed

    Weber, C R; Döppner, T; Casey, D T; Bunn, T L; Carlson, L C; Dylla-Spears, R J; Kozioziemski, B J; MacPhee, A G; Nikroo, A; Robey, H F; Sater, J D; Smalyuk, V A

    2016-08-12

    Direct measurements of hydrodynamic instability growth at the fuel-ablator interface in inertial confinement fusion (ICF) implosions are reported for the first time. These experiments investigate one of the degradation mechanisms behind the lower-than-expected performance of early ICF implosions on the National Ignition Facility. Face-on x-ray radiography is used to measure instability growth occurring between the deuterium-tritium fuel and the plastic ablator from well-characterized perturbations. This growth starts in two ways through separate experiments-either from a preimposed interface modulation or from ablation front feedthrough. These experiments are consistent with analytic modeling and radiation-hydrodynamic simulations, which say that a moderately unstable Atwood number and convergence effects are causing in-flight perturbation growth at the interface. The analysis suggests that feedthrough from outersurface perturbations dominates the interface perturbation growth at mode 60. PMID:27563971

  20. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Döppner, T.; Casey, D. T.; Bunn, T. L.; Carlson, L. C.; Dylla-Spears, R. J.; Kozioziemski, B. J.; MacPhee, A. G.; Nikroo, A.; Robey, H. F.; Sater, J. D.; Smalyuk, V. A.

    2016-08-01

    Direct measurements of hydrodynamic instability growth at the fuel-ablator interface in inertial confinement fusion (ICF) implosions are reported for the first time. These experiments investigate one of the degradation mechanisms behind the lower-than-expected performance of early ICF implosions on the National Ignition Facility. Face-on x-ray radiography is used to measure instability growth occurring between the deuterium-tritium fuel and the plastic ablator from well-characterized perturbations. This growth starts in two ways through separate experiments—either from a preimposed interface modulation or from ablation front feedthrough. These experiments are consistent with analytic modeling and radiation-hydrodynamic simulations, which say that a moderately unstable Atwood number and convergence effects are causing in-flight perturbation growth at the interface. The analysis suggests that feedthrough from outersurface perturbations dominates the interface perturbation growth at mode 60.

  1. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    SciTech Connect

    Loomis, Eric; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto; Braun, Dave

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps, divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl Heα - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so

  2. Spectroscopic measurements of ablation plasma generated with laser-driven intense extreme ultraviolet (EUV) light

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Hane, K.; Shikata, H.; Masuda, M.; Nagatomi, K.; Sunahara, A.; Yoshida, M.; Fujioka, S.; Nishimura, H.

    2016-03-01

    Material ablation by a focused Extreme ultraviolet (EUV) light is studied by comparing expanding ion properties and plasma parameters with laser ablation. The kinetic energy distributions of expanding ions from EUV and laser ablation showed different spectra implying different geometries of plasma expansion. The calculation results of plasma parameters showed that EUV energy is mostly deposited in high electron density region close to the solid density, while laser energy is deposited in low energy density region. Plasma parameters experimentally obtained from visible spectra did not show noticeable difference between EUV and laser ablation due to the corresponding low cut off density.

  3. Reduced ablative Rayleigh-Taylor growth measurements in indirectly driven laminated foils

    SciTech Connect

    Huser, G.; Casner, A.; Masse, L.; Liberatore, S.; Galmiche, D.; Jacquet, L.; Theobald, M.

    2011-01-15

    Indirectly driven, ablative Rayleigh-Taylor instability growth measurements in Ge-doped plastic foils were studied using face-on and side-on x-ray radiography. Laminated samples consisting of alternating layers of Ge-doped and undoped plastic and homogeneous Ge-doped foils were considered. We show for the first time that hydrodynamics do not depend upon structuration of the samples and that stabilization occurs in the case of laminated samples. All data were found to be in good agreement with bi-dimensional hydrosimulations based on theoretical and numerical predictions published earlier [L. Masse, Phys. Rev. Lett. 98, 245001 (2007)], encouraging new designs using laminated structures for ignition capsules.

  4. Anatomical Evaluation of the Pulmonary Veins and the Left Atrium Using Computed Tomography Before Catheter Ablation: Reproducibility of Measurements

    PubMed Central

    Ratajczak, Przemysław; Sławińska, Agata; Martynowska-Rymer, Ida; Strześniewski, Piotr; Rusak, Grażyna

    2016-01-01

    Summary Background Atrial fibrillation (AF) is a common supraventricular arrhythmia. ECG-gated MDCT seems to be currently a method of choice for pre-ablation anatomical mapping due to an excellent resolution and truly isotropic three-dimensional nature. The aim of this study was to establish the between-subject variability and inter-observer reproducibility of anatomical evaluation of the pulmonary veins (PV) and the left atrium (LA) using computed tomography. Material/Methods A retrospective analysis included 42 patients with AF, who were scheduled for a cardiac CT for ablation planning. Images were assessed by two independent radiologists using a semi-automatic software tool. The left atrium anatomy (volume, AP diameter), anatomy of the pulmonary veins (number, ostia diameters and surface area) were evaluated. The relative between-subject variability and the inter-observer variability of measurements were calculated. Results The heart rate during scanning ranged from 50 to 133/min. (mean 79.1/min.) and all examinations were of adequate image quality. Accessory pulmonary veins were found in 24% of patients. Between-subject variability of the PV ostial cross-sectional area ranged from 33% to 48%. The variability of the left atrium size was 21% for the diameter and 35% for the volume. The inter-observer agreement for the detection of accessory pulmonary veins was good (κ=0.73; 95% CI, 0.54–0.93). Conclusions Between-subject variability of the pulmonary vein ostial cross-sectional area and the left artial volume is substantial. The anatomical assessment of the pulmonary vein ostia and the left atrium size in computed tomography presents a good inter-observer reproducibility. PMID:27231495

  5. Subpicosecond laser ablation of dental enamel

    NASA Astrophysics Data System (ADS)

    Rode, A. V.; Gamaly, E. G.; Luther-Davies, B.; Taylor, B. T.; Dawes, J.; Chan, A.; Lowe, R. M.; Hannaford, P.

    2002-08-01

    Laser ablation of dental enamel with subpicosecond laser pulses has been studied over the intensity range of (0.1-1.4) x1014 W/cm2 using 95 and 150 fs pulses at a pulse repetition rate of 1 kHz. The experimentally determined ablation threshold of 2.2plus-or-minus0.1 J/cm2 was in good agreement with theoretical predictions based on an electrostatic ablation model. The ablation rate increased linearly with the laser fluence for up to 15 times the ablation threshold. The absence of collateral damage was observed using optical and scanning electron microscopy. Pulpal temperature measurements showed an increase of about 10 degC during the 200 s course of ablation. However, air cooling at a rate of 5 l/min resulted in the intrapulpal temperature being maintained below the pulpal damage threshhold of 5.5 degC. The material removal rates for subpicosecond precision laser ablation of dental enamel are compared with other techniques.

  6. Metal particles produced by laser ablation for ICP-MS measurements.

    PubMed

    Gonzalez, Jhanis J; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E

    2007-09-30

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50Jcm(-2). Characterization of particles and correlation with inductively coupled plasma mass spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of approximately 50 and approximately 12 for fs versus ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the (66)Zn transient signal by a factor of 10 compared to nanosecond laser pulses. PMID:19073072

  7. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    SciTech Connect

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-15

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon trade mark sign as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to {approx}200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  8. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  9. Electrochemical noise measurement for determining corrosion rates

    SciTech Connect

    Reichert, D.L.

    1996-12-31

    Electrochemical noise measurements (ENM), linear polarization tests and mass loss measurements were performed in sulfuric acid, acetic acid and other solutions. The ENM data were converted to corrosion rates by calculating the noise resistance, R{sub n} = {sigma}V/{sigma}I where {sigma}V and {sigma}I are the standard deviations of the potential and current. Good correlation among the three methods was obtained for low to moderate corrosion rates, but poor correlation was observed for high rates. ENM has proven valuable for determining corrosion rates in low-conductivity solutions, which are not suitable for linear polarization resistance (LPR) testing, and for measuring very low corrosion rates in which mass loss tests would have required at least 30 days exposure to provide meaningful results.

  10. Glass dissolution rate measurement and calculation revisited

    NASA Astrophysics Data System (ADS)

    Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.

  11. Measuring the Ablative Richtmyer-Meshkov Growth of Isolated Defects on Plastic Capsules

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto

    2010-11-01

    To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF using inertially confined plasmas, targets must be designed with high in-flight aspect ratios (IFAR) resulting in low shell stability. Recent simulations and experiments have shown that isolated features on the outer surface of an ignition capsule can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects due to ablative Richtmyer-Meshkov in CH capsules to validate these models. Face- on transmission radiography has been used to measure the evolution of Gaussian bump arrays in plastic targets. Targets were indirectly-driven using Au halfraums to radiation temperatures near 65-75 eV at the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) simultaneous with x-ray backlighting from a saran (Cl) foil. Shock speed measurements were also made to determine drive conditions in the target. The results from these experiments will aid in the design of ignition drive pulses that minimize bump amplitude at the time of shell acceleration.

  12. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  13. Measurement of Intrahepatic Pressure during Microwave Ablation in an Ex Vivo Bovine Liver Model

    PubMed Central

    Kim, Hae Jin; Rhim, Hyunchul; Lee, Min Woo; Jeong, Woo Kyoung

    2015-01-01

    Background/Aims We experimented with different ablation methods and two types of microwave antennas to determine whether microwave ablation (MWA) increases intrahepatic pressure and to identify an MWA protocol that avoids increasing intrahepatic pressure. Methods MWA was performed using either a single-step standard ablation or a stepwise increment ablation paired with either a 16-gauge (G) 2-cm antenna or a 14G 4-cm antenna. We compared the maximum pressures and total ablation volumes. Results The mean maximum intrahepatic pressures and ablation volumes were as follows: 16G single-step: 37±33.4 mm Hg and 4.63 cm3; 16G multistep: 31±18.7 mm Hg and 3.75 cm3; 14G single-step: 114±45.4 mm Hg and 15.33 cm3; and 14G multistep: 106±43.8 mm Hg and 10.98 cm3. The intrahepatic pressure rose during MWA, but there were no statistically significant differences between the single and multistep methods when the same gauge antennae were used. The total ablation volume was different only in the 14G groups (p<0.05). Conclusions We demonstrated an increase in intrahepatic pressure during MWA. The multistep method may be used to prevent increased intrahepatic pressure after applying the proper power. PMID:25963083

  14. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Yashiro, H.; Kakehata, M.

    2013-05-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  15. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    SciTech Connect

    Yashiro, H.; Kakehata, M.

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  16. Capturing Pain in the Cortex during General Anesthesia: Near Infrared Spectroscopy Measures in Patients Undergoing Catheter Ablation of Arrhythmias

    PubMed Central

    Yücel, Meryem A.; Steele, Sarah C.; Alexander, Mark E.; Boas, David A.; Borsook, David; Becerra, Lino

    2016-01-01

    The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia. PMID:27415436

  17. Kinetic limitations on the diffusional control theory of the ablation rate of carbon.

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1971-01-01

    It is shown that the theoretical maximum oxidation rate is limited in many cases even at temperatures much higher than 1650 deg K, not by oxygen transport, but by the kinetics of the carbon-oxygen reaction itself. Mass-loss rates have been calculated at air pressures of 0.01 atm, 1 atm, and 100 atm. It is found that at high temperatures the rate of the oxidation reaction is much slower than has generally been assumed on the basis of a simple linear extrapolation of Scala's 'fast' and 'slow' rate expressions. Accordingly it cannot be assumed that a transport limitation inevitably must be reached at high temperatures.

  18. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    In this study, surface mass balance data of two glaciers on James Ross Island, Antarctica, and its spatial and temporal variations are evaluated using snow ablation stakes, ground-penetrating radar, and dGPS measurements. The investigated glaciers are located on the Ulu Peninsula, northern part of James Ross Island. Davies Dome is an ice dome, which originates on the surface of a flat volcanic mesa at elevations >400 m a.s.l. and terminates with a single 700 m wide outlet in the Whisky Bay. Davies Dome has an area of ~6.5 km2 and lies in the altitude range of 0-514 m a.s.l. Whisky Glacier is a cold-based land-terminating valley glacier surrounded by an extensive moraine ridges made of debris-covered ice. The glacier has an area of ~2.4 km2 and lies in the altitude range of 215-520 m a.s.l. Within several summer austral summers, extensive field programme were carried out on both glaciers including the operation of two automatic weather stations, field mapping and mass balance measurements. Each station was equipped with albedometer CM7B (Kipp-Zonen, Netherlands), air temperature and humidity sensor EMS33 (EMS, Czech Republic), propeller anemometer 05103 (Young, USA), and snow depth sensors (Judd, USA). In the period 2009-2011, high seasonal and interdiurnal variability of incoming solar radiation and near-surface air temperature was found as a result of changes in the circulation patterns and synoptic-scale weather systems moving in the Circumpolar Trough. High ablation and accumulation rates were recorded mainly in the spring and summer seasons (October-February), while negligible changes were found in winter (May-September). The effects of positive degree-day temperatures on the surface ablation rates were examined using a linear regression model. In this approach, near-surface air temperature maps on the glacier surfaces were derived from digital elevation model according to actual temperature lapse rates. Mass balance investigations started in 2006 on Davies

  19. Static measurement of the thickness of the ablative coating of the solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Harrison, Harry C.

    1996-01-01

    The Solid Rocket Boosters (SRB's) used to launch the Space Shuttle are coated with a layer of ablative material to prevent thermal damage when they reenter the earth's atmosphere. The coating consists of a mixture of cork, glass, and resin. A new coating (Marshall Convergent Coating, MCC-2) was recently developed that is environmentally complaint. The coating must meet certain minimum thickness standards in order to protect the SRB. The coating is applied by a robot controlled nozzle that moves from the bottom to top, as the rocket part rotates on a table. Several coats are applied, building up to the desired thickness. Inspectors do a limited amount of destructive 'wet' testing. This involves an inspector inserting a rod in the wet coating and removing the rod. This results in a hole that, of course, must be patched later. The material is cured and the thickness is measured. There is no real-time feedback as the coating is being applied. Although this might seem like the best way to control thickness, the problems with 'blowback' (reflected material covering the sensor) are formidable, and have not been solved. After the thermal coating is applied, a protective top coat is applied. The SRB part is then placed in a oven and baked to harden the surface. The operations personnel then measure the thickness of the layer using the Kaman 7200 Displacement Measuring System. The probe is placed on the surface. One person (the inspector) reads the instrument, while another(the technician) records the thickness. Measurements are taken at one foot intervals. After the measurements are taken, the number of low readings is tabulated. If more than 10 percent of the points fall below the minimum value, there is a design review, and the part may be stripped of coating, and a new coating is applied. There is no other analysis.

  20. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  1. Chemical and Spectroscopic Aspects of Polymer Ablation-Special Features and Novel Directions-

    NASA Astrophysics Data System (ADS)

    Lippert, Thomas

    2004-03-01

    Laser ablation of polymers has become an established technique in the electronic industry and the large number of studies published annually indicates that this is still an attractive area of research. Several new approaches with new techniques and materials have given new insights in the ablation process. One of these approaches is the development of polymers designed specifically for laser ablation which are a unique tool for probing the ablation mechanisms as well as for improving ablation properties. These novel polymers exhibit very low thresholds of ablation, with high ablation rates (even at low fluences), and excellent ablation quality. New commercial applications will require improved ablation rates and control of undesirable surface effects, such as debris. The complexity of the interactions between polymers and laser photons are illustrated by the various processes associated with different irradiation conditions. i) Photothermal-photochemical laser ablation under excimer laser irradiation. ii) Dopant-induced laser ablation. iii) Photo-oxidative etching with lamps in an oxidizing atmosphere. iv) VUV etching in the absence of oxidizing conditions. v) Photokinetic etching with CW UV lasers. vi) Ultrafast laser ablation, affected by pulse length, wavelength, and possibly shock waves. vii) Shock assisted photothermal ablation on picosecond time scales. viii) VUV laser ablation: purely photochemical? ix) Synchrotron structuring. x) Mid-IR ablation (FEL and CO2 laser), the influence of exciting various functional groups. Several of these new approaches and processes will be discussed to emphasize the importance of different approaches but also to review some fundamental processes. The combination of various experimental techniques (new approaches and 'well-known') with materials made to measure has given new insights in the ablation mechanisms, but has also shown new possible future directions of laser polymer ablation.

  2. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone.

    PubMed

    Bellis, David J; Hetter, Katherine M; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J

    2006-01-01

    Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for (208)Pb/(43)Ca in the concentration range <1 to 30 μg g(-1). The limit of detection was estimated as 0.2 μg g(-1). The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g(-1) with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  3. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula

    2012-01-01

    Summary Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for 208Pb/43Ca in the concentration range <1 to 30 μg g−1. The limit of detection was estimated as 0.2 μg g−1. The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g−1 with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  4. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  5. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  6. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors. PMID:16402599

  7. Heart rate detection from plantar bioimpedance measurements.

    PubMed

    González Landaeta, R; Casas, O; Pallàs-Areny, R

    2006-01-01

    The heart rate is a basic health indicator, useful in both clinical measurements and home health care. Current home care systems often require the attachment of electrodes or other sensors to the body, which can be cumbersome to the patient. Moreover, some measurements are sensitive to movement artifacts, are not user-friendly and require a specialized supervision. In this paper, a novel technique for heart rate measurement for a standing subject is proposed, which is based on plantar bioimpedance measurements, such as those performed by some bathroom weighting scales for body composition analysis. Because of the low level of heart-related impedance variations, the measurement system has a gain of 1400. We have implemented a fully differential AC amplifier with a common-mode rejection ratio (CMRR) of 105 dB at 10 kHz. Coherent demodulation based on synchronous sampling yields a signal-to-noise ratio (SNR) of 55 dB. The system has a sensitivity of 1.9 V/Omega. The technique has been demonstrated on 18 volunteers, whose bioimpedance signal and ECG were simultaneously measured to validate the results. The average cross-correlation coefficient between the heart rates determined from these two signals was 0.998 (std. dev. 0.001). PMID:17946677

  8. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  9. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    SciTech Connect

    Hagmann, C. Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.; Herrmann, H. W.; Knauer, J. P.

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  10. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility.

    PubMed

    Hagmann, C; Shaughnessy, D A; Moody, K J; Grant, P M; Gharibyan, N; Gostic, J M; Wooddy, P T; Torretto, P C; Bandong, B B; Bionta, R; Cerjan, C J; Bernstein, L A; Caggiano, J A; Herrmann, H W; Knauer, J P; Sayre, D B; Schneider, D H; Henry, E A; Fortner, R J

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix. PMID:26233419

  11. Vacuum test fixture improves leakage rate measurements

    NASA Technical Reports Server (NTRS)

    Maier, H.; Marx, H.

    1966-01-01

    Cylindrical chamber, consisting of two matching halves, forms a vacuum test fixture for measuring leakage rates of individual connections, brazed joints, and entrance ports used in closed fluid flow line systems. Once the chamber has been sufficiently evacuated, atmospheric pressure holds the two halves together.

  12. Dynamic heart rate measurements from video sequences

    PubMed Central

    Yu, Yong-Poh; Raveendran, P.; Lim, Chern-Loon

    2015-01-01

    This paper shows how dynamic heart rate measurements that are typically obtained from sensors mounted near to the heart can also be obtained from video sequences. In this study, two experiments are carried out where a video camera captures the facial images of the seven subjects. The first experiment involves the measurement of subjects’ increasing heart rates (79 to 150 beats per minute (BPM)) while cycling whereas the second involves falling heart beats (153 to 88 BPM). In this study, independent component analysis (ICA) is combined with mutual information to ensure accuracy is not compromised in the use of short video duration. While both experiments are going on measures of heartbeat using the Polar heart rate monitor is also taken to compare with the findings of the proposed method. Overall experimental results show the proposed method can be used to measure dynamic heart rates where the root mean square error (RMSE) and the correlation coefficient are 1.88 BPM and 0.99 respectively. PMID:26203374

  13. Flow rate measurement in aggressive conductive fluids

    NASA Astrophysics Data System (ADS)

    Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian

    2014-03-01

    Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.

  14. Design Calculations for NIF Convergent Ablator Experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Callahan, D. A.; Hicks, D. G.; Landen, O. L.; Langer, S. H.; Meezan, N. B.; Spears, B. K.; Widmann, K.; Kline, J. L.; Wilson, D. C.; Petrasso, R. D.; Leeper, R. J.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics -- 1) Dante measurements of hohlraum x-ray flux and spectrum, 2) streaked radiographs of the imploding ablator shell, 3) wedge range filter measurements of D-He3 proton output spectra, and 4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning. *SNL, LLNL, and LANL are operated under US DOE contracts DE-AC04-94AL85000. DE-AC52-07NA27344, and DE-AC04-94AL85000.

  15. Design calculations for NIF convergent ablator experiments.

    SciTech Connect

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.; Zylstra, A.; Seguin, F.; Landen, Otto L.; Petrasso, R. D.; Rinderknecht, H.; Kline, J. L.; Frenje, J.; Wilson, D. C.; Langer, S. H.; Widmann, K.; Meezan, Nathan B.; Hicks, Damien G.; Olson, Richard Edward

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.

  16. Wireless Measurement of Rotation and Displacement Rate

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    A magnetic field response sensor is designed to measure displacement or rotation rate without a physical connection to a power source, microprocessor, data acquisition equipment, or electrical circuitry. The sensor works with the magnetic field response recorder, which was described in Magnetic-Field-Response Measurement-Acquisition System, NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. These sensors are wirelessly powered and interrogated, and the measurement acquisition system and sensors are extremely lightweight.The response recorder uses oscillating magnetic fields to power the sensors. Once powered, the sensors respond with their own magnetic field. For displacement/ rotation measurements, the response recorder uses the sensor s response amplitude, which is dependent on the distance from the antenna. The recorder s antenna orientation and position are kept fixed, and the sampling period is constant.

  17. Measurement of Preheat and Shock Melting in Be Ablators During the First Few ns of the NIF Ignition Pulse

    SciTech Connect

    Bradley, D K; Prisbrey, S T; Page, R H; Braun, D G; Edwards, M J; Hibbard, R L; Moreno, K A; Mauldin, M P; Nikroo, A

    2008-05-28

    We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. A VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.

  18. Characterization of Candidate Materials for Remote Recession Measurements of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Butler, Bradley D.; Winter, Michael; Panerai, Francesco; Martin, Alexandre; Bailey, Sean C. C.; Stackpoole, Margaret; Danehy, Paul M.; Splinter, Scott

    2016-01-01

    A method of remotely measuring surface recession of a material sample in a plasma flow through emission spectroscopy of the post shock layer was characterized through experiments in the NASA Langley HYMETS arc jet facility. Different methods for delivering the seed products into the Phenolic Impregnated Carbon Ablator (PICA) material samples were investigated. Three samples were produced by seeding the PICA material with combinations of Al, Si, HfO2, VB2, Al2O3, SiO2, TiC, HfC, NaCl, and MgCl2 through infusing seed materials into a core of PICA, or through encapsulating seed material in an epoxy disk, mechanically bonding the disk to a PICA sample. The PICA samples seeded with the candidate tracers were then tested at surface temperatures near 2400 K under low pressure air plasma. The emission of Al, Ti, V, Na, and Mg in the post-shock layer was observed in the UV with a high resolution imaging spectrometer viewing the whole stagnation line from the side, and from UV to NIR with a fiber-coupled miniaturized spectrometer observing the sample surface in the wavelength range from 200 nm to 1,100 nm from the front through a collimator. Al, Na, and Mg were found to be emitting in the post-shock spectra even before the recession reached the seeding depth - therefore possibly characterizing the pyrolysis process rather than the recession itself. The appearance of Ti and V emission in the spectra was well correlated with the actual recession which was monitored through a video of the front surface of the sample. The applicability of a seed material as an indicator for recession appears to be related to the melting temperature of the seed material. Future parametric studies will be carried out in low power plasma facilities at the University of Kentucky.

  19. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  20. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  1. Characterization of radiofrequency ablation lesion development based on simulated and measured intracardiac electrograms.

    PubMed

    Keller, Matthias Walter; Schuler, Steffen; Wilhelms, Mathias; Lenis, Gustavo; Seemann, Gunnar; Schmitt, Claus; Dössel, Olaf; Luik, Armin

    2014-09-01

    Radiofrequency ablation (RFA) therapy is the gold standard in interventional treatment of many cardiac arrhythmias. A major obstacle is nontransmural lesions, leading to recurrence of arrhythmias. Recent clinical studies have suggested intracardiac electrogram (EGM) criteria as a promising marker to evaluate lesion development. Seeking for a deeper understanding of underlying mechanisms, we established a simulation approach for acute RFA lesions. Ablation lesions were modeled by a passive necrotic core surrounded by a borderzone with properties of heated myocardium. Herein, conduction velocity and electrophysiological properties were altered. We simulated EGMs during RFA to study the relation between lesion formation and EGM changes using the bidomain model. Simulations were performed on a three-dimensional setup including a geometrically detailed representation of the catheter with highly conductive electrodes. For validation, EGMs recorded during RFA procedures in five patients were analyzed and compared to simulation results. Clinical data showed major changes in the distal unipolar EGM. During RFA, the negative peak amplitude decreased up to 104% and maximum negative deflection was up to 88% smaller at the end of the ablation sequence. These changes mainly occurred in the first 10 s after ablation onset. Simulated unipolar EGMs reproduced the clinical changes, reaching up to 83% negative peak amplitude reduction and 80% decrease in maximum negative deflection for transmural lesions. In future studies, the established model may enable the development of further EGM criteria for transmural lesions even for complex geometries in order to support clinical therapy. PMID:24816474

  2. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  3. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  4. Thermal response and ablation characteristics of lightweight ceramic ablators

    SciTech Connect

    Tran, H.K.; Rasky, D.J.; Esfahani, L.

    1994-11-01

    This paper presents the thermal performance and ablation characteristics of the newly developed lightweight ceramic ablators (LCAs) in a supersonic, high-enthalpy convective environment. Lightweight ceramic ablators were recently conceived and developed at NASA Ames using low-density ceramic or carbon fibrous matrices as substrates for main structural support and organic resins as fillers. These LCAs were successfully produced with densities ranging from approximately 0.224 to 1.282 g/cu cm. Several infiltrants with different char yields were used to study the effect on surface recession. Tests were conducted in the NASA Ames arc-jet facilities. Material thermal performance was evaluated at cold-wall heat fluxes from 113.5 to 1634 W/sq cm, and stagnation pressures of 0.018 to 0.331 atm. Conventional ablators such as SLA-561, Avcoat 5026-39HC, MA-25S, and balsa wood were tested at the same heat fluxes for direct comparison. Surface temperature was measured using optical pyrometers, and the recession rates were obtained from the high-speed films. In-depth temperature data were obtained to determine the thermal penetration depths and conductivity. Preliminary results indicated that most LCAs performed comparably to or better than conventional ablators. At low flux levels (less than 454 W/sq cm), the addition of silicon carbide and polymethyl methacrylate significantly improved the ablation performance of silica substrates. The carbon-based LCAs were the most mass-efficient at high flux levels (greater than 454 W/sq cm). 16 refs.

  5. Sparking rates measured on the CRITS RFQ

    SciTech Connect

    Balleyguier, P.

    1998-05-28

    During the test of the LEDA injector on the CRITS RFQ, an automatic data acquisition system has been implemented. The purpose was to measure the sparking rate of this CW RFQ. The RF level has some influences on vacuum, but there is no evidence of any reciprocal effect. The raw sparking rate is very difficult to interpret, since burst of sparks bias the statistics. A more convenient and useful interpretation is the number of sparking seconds. At the nominal field level (1.75 Kilp), the sparking-second rate is 0.5 per minute without beam. It strongly depends on the field, with a logarithmic law: 4.5 decade/Kilp. With beam, the sparking rate jumps to 3.0 per minute. As far as tested, it depends neither on the beam current (20 to 80 mA) nor on the field (1.5 to 1.7 Kilp tested). With sparking rates as measured here, one could not hope to build an RFQ that would be free of sparks over a several months continuous operation. Such a requirement, based on an extrapolation of the curves presented here, would lead to a maximal electric field much lower than the Kilpatrick value, an unreasonable requirement for a functional RFQ. A conclusion is that a sparkless RFQ is hopeless, even with a very carefully conditioned cavity. It will probably be necessary to deal with a few sparks per day, and the linac must be able to restart automatically after a short beam interruption.

  6. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  7. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    USGS Publications Warehouse

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  8. In situ cosmogenic H-3, C-14, and Be-10 for determining the net accumulation and ablation rates of ice sheets

    NASA Technical Reports Server (NTRS)

    Lal, D.; Nishiizumi, K.; Arnold, J. R.

    1987-01-01

    The usefulness of the in situ cosmogenic H-3, C-14, and Be-10 produced by spallation of oxygen nuclei in ice, as tracers to determine net accumulation/ablation rates of ice sheets is explored. The application of the in situ H-3 and Be-10 is severely constrained because at deposition, ice contains appreciable amounts of these isotopes from the atmosphere. The case is much more favorable for C-14, which is not carried with wet precipitations; atmospheric C-14 gets mechanically trapped in the ice during deposition. It is pointed out that cosmogenic C-14 would probably exist as (C-14)O in ice. This seems to be supported by the published results of Fireman and Norris (1981). Considering their inherent amounts in the ice and the expected in situ production rates, conditions under which these isotopes can be used to study net accumulation and ablation rates are discussed. Available data on C-14 and Be-10 on polar ice from accumulation and ablation zones is also discussed. It is concluded that H-3 and C-14 should find wide applications in studying ice dynamics and Be-10 in very special circumstances.

  9. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  10. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.

    2016-05-01

    The first measurement of the electron temperature (Te) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local Te via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation Te is evaluated at the measured dot trajectory. The peak Te, measured to be 4.2 keV ± 0.2 keV, is ˜0.5 keV hotter than the simulation prediction.

  11. Advances in the measurement of sulfur isotopes using laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Pribil, M. J.; Koenig, A. E.; Fayek, M.; Slack, J. F.

    2008-05-01

    Although sulfur is poorly ionized in an argon plasma, there are many applications for sulfur isotope analysis using an ICP source. Studies using a desolvation system (DSN) and an aqueous source of sulfur, where the sulfur is complexed with a cation to form a sulfur salt, e.g., calcium or sodium to provide a stable delivery of sulfur through the sample introduction system indicate that precision (~ 0.3 per mil) and accuracy are maintained at sulfur concentrations as low as 1 mg/L. Based on this data, solid sampling of sulfides and sulfates can provide an adequate amount supply of sulfur to an ICP source, even allowing for the relatively poor transport efficiency of laser ablation systems. The main limitations on accuracy and precision are the initial sampling volume, principally a function of spot size and laser fluence and the decreased instrument sensitivity resulting from the pseudo- medium or high resolution mode of analysis required to eliminate polyatomic isobaric interferences. These factors, in turn, determine the minimal grain size necessary for analysis. There are also fit-for-purpose considerations. For instance, many base metal sulfide systems have large variations in sulfur isotope composition, so that precision as poor as one per mil can still provide useful information. Here, we describe the methodology used at the USGS for laser ablation analysis of sulfides and sulfates using a second generation MC-ICP-MS and demonstrate the accuracy of the method based upon a grain-by-grain comparison of laser ablation and ion microprobe sulfur isotope data. A laser ablation MC-ICP-MS study of base metal mineralization at Dry Creek deposit, east-central Alaska demonstrates that the range in sulfur isotope composition of pyrite, sphalerite and galena, based on analysis of individual grains, is almost twice that reported for any other individual VMS deposit. Analysis on the microscopic scale thus provides additional insights into the potential sources of sulfur for

  12. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in do

    PubMed Central

    Dosdall, Derek J.; Tabereaux, Paul B.; Kim, Jong J.; Walcott, Gregory P.; Rogers, Jack M.; Killingsworth, Cheryl R.; Huang, Jian; Robertson, Peter G.; Smith, William M.; Ideker, Raymond E.

    2008-01-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 × 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 ± 1.5 vs. 9.2 ± 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF. PMID:18586887

  13. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  14. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  15. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  16. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  17. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  18. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  19. Hydrogen film cooling of a small hydrogen-oxygen thrust chamber and its effect on erosion rates of various ablative materials

    NASA Technical Reports Server (NTRS)

    Hannum, N.; Roberts, W. E.; Russell, L. M.

    1977-01-01

    An experimental investigation was conducted to determine what arrangement of film-coolant-injection orifices should be used to decrease the erosion rates of small, high temperature, high pressure ablative thrust chambers without incurring a large penalty in combustion performance. All of the film cooling was supplied through holes in a ring between the outer row of injector elements and the chamber wall. The best arrangement, which had twice the number of holes as there were outer row injection elements, was also the simplest. The performance penalties, presented as a reduction in characteristic exhaust velocity efficiency, were 0.8 and 2.8 percentage points for the 10 and 20 percent cooling flows, respectively, The best film-coolant injector was then used to obtain erosion rates for 19 ablative materials. The throat erosion rate was reduced by a factor of 2.5 with a 10 percent coolant flow. Only the more expensive silica phenolic materials had low enough erosion rates to be considered for use in the nozzle throat. However, some of the cheaper materials might qualify for use in other areas of small nozzles with large throat diameters where the higher erosion rates are more acceptable.

  20. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  1. Ablative system

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A carrier liquid containing ablative material bodies is connected to a plenum chamber wall with openings to a high temperature environment. The liquid and bodies pass through the openings of the wall to form a self replacing ablative surface. The wall is composed of honeycomb layers, spheres containing ablative whiskers or wads, and a hardening catalyst for the carrier liquid. The wall also has woven wicks of ablative material fibers that extend through the wall openings and into plenum chamber which contains the liquid.

  2. Measurements of preheat and shock melting in Be ablators during the first few nanoseconds of a National Ignition Facility ignition drive using the Omega laser

    SciTech Connect

    Bradley, D. K.; Prisbrey, S. T.; Page, R. H.; Braun, D. G.; Edwards, M. J.; Hibbard, R.; Moreno, K. A.; Mauldin, M. P.; Nikroo, A.

    2009-04-15

    A scaled Hohlraum platform was used to experimentally measure preheat in ablator materials during the first few nanoseconds of a radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated Hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Back surface motion measured via VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {mu}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-Z doped layers in the ablator.

  3. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  4. Validation of geometric measurements of the left atrium and pulmonary veins for analysis of reverse structural remodeling following ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.

    2012-03-01

    Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.

  5. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe.

    PubMed

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh Babu; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2016-01-01

    We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA) of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI) miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm). Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies. PMID:27092504

  6. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe

    PubMed Central

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh Babu; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2016-01-01

    We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA) of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI) miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm). Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies. PMID:27092504

  7. Critical evaluation of current cleaning protocols for foraminiferal trace metal analyses using single shell Laser-Ablation -ICP measurements

    NASA Astrophysics Data System (ADS)

    Sadekov, A.; Eggins, S. M.; Misra, S.; Kerr, J.; Greaves, M.; Elderfield, H.

    2012-12-01

    Trace element compositions of foraminiferal calcite have been widely used as proxies for past ocean conditions. However, it has been shown that the presence of detrital material, particulate organic matter and diagenically-precipitated overgrowth on test surfaces significantly limit the accuracy of trace element analyses. A number of cleaning methods had been proposed to remove impurities from foraminiferal calcite but their relative effectiveness for foraminiferal trace metal analyses is still debatable. In this work, we employed the microanalytical technique Laser Ablation ICP-MS to compare the most commonly-used cleaning protocols. Distribution of Ca, Mg, Mn, Zn, Ba, Sr, Li, B, Fe, Al across tests of Orbulina universa from modern and Holocene sediments were analysed before and after each cleaning step. The use of Laser Ablation ICP-MS provides accurate and direct comparison of the effectiveness of each cleaning protocol, which was applied to fragments of a single foraminifera test. We also present results obtained using a novel automated cleaning device, "fOraccle", for cleaning single shell and bulk foraminiferal samples. This instrument minimises manual handling of chemical reagents during cleaning, thereby improving reproducibility of the Me/Ca measurements. Based on these results, we will discuss the composition of surface contamination on foraminiferal tests as well as possible ways to improve current cleaning protocols.

  8. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  9. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  10. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  11. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  12. Constraint-Free Measurement of Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Koester, K. L.

    1982-01-01

    By using hardware and software originally developed for manned spacecraft, metabolism is now measured while subject wears a loose-fitting mask. This more comfortable, less-restrictive measurement technique uses speed, accuracy and control capabilities of a microcomputer. Because mask imposes minimum interference to subject undergoing testing, it can be used to measure respiratory responses to such activities as treadmill exercise. Mask can be worn for long periods with little discomfort.

  13. Exceptional ablation season 2009 on the Zhadang Glacier, Central Tibet - An approach combining field measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Maussion, Fabien; Huintjes, Eva; Schneider, Christoph; Scherer, Dieter

    2010-05-01

    The central goal of the project DynRG-TiP (Dynamic Response of Glaciers on the Tibetan Plateau) is improving our understanding of atmosphere-cryosphere interactions on the Tibetan Plateau (TiP) by adding new data and improved methods combining field studies, remote sensing and numerical modelling. The setup of two automatic weather stations (AWS) on the slopes of Zhadang (north exposed) and Tangse River No. 2 Glacier (south exposed) - 5.850 m a.s.l, Western Nyainqentanglha Mountains (NyM) - in May 2009, joining the previous installations of the Chinese co-operating partners from the Institute of Tibetan Plateau Research, make the Zhadang glacier one of the most extensively equipped and best observed glaciers in Central Asia. Based on previous studies (Kang et al., 2009), a summer ablation lower than 2 m w.e. was expected at the positions of the AWS. However, at the time of the second field campaign in October 2009, both stations had fallen over. This incidence occurred already in mid-July, despite of the mast being fixed three meters deep in the ice. At that time approximately half of the ablation period had passed and the estimated lowering of the surface already summed up to about 2 m. The ice-atmosphere interaction processes leading to this exceptional high melt rates are studied using the data gathered from the two AWS, supplemented by the output of the mesoscale Weather Research and Forecasting (WRF-ARW) model. The downscaling approach using two-way nesting, following Box et al., 2006 and Caldwell et al., 2009, allows substantial improvements in surface mass balance (SMB) computations, providing additional spatial information on long-term time series. A first assessment of the downscaling capabilities of the WRF modelling system is realized for the ablation season 2009, analyzing the output of a 2 km grid resolution nested domain centered on the NyM. References: Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L.-S., Stroeve, J. C., Rogers, J. C., Steffen, K

  14. Denervation as a Common Mechanism Underlying Different Pulmonary Vein Isolation Strategies for Paroxysmal Atrial Fibrillation: Evidenced by Heart Rate Variability after Ablation

    PubMed Central

    Wang, Kejing; Chang, Dong; Chu, Zhenliang; Yang, Yanzong; Gao, Lianjun; Zhang, Shulong; Xia, Yunlong; Dong, Yingxue; Yin, Xiaomeng; Cong, Peixin; Jia, Jingjing

    2013-01-01

    Backgrounds. Segmental and circumferential pulmonary vein isolations (SPVI and CPVI) have been demonstrated to be effective therapies for paroxysmal atrial fibrillation (PAF). PVI is well established as the endpoint of different ablation techniques, whereas it may not completely account for the long-term success. Methods. 181 drug-refractory symptomatic PAF patients were referred for segmental or circumferential PVI (SPVI = 67; CPVI = 114). Heart rate variability (HRV) was assessed before and after the final ablation. Results. After following up for 62.23 ± 12.75 months, patients underwent 1.41 ± 0.68 procedures in average, and the success rates in SPVI and CPVI groups were comparable. 119 patients were free from AF recurrence (SPVI-S, n = 43; CPVI-S, n = 76). 56 patients had recurrent episodes (SPVI-R, n = 21; CPVI-R, n = 35). Either ablation technique decreased HRV significantly. Postablation SDNN and rMSSD were significantly lower in SPVI-S and CPVI-S subgroups than in SPVI-R and CPVI-R subgroups (SPVI-S versus SPVI-R: SDNN 91.8 ± 32.6 versus 111.5 ± 36.2 ms, rMSSD 47.4 ± 32.3 versus 55.2 ± 35.2 ms; CPVI-S versus CPVI-R: SDNN 83.0 ± 35.6 versus 101.0 ± 40.7 ms, rMSSD 41.1 ± 22.9 versus 59.2 ± 44.8 ms; all P < 0.05). Attenuation of SDNN and rMSSD remained for 12 months in SPVI-S and CPVI-S subgroups, whereas it recovered earlier in SPVI-R and CPVI-R subgroups. Multivariate logistic regression analysis identified SDNN as the only predictor of long-term success. Conclusions. Beyond PVI, denervation may be a common mechanism underlying different ablation strategies for PAF. PMID:24058286

  15. [Catheter ablation in patients with atrial fibrillation: what will change in daily practice?].

    PubMed

    van der Voort, Pepijn H

    2013-01-01

    A recent publication compared catheter ablation and antiarrhythmic drugs as initial therapy for paroxysmal atrial fibrillation. No difference was seen in the primary endpoint of the cumulative AF burden over two years. The burden of AF was documented objectively by a series of 7-day continuous ECG recordings; a method that will evolve as a gold standard for measuring the AF burden. The major shortcoming of the study was an obsolete ablation endpoint, lacking verification of pulmonary vein isolation. Other drawbacks were the fact that ablations were not exclusively carried out in high-volume centres and a high cross-over rate in the drug group. Also, although the primary endpoint was not significantly different, several secondary outcomes obviously favoured ablation. Outcomes in both the ablation and drug groups were relatively good, and this study will not change the current practice for the majority of paroxysmal AF patients, although catheter ablation could be performed as the initial therapy. PMID:23548191

  16. Measuring Change with the Rating Scale Model.

    ERIC Educational Resources Information Center

    Ludlow, Larry H.; And Others

    The Rehabilitation Research and Development Laboratory at the United States Veterans Administration Hines Hospital is engaged in a long-term evaluation of blind rehabilitation. One aspect of the evaluation project focuses on the measurement of attitudes toward blindness. Our aim is to measure changes in attitudes toward blindness from…

  17. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  18. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    NASA Astrophysics Data System (ADS)

    Anderson-Evans, Colin David

    Two different studies will be presented in this work. The first involves the calculation of effective dose from a phantom study which simulates an atrial fibrillation (AF) ablation procedure. The second involves the validation of metal-oxide semiconducting field effect transistors (MOSFET) for small animal dosimetry applications as well as improved characterization of the animal irradiators on Duke University's campus. Atrial Fibrillation is an ever increasing health risk in the United States. The most common type of cardiac arrhythmia, AF is associated with increased mortality and ischemic cerebrovascular events. Managing AF can include, among other treatments, an interventional procedure called catheter ablation. The procedure involves the use of biplane fluoroscopy during which a patient can be exposed to radiation for as much as two hours or more. The deleterious effects of radiation become a concern when dealing with long fluoroscopy times, and because the AF ablation procedure is elective, it makes relating the risks of radiation ever more essential. This study hopes to quantify the risk through the derivation of dose conversion coefficients (DCCs) from the dose-area product (DAP) with the intent that DCCs can be used to provide estimates of effective dose (ED) for typical AF ablation procedures. A bi-plane fluoroscopic and angiographic system was used for the simulated AF ablation procedures. For acquisition of organ dose measurements, 20 diagnostic MOSFET detectors were placed at selected organs in a male anthropomorphic phantom, and these detectors were attached to 4 bias supplies to obtain organ dose readings. The DAP was recorded from the system console and independently validated with an ionization chamber and radiochromic film. Bi-plane fluoroscopy was performed on the phantom for 10 minutes to acquire the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate to obtain individual organ doses. The

  19. Automated Speech Rate Measurement in Dysarthria

    ERIC Educational Resources Information Center

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-01-01

    Purpose: In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. Method: The new algorithm was trained and tested using Dutch…

  20. Laser mass ablation efficiency measurements indicate bubble-driven dynamics dominates laser thrombolysis

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Prahl, S.A.; Shangguan, H.Q.

    1998-03-01

    Mass removal experiments have been performed at the Oregon Medical Laser Center with 10 to 100 mJ 1 {micro}s laser pulses at optical wavelengths. Above the energy threshold for bubble formation, the laser mass ablation efficiency ({micro}g/mJ) for removal of gel surrogate thrombus is nearly constant for a given experimental geometry and gel absorption coefficient. The efficiency in contact experiments, in which the optical fiber delivering the energy is in close proximity to the absorbing gel, is approximately three times that of non-contact experiments, in which the optical fiber is {approximately}1 mm from the gel. Mass removal occurs hundreds of microseconds after the laser deposition. Experimental data and numerical simulations are consistent with the hypothesis that jet formation during bubble collapse plays a dominant role in mass removal. This hypothesis suggests a model in which the mass removed scales linearly with the maximum bubble volume and explains the distinctive features, including the magnitude, of the mass removal.

  1. Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique

    NASA Astrophysics Data System (ADS)

    Mahdieh, M. H.; Akbari Jafarabadi, M.

    2014-09-01

    In this paper, bubble formation and ablation rate in laser ablation of a thin-film aluminum target are studied. The target was an aluminum thin-film coated on a quartz substrate and interacted by a nanosecond Nd:YAG laser beam in ambient air and distilled water. Measuring optical transmission of a He-Ne beam through the ablation region shows that the ablation rate in water is higher than that in ambient air. The results also show that an initial peak appears in the transmission signal which is an evidence for bubble formation in water. Analyzing the data is useful for monitoring the bubble formation in water and relatively estimating the ablation rate.

  2. Modern Measurements of Uranium Decay Rates

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, T.; Faye, S. A.; Williams, R. W.; Wang, T. F.; Renne, P. R.; Mundil, R.; Harrison, M.; Bandong, B. B.; Moody, K.; Knight, K. B.

    2015-12-01

    It has been widely recognized that accurate and precise decay constants (λ) are critical to geochronology as highlighted by the EARTHTIME initiative, particularly the calibration benchmarks λ235U and λ238U. [1] Alpha counting experiments in 1971[2] measured λ235U and λ238U with ~0.1% precision, but have never been independently validated. We are embarking on new direct measurements of λ235U, λ238U, λ234Th, and λ234U using independent approaches for each nuclide. For the measurement of λ235U, highly enriched 235U samples will be chemically purified and analyzed for U concentration and isotopic composition by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Thin films will be electrodeposited from these solutions and the α activity will be measured in an α-γ coincidence counting apparatus, which allows reduced uncertainty in counting efficiency while achieving adequate counting statistics. For λ238U measurement we will measure ingrowth of 234Th in chemically purified, isotopically enriched 238U solutions, by quantitatively separating the Th and allowing complete decay to 234U. All of the measurements will be done using MC-ICP-MS aiming at 0.05% precision. This approach is expected to result in values of λ238U with less than 0.1% uncertainty, if combined with improved λ234Th measements. These will be achieved using direct decay measurements with an E-∆E charged particle telescope in coincidence with a gamma detector. This system allows measurement of 234Th β-decay and simultaneous detection and identification of α particles emitted by the 234U daughter, thus observing λ234U at the same time. The high-precision λ234U obtained by the direct activity measurements can independently verify the commonly used values obtained by indirect methods.[3] An overarching goal of the project is to ensure the quality of results including metrological traceability in order to facilitate implementation across diverse disciplines. [1] T

  3. Feed rate measuring method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1995-01-01

    A system and method are provided for establishing the feed rate of a workpiece along a feed path with respect to a machine device. First and second sensors each having first and second sensing electrodes which are electrically isolated from the workpiece are positioned above, and in proximity to the desired surfaces of the workpiece along a feed path. An electric field is developed between the first and second sensing electrodes of each sensor and capacitance signals are developed which are indicative of the contour of the workpiece. First and second image signals representative of the contour of the workpiece along the feed path are developed by an image processor. The time delay between corresponding portions of the first and second image signals are then used to determine the feed rate based upon the separation of the first and second sensors and the amount of time between corresponding portions of the first and second image signals.

  4. Feed rate measuring method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1995-12-05

    A system and method are provided for establishing the feed rate of a workpiece along a feed path with respect to a machine device. First and second sensors each having first and second sensing electrodes which are electrically isolated from the workpiece are positioned above, and in proximity to the desired surfaces of the workpiece along a feed path. An electric field is developed between the first and second sensing electrodes of each sensor and capacitance signals are developed which are indicative of the contour of the workpiece. First and second image signals representative of the contour of the workpiece along the feed path are developed by an image processor. The time delay between corresponding portions of the first and second image signals are then used to determine the feed rate based upon the separation of the first and second sensors and the amount of time between corresponding portions of the first and second image signals. 18 figs.

  5. Excitation rate coefficient measurements of Cu xiii and Cu xvii ions

    NASA Astrophysics Data System (ADS)

    Datla, R. U.; Roberts, J. R.; Rowan, W. L.; Mann, J. B.

    1986-12-01

    The absolute excitation rate coefficients for Cu xiii and Cu xvii optically allowed transitions have been measured using the Texas Experimental Tokamak (TEXT) tokamak. Cu is injected by the laser-ablation method at a time when the plasma has attained steady-state temperature and density profiles. The absolute intensities of the magnetic-dipole-forbidden transitions within the Cu xiii 3s23p5 and the Cu xvii 3s23p ground configurations are measured. The intensities of optically allowed vacuum-ultraviolet lines within the 3p43d-3p5 transition array of Cu xiii and within the 3d-3p transition array of Cu xvii are measured with a 2.2-m grazing incidence spectrometer. This instrument is radiometrically calibrated in situ by using the branching-ratio technique. The absolute excitation rate coefficients are deduced from these measurements, assuming coronal equilibrium, optically thin line emission, and statistical population within the ground configuration. The experimental rate coefficients for these transition arrays are found to be 2.84×10-8 cm3 s-1 for Cu xiii at an electron temperature of 127 eV and 3.5×10-8 cm3 s-1 for Cu xvii at an electron temperature of 240 eV. These results are in good agreement with excitation rate coefficients computed in a distorted-wave approximation. The estimated uncertainty in the experimental values is +/-70%.

  6. Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season

    NASA Astrophysics Data System (ADS)

    Sharma, Parmanand; Patel, Lavkush K.; Ravindra, Rasik; Singh, Ajit; K, Mahalinganathan; Thamban, Meloth

    2016-04-01

    As part of the on-going annual mass balance measurements on Batal and Sutri Dhaka glaciers, observations were made during peak ablation (August-September) season in 2013 to understand the response of debris covered and clean-ice (debris free) glacier surface to melting processes. Though, both the Batal and Sutri Dhaka glaciers have almost similar geographical disposition, Batal shows extensive debris cover (90% of the ablation area), while the latter is free from debris (only 5% of the ablation area). The thickness of debris in Batal glacier is inversely proportional to altitude, whereas Sutri Dhaka mostly experienced debris-free zone except snout area. Observation revealed that the vertical gradient of ablation rate in ablation area is contrastingly opposite in these two glaciers, reflecting significant control of debris thickness and their distribution over glacier surface on the ablation rates. While different thickness (2-100 cm) of debris have attenuated melting rates up to 70% of total melting, debris cover of <2 cm thickness has accelerated melting up to 10% of the total melting. Estimated melt ratio reveals that about 90% of the ablation area has experienced inhibited melting in Batal glacier, whereas only less than 5% ablation area of Sutri Dhaka has undergone inhibited melting. Comparison of topographical maps of 1962 with successive satellite images of the area demonstrates a terminus retreat of 373 ± 33.5 m and 579 ± 33.5 m for Batal and Sutri Dhaka glaciers for the period 1962-2013, respectively.

  7. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  8. Tumour ablation: technical aspects

    PubMed Central

    Bodner, Gerd; Bale, Reto

    2009-01-01

    Abstract Image-guided percutaneous radiofrequency ablation (RFA) is a minimally invasive, relatively low-risk procedure for tumour treatment. Local recurrence and survival rates depend on the rate of complete ablation of the entire tumour including a sufficient margin of surrounding healthy tissue. Currently a variety of different RFA devices are available. The interventionalist must be able to predict the configuration and extent of the resulting ablation necrosis. Accurate planning and execution of RFA according to the size and geometry of the tumour is essential. In order to minimize complications, individualized treatment strategies may be necessary for tumours close to vital structures. This review examines the state-of-the art of different device technologies, approaches, and treatment strategies for percutaneous RFA of liver tumours. PMID:19965296

  9. Endometrial ablation

    MedlinePlus

    ... can be seen on the video screen. Small tools can be used through the scope to remove abnormal growths or tissue for examination. Ablation uses heat, cold, or electricity to destroy the lining of the womb. The ...

  10. Infiltration rate measurement by active perfluorocarbon monitoring

    SciTech Connect

    Menzies, K.T.; Pong, C.M.; Randel, M.A. )

    1987-01-01

    The rate of air infiltration in homes and buildings is a significant factor affecting the magnitude of human exposure to air pollutants in the indoor environment. Several techniques have been utilized for the determination of air infiltration. These include building pressurization and tracer analysis, e.g., SF/sub 6/. Dietz and Cote at Brookhaven National Laboratory (BNL) have developed a simple, steady-state tracer kit that can be utilized by homeowners. This kit includes a source(s) of perfluorocarbon, i.e., perfluoromethylcyclohexane (PMCH) or perfluorodimethylcyclohexane (PDCH), and a passive sampling tube containing Ambersorb XE-347. Typically, the sampling tube is deployed for several days and then returned to a laboratory for analysis by thermal desorption/gas chromatography/electron capture detection. The authors developed an alternative sampling and analysis technique for PMCH/PDCH in homes. In order to facilitate monitoring of short-term infiltration rates (i.e., less than one day) they developed an active sorbent sampling method and solvent desorption/gas chromatography/electron capture detection analytical method. The method is based on the collection of PMCH on charcoal. The method validation, which is discussed in this article, includes analytical method development, selection of a solid sorbent, determination of desorption efficiency, analysis of breakthrough, testing of storage stability, and assessment of precision and accuracy in both the laboratory and field environment.

  11. Atrial fibrillation ablation.

    PubMed

    Pappone, Carlo; Santinelli, Vincenzo

    2012-06-01

    Atrial fibrillation is the commonest cardiac arrhythmia, with significant morbidity related to symptoms, heart failure, and thromboembolism, which is associated with excess mortality. Over the past 10 years, many centers worldwide have reported high success rates and few complications after a single ablation procedure in patients with paroxysmal atrial fibrillation. Recent studies indicate a short-term and long-term superiority of catheter ablation as compared with conventional antiarrhythmic drug therapy in terms of arrhythmia recurrence, quality of life, and arrhythmia progression. As a result, catheter ablation is evolving to a front-line therapy in many patients with atrial fibrillation. However, in patients with persistent long-standing atrial fibrillation catheter ablation strategy is more complex and time-consuming, frequently requiring repeat procedures to achieve success rates as high as in paroxysmal atrial fibrillation. In the near future, however, with growing experience and evolving technology, catheter ablation of atrial fibrillation may be extended also to patients with long-standing atrial fibrillation. PMID:22541284

  12. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  13. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  14. Submicron Measurements of Mg Isotopes in Biogenic Carbonates Using Laser Ablation-MC-ICPMS: New Window into Biomineralisation

    NASA Astrophysics Data System (ADS)

    Sadekov, A.; Lloyd, N. S.; Misra, S.; Funcke, A.; Shuttleworth, S.; Langer, G.; Bijma, J.; Elderfield, H.

    2014-12-01

    Magnesium is one of the most abundant elements in the earth's crust and in seawater. Fractionation of its stable isotopes has been shown to be useful indicators of many geological, chemical and biological processes. For example, biogenic carbonates display ~5‰ range of d26Mg values, which is attributed to variable degree of biological control on Mg ions during biomineralisation. Understanding this biological control is essential for developing proxies based on biogenic carbonates. Current methods of magnesium isotope measurements in carbonates are often time consuming and require relatively large volumes of samples. In this work, we present a new approach of measuring Mg isotopes in biogenic carbonates using Laser Ablation MC-ICP-MS. We will show that this microanalytical approach provides accurate and relatively fast measurements of Mg isotopes in biological carbonate with precision down to 0.2‰ (1sd). We will also present examples on how this new method can provide additional information about foraminiferal biomineralisation. For example, we will demonstrate submicron variation in Mg isotopes across shells of Orbulina universa, which are linked to high and low Mg/Ca layers in this species. We will also report changes in Mg isotope composition of benthic foraminifera Amphistegina sp. cultured in seawater with different Mg/Ca values. Both examples will be used to draw attention to the complexity and possibilities of multiple mechanisms of Mg incorporation into biogenic carbonates during biomineralisation.

  15. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Frenje, J A; Li, C K; Séguin, F H; Petrasso, R D; Bionta, R M; Casey, D T; Caggiano, J A; Hatarik, R; Khater, H Y; Sayre, D B; Knauer, J P; Sangster, T C; Herrmann, H W; Kilkenny, J D

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions. PMID:25430283

  16. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm2 and CH-ablator ρR's of 400-680 mg/cm2 are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  17. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    SciTech Connect

    Gatu Johnson, M. Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  18. The Validity of a Computerized Measure of Reading Rate.

    ERIC Educational Resources Information Center

    Pomplun, Mark; Frey, Sharon; Becker, Douglas; Hughes, Kay

    This paper describes the investigation of a computerized measure of reading rate as measured by the new Nelson-Denny Reading Test CD-ROM (1993). This study addressed three aspects of validity: (1) score comparability between reading rate measured by the computer version and the paper-and-pencil version; (2) concurrent validity with reading…

  19. Measuring rates of outdoor airflow into HVAC systems

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

    2002-10-01

    During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.

  20. Current Hot Potatoes in Atrial Fibrillation Ablation

    PubMed Central

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  1. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  2. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  3. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD.

    PubMed

    Yasuhara, R; Sakamoto, R; Yamada, I; Motojima, G; Hayashi, H

    2014-11-01

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition. PMID:25430235

  4. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD

    SciTech Connect

    Yasuhara, R. Sakamoto, R.; Yamada, I.; Motojima, G.; Hayashi, H.

    2014-11-15

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

  5. Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Han, H.; Liu, S.

    2014-03-01

    To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a set of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to capture statistically the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote-sensing techniques, using high-resolution satellite imagery, were used to extrapolate the in situ point measurements to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented that allows the estimation of ablation on a debris covered glacier by combining field data and remote-sensing information. The sub-debris ice ablation accounts for about 24% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacierized area. Although the ice cliffs occupy only 1.7% of the debris covered area, the melt amount accounts for approximately 12% of the total sub-debris ablation and 2.5% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus in a particular climate setting. Due to the fact that melt rates beyond 0.1 m of moraine cover are highly restricted, the shielding effect of the debris cover dominates over the temperature and elevation dependence of the ablation in the bare ice case.

  6. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubert, Amélie; Claverie, Fanny; Pécheyran, Christophe; Pointurier, Fabien

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1-2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on 235U/238U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ~ 350 ag for the 235U isotope, meaning that 235U/238U isotope ratios in natural uranium particles of ~ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ~ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis.

  7. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  8. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  9. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    SciTech Connect

    Schenkel, T.; Hamza, A.V.; Barnes, A.V.; Schneider, D.H.; Banks, J.C.; Doyle, B.L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow (v=6.6{times}10{sup 5} m /s) , very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400thinspthinsptarget atoms are removed when a single Th{sup 70+} ion deposits a potential energy of 152.6thinspthinspkeV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation. {copyright} {ital 1998} {ital The American Physical Society}

  10. Measuring the Population Impact of Introducing Stereotactic Ablative Radiotherapy for Stage I Non-Small Cell Lung Cancer in Canada

    PubMed Central

    Rodrigues, George B.; Palma, David A.; Senan, Suresh

    2014-01-01

    Background. The Cancer Risk Management Model (CRMM) was used to estimate the health and economic impact of introducing stereotactic ablative radiotherapy (SABR) for stage I non-small cell lung cancer (NSCLC) in Canada. Methods. The CRMM uses Monte Carlo microsimulation representative of all Canadians. Lung cancer outputs were previously validated internally (Statistics Canada) and externally (Canadian Cancer Registry). We updated costs using the Ontario schedule of fees and benefits or the consumer price index to calculate 2013 Canadian dollars, discounted at a 3% rate. The reference model assumed that for stage I NSCLC, 75% of patients undergo surgery (lobectomy, sublobar resection, or pneumonectomy), 12.5% undergo radiotherapy (RT), and 12.5% undergo best supportive care (BSC). SABR was introduced in 2008 as an alternative to sublobar resection, RT, and BSC at rates reflective of the literature. Incremental cost effectiveness ratios (ICERs) were calculated; a willingness-to-pay threshold of $100,000 (all amounts are in Canadian dollars) per quality-adjusted life-year (QALY) was used from the health care payer perspective. Results. The total cost for 25,085 new cases of lung cancer in 2013 was calculated to be $608,002,599. Mean upfront costs for the 4,318 stage I cases were $7,646.98 for RT, $8,815.55 for SABR, $12,161.17 for sublobar resection, $16,266.12 for lobectomy, $22,940.59 for pneumonectomy, and $14,582.87 for BSC. SABR dominated (higher QALY, lower cost) RT, sublobar resection, and BSC. RT had lower initial costs than SABR that were offset by subsequent costs associated with recurrence. Lobectomy was cost effective when compared with SABR, with an ICER of $55,909.06. Conclusion. The use of SABR for NSCLC in Canada is projected to result in significant cost savings and survival gains. PMID:24951606

  11. Ablative thermal protection systems

    NASA Technical Reports Server (NTRS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed.

  12. Local Response and Impact on Survival After Local Ablation of Liver Metastases From Colorectal Carcinoma by Computed Tomography-Guided High-Dose-Rate Brachytherapy

    SciTech Connect

    Ricke, Jens; Mohnike, Konrad; Pech, Maciej; Seidensticker, Max; Ruehl, Ricarda; Wieners, Gero; Gaffke, Gunnar; Kropf, Siegfried; Felix, Roland; Wust, Peter

    2010-10-01

    Purpose: To determine local tumor control after CT-guided brachytherapy at various dose levels and the prognostic impact of extensive cytoreduction in colorectal liver metastases. Methods and Materials: Seventy-three patients were treated on a single-center prospective trial that was initially designed to be randomized to three dose levels of 15 Gy, 20 Gy, or 25 Gy per lesion, delivered in a single fraction. However, because there was a high rate of cross-over of subjects from higher to lower dose levels, this study is better understood as a prospective trial with three dose levels. No upper size limit for the metastases was applied. We assessed time to local progression, progression-free survival, and overall survival. Results: According to safety constraints cross-over was performed. The final assignment was n = 98, n = 68, and n = 33 in the 15-Gy, 20-Gy, and 25-Gy groups, respectively. Median diameter of the largest tumor lesion in each patient was 5 cm (range, 1-13.5 cm). Estimated mean local recurrence-free survival for all lesions was 34 months (median not reached). The group assigned to 15 Gy after cross-over displayed 34 local recurrences out of 98 lesions; 20 Gy, 15 out of 68 lesions; 25 Gy, 1 out of 33 lesions. The difference between the 25-Gy and the 20-Gy or 15-Gy group was significant (p < 0.05). Repeated local tumor ablations were the most prominent factor for increased survival and dominated additional systemic antitumor treatments. Conclusions: Local tumor control after CT-guided brachytherapy of colorectal liver metastases demonstrated a strong dose dependency. The role of extensive minimally invasive tumor ablation in metastatic colorectal cancer needs to be further established.

  13. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  14. Calving rates at tidewater glaciers vary strongly with ocean temperature

    PubMed Central

    Luckman, Adrian; Benn, Douglas I.; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-01-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing. PMID:26450063

  15. Calving rates at tidewater glaciers vary strongly with ocean temperature

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian; Benn, Douglas I.; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-10-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing.

  16. Calving rates at tidewater glaciers vary strongly with ocean temperature.

    PubMed

    Luckman, Adrian; Benn, Douglas I; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-01-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing. PMID:26450063

  17. New Active Remote-sensing Capabilities: Laser Ablation Spectrometer and Lidar Atmospheric Species Profile Measurements

    NASA Technical Reports Server (NTRS)

    DeYoung, R. J.; Bergstralh, J. T.

    2005-01-01

    Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.

  18. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane.

    PubMed

    Han, Zhongyou; Xi, Yukun; Kwon, Younghwan

    2016-02-01

    Series of polydimethylsiloxane (PDMS)-based polyurethane (PU)/polyhedral oligomeric silsesquioxane (POSS) composites are prepared using ether or polyether modified diol/polyol PDMS prepolymers, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS. The effect of POSS incorporated chemically or physically, number of ethylene oxide units and crosslinking on PDMS based PU is investigated in terms of thermal stability and ablation properties. The ablation property is measured using an oxyacetylene torch test, and the ablation rate is evaluated. The results show that POSS molecules make a considerable influence on the ablative resistance, because they act as protective silica forming precursors under oxyacetylene condition. POSS molecules, especially methyl POSS, in PU matrix leads to the formation of densely accumulated spherical silica layers on the top of the ablated surface, resulting in improved ablation resistance. PMID:27433703

  19. The kinetics of reaction of the by-products of ablative materials at high temperatures and the rate of heat transfer between hot surfaces and reactive gases

    NASA Technical Reports Server (NTRS)

    Spokes, G. N.; Beadle, P. C.; Gac, N. A.; Golden, D. M.; King, K. D.; Benson, S. W.

    1971-01-01

    Research has been conducted by means of laboratory experiments to enhance understanding of the fundamental mechanisms of heterogeneous and homogeneous chemical reactions taking place during ablative processes that accompany the reentry or manned space vehicles into planetary atmospheres. Fundamental mechanisms of those chemical reactions believed to be important in the thermal degradation of ablative plastic heat shield materials, and the gases evolved, are described.

  20. Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    NASA Technical Reports Server (NTRS)

    Park, C.; Lundell, J. H.; Green, M. J.; Winovich, W.; Covington, M. A.

    1983-01-01

    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials.

  1. Measurement of tracheal mucous transport rate in the horse

    SciTech Connect

    Nelson, R.; Hampe, D.W.

    1983-06-01

    Tracheal mucous transport rates were measured in 12 nonanesthetized horses after an intratracheal injection of 99mtechnetium-sulfur colloid. The transport rate of the subsequent bolus of radioactivity was determined, using a portable scaler rate meter fitted with a high-energy gamma-scintillation probe. A gamma-scintillation camera was used to verify bolus form and movement in 1 horse. The mean tracheal mucous transport rate was 1.66 +/- 0.24 cm/min.

  2. Impact of varying debris cover thickness on catchment scale ablation: a case study for Koxkar glacier in the Tien Shan

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Haidong, H.; Shiyin, L.

    2013-11-01

    To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a bundle of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to statistically capture the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote sensing techniques, using high resolution satellite imagery, were used to extrapolate the ground truth results to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented, that allows the estimation of ablation on a debris covered glacier by combining field data and remote sensing information. The sub-debris ice ablation accounts for about 19% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacerized area. Although the ice cliffs occupy only 1.7% of the debris covered area the melt amount accounts for approximately 15% of the total sub-debris ablation and 2.7% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus to climate warming. Due to the fact that melt rates beyond 0.1m of moraine cover are highly restricted the shielding effect of the debris cover dominates over the temperature- and elevation dependence of the ablation in the bare ice case.

  3. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    NASA Astrophysics Data System (ADS)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  4. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  5. Magnetic Resonance-compatible needle-like probe based on Bragg grating technology for measuring temperature during Laser Ablation.

    PubMed

    Cappelli, S; Saccomandi, P; Massaroni, C; Polimadei, A; Silvestri, S; Caponero, M A; Frauenfelder, G; Schena, E

    2015-08-01

    Temperature monitoring in tissue undergone Laser Ablation (LA) may be particularly beneficial to optimize treatment outcome. Among many techniques, fiber Bragg grating (FBG) sensors show valuable characteristics for temperature monitoring in this medical scenario: good sensitivity and accuracy, and immunity from electromagnetic interferences. Their main drawback is the sensitivity to strain, which can entail measurement error for respiratory and patient movements. The aims of this work are the design, the manufacturing and the characterization of a needle-like probe which houses 4 FBGs. Three FBGs have sensitive length of 1 mm and are used as temperature sensors; one FBG with length of 10 mm is used as reference and to sense eventual strain. The optical fiber housing the FBGs was encapsulated within a needle routinely used in clinical practice to perform MRI-guided biopsy. Two materials were used for the encapsulation: i) thermal paste for the 3 FBGs used for temperature monitoring, to maximize the thermal exchange with the needle; ii) epoxy resin for the reference FBG, to improve its sensitivity to strain. The static calibration of the needle-like probe was performed to estimate the thermal sensitivity of each FBG; the step response was investigated to estimate the response time. FBGs 1 mm long have thermal sensitivity of 0.01 nm·°C(-1), whereas the reference FBG presents 0.02 nm·°C(-1). For all FBGs, the response time was in the order of 100 ms. Lastly, experiments were performed on ex vivo swine liver undergoing LA to i) evaluate the possible presence of measurement artifact, due to the direct absorption of laser light by the needle and ii) assess the feasibility of the probe in a quasi clinical scenario. PMID:26736503

  6. Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy

    DOE PAGESBeta

    Michel, D. T.; Davis, A. K.; Armstrong, W.; Bahr, R.; Epstein, R.; Goncharov, V. N.; Hohenberger, M.; Igumenshchev, I. V.; Jungquist, R.; Meyerhofer, D. D.; et al

    2015-07-08

    Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less

  7. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial

    PubMed Central

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G.; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J. Christoph; Csanádi, Zoltan

    2016-01-01

    Aims This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. Methods and results A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16–72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Conclusion Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. Trial registration ClinicalTrials.gov NCT01767558. PMID:26826134

  8. Measurement of Charge Transfer Rate Coefficient Between Ground-State N(2+) Ion and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.

  9. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  10. Aquatic Respiration Rate Measurements at Low Oxygen Concentrations

    PubMed Central

    Holtappels, Moritz; Tiano, Laura; Kalvelage, Tim; Lavik, Gaute; Revsbech, Niels Peter; Kuypers, Marcel M. M.

    2014-01-01

    Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX), optical sensors (optodes), and mass spectrometry in combination with 18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L−1 h−1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L−1 h−1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration. PMID:24586724

  11. Effects of water spray and repetition rate on the temperature elevation during Er:YAG laser ablation of dentine

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1996-01-01

    The Er:YAG is currently used as an alternative instrument for the removal of dental decay. Safe laser parameters have been found, but in order to increase the preparation speed also higher pulse energies or repetition rates are under consideration. To investigate systematically the temperature effect of these parameters and of water spray, slices of dentine were perforated with the laser radiation, exactly towards a thermocouple placed in a hole at the back side. During and after preparation temperature was monitored, and maximum temperature rise reached at the moment of perforation (Tm) was evaluated. For preparation without water irrigation Tm was in the range of 30 to 40 K, increasing slightly with pulse repetition rate (prr). For low prr (2 Hz) the same was observed for the radiant energy, however for high prr (10 Hz) the effect was inverse. When moistening the slices during preparation by a fine water spray, Tm decreases. The temperature reduction is very pronounced for low prr, leading to a temperature rise of only 2 K at 2 Hz (200 mJ). When prr is enhanced the spray becomes less effective, even when higher flow rates are chosen. With respect to temperature, combinations of low pulse energy and high repetition rate are least favorable. For safe preparations in dentine low pulse repetition rates are recommended.

  12. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  13. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  14. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  15. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  16. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement...

  17. Laminar and turbulent flow solutions with radiation and ablation injection for Jovian entry. [radiative heating rates for the Galileo probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Tiwari, S. N.

    1980-01-01

    Laminar and turbulent flow-field solutions with coupled carbon-phenolic mass injection are presented for the forebody of a probe entering a nominal Jupiter atmosphere. Solutions are obtained for a 35-degree hyperboloid and for a 45-degree spherically blunted cone using a time-dependent, finite-difference method. The radiative heating rates for the coupled laminar flow are significantly reduced as compared to the corresponding no-blowing case; however, for the coupled turbulent flow, it is found that the surface radiative heating rates are substantially increased and often exceed the corresponding no-blowing values. Turbulence is found to have no effect on the surface radiative heating rates for the no-blowing solutions. The present results are compared with the other available solutions, and some additional solutions are presented.

  18. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    SciTech Connect

    Hayes, Anna; Grim, Gary; Jungnam, Jerry; Bradley, Paul; Rundberg, Bob; Wilhelmy, Jerry; Wilson, Doug

    2009-07-09

    probe. As discussed in detail below, differences in the ablalor velocity lead to significant differences in the rate of {sup 9}Li production. We present techniques for measuring this {sup 9}Li implosion velocity diagnostic at the NIF . The same experimental techniques measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density ({rho}{Delta}R) and approximate thickness ({Delta}R) of the ablator at peak burn.

  19. Discharge rate measurements in a canal using radiotracer methods.

    PubMed

    Pant, H J; Goswami, Sunil; Biswal, Jayashree; Samantray, J S; Sharma, V K

    2016-06-01

    Discharge rates of water were measured in a canal using radiotracer methods with an objective to validate the efficacy of Concrete Volute Pumps (CVPs) installed at various pumping stations along the canal. Pulse velocity and dilution methods were applied to measure the discharge rates using Iodine-131 as a radiotracer. The discharge rate measured in one of the sections of the canal using the pulse velocity method was found to be 22.5m(3)/s, whereas the discharge rates measured using the dilution method in four different sections of the canal varied from 20.27 to 20.62m(3)/s with single CVP in operation. The standard error in discharge rate measurements using dilution method ranged from ±1.1 to ±1.8%. The experimentally measured values of the discharge rate were in good agreement with the design value of the discharge rate (20m(3)/s) thus validating the performance of the CVPs used in the canal. PMID:27016711

  20. Direct coupling of a laser ablation cell to an AMS

    NASA Astrophysics Data System (ADS)

    Wacker, L.; Münsterer, C.; Hattendorf, B.; Christl, M.; Günther, D.; Synal, H.-A.

    2013-01-01

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1-20 Hz), the crater diameter (1-150 μm) and the energy density applied (0.2-3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  1. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.

  2. Short-wavelength ablation of solids: pulse duration and wavelength effects

    NASA Astrophysics Data System (ADS)

    Juha, Libor; Bittner, Michal; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Prag, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard H.; Ryc, Leszek; Feldhaus, Josef; Boody, Frederick P.; Fiedorowicz, Henryk; Bartnik, Andrzej; Mikolajczyk, Janusz; Rakowski, Rafal; Kubat, P.; Pina, Ladislav; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J. G.

    2004-11-01

    For conventional wavelength (UV-Vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (l < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes it possible to investigate how the ablation characteristics depend on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser (Colorado State University, Fort Collins), focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with those measured for ultrashort pulses, we can study the influence of pulse duration on XUV ablation efficiency. Ablation efficiencies measured with short pulses at various wavelengths (i.e. 86/46.9/21.2 nm from the above-mentioned lasers and ~ 1 nm from the double stream gas-puff Xe plasma source driven by PALS) show that the wavelength influences the etch rate mainly through the different attenuation lengths.

  3. Method to measure the relaxation rates of molecular levels

    NASA Astrophysics Data System (ADS)

    Bakos, J. S.; Mandula, K.; Sorlei, Zsuzsa

    The influence of buffer gases (He and SF6) on vibrational and relaxational rates has been studied. The line shapes (width and amplitude) of the small signal gain of the 119-micron methanol laser line are measured at different methanol vapor and buffer gas pressures using an infrared far-infrared double resonance method. The relaxation rates are calculated using the modified rate equations of the Henningsen-Jensen model.

  4. Confidence bands for measured economically optimal nitrogen rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While numerous researchers have computed economically optimal N rate (EONR) values from measured yield – N rate data, nearly all have neglected to compute or estimate the statistical reliability of these EONR values. In this study, a simple method for computing EONR and its confidence bands is descr...

  5. STATISTICAL MODEL OF LABORATORY DEATH RATE MEASUREMENTS FOR AIRBORNE BACTERIA

    EPA Science Inventory

    From 270 published laboratory airborne death rate measurements, two regression models relating the death rate constant for 15 bacterial species to aerosol age in the dark, Gram reaction, temperature, and an evaporation factor which is a function of RH and temperature were obtaine...

  6. Hepatic tumor ablation with clustered microwave antennae: the US Phase II Trial

    PubMed Central

    Iannitti, David A.; Martin, Robert C.G.; Simon, Caroline J.; Hope, William W.; Newcomb, William L.; McMasters, Kelly M.; Dupuy, Damian

    2007-01-01

    Background: Thermal ablation techniques have become important treatment options for patients with unresectable hepatic malignancies. Microwave ablation (MWA) is a new thermal ablative technique that uses electromagnetic energy to produce coagulation necrosis. We report outcomes from the first clinical trial in the United States using MWA and a 915 MHz generator. Patients and methods: Patients with unresectable primary or metastatic liver cancer were enrolled in a multi-institutional trial from March 2004 through May 2006. Demographic information, diagnosis, treatment, and outcomes were documented. Results: Eighty-seven patients underwent 94 ablation procedures for 224 hepatic tumors. Forty-two ablations (45%) were performed open, 7 (7%) laparoscopically, and 45 (48%) percutaneously. The average tumor size was 3.6 cm (range 0.5–9.0 cm). Single antenna ablation volumes were 10.0 ml (range 7.8–14.0 ml), and clustered antennae ablation volumes were 50.5 ml (range 21.1–146.5 ml). Outcome variables were measured with a mean follow-up of 19 months. Local recurrence at the ablation site occurred in 6 (2.7%) tumors, and regional recurrence occurred in 37 (43%) patients. With a mean follow-up of 19 months, 41 (47%) patients were alive with no evidence of disease. There were no procedure-related deaths. The overall mortality rate was 2.3%. Conclusions: Microwave ablation is a safe and effective technology for hepatic tumor ablation. In our study, clustered antennae resulted in larger ablation volumes. Further studies with histological confirmation are needed to verify clinical results. PMID:18333126

  7. [Catheter ablation of persistent atrial fibrillation : pulmonary vein isolation, ablation of fractionated electrograms, stepwise approach or rotor ablation?].

    PubMed

    Scherr, D

    2015-02-01

    Catheter ablation is an established treatment option for patients with atrial fibrillation (AF). In paroxysmal AF ablation, pulmonary vein isolation alone is a well-defined procedural endpoint, leading to success rates of up to 80% with multiple procedures over 5 years of follow-up. The success rate in persistent AF ablation is significantly more limited. This is partly due to the rudimentary understanding of the substrate maintaining persistent AF. Three main pathophysiological concepts for this arrhythmia exist: the multiple wavelet hypothesis, the concept of focal triggers, mainly located in the pulmonary veins and the rotor hypothesis. However, the targets and endpoints of persistent AF ablation are ill-defined and there is no consensus on the optimal ablation strategy in these patients. Based on these concepts, several ablation approaches for persistent AF have emerged: pulmonary vein isolation, the stepwise approach (i.e. pulmonary vein isolation, ablation of fractionated electrograms and linear ablation), magnetic resonance imaging (MRI) and rotor-based approaches. Currently, persistent AF ablation is a second-line therapy option to restore and maintain sinus rhythm. Several factors, such as the presence of structural heart disease, duration of persistent AF and dilatation and possibly also the degree of fibrosis of the left atrium should influence the decision to perform persistent AF ablation. PMID:25687615

  8. Passive flux sampler for measurement of formaldehyde emission rates

    NASA Astrophysics Data System (ADS)

    Shinohara, Naohide; Fujii, Minoru; Yamasaki, Akihiro; Yanagisawa, Yukio

    A new passive flux sampler (PFS) was developed to measure emission rates of formaldehyde and to determine emission sources in indoor environments. The sampler consisted of a glass Petri dish containing a 2,4-dinitrophenyl hydrazine (DNPH)-impregnated sheet. At the start of sampling, the PFS was placed with the open face of the dish on each of the indoor materials under investigation, such as flooring, walls, doors, closets, desks, beds, etc. Formaldehyde emitted from a source material diffused through the inside of the PFS and was adsorbed onto the DNPH sheet. The formaldehyde emission rates could be determined from the quantities adsorbed. The lower determination limits were 9.2 and 2.3 μg m -2 h -1 for 2- and 8-h sampling periods. The recovery rate and the precision of the PFS were 82.9% and 8.26%, respectively. The emission rates measured by PFS were in good agreement with the emission rates measured by the chamber method ( R2=0.963). This shows that it is possible to take measurements of the formaldehyde emission rates from sources in a room and to compare them. In addition, the sampler can be used to elucidate the emission characteristics of a source by carrying out emission measurements with different air-layer thicknesses inside the PFS and at different temperatures. The dependency of the emission rate on the thickness of the air layer inside the PFS indicated whether the internal mass transfer inside the source material or the diffusion in the gas-phase boundary layer controlled the formaldehyde emission rate from a material. In addition, as a pilot study, the formaldehyde emission rates were measured, and the largest emission source of formaldehyde could be identified from among several suspected materials in a model house by using the PFS.

  9. Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Fisher, Brad L.; Wolff, David B.

    2007-01-01

    This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.

  10. High data-rate atom interferometer for measuring acceleration

    SciTech Connect

    McGuinness, Hayden J.; Rakholia, Akash V.; Biedermann, Grant W.

    2012-01-02

    We demonstrate a high data-rate light-pulse atom interferometer for measuring acceleration. The device is optimized to operate at rates between 50 Hz to 330 Hz with sensitivities of 0.57{mu}g/{radical}(Hz) to 36.7{mu}g/{radical}(Hz), respectively. Our method offers a dramatic increase in data rate and demonstrates a path to applications in highly dynamic environments. The performance of the device can largely be attributed to the high recapture efficiency of atoms from one interferometer measurement cycle to another.

  11. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  12. Measuring Exocytosis Rate Using Corrected Fluorescence Recovery After Photoconversion.

    PubMed

    Luo, Nan; Yan, An; Yang, Zhenbiao

    2016-05-01

    Exocytosis plays crucial roles in regulating the distribution and function of plasma membrane (PM) and extracellular matrix proteins. However, measuring the exocytosis rate of a specific protein by conventional methods is very difficult because of exocytosis-independent trafficking such as endocytosis, which also affects membrane protein distribution. Here, we describe a novel method, corrected fluorescence recovery after photoconversion, in which exocytosis-dependent and -independent trafficking events are measured simultaneously to accurately determine exocytosis rate. In this method, the protein-of-interest is tagged with Dendra2, a green-to-red photoconvertible fluorescent protein. Following the photoconversion of PM-localized Dendra2, both the recovery of the green signal and the changes in the photoconverted red signal are measured, and the rate of exocytosis is calculated from the changing rates of these two signals. PMID:26822068

  13. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  14. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  15. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  16. Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device

    SciTech Connect

    Busch, Stephen; Miles, Paul C.

    2015-03-31

    A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for a single injection but dramatically different for multiple injections with short dwells.

  17. Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device

    DOE PAGESBeta

    Busch, Stephen; Miles, Paul C.

    2015-03-31

    A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for amore » single injection but dramatically different for multiple injections with short dwells.« less

  18. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  19. Revision for measuring radon exhalation rate in open loop

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Xiao, D.; Yuan, H.; Tang, Q.; Liu, X.

    2013-01-01

    We propose a novel method for quickly measuring the radon exhalation rate in open loop. We first obtain the temporal variation of radon concentration in the internal cell of the RAD7 by analyzing the work principle of RAD7. We then obtain the temporal variation of radon concentration in the ventilation-type accumulation chamber when the effects of leakage and back diffusion are neglected. This method uses the measured value before the radon concentration in the ventilation-type accumulation chamber reaches a steady state. The diameter of the air input tube to the ventilation-type accumulation is large enough to keep the differential pressure in the accumulation chamber and outdoors negligible. Short cycle time and large flow rate will be appropriate for reducing measurement error. Several radon exhalation rate measurements of the medium surface have been performed in the Radon Laboratory of the University of South China. The radon exhalation rates obtained by verification experiments are in good agreement with the reference value. This method can be applied to develop and improve the instruments for measuring radon exhalation rate.

  20. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  1. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  2. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  3. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  4. Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy

    SciTech Connect

    Michel, D. T.; Davis, A. K.; Armstrong, W.; Bahr, R.; Epstein, R.; Goncharov, V. N.; Hohenberger, M.; Igumenshchev, I. V.; Jungquist, R.; Meyerhofer, D. D.; Radha, P. B.; Sangster, T. C.; Sorce, C.; Froula, D. H.

    2015-07-08

    Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$), image-to-image timing (${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$ ps) and absolute timing (${\\it\\delta}t=\\pm 10$ ps) are presented. Angular averaging of the images provides an average radius measurement of${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$and an error in velocity of${\\it\\delta}V/V=\\pm 3\\%$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.

  5. Low Velocity Difference Thermal Shear Layer Mixing Rate Measurements

    NASA Technical Reports Server (NTRS)

    Bush, Robert H.; Culver, Harry C. M.; Weissbein, Dave; Georgiadis, Nicholas J.

    2013-01-01

    Current CFD modeling techniques are known to do a poor job of predicting the mixing rate and persistence of slot film flow in co-annular flowing ducts with relatively small velocity differences but large thermal gradients. A co-annular test was devised to empirically determine the mixing rate of slot film flow in a constant area circular duct (D approx. 1ft, L approx. 10ft). The axial rate of wall heat-up is a sensitive measure of the mixing rate of the two flows. The inflow conditions were varied to simulate a variety of conditions characteristic of moderate by-pass ratio engines. A series of air temperature measurements near the duct wall provided a straightforward means to measure the axial temperature distribution and thus infer the mixing rate. This data provides a characterization of the slot film mixing rates encountered in typical jet engine environments. The experimental geometry and entrance conditions, along with the sensitivity of the results as the entrance conditions vary, make this a good test for turbulence models in a regime important to modern air-breathing propulsion research and development.

  6. Flow Rate Measurements Using Flow-Induced Pipe Vibration

    SciTech Connect

    R. P. Evans; Jonathan D. Blotter; Alan G. Stephens

    2004-03-01

    This paper focuses on the possibility of a non-intrusive, low cost, flow rate measurement technique. The technique is based on signal noise from an accelerometer attached to the surface of the pipe. The signal noise is defined as the standard deviation of the frequency averaged time series signal. Experimental results are presented that indicate a nearly quadratic relationship between the signal noise and mass flow rate in the pipe. It is also shown that the signal noise - flow rate relationship is dependant on the pipe material and diameter.

  7. Non-contact Laser-based Human Respiration Rate Measurement

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Marchionni, P.; Ercoli, I.

    2011-08-01

    At present the majority of the instrumentation, used in clinical environments, to measure human respiration rate are based on invasive and contact devices. The gold standard instrument is considered the spirometer which is largely used; it needs a direct contact and requires a collaboration by the patient. Laser Doppler Vibrometer (LDVi) is an optical, non-contact measurement system for the assessment of a surface velocity and displacement. LDVi has already been used for the measurement of the cardiac activity and for the measurement of the chest-wall displacements. The aims of this work are to select the best measurement point on the thoracic surface for LDVi monitoring of the respiration rate (RR) and to compare measured data with the RR valued provided by the spirometer. The measurement system is composed by a LDV system and a data acquisition board installed on a PC. Tests were made on 10 different point of the thorax for each patient. Patients population was composed by 33 subjects (17 male and 16 female). The optimal measurement point was chosen considering the maximum peak-to-peak value of the displacement measured by LDV. Before extracting RR we have used a special wavelet decomposition for better selection of the expiration peaks. A standard spirometer was used for the validation of the data. From tests it results that the optimal measurement point, namely is located on the inferior part of the thoracic region (left, front side). From our tests we have obtained a close correlation between the RR values measured by the spirometer and those measured by the proposed method: a difference of 14±211 ms on the RR value is reported for the entire population of 33 subjects. Our method allows a no-contact measurement of lungs activity (respiration period), reducing the electric and biological risks. Moreover it allows to measure in critical environment like in RMN or in burned skin where is difficult or impossible to apply electrodes.

  8. Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Garnov, Sergei V; Danielius, R; Piskarskas, A; Tamosauskas, G; Dausinger, F

    1999-08-31

    A series of studies was carried out on the ablation of steel, Si{sub 3}N{sub 4} ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 - 10{sup 3} J cm{sup -2}). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed. (interaction of laser radiation with matter. laser plasma)

  9. Spatially resolved heat release rate measurements in turbulent premixed flames

    SciTech Connect

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.; Mastorakos, E.; Frank, J.H.

    2006-01-01

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique uses simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.

  10. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  11. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  12. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  13. Comparison of Survival Rate in Primary Non-Small-Cell Lung Cancer Among Elderly Patients Treated With Radiofrequency Ablation, Surgery, or Chemotherapy

    SciTech Connect

    Lee, Heon; Jin, Gong Yong Han, Young Min; Chung, Gyung Ho; Lee, Yong Chul; Kwon, Keun Sang; Lynch, David

    2012-04-15

    Purpose: We retrospectively compared the survival rate in patients with non-small-cell lung cancer (NSCLC) treated with radiofrequency ablation (RFA), surgery, or chemotherapy according to lung cancer staging. Materials and Methods: From 2000 to 2004, 77 NSCLC patients, all of whom had WHO performance status 0-2 and were >60 years old, were enrolled in a cancer registry and retrospectively evaluated. RFA was performed on patients who had medical contraindications to surgery/unsuitability for surgery, such as advanced lung cancer or refusal of surgery. In the RFA group, 40 patients with inoperable NSCLC underwent RFA under computed tomography (CT) guidance. These included 16 patients with stage I to II cancer and 24 patients with stage III to IV cancer who underwent RFA in an adjuvant setting. In the comparison group (n = 37), 13 patients with stage I to II cancer underwent surgery; 18 patients with stage III to IV cancer underwent chemotherapy; and 6 patients with stage III to IV cancer were not actively treated. The survival curves for RFA, surgery, and chemotherapy in these patients were calculated using Kaplan-Meier method. Results: Median survival times for patients treated with (1) surgery alone and (2) RFA alone for stage I to II lung cancer were 33.8 and 28.2 months, respectively (P = 0.426). Median survival times for patients treated with (1) chemotherapy alone and (2) RFA with chemotherapy for stage III to IV cancer were 29 and 42 months, respectively (P = 0.03). Conclusion: RFA can be used as an alternative treatment to surgery for older NSCLC patients with stage I to II inoperable cancer and can play a role as adjuvant therapy with chemotherapy for patients with stage III to IV lung cancer.

  14. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  15. Infrared thermography for noninvasive real-time monitoring of HIFU ablation

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Sing; Kumon, Ronald E.; Deng, Cheri X.

    2012-10-01

    Infrared imaging for spatiotemporal temperature measurements was explored in this study for non-contact monitoring of temperature increases generated by HIFU ablation. Using ex vivo cardiac tissue specimens, we investigated the correlations between the occurrence of events during HIFU ablation (e.g., lesion formation, cavity formation) and the 2D spatiotemporal temperature of the tissue surface measured during HIFU ablation from an infrared camera. An increase in the rate of temperature rise was observed when lesions formed at or slightly beneath the tissue surface. Spatial shifts in the maximum temperature location away from the HIFU focus were often observed with continuing HIFU exposure after lesion formation, suggesting tissue dehydration and cavitation formation during ablation with excessive heating.

  16. Measuring High School Graduation Rates: A Review of the Literature

    ERIC Educational Resources Information Center

    Savich, Carl

    2007-01-01

    This paper reviewed the research literature on graduation rates in U.S. high schools to evaluate and assess the findings. The methodology employed was to determine the measuring method that researchers used in reaching their findings. The strengths and weaknesses of the method employed were then analyzed. Flaws and inaccuracies were examined and…

  17. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  18. Building Fluent Performance: Measuring Response Rate and Multiplying Response Opportunities

    ERIC Educational Resources Information Center

    Binder, Carl

    2010-01-01

    Precision teaching emerged from O.R. Lindsley's pristine application of Skinner's natural science of behavior, with a focus on response rate measurement and free operant procedures. When applied with human learners in instructional settings, these first principles led to a series of developments framed in this paper as four kinds of ceilings that…

  19. Induction and measurement of minute flow rates through nanopipes

    NASA Astrophysics Data System (ADS)

    Sinha, Shashank; Pia Rossi, Maria; Mattia, D.; Gogotsi, Yury; Bau, Haim H.

    2007-01-01

    A simple technique to simultaneously induce fluid flow through an individual nanopipe and measure the flow rate and the pressure difference across the pipe is described. Two liquid drops of different sizes are positioned at the two ends of the nanopipe. Due to the higher capillary pressure of the smaller drop, flow is driven from the smaller drop to the bigger drop. The instantaneous pressures of the two drops are estimated from the drops' shapes and sizes. The flow rate is estimated by monitoring the sizes of the drops as functions of time with a microscope and a video camera. A theory that correlates the drops' sizes and the flow rate is derived. Measurements are carried out with an ionic salt and glycerin to estimate the effective tube radius of the nanopipes with diameters ranging from 200 to 300nm. The tubes' diameters are independently measured with a scanning electron microscope. The method is also verified by tracking the motion of fluorescent particles through the nanopipe. The paper provides a simple technique for studying extremely low flow rates in nanofluidic systems. When working with low-evaporation fluids such as ionic salts, the measurements can be carried out with an electron microscope.

  20. An improved method of measuring heart rate using a webcam

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Ouyang, Jianfei; Yan, Yonggang

    2014-09-01

    Measuring heart rate traditionally requires special equipment and physical contact with the subject. Reliable non-contact and low-cost measurements are highly desirable for convenient and comfortable physiological self-assessment. Previous work has shown that consumer-grade cameras can provide useful signals for remote heart rate measurements. In this paper a simple and robust method of measuring the heart rate using low-cost webcam is proposed. Blood volume pulse is extracted by proper Region of Interest (ROI) and color channel selection from image sequences of human faces without complex computation. Heart rate is subsequently quantified by spectrum analysis. The method is successfully applied under natural lighting conditions. Results of experiments show that it takes less time, is much simpler, and has similar accuracy to the previously published and widely used method of Independent Component Analysis (ICA). Benefitting from non-contact, convenience, and low-costs, it provides great promise for popularization of home healthcare and can further be applied to biomedical research.

  1. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Lau, Doreen; Teo, Ju Teng; Ng, Soon Huat; Yang, Xiufeng; Kei, Pin Lin

    2014-05-01

    We propose and demonstrate the feasibility of using a highly sensitive microbend multimode fiber optic sensor for simultaneous measurement of breathing rate (BR) and heart rate (HR). The sensing system consists of a transceiver, microbend multimode fiber, and a computer. The transceiver is comprised of an optical transmitter, an optical receiver, and circuits for data communication with the computer via Bluetooth. Comparative experiments conducted between the sensor and predicate commercial physiologic devices showed an accuracy of ±2 bpm for both BR and HR measurement. Our preliminary study of simultaneous measurement of BR and HR in a clinical trial conducted on 11 healthy subjects during magnetic resonance imaging (MRI) also showed very good agreement with measurements obtained from conventional MR-compatible devices.

  2. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor.

    PubMed

    Chen, Zhihao; Lau, Doreen; Teo, Ju Teng; Ng, Soon Huat; Yang, Xiufeng; Kei, Pin Lin

    2014-05-01

    We propose and demonstrate the feasibility of using a highly sensitive microbend multimode fiber optic sensor for simultaneous measurement of breathing rate (BR) and heart rate (HR). The sensing system consists of a transceiver, microbend multimode fiber, and a computer. The transceiver is comprised of an optical transmitter, an optical receiver, and circuits for data communication with the computer via Bluetooth. Comparative experiments conducted between the sensor and predicate commercial physiologic devices showed an accuracy of ±2 bpm for both BR and HR measurement. Our preliminary study of simultaneous measurement of BR and HR in a clinical trial conducted on 11 healthy subjects during magnetic resonance imaging (MRI) also showed very good agreement with measurements obtained from conventional MR-compatible devices. PMID:24788372

  3. Measuring the Rate of Muon Capture on the Deuteron

    NASA Astrophysics Data System (ADS)

    Ibanez, Luis

    2014-03-01

    The goal of the MuSun experiment is to measure the rate of nuclear muon capture on the deuteron with a precision of 1.5%. This rate will be used to fix the low-energy constant that describes the two-nucleon weak axial current in effective field theory models. It will therefore calibrate evaluations of proton-proton fusion and neutrino-deuteron scattering. The experiment uses many of the techniques and much of the apparatus that were developed for the successful MuCap measurement of the rate of muon capture on the proton. However, to optimize the molecular kinetics, the deuterium gas is cooled to 30 K in a cryogenic time projection chamber (TPC). Progress in the analysis of the data taken during the production run of 2011 will be presented, as well as a description of the hardware upgrades and performance during the 2013 run, in preparation for another high-statistics run in 2014.

  4. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    SciTech Connect

    Liu, Dong; Brace, Christopher L.

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  5. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  6. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  7. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  8. Simplified motional heating rate measurements of trapped ions

    SciTech Connect

    Epstein, R. J.; Seidelin, S.; Leibfried, D.; Wesenberg, J. H.; Bollinger, J. J.; Amini, J. M.; Blakestad, R. B.; Britton, J.; Home, J. P.; Itano, W. M.; Jost, J. D.; Knill, E.; Langer, C.; Ozeri, R.; Shiga, N.; Wineland, D. J.

    2007-09-15

    We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 {mu}m above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300{+-}30 s{sup -1} for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

  9. Ablative Therapies for Barrett's Esophagus

    PubMed Central

    Garman, Katherine S.; Shaheen, Nicholas J.

    2011-01-01

    Barrett's esophagus has gained increased clinical attention because of its association with esophageal adenocarcinoma, a cancer with increasing incidence and poor survival rates. The goals of ablating Barrett's esophagus are to decrease esophageal cancer rates and to improve overall survival and quality of life. Different techniques have been developed and tested for their effectiveness eradicating Barrett's epithelium. This review assesses the literature associated with different ablative techniques. The safety and efficacy of different techniques are discussed. This review concludes with recommendations for the clinician, including specific strategies for patient care decisions for patients with Barrett's esophagus with varying degrees of dysplasia. PMID:21373836

  10. Effect of Laser Wavelength and Ablation Time on Pulsed Laser Ablation Synthesis of AL Nanoparticles in Ethanol

    NASA Astrophysics Data System (ADS)

    Baladi, A.; Mamoory, R. Sarraf

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 5-15 minutes using the 1064 and 533 nm wavelengths of a Nd:YAG laser with energies of 280-320 mJ per pulse. It has been found that higher wavelength leads to significantly higher ablation efficiency, and finer spherical nanoparticles are also synthesized. Besides, it was obvious that higher ablation time resulted in higher ablated mass, while lower ablation rate was observed. Finer nanoparticles, moreover, are synthesized in higher ablation times.

  11. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    USGS Publications Warehouse

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  12. MAVEN Measurements of the Ion Escape Rate from Mars

    NASA Astrophysics Data System (ADS)

    Brain, Dave; Dong, Yaxue; Fortier, Kier; Fang, Xiaohua; McFadden, James; Halekas, Jasper; Connerney, Jack; Eparvier, Frank; Dong, Chuanfei; Bougher, Stephen; Ma, Yingjuan; Modolo, Ronan; Lillis, Rob; Luhmann, Janet; Curry, Shannon; Seki, Kanako; Jakosky, Bruce

    2015-04-01

    The loss of atmospheric particles (neutral atoms, neutral molecules, ions) to space is thought to have played a role in the evolution of Martian climate over the past ~4 billion years. Due to the lack of a global magnetic field on Mars, the solar wind has direct access to the upper layers of the Martian atmosphere, and can drive non-thermal escape of charged particles (ions) from the atmosphere. Two spacecraft (Phobos 2 and Mars Express) have previously measured escaping ions at Mars. The recently arrived MAVEN spacecraft is equipped with instruments to measure escaping ions with high time cadence and high energy and mass resolution, as well as instruments to provide contextual information about what controls the variation in escape rates. We report on the total escape rate of heavy planetary ions from the Martian atmosphere measured by MAVEN. Heavy ions are identified in data from the SupraThermal And Thermal Ion Composition (STATIC) instrument. Rudimentary estimates of ion escape rate are obtained by summing the measured ion fluxes over a surface downstream from Mars with respect to the solar wind flow. This estimate can then be refined to account for the limited field of view of the instrument (investigation of measured particle distributions) and the limited spatial coverage of the spacecraft orbit trajectory. Variability in measured escape rates can also be grouped according to upstream conditions and the orientation of Mars (and its crustal magnetic fields) with respect to the solar wind. Important upstream drivers include the solar Extreme Ultraviolet (EUV) flux, solar wind pressure, and the interplanetary magnetic field strength and direction. These drivers are measured directly by MAVEN's EUV, SWIA, and MAG instruments. We will provide an initial estimate of ion escape rates based on the first several months of MAVEN data. We will then report on progress to refine these estimates to correct for instrument field of view and spacecraft coverage effects, as

  13. Dissolution rate measurements of TiN in Ti-6242

    SciTech Connect

    Bewlay, B.P.; Gigliotti, M.F.X.

    1997-01-01

    This paper describes measurements of the dissolution rate of nitrided Ti sponge and monolithic TiN rod in molten Ti-6242. The dissolution rate is described in terms of an interface recession rate that was 2.2 {micro}m/s for a Ti-6242 temperature of 1,725 C and dissolution times between 1 and 100 min. Similar dissolution rates were measured for nitrided sponge and monolithic rod. This report also descries the microstructural and chemical interdiffusion phenomena that occur during dissolution of solid {delta}TiN in molten Ti-6242. There is a N-containing solid {alpha}Ti layer and a N-solidified {beta}Ti layer between the solid {delta}TiN and liquid Ti-6242 during dissolution. Microprobe measurements indicate that diffusion of Al, Zr, Sn and Mo into {delta}TiN did not occur. Steep N concentration profiles were observed in the {alpha}Ti layer. Al, Zr, Sn and Mo were observed in the N-solidified {beta}Ti layer contained <1% N. Similar microstructural and interdiffusional behaviors were observed during dissolution of nitrided sponge and monolithic {delta}TiN rod in molten Ti-6242.

  14. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  15. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  16. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    PubMed Central

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith

    2012-01-01

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931

  17. Directly Measured Heating Rates of a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Bucholtz, Anthongy; Hlavka, Dennis L.; McGill, Matthew J.; Schmidt, K. Sebastian; Pilewskie, Peter; Davis, Sean M.; Reid, Elizabeth A.; Walker, Annette L.

    2010-01-01

    We present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus (SVC) cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). On this day a persistent thin cirrus layer, with mostly clear skies underneath, was detected in real time by the cloud lidar on the ER-2, and the aircraft was directed to profile down through the SVC. Measurements of the net broadband infrared irradiance and spectrally integrated solar irradiance above, below, and through the SVC are used to determine the infrared and solar heating rates of the cloud. The lidar measurements show that the variable SVC layer was located between approximately 13 and 15 km. Its midvisible optical depth varied from 0.01 to 0.10 with a mean of 0.034 +/- 0.033. Its depolarization ratio was approximately 0.4, indicative of ice clouds. From the divergence of the measured net irradiances the infrared heating rate of the SVC was determined to be approximately 2.50 - 3.24 K/d and the solar heating rate was found to be negligible. These values are consistent with previous indirect observations of other SVC and with model-generated heating rates of SVC with similar optical depths. This study illustrates the utility and potential of the profiling sampling strategy employed here. A more fully instrumented high-altitude aircraft that also included in situ cloud and aerosol probes would provide a comprehensive data set for characterizing both the radiative and microphysical properties of these ubiquitous tropical clouds

  18. Measurement of the rate of water translocation through carbon nanotubes.

    PubMed

    Qin, Xingcai; Yuan, Quanzi; Zhao, Yapu; Xie, Shubao; Liu, Zhongfan

    2011-05-11

    We present an approach for measuring the water flow rate through individual ultralong carbon nanotubes (CNTs) using field effect transistors array defined on individual tubes. Our work exhibits a rate enhancement of 882-51 and a slip length of 53-8 nm for CNTs with diameters of 0.81-1.59 nm. We also found that the enhancement factor does not increase monotonically with shrinking tube diameter and there exists a discontinuous region around 0.98-1.10 nm. We believe that these single-tube level results would help understand the intrinsic nanofluidics of water in CNTs. PMID:21462938

  19. Measuring fast hydrogen exchange rates by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kateb, Fatiha; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2007-01-01

    We introduce a method to measure hydrogen exchange rates based on the observation of the coherence of a neighboring spin S such as 15N that has a scalar coupling JIS to the exchanging proton I. The decay of Sx coherence under a Carr-Purcell-Meiboom-Gill (CPMG) multiple echo train is recorded in the presence and absence of proton decoupling. This method allows one to extract proton exchange rates up to 10 5 s -1. We could extend the pH range for the study of the indole proton in tryptophan, allowing the determination of the exchange constants of the cationic, zwitterionic, and anionic forms of tryptophan.

  20. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    SciTech Connect

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E.; Bischoff-Kim, Agnes; Corsico, A. H.; Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D.; Kepler, S. O.; Romero, A. D.; Chandler, D. W.; Kuehne, J. W.; Sullivan, D. J.; Von Hippel, T.; Mullally, F.; Shipman, H.; and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  1. Measurement of CPAS Main Parachute Rate of Descent

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown. Flight test performance must be measured to a high degree of accuracy to ensure this requirement is met with the most efficient design possible. Although the design includes three CPAS Main parachutes, the requirement is that the system must not exceed 33 ft/s under two Main parachutes, should one of the Main parachutes fail. Therefore, several tests were conducted with clusters of two Mains. All of the steady-state rate of descent data are normalized to standard sea level conditions and checked against the limit. As the Orion design gains weight, the system is approaching this limit to within measurement precision. Parachute "breathing," cluster interactions, and atmospheric anomalies can cause the rate of descent to vary widely and lead to challenges in characterizing parachute terminal performance. An early test had contradictory rate of descent results from optical trajectory and Differential Global Positioning Systems (DGPS). A thorough analysis of the data sources and error propagation was conducted to determine the uncertainty in the trajectory. It was discovered that the Time Space Position Information (TSPI) from the optical tracking provided accurate position data. However, the velocity from TPSI must be computed via numerical differentiation, which is prone to large error. DGPS obtains position through pseudo-range calculations from multiple satellites and velocity through Doppler shift of the carrier frequency. Because the velocity from DGPS is a direct measurement, it is more accurate than TSPI velocity. To remedy the situation, a commercial off-the-shelf product that combines GPS and an Inertial Measurement Unit (IMU) was purchased to significantly improve rate of descent measurements. This had the added benefit of solving GPS dropouts during aircraft extraction. Statistical probability

  2. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  3. Measuring Hospital Quality Using Pediatric Readmission and Revisit Rates

    PubMed Central

    Vittinghoff, Eric; Asteria-Peñaloza, Renée; Edwards, Jeffrey D.; Yazdany, Jinoos; Lee, Henry C.; Boscardin, W. John; Cabana, Michael D.; Dudley, R. Adams

    2013-01-01

    OBJECTIVE: To assess variation among hospitals on pediatric readmission and revisit rates and to determine the number of high- and low-performing hospitals. METHODS: In a retrospective analysis using the State Inpatient and Emergency Department Databases from the Healthcare Cost and Utilization Project with revisit linkages available, we identified pediatric (ages 1–20 years) visits with 1 of 7 common inpatient pediatric conditions (asthma, dehydration, pneumonia, appendicitis, skin infections, mood disorders, and epilepsy). For each condition, we calculated rates of all-cause readmissions and rates of revisits (readmission or presentation to the emergency department) within 30 and 60 days of discharge. We used mixed logistic models to estimate hospital-level risk-standardized 30-day revisit rates and to identify hospitals that had performance statistically different from the group mean. RESULTS: Thirty-day readmission rates were low (<10.0%) for all conditions. Thirty-day rates of revisit to the inpatient or emergency department setting ranged from 6.2% (appendicitis) to 11.0% (mood disorders). Study hospitals (n = 958) had low condition-specific visit volumes (37.0%–82.8% of hospitals had <25 visits). The only condition with >1% of hospitals labeled as different from the mean on 30-day risk-standardized revisit rates was mood disorders (4.2% of hospitals [n = 15], range of hospital performance 6.3%–15.9%). CONCLUSIONS: We found that when comparing hospitals’ performances to the average, few hospitals that care for children are identified as high- or low-performers for revisits, even for common pediatric diagnoses, likely due to low hospital volumes. This limits the usefulness of condition-specific readmission or revisit measures in pediatric quality measurement. PMID:23979094

  4. The Mass Accretion Rate of Galaxy Clusters: A Measurable Quantity

    NASA Astrophysics Data System (ADS)

    De Boni, C.; Serra, A. L.; Diaferio, A.; Giocoli, C.; Baldi, M.

    2016-02-01

    We explore the possibility of measuring the mass accretion rate (MAR) of galaxy clusters from their mass profiles beyond the virial radius R200. We derive the accretion rate from the mass of a spherical shell whose inner radius is 2R200, whose thickness changes with redshift, and whose infall velocity is assumed to be equal to the mean infall velocity of the spherical shells of dark matter halos extracted from N-body simulations. This approximation is rather crude in hierarchical clustering scenarios where both smooth accretion and aggregation of smaller dark matter halos contribute to the mass accretion of clusters. Nevertheless, in the redshift range z = [0, 2], our prescription returns an average MAR within 20%-40% of the average rate derived from the merger trees of dark matter halos extracted from N-body simulations. The MAR of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real universe. Since the measurement of the mass profile of clusters beyond their virial radius can be performed with the caustic technique applied to dense redshift surveys of the cluster outer regions, our result suggests that measuring the mean MAR of a sample of galaxy clusters is actually feasible. We thus provide a new potential observational test of the cosmological and structure formation models.

  5. Dynamic measurement rate allocation for distributed compressive video sensing

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Wei; Kang, Li-Wei; Lu, Chun-Shien

    2010-07-01

    We address an important issue of fully low-cost and low-complexity video encoding for use in resource limited sensors/devices. Conventional distributed video coding (DVC) does not actually meet this requirement because the acquisition of video sequences still relies on the high-cost mechanism (sampling + compression). Recently, we have proposed a distributed compressive video sensing (DCVS) framework to directly capture compressed video data called measurements, while exploiting correlations among successive frames for video reconstruction at the decoder. The core is to integrate the respective characteristics of DVC and compressive sensing (CS) to achieve CS-based single-pixel camera-compatible video encoder. At DCVS decoder, video reconstruction can be formulated as a convex unconstrained optimization problem via solving the sparse coefficients with respect to some basis functions. Nevertheless, the issue of measurement rate allocation has not been considered yet in the literature. Actually, different measurement rates should be adaptively assigned to different local regions by considering the sparsity of each region for improving reconstructed quality. This paper investigates dynamic measurement rate allocation in block-based DCVS, which can adaptively adjust measurement rates by estimating the sparsity of each block via feedback information. Simulation results have indicated the effectiveness of our scheme. It is worth noting that our goal is to develop a novel fully low-complexity video compression paradigm via the emerging compressive sensing and sparse representation technologies, and provide an alternative scheme adaptive to the environment, where raw video data is not available, instead of competing compression performances against the current compression standards (e.g., H.264/AVC) or DVC schemes which need raw data available for encoding.

  6. Homogeneous nucleation rate measurements in supersaturated water vapor.

    PubMed

    Brus, David; Zdímal, Vladimír; Smolík, Jirí

    2008-11-01

    The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data. PMID:19045352

  7. Radon source rate measurements using multiple perfluorocarbon tracers

    SciTech Connect

    D'Ottavio, T.W.; Dietz, R.N.; Kunz, C.; Kothari, B.

    1987-01-01

    In all passive monitoring system utilizing ..cap alpha..-track detectors for radon and perfluorocarbon tracer (PFT) samplers for ventilation has been used to measure radon entry rates for 60 homes located within four separate areas of New York State (USA). Each home was divided into two or three zones so that multiple PFTs and multizone mass balance models could be used to compute zonal radon source rates. The whole house radon source rate for all 60 homes, averaged for a 2 to 7 week time period during the winter of 85-86, had a geometric mean of 4.94 Bq/s and an arithmetic mean of 10.0 Bq/s. Zonal mass balance equations applied to a tracer emitted in the soil outside 45 of the homes showed that, on average, 55% of the emitted tracer actually entered the houses. Diffusion alone cannot account for such a high value.

  8. Heating rate controller for thermally stimulated conductivity and thermoluminescence measurements.

    NASA Technical Reports Server (NTRS)

    Manning, E. G.; Littlejohn, M. A.; Oakley, E. M.; Hutchby , J. A.

    1972-01-01

    A temperature controller is described which enables the temperature of a sample mounted on a cold finger to be varied linearly with time. Heating rates between 0.5 and 10 K/min can be achieved for temperatures between 90 and 300 K. Provision for terminating the sample heating at any temperature between these extremes is available. The temperature can be held at the terminating temperature or be reduced to the starting temperature in a matter of minutes. The controller has been used for thermally stimulated conductivity measurements and should be useful for thermoluminescence measurements as well.

  9. Robust sensor fusion of unobtrusively measured heart rate.

    PubMed

    Wartzek, Tobias; Brüser, Christoph; Walter, Marian; Leonhardt, Steffen

    2014-03-01

    Contactless vital sign measurement technologies often have the drawback of severe motion artifacts and periods in which no signal is available. However, using several identical or physically different sensors, redundancy can be used to decrease the error in noncontact heart rate estimation, while increasing the time period during which reliable data are available. In this paper, we show for the first time two major results in case of contactless heart rate measurements deduced from a capacitive ECG and optical pulse signals. First, an artifact detection is an essential preprocessing step to allow a reliable fusion. Second, the robust but computationally efficient median already provides good results; however, using a Bayesian approach, and a short time estimation of the variance, best results in terms of difference to reference heart rate and temporal coverage can be achieved. In this paper, six sensor signals were used and coverage increased from 0-90% to 80-94%, while the difference between the estimated heart rate and the gold standard was less than ±2 BPM. PMID:24608065

  10. CALIBRATION OF OBSERVATIONAL MEASUREMENT OF RATE OF RESPONDING

    PubMed Central

    Mudford, Oliver C; Zeleny, Jason R; Fisher, Wayne W; Klum, Molly E; Owen, Todd M

    2011-01-01

    The quality of measurement systems used in almost all natural sciences other than behavior analysis is usually evaluated through calibration study rather than relying on interobserver agreement. We demonstrated some of the basic features of calibration using observer-measured rates of free-operant responding from 10 scripted 10-min calibration samples on video. Five novice and 5 experienced observers recorded (on laptop computers) response samples with a priori determined response rates ranging from 0 to 8 responses per minute. Observer records were then compared with these predetermined reference values using linear regression and related graphical depiction. Results indicated that all of the observers recorded rates that were accurate to within ±0.4 responses per minute and 5 were accurate to within ±0.1 responses per minute, indicating that continuous recording of responding on computers can be highly accurate and precise. Additional research is recommended to investigate conditions that affect the quality of direct observational measurement of behavior. PMID:21941386

  11. Ablative therapies in renal cell carcinoma.

    PubMed

    Chan, A A; Ahrar, K; Matin, S F

    2011-09-01

    We reviewed the use of ablative therapies in the management of renal cell carcinoma. We performed a PubMed search of the English language literature using the keywords "ablation" and "renal carcinoma." Pertinent articles specific to the technologic advancement of ablative therapy and clinical outcomes were selected for review. Intermediate-term oncologic outcomes of cryoablation and radiofrequency ablation are acceptable but are not quite as good as for surgical excision based nearly all on retrospective studies. No randomized studies have been performed comparing excisional and ablative therapies. Careful selection of patients and tumor characteristics results in improved outcomes. Diagnostic biopsy for tissue confirmation is mandatory and should even be considered post therapy after 6-12 months in patients with a concern about recurrence. Ablative therapies are associated with decreased morbidity, less severe complication rates, and excellent preservation of renal function in comparison with surgical excision. The majority of recurrences occur early, but long-term surveillance is required as delayed recurrences are also possible and the long-term oncologic efficacy is not yet established. Ablation can be delivered percutaneously or laparoscopically, and the superiority of one over the other remains controversial. The percutaneous approach is more cost effective and causes less perinephric desmoplasia. Nearly all data on ablation are retrospective and, with few exceptions, from single institutions. Ablative therapy is an appealing option for the management of small renal tumors shown to be renal cell carcinoma on biopsy in patients who are unsuitable candidates for surgical extirpation. PMID:21993322

  12. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  13. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  14. Rates of burial and exhumation of lawsonite blueschist/eclogite in subduction zones from in situ UV laser ablation 40Ar/39Ar phengite geochronology

    NASA Astrophysics Data System (ADS)

    Fornash, K.; Cosca, M. A.; Whitney, D. L.; Teyssier, C. P.

    2014-12-01

    Lawsonite eclogites and blueschists are accessible records of processes that occur at depth in subducting slabs and can therefore provide information about the chemical and physical evolution of subduction zones. In composite blueschist-eclogite terranes, blueschists may have formed (1) by prograde metamorphism (pre-eclogite), (2) at the same P-T conditions as eclogite-facies metamorphism as a result of differences in bulk composition, H2O content, or oxidation state, or (3) from retrogression of eclogite, e.g. during exhumation. Field and petrologic observations of lawsonite eclogite and blueschist in the Sivrihisar Massif, Turkey, suggest that some blueschist formed from eclogite during exhumation in the subduction channel, whereas results from thermobarometry suggest that some blueschist formed at the same P-T conditions as eclogite. To test the age, petrologic, and tectonic relationship of coexisting eclogite and blueschist, we applied in situ UV laser ablation 40Ar/39Ar phengite geochronology to eclogite- and blueschist-facies rocks representing different structural positions and displaying different phengite textures and coexisting mineral assemblages. Phengite from fresh lawsonite eclogite yield an age of 93 ± 2 Ma and have the narrowest spread in ages (<12 Ma) of any rock type analyzed. Retrogressed (epidote) eclogite yields a mean weighted age of 82 ± 2 Ma. In contrast to the tightly constrained ages obtained in eclogite pods, blueschists and blueschist-facies quartzite exhibit discrete age populations ranging from 82 Ma to 110 Ma. Deformed phengite clusters from lawsonite garnet blueschist record age populations at 82 Ma and 92 Ma. Phengite from lawsonite-garnet veins and glaucophane-rich margins of eclogite pods also record 92 Ma. Omphacite-bearing lawsonite blueschist and a blueschist-facies quartzite from the same structural position contain age populations at 97 Ma and 110 Ma. These results document a sequence of events from prograde blueschist

  15. Measuring gas flow rates in the Milky Way

    NASA Astrophysics Data System (ADS)

    Wakker, Bart

    2010-09-01

    Gas flows out of and into the Milky Way are a crucial element in its evolution. Supernovae heat gas in the disk and lift it into the halo. Tidal streams and instabilities in the hot Galactic corona result in an inflow of low-metallicity gas. These flows can be observed in the form of the high-velocity clouds {HVCs}. Their location, brightness, distances, ionization structure and metallicities can be used to determine the conditions in the gaseous disk and halo as well as the rate of mass flow corresponding to the different processes. So far, sufficient information to derive an associated mass flow rate is available for just 5 HVCs. We propose to observe 20 AGNs toward most of the other HVC complexes as well as toward a few small clouds, in order to derive a metallicity for almost every HVC complex, which will complement distance measurements that have been or will be obtained in our ongoing program. Combining all the data, we can derive {a} the rate of the circulation of gas between disk and halo, constraining the Galactic supernova rate and {b} the accretion rate of low-metallicity material that feeds star formation over 10 Gyr, which will constrain both models of galactic chemical evolution and models of the conditions in the hot galactic corona.

  16. Ablation of ionic crystals induced by capillary-discharge XUV laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Burian, Tomáš; Vyšín, Ludék; Chalupský, Jaromír; Lančok, Ján; Wild, Jan; Střižík, Michal; Zelinger, Zdeněk; Rocca, Jorge J.; Juha, Libor

    2011-06-01

    Single crystals of two fluorides (LiF and CaF2) and a tungstate (PbWO4) were irradiated by nanosecond pulses of 46.9- nm radiation provided by 10-Hz capillary-discharge Ne-like Ar laser (CDL). The damage threshold was determined in LiF using the CDL beam focused by a Sc/Si multilayer-coated spherical mirror. Irradiated samples have been investigated by Nomarski (DIC - Differential Interference Contrast) microscopy and optical (WLI - white light intereferometry) profiler. After an exposure by a certain number of CDL pulses, an ablation rate can be calculated from WLI measured depth of the crater created by the XUV ablation. Potential use of XUV ablation of ionic crystals in pulsed laser deposition (PLD) of thin layers of such a particular material, which is difficult to ablate by conventional UV-Vis- NIR lasers, is discussed in this contribution.

  17. Development of lightweight ceramic ablators and arc-jet test results

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.

    1994-01-01

    Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.

  18. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  19. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  20. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    SciTech Connect

    Pham, Daniel; Thompson, Ann; Kron, Tomas; Foroudi, Farshad; Kolsky, Michal Schneider; Devereux, Thomas; Lim, Andrew; Siva, Shankar

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  1. Measurement of the formation rate of muonic hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Andreev, V. A.; Banks, T. I.; Carey, R. M.; Case, T. A.; Clayton, S. M.; Crowe, K. M.; Deutsch, J.; Egger, J.; Freedman, S. J.; Ganzha, V. A.; Gorringe, T.; Gray, F. E.; Hertzog, D. W.; Hildebrandt, M.; Kammel, P.; Kiburg, B.; Knaack, S.; Kravtsov, P. A.; Krivshich, A. G.; Lauss, B.; Lynch, K. R.; Maev, E. M.; Maev, O. E.; Mulhauser, F.; Petitjean, C.; Petrov, G. E.; Prieels, R.; Schapkin, G. N.; Semenchuk, G. G.; Soroka, M. A.; Tishchenko, V.; Vasilyev, A. A.; Vorobyov, A. A.; Vznuzdaev, M. E.; Winter, P.; MuCap Collaboration

    2015-05-01

    Background: The rate λpp μ characterizes the formation of p p μ molecules in collisions of muonic p μ atoms with hydrogen. In measurements of the basic weak muon capture reaction on the proton to determine the pseudoscalar coupling gP, capture occurs from both atomic and molecular states. Thus knowledge of λpp μ is required for a correct interpretation of these experiments. Purpose: Recently the MuCap experiment has measured the capture rate ΛS from the singlet p μ atom, employing a low-density active target to suppress p p μ formation [V. Andreev et al. (MuCap Collaboration), Phys. Rev. Lett. 110, 012504 (2013)], 10.1103/PhysRevLett.110.012504. Nevertheless, given the unprecedented precision of this experiment, the existing experimental knowledge in λpp μ had to be improved. Method: The MuCap experiment derived the weak capture rate from the muon disappearance rate in ultrapure hydrogen. By doping the hydrogen with 20 ppm of argon, a competing process to p p μ formation was introduced, which allowed the extraction of λpp μ from the observed time distribution of decay electrons. Results: The p p μ formation rate was measured as λpp μ=(2.01 ±0 .06stat±0 .03sys) ×106s-1 . This result updates the λpp μ value used in the abovementioned MuCap publication. Conclusions: The 2.5 × higher precision compared to earlier experiments, and the fact that the measurement was performed under nearly identical conditions as the main data taking, reduces the uncertainty induced by λpp μ to a minor contribution to the overall uncertainty of ΛS and gP, as determined in the MuCap experiment. Our final value for λpp μ shifts ΛS and gP by less than one-tenth of their respective uncertainties compared to our results published earlier.

  2. Combining Disparate Measures of Metabolic Rate During Simulated Spacewalks

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Kuznetz, Larry; Nguyen, Dan

    2009-01-01

    Scientists from NASA's Extravehicular Activities (EVA) Physiology Systems and Performance Project help design space suits for future missions, during which astronauts are expected to perform EVA activities on the Lunar or Martian surface. During an EVA, an astronaut s integrated metabolic rate is used to predict how much longer the activity can continue and still provide a safe margin of remaining consumables. For EVAs in the Apollo era, NASA physicians monitored live data feeds of heart rate, O2 consumption, and liquid cooled garment (LCG) temperatures, which were subjectively combined or compared to produce an estimate of metabolic rate. But these multiple data feeds sometimes provided conflicting estimates of metabolic rate, making real-time calculations of remaining time difficult for physician/monitors. Currently, designs planned for the Constellation Program EVAs utilize an automated, but largely heuristic methodology for incorporating the above three measurements, plus an additional one - CO2 production, ignoring data that appears in conflict; however a more rigorous model-based approach is desirable. In this study, we show how principal axis factor analysis, in combination with OLS regression and LOWESS smoothing can be used to estimate metabolic rate as a data-driven weighted average of heart rate, O2 consumption, LCG temperature data, and CO2 production. Preliminary results suggest less sensitivity to occasional spikes in observed data feeds, and reasonable within-subject reproducibility when applied to subsequent tasks. These methods do not require physician monitoring and as such can be automated in the electronic components of future space suits. With additional validation, our models show promise for increasing astronaut safety, while reducing the need for and potential errors associated with human monitoring of multiple systems.

  3. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  4. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  5. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.; Glendinning, S. G.; Kalantar, D. H.; Watt, R. G.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile.

  6. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    SciTech Connect

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.

  7. Incidence and predictors of adenocarcinoma following endoscopic ablation of Barrett’s esophagus

    PubMed Central

    Yasuda, Kazuhiro; Choi, Sung Eun; Nishioka, Norman S.; Rattner, David W.; Puricelli, William P.; Tramontano, Angela C.; Kitano, Seigo; Hur, Chin

    2014-01-01

    Background The rate and risk factors of recurrent or metachronous adenocarcinoma following endoscopic ablation therapy in patients with Barrett’s esophagus (BE) have not been specifically reported. Aims The aim of this study was to determine the incidence and predictors of adenocarcinoma after ablation therapy for BE high-grade dysplasia (HGD) or intramucosal carcinoma (IMC). Methods This is a single center, retrospective review of prospectively collected data on consecutive cases of endoscopic ablation for BE. A total of 223 patients with BE (HGD or IMC) were treated by ablation between 1996 and 2011. Primary outcome measures were recurrence and new development of adenocarcinoma after ablation. Recurrence was defined as the presence of adenocarcinoma following the absence of adenocarcinoma in biopsy samples from 2 consecutive surveillance endoscopies. Logistic regression analysis was performed to assess predictors of adenocarcinoma after ablation. Results 183 patients were included in the final analysis, and 40 patients were excluded: 22 for palliative ablation, 8 lost to follow-up, 5 for residual carcinoma and 5 for postoperative state. Median follow-up was 39 months. Recurrence or new development of adenocarcinoma was found in 20 patients (11%) and the median time to recurrence/development of adenocarcinoma was 11.5 months. Independent predictors of recurrent or metachronous adenocarcinoma were hiatal hernia size ≥ 4cm (odds ratio 3.649, P = 0.0233) and histology (HGD/adenocarcinoma) after 1st ablation (odds ratio 4.141, P = 0.0065). Conclusions Adenocarcinoma after endoscopic therapy for HGD or IMC in BE is associated with large hiatal hernia and histology status after initial ablation therapy. PMID:24395382

  8. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  9. Viscometer for low frequency, low shear rate measurements

    NASA Technical Reports Server (NTRS)

    Berg, R. F.; Moldover, M. R.

    1986-01-01

    A computer-controlled torsion-oscillator viscometer with low 0.5 Hz frequency and very low 0.05/s shear rate is designed to precisely study shear-sensitive fluids such as microemulsions, gels, polymer solutions and melts, colloidal solutions undergoing coagulation, and liquid mixtures near critical points. The viscosities are obtained from measurements of the logarithmic decrement of an underdriven oscillator. The viscometer is found to have a resolution of 0.2 percent when used with liquid samples and a resolution of 0.4 percent when used with a dense gaseous sample. The design is compatible with submillikelvin temperature control.

  10. Measurements of True Leak Rates of MEMS Packages

    PubMed Central

    Han, Bongtae

    2012-01-01

    Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing. PMID:22736994

  11. Transpiration rate measurement using miniature temperature/humidity sensors.

    PubMed

    Sasaki, Satoshi; Amano, Tatsuya

    2010-01-01

    A novel method for the evaluating the transpiration rate (TR) has been proposed. Miniature temperature/humidity loggers were attached onto the leaf surface of a mangrove plant, Bruguiera gymnorrhiza, via a spacer. TR values were calculated using the mass-balance equation; the results showed good agreement with those measured using a conventional porometer when the plant root was surrounded by water. In a saline environment, on the other hand, the correlation became poor. The method was shown to require not only minimal invasion, but also a very short time for attaching leaves. PMID:20631447

  12. Seabed measurements of modern corrosion rates on the Florida escarpment

    USGS Publications Warehouse

    Paull, C.K.; Commeau, R.F.; Curray, Joseph R.; Neumann, A.C.

    1991-01-01

    A mooring containing diverse carbonate and anhydrite substrates was exposed to bottom waters for 9 months at the base of the Florida Escarpment to determine the influence of dissolution on the development of this continental margin. Weight loss was measured on all samples. Etching, pitting, and loss of the original framework components were observed on substrates with known characteristics. Extrapolations of modern dissolution rates predict only about 1.6 meters of corrosion per million years. However, more rapid anhydrite dissolution, up to 1 km per million years, would cause exposed anhydrite beds to undercut and destabilize intercalated limestones. ?? 1991 Springer-Verlag New York Inc.

  13. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  14. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  15. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  16. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  17. Homogeneous nucleation rate measurements in supersaturated water vapor II.

    PubMed

    Brus, David; Zdímal, Vladimír; Uchtmann, Hermann

    2009-08-21

    The homogeneous nucleation of water was studied experimentally in this work using a thermal diffusion cloud chamber; droplets were counted by the photomultiplier method and helium was used as a carrier gas. The nucleation rates range from 3x10(-2) to 3x10(1) cm(-3) s(-1) and six isotherms from 295 to 320 K with step of 5 K are measured. The experimental setup and obtained data are mutually compared to our previous publication [Brus et al., J. Chem. Phys. 129, 174501 (2008)], where the droplets were counted using digital photography and image processing. The molecular content of the critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of the nucleation rate of water on the saturation ratio were compared with previously published data of others, several theoretical predictions, and the former nucleation onset data. The aim of the present investigation was to show for the first time that nucleation results can be quantitatively reproduced with two different experimental setups operated in different ways. PMID:19708751

  18. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  19. Measuring Black Smoker Fluid Flow Rates Using Image Correlation Velocimetry

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Wilcock, W. S.; McDuff, R. E.

    2006-12-01

    Motivated by a desire to find non-invasive methods for obtaining time-series measurements of fluid flow rates through mid-ocean ridge black smokers, we are developing an image-based velocimetry technique that will provide this information through the analysis of video sequences showing the turbulent structures of black smoker effluent jets. Our ultimate goal is to develop an autonomous seafloor instrument suitable for use with a cabled seafloor observatory that can provide extended time-series measurements of black smoker discharge rates with little user intervention. The method we are developing is based on the two-dimensional cross-correlation of an array of overlapping subimages from two sequential image frames within a sequence. For each pair of images this yields a two- dimensional representation of the instantaneous velocity field in the imaged flow. For each video sequence, the set of these "image velocity fields" from all image pairs is temporally averaged to yield a smoothed representation of the time-averaged image flow field. A transformation is then applied to convert the image flow fields into a relative discharge rate. We have developed a computational algorithm to implement this technique and have successfully applied it to video sequences collected in the late 1980s and early 1990s showing the discharge of black smokers in the Main Endeavour field of the Juan de Fuca Ridge over the course of weeks and months. We are able to resolve velocity fields that are qualitatively consistent with those predicted by plume theory from 5 seconds of video (150 image pairs), but it is difficult to calibrate or assess the precision of the technique with field data alone. In order to address these issues, as well as refine the computational algorithm, we have conducted laboratory simulations of black smoker jets with known discharge rates over a range of Reynolds numbers. We have recorded these simulations to obtain video image sequences that are similar to those

  20. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  1. Laser-ablation processes

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    The various mechanisms by which ablation of materials can be induced with lasers are discussed in this paper. The various ablation processes and potential applications are reviewed from the threshold for ablation up to fluxes of about 10{sup 13} W/cm{sup 2}, with emphasis on three particular processes; namely, front-surface spallation, two-dimensional blowoff, and contained vaporization.

  2. Laser ablation of human tooth

    NASA Astrophysics Data System (ADS)

    Franklin, Sushmita R.; Chauhan, P.; Mitra, A.; Thareja, R. K.

    2005-05-01

    We report the measurements of ablation threshold of human tooth in air using photo-thermal deflection technique. A third harmonic (355nm) of Nd:YAG (yttrium aluminum garnet) laser was used for irradiation and a low power helium neon laser as a probe beam. The experimental observations of ablation threshold in conjunction with theoretical model based on heat conduction equations for simulating the interaction of a laser radiation with a calcified tissue are used to estimate the absorption coefficient of human tooth.

  3. Atrial Fibrillation Ablation and Stroke.

    PubMed

    Aagaard, Philip; Briceno, David; Csanadi, Zoltan; Mohanty, Sanghamitra; Gianni, Carola; Trivedi, Chintan; Nagy-Baló, Edina; Danik, Stephan; Barrett, Conor; Santoro, Francesco; Burkhardt, J David; Sanchez, Javier; Natale, Andrea; Di Biase, Luigi

    2016-05-01

    Catheter ablation has become a widely available and accepted treatment to restore sinus rhythm in atrial fibrillation patients who fail antiarrhythmic drug therapy. Although generally safe, the procedure carries a non-negligible risk of complications, including periprocedural cerebral insults. Uninterrupted anticoagulation, maintenance of an adequate ACT during the procedure, and measures to avoid and detect thrombus build-up on sheaths and atheters during the procedure, appears useful to reduce the risk of embolic events. This is a review of the incidence, mechanisms, impact, and methods to reduce catheter ablation related cerebral insults. PMID:27150179

  4. A study on the measurement of the core body temperature change after radiofrequency ablation (RFA) through MR temperature mapping

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Bok; Dong, Kyung-Rae; Yu, Young; Chung, Woon-Kwan; Cho, Jae-Hwan; Joo, Kyu-Ji

    2013-09-01

    This study examined the change in the heat generated during radiofrequency ablation (RFA) using a self-manufactured phantom and used magnetic resonance imaging (MRI) to analyze the change in the temperature of the core body and the tissues surrounding the phantom. In this experiment, the image and the phase image were obtained simultaneously from a gradient echo-based sequence using 1.5-Tesla MRI equipment and a 12-channel head coil. The temperature mapping technique was used to calculate the change in temperature. The regions of interest (ROIs) (ROI 1 - ROI 6) were set with a focus on the area where the RFA was performed, according to the temperature distribution, before monitoring the temperature change for one hour in time intervals of five minutes. The results showed that the temperature change in the ROI with time was largest in the ROI 1 and smallest in the ROI 5. In addition, after the RFA procedure, the temperature decreased from the initial value to 0 °C in one hour. The temperature changes in the core body and the surrounding tissues were confirmed by MRI temperature mapping, which is a noninvasive method.

  5. Excimer ablation of human intervertebral disc at 308 nanometers.

    PubMed

    Wolgin, M; Finkenberg, J; Papaioannou, T; Segil, C; Soma, C; Grundfest, W

    1989-01-01

    Excimer laser energy, which has been shown to photoablate tissue at a precisely controllable rate with minimal thermal damage, was applied to human intervertebral disc in an effort to develop a technique for percutaneous discectomy. Cadaveric samples of human disc were used. Excimer laser energy was produced by a XeCl, magnetically switched, long-pulse laser working at 308 nm, 20 Hz. Annulus tissue of approximately 1 mm thickness was placed in contact with the output tip of a 400 microns core diameter quartz fiber, and measurements of ablation rate were made at different radiant exposures. Ablation rates were found to vary linearly with radiant exposure, from 0.7 micron/pulse at 10 mJ/mm2 to 11.0 microns/pulse at 55 mJ/mm2, with a correlation coefficient of 0.984. Threshold radiant exposure, calculated by extrapolation, was found to be about 7 mJ/mm2. Histologic analysis showed a minimum of thermal damage in these specimens, and when ablated with modification to maintain constant fiber-tissue contact, thermal injury was nearly absent, as compared to samples ablated with Nd:YAG through a contact probe. Thermographic analysis, performed using the AGA 782 Digital Thermography system, showed increasing temperature with increasing radiant exposure, with a maximum temperature of 47.2 degrees C at 55 mJ/mm2. In that precise tissue ablation was demonstrated with minimal generated heat, and excimer energy at 308 nm is transmissible through fiber optics, excimer holds great promise for the development of a percutaneous discectomy technique. PMID:2716456

  6. Study of breakdown in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-01

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (˜1-10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  7. Study of breakdown in an ablative pulsed plasma thruster

    SciTech Connect

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  8. Computing the rates of measurement-induced quantum jumps

    NASA Astrophysics Data System (ADS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2015-06-01

    Small quantum systems can now be continuously monitored experimentally which allows for the reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of jumps between the eigenstates of the observable which is measured. Using the stochastic master equation (SME) formalism for continuous quantum measurements, we show that the density matrix of a system indeed shows a jumpy behaviour when it is subjected to a tight measurement (even if the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to two simple examples. We then discuss the mathematical, foundational and practical applications of our results. The analysis we present is based on a study of the strong noise limit of a class of stochastic differential equations (the SME) and as such the method may be applicable to other physical situations in which a strong noise limit plays a role.

  9. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach. PMID:22565342

  10. Angled Cool-Tip Electrode for Radiofrequency Ablation of Small Superficial Subcapsular Tumors in the Liver: A Feasibility Study

    PubMed Central

    Kim, Il Jung; Lee, Shin Jae; Shin, Min Woo; Shin, Won Sun; Chung, Yong Eun; Kim, Gyoung Min; Kim, Man Deuk; Won, Jong Yun; Lee, Do Yun; Choi, Jin Sub; Han, Kwang-Hyub

    2016-01-01

    Objective To evaluate the feasibility of angled cool-tip electrode for radiofrequency ablation of small superficial subcapsular liver tumors abutting abdominal wall, in order to traverse normal liver parenchyma, and thereby, obtain favorable configuration of ablation margin. Materials and Methods In this study, we retrospectively analyzed 15 small superficial subcapsular liver tumors abutting abdominal wall in 15 patients, treated with radiofrequency ablation from March 2013 to June 2015 using a cool-tip electrode manually modified to create 25–35° angle at the junction between exposed and insulated segments. The tumors were hepatocellular carcinoma (n = 13) and metastases (n = 2: cholangiocellular carcinoma and rectosigmoid cancer), with maximum diameter of 10–26 mm (mean, 15.68 ± 5.29 mm). Under ultrasonographic guidance, the electrode tip was advanced to the depth of the tumors' epicenter about 1 cm from the margin. The tip was re-directed to penetrate the tumor for radiofrequency ablation. Minimal ablation margin was measured at immediate post-treatment CT. Radiological images and medical records were evaluated for success rate, length of minimal ablation margin and complications. Results Technical success rate of obtaining complete necrosis of the tumors was 100%, with no procedure-related complication. Minimal ablation margin ranged from 3–12 mm (mean, 7.07 ± 2.23 mm). CT/MRI follow-up at 21–1022 days (mean, 519.47 ± 304.51 days) revealed no local recurrence, but distant recurrence in 9 patients. Conclusion Using an angled cool-tip electrode for radiofrequency ablation of small superficial subcapsular tumors abutting abdominal wall may be a feasible technique for obtaining adequate ablation margin and lower complication rate. PMID:27587963

  11. Excitation rate and background measurements during LIF studies on krypton

    NASA Astrophysics Data System (ADS)

    Whitehead, C. A.; Cannon, B. D.; Wacker, J. F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure Kr-85 concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce Kr-85 to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p(sub 6) state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the Kr-85 isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p(sub 8) energy level. Non-isotopically selective de-excitation rates as high as 5 x 10(exp 5)/sec have been measured, yielding a signal-to-background ratio of g reater than 10(exp 6). The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by Kr-85. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2-3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  12. Excitation rate and background measurements during LIF studies on krypton

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure {sup 85}Kr concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce {sup 85}Kr to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p{sub 6} state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the {sup 85}Kr isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p{sub 8} energy level. Non-isotopically selective de-excitation rates as high as 5 {times} 10{sup 5} sec{sup {minus}1} have been measured, yielding a signal-to-background ratio of >10{sup 6}. The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by {sup 85}Kr. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2--3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  13. Excitation rate and background measurements during LIF studies on krypton

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure [sup 85]Kr concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce [sup 85]Kr to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p[sub 6] state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the [sup 85]Kr isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p[sub 8] energy level. Non-isotopically selective de-excitation rates as high as 5 [times] 10[sup 5] sec[sup [minus]1] have been measured, yielding a signal-to-background ratio of >10[sup 6]. The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by [sup 85]Kr. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2--3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  14. Surgical Ablation of Atrial Fibrillation.

    PubMed

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  15. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  16. Measurement of Metabolic Rate in Drosophila using Respirometry

    PubMed Central

    Yatsenko, Andriy S.; Marrone, April K.; Kucherenko, Mariya M.; Shcherbata, Halyna R.

    2014-01-01

    Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate. PMID:24998593

  17. Clinical Significance of Additional Ablation of Atrial Premature Beats after Catheter Ablation for Atrial Fibrillation

    PubMed Central

    Kim, In-Soo; Yang, Pil-Sung; Kim, Tae-Hoon; Park, Junbeum; Park, Jin-Kyu; Uhm, Jae Sun; Joung, Boyoung; Lee, Moon Hyoung

    2016-01-01

    Purpose The clinical significance of post-procedural atrial premature beats immediately after catheter ablation for atrial fibrillation (AF) has not been clearly determined. We hypothesized that the provocation of immediate recurrence of atrial premature beats (IRAPB) and additional ablation improves the clinical outcome of AF ablation. Materials and Methods We enrolled 200 patients with AF (76.5% males; 57.4±11.1 years old; 64.3% paroxysmal AF) who underwent catheter ablation. Post-procedure IRAPB was defined as frequent atrial premature beats (≥6/min) under isoproterenol infusion (5 µg/min), monitored for 10 min after internal cardioversion, and we ablated mappable IRAPBs. Post-procedural IRAPB provocations were conducted in 100 patients. We compared the patients who showed IRAPB with those who did not. We also compared the IRAPB provocation group with 100 age-, sex-, and AF-type-matched patients who completed ablation without provocation (No-Test group). Results 1) Among the post-procedural IRAPB provocation group, 33% showed IRAPB and required additional ablation with a longer procedure time (p=0.001) than those without IRAPB, without increasing the complication rate. 2) During 18.0±6.6 months of follow-up, the patients who showed IRAPB had a worse clinical recurrence rate than those who did not (27.3% vs. 9.0%; p=0.016), in spite of additional IRAPB ablation. 3) However, the clinical recurrence rate was significantly lower in the IRAPB provocation group (15.0%) than in the No-Test group (28.0%; p=0.025) without lengthening of the procedure time or raising complication rate. Conclusion The presence of post-procedural IRAPB was associated with a higher recurrence rate after AF ablation. However, IRAPB provocation and additional ablation might facilitate a better clinical outcome. A further prospective randomized study is warranted. PMID:26632385

  18. Measurement of sulfur dioxide reaction rates in wintertime orographic clouds

    SciTech Connect

    Snider, J.R.

    1989-01-01

    Releases of SO2 into the wintertime orographic clouds at Elk Mountain in southeastern Wyoming were utilized to accelerate the rate of SO2 oxidation to cloud-water dissolved sulfate (SO4(-2)). Background SO2 mixing ratios were 0.6 parts-per-billion by volume (ppbv) and were consistent with the remote location of the experimental site and with supplemental cloud water, snow, and aerosol composition measurements. Background mixing ratios of hydrogen peroxide (H2O2) and the organohydroperoxides, expressed as methyl hydroperoxide (MHP), were 0.15 and 0.17 ppbv, respectively. The concentration of H2O2 in cloud water, obtained as rime, was also monitored. Analysis of these findings suggests that both reactive loss of H2O2 and volatilization during riming are mechanisms for H2O2 loss. The pseudo first-order SO2 depletion rates varied between 2 and 72 percent /hr (x=32 plus or minus 22 percent/hr, n=10). Observed depletions of H2O2 (x=0.030 ppbv) were consistent with observed yields of SO4(-2) (x=0.027 ppbv) and with model predictions. Observed depletions of MHP were not significantly different from 0.0 ppbv. This observation is both consistent with the much smaller solubility of MHP, compared with H2O2, and with the results of 16 model simulations. Reactions between dissolved SO2 and O3, between SO2 and O2, and between SO2 and HCHO were calculated to contribute less than 40 percent to the total amount of SO4(-2). These reactions were inferred to be inhibited by the low pH (less than 5) of the Elk Mountain cloud water. It is concluded that H2O2 is the dominant SO2 oxidant in these clouds, and that the laboratory measurements form an adequate basis for predicting the rate of in-cloud oxidation of SO2 by H2O2.

  19. Metabolic Effects of Cholecystectomy: Gallbladder Ablation Increases Basal Metabolic Rate through G-Protein Coupled Bile Acid Receptor Gpbar1-Dependent Mechanisms in Mice

    PubMed Central

    Cortés, Víctor; Amigo, Ludwig; Zanlungo, Silvana; Galgani, José; Robledo, Fermín; Arrese, Marco; Bozinovic, Francisco; Nervi, Flavio

    2015-01-01

    Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice. PMID:25738495

  20. Preliminary characterization of hard dental tissue ablation with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Squier, Jeffrey A.

    1998-05-01

    Because of low operating speed and excessive collateral damage, lasers have not succeeded in replacing conventional tools in many surgical and dental applications. Recent developments now allow the new generation of amplified ultrashort pulse lasers to operate at high repetition rates and high single pulse energies. A Titanium:sapphire Chirped Pulse Regenerative Amplifier system operating at 1 KHz and 50 fs pulse duration, was used to demonstrate ultrashort pulse ablation of hard and soft tissue. Maximum ablation rates for enamel and dentin were approximately 0.650 micrometers /pulse and 1.2 micrometers /pulse respectively. Temperature measurements at both front and rear surface of a 1 mm dentin and enamel slices showed minimal increases. Scanning electron micrographs clearly show that little thermal damage is generate by the laser system. If an effective delivery system is developed, ultrashort pulse system may offer a viable alternative as a safe, low noise dental tool.

  1. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  2. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  3. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Freitas, A. Z.; Freschi, L. R.; Samad, R. E.; Zezell, D. M.; Gouw-Soares, S. C.; Vieira, N. D., Jr.

    2010-03-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm2 for the composite resins Z-100 and Z-350, and 0.25 J/cm2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed.

  4. Catheter ablation of inappropriate sinus tachycardia.

    PubMed

    Gianni, Carola; Di Biase, Luigi; Mohanty, Sanghamitra; Gökoğlan, Yalçın; Güneş, Mahmut F; Horton, Rodney; Hranitzky, Patrick M; Burkhardt, J David; Natale, Andrea

    2016-06-01

    Catheter ablation for inappropriate sinus tachycardia (IST) is recommended for patients symptomatic for palpitations and refractory to other treatments. The current approach consists in sinus node modification (SNM), achieved by ablation of the cranial part of the sinus node to eliminate faster sinus rates while trying to preserve chronotropic competence. This approach has a limited efficacy, with a very modest long-term clinical success. To overcome this, proper patient selection is crucial and an epicardial approach should always be considered. This brief review will discuss the current role and limitations of catheter ablation in the management of patients with IST. PMID:26310299

  5. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  6. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Hartle, R.; Simpson, D.; Johnson, R.; Thomsen, M.; Arridge, C.

    2011-01-01

    We present the present status of an investigation of the rotation rate of Saturn's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. for SOI and similar to that used by Thomsen et al.. This technique allows one to nearly cover the full energy range of the Cassini Plasma Spectrometer (CAPS) IMS from 1 V . E/Q < 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll maneuvers. We make comparisons with the bi-Maxwellian fitting technique developed by Wilson et al. and the similar velocity moment technique by Thomsen et al. . We concentrate our analysis when ion composition data is available, which is used to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The chosen periods have high enough telemetry rates (4 kbps or higher) so that coincidence ion data, similar to that used by Sittler et al. for SOI is available. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. In the future we will then make comparisons with magnetic field observations, Saturn ionosphere conductivities as presently known and the field aligned currents necessary for the planet to enforce corotation of the rotating plasma.

  7. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  8. [Ablation of supraventricular tachycardias : Complications and emergencies].

    PubMed

    Sawan, N; Eitel, C; Thiele, H; Tilz, R

    2016-06-01

    Catheter ablation is an established treatment of supraventricular tachycardias (SVT) with high success rates of > 95 %. Complication rates range from 3 to 5 %, with serious complications occurring in about 0.8 %. There are general complications caused either by the vascular access or the catheters (e. g. hematomas, hemo-pneumothorax, embolism, thrombosis and aspiration) und specific ablation related complications (e. g. AV block during ablation of the slow pathway). The complication risk is elevated in elderly and multimorbid patients. Furthermore, the experience of the treating physician and the respective team plays an essential role. The purpose of this article is to give an overview on incidences, causes and management as well as prevention strategies of complications associated with catheter ablation of SVT. PMID:27206630

  9. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  10. UV solid state laser ablation of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  11. Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kang; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  12. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  13. Comparing ablation induced by fs, ps, and ns XUV-laser pulses

    NASA Astrophysics Data System (ADS)

    Bittner, Michal; Juha, Libor; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Praeg, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard; Feldhaus, Josef; Boody, Frederick P.; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J.

    2004-09-01

    Ablation thresholds, etch rates, and quality of ablated structures often differ dramatically if a conventional, UV-Vis-IR laser delivers radiation energy onto a material surface in a short (nanosecond) or ultra-short (picosecond/femtosecond) pulses. Various short-wavelength (λ < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes possible to investigate how the ablation characteristics depends on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser, focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with an ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiment the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with the measured ones for ultrashort pulses we may study the influence of pulse duration on the XUV ablation efficiency.

  14. Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Parker, Gregory J.; Parker, Daniel E.; Nie, Bai; Lozovoy, Vadim; Dantus, Marcos

    2015-05-01

    A LIBS system is demonstrated using a 100 m cavity Yb fiber oscillator producing ~ 70 ps, 320 nJ clusters of 50-100 fs sub-pulses at 2 MHz. A new empirical model for femtosecond ablation is presented to explain the LIBS signal intensity's non-linear dependence on pulse fluence by accounting for the Gaussian beam's spatial distribution. This model is compared to experimental data and found to be superior to linear threshold fits. This model is then used to measure the ablation threshold of Cu using a typical amplified Ti:sapphire system, and found to reproduce previously reported values to within ~ 20%. The ablation threshold of Cu using the Yb fiber oscillator system was measured to be five times lower than on the amplified Ti:sapphire system. This effect is attributed to the formation of nanostructures on the surface, which have previously been shown to decrease the ablation threshold. The plasma lifetime is found to be ~ 1 ns, much shorter than that of nanosecond ablation, further indicating that the decreased threshold results from surface effects rather than laser-plasma interaction. The low threshold and high pulse energy of the Yb fiber oscillator allows the acquisition of LIBS spectra at megahertz repetition rates. This system could potentially be developed into a compact, fiber-based portable LIBS device taking advantage of the benefits of ultrafast pulses and high repetition rates.

  15. Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules

    NASA Astrophysics Data System (ADS)

    Brooke, G.; Popović, S.; Vušković, L.

    2002-05-01

    We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.

  16. Reference Materials for Reactor Neutron Fluence Rate and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Ingelbrecht, C.

    2003-06-01

    Certified reference materials are distributed by the European Commission through the BCR® programme (over 500 CRMs) including a series of activation and fission monitor materials originally proposed by the Euratom Working Group on Reactor Dosimetry. The current range (18 CRMs) includes materials to cover the complete energy spectrum, and suitable for different irradiation times. Fission monitors are 238UO2 or 237NpO2 in the form of microspheres. Activation monitors are high purity metals (Ni, Cu, Al, Fe, Nb, Rh, or Ti), certified for interfering trace impurities, or dilute aluminium-based alloys. Reference materials newly certified are IRMM-530R A1-0.1%Au, replacing the exhausted IRMM-530 material, used as comparator for k0- standardisation, and three new Al-Co alloys (0.01, 0.1 and 1.0%Co). Others in the process of certification are A1-0.1%Ag and A1-2%Sc for thermal and epithermal fluence rate measurements and two uranium-doped glass materials intended for dosimetry by the fission-track technique. Various alloy compositions have been prepared for use as melt-wire temperature monitors with melting points ranging from 198 to 327ºC.

  17. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1997-01-01

    We will report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation are presented. {copyright} {ital 1997 American Institute of Physics.}

  18. Chemically assisted laser ablation ICP mass spectrometry.

    PubMed

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis. PMID:12553756

  19. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  20. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  1. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm

  2. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  3. Renal ablation update.

    PubMed

    Khiatani, Vishal; Dixon, Robert G

    2014-06-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity-focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  4. Femtosecond laser ablation of brass in air and liquid media

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-01

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  5. Measuring Cognitive Load with Subjective Rating Scales during Problem Solving: Differences between Immediate and Delayed Ratings

    ERIC Educational Resources Information Center

    Schmeck, Annett; Opfermann, Maria; van Gog, Tamara; Paas, Fred; Leutner, Detlev

    2015-01-01

    Subjective cognitive load (CL) rating scales are widely used in educational research. However, there are still some open questions regarding the point of time at which such scales should be applied. Whereas some studies apply rating scales directly after each step or task and use an average of these ratings, others assess CL only once after the…

  6. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    SciTech Connect

    Zhao, Xin; Shin, Yung C.

    2014-09-15

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse. The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.

  7. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  8. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  9. Electron Beam Ablation of Metals

    NASA Astrophysics Data System (ADS)

    Kovaleski, S. D.; Gilgenbach, R. M.; Rintamaki, J. I.; Ang, L. K.; Spindler, H. L.; Cohen, W. E.; Lau, Y. Y.; Lash, J. S.

    1996-10-01

    An experiment has recently been devised for material ablation using a channelspark electron beam. The ultimate goal of this experiment is to deposit thin films by electron beam ablation. The channelspark is a pseudospark device developed by Forschungszentrum Karlsruhe (G. Muller, C. Schultheiss, Proc. of Beams, 2, 833(1994)) for production of high current, low energy electron beams. The channelspark has the following operating parameters: a 15-20kV accelerating potential and measured source current of <2000A. Initial experiments have concentrated on characterizing ion-focused electron beam current transport through the necessary background fill gas (typically 5-50 mTorr of Argon). Ablation of Al, Fe, and Ti is being studied with spectroscopy and electron beam current diagnostics. Physical beam target damage is also being investigated and compared to laser ablated targets. Simulations of electron transport and energy deposition are being conducted via the ITS-TIGER code (Sandia Report No. SAND 91-1634) developed at Sandia National Laboratory.

  10. Laser ablation of copper and aluminium in air

    NASA Astrophysics Data System (ADS)

    Xia, Yueyuan; Mei, Liangmo; Tan, Chunyu; Liu, Xiangdong; Wang, Qingpu; Yue, Shubin

    1991-06-01

    The ablation behavior of copper alloy and aluminium irradiated in air by 1.06 μm, 10 ns pulsed laser with power density of 6.4×109W/cm2 was studied using scanning electron microscopy (SEM), MCS-RBS and X-ray microanalysis. Evidence of bulk vaporization via bubble formation was observed for the copper alloy under the laser irradiation. Silver-enrichment microregions were found in the ablation crater created by the laser shots on the copper alloy sample. Material removal rates of these materials were determined by crater shape-profile measurement. Using self-similar solutions of the gas-dynamic equations, gas-dynamic parameters of the vaporization waves are obtained. These parameters are used to calculate material removal rates and impulse coupling coefficients of these materials under the pulsed laser irradiation. The calculated mass removal rates and the coupling coefficients are compared with the corresponding experimentally determined values. The surface kinetic energy of the irradiated area on the Al sample is estimated. Possible mechanisms for laser ablation of the materials under study are discussed.

  11. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis. PMID:27464121

  12. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation. PMID:27050331

  13. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  14. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    SciTech Connect

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  15. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  16. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  17. A systematic review of surgical ablation versus catheter ablation for atrial fibrillation

    PubMed Central

    Kearney, Katherine; Stephenson, Rowan; Phan, Kevin; Chan, Wei Yen; Huang, Min Yin

    2014-01-01

    Background Atrial fibrillation (AF) is an increasingly prevalent condition in the ageing population, with significantly associated morbidity and mortality. Surgical and catheter ablative strategies both aim to reduce mortality and morbidity through freedom from AF. This review consolidates all currently available comparative data to evaluate these two interventions. Methods A systematic search was conducted across MEDLINE, PubMed, Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews from January 2000 until August 2013. All studies were critically appraised and only those directly comparing surgical and catheter ablation were included. Results Seven studies were deemed suitable for analysis according to the inclusion criteria. Freedom from AF was significantly higher in the surgical ablation group versus the catheter ablation group at 6-month, 12-month and study endpoint follow-up periods. Subgroup analysis demonstrated similar trends, with higher freedom from AF in the surgical ablation group for paroxysmal AF patients. The incidence of pacemaker implantation was higher, while no difference in stroke or cardiac tamponade was demonstrated for the surgical versus catheter ablation groups. Conclusions Current evidence suggests that epicardial ablative strategies are associated with higher freedom from AF, higher pacemaker implantation rates and comparable neurological complications and cardiac tamponade incidence to catheter ablative treatment. Other complications and risks were poorly reported, which warrants further randomized controlled trials (RCTs) of adequate power and follow-up duration. PMID:24516794

  18. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM. PMID:27607281

  19. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  20. Spectroscopic and morphological study of laser ablated Titanium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muahmamd Shahid; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Saman; Dawood, Asadullah; Arooj

    2016-07-01

    The laser-induced breakdown spectroscopy (LIBS) and surface morphology of Titanium (Ti) plasma as a function of laser irradiance have been investigated under ambient environment of argon at fixed pressure of 50 Torr. Ablation was performed by employing Q-switched Nd:YAG laser pulses (λ ≈ 1064 nm, τ ≈ 10 ns, repetition rate ≈ 10 Hz). Ti targets were exposed to various laser intensities ranging from 6 to 50 GW/cm2. LIBS analysis has been employed for the investigation of plasma parameters. Scanning Electron Microscope (SEM) analysis was employed for investigation of surface morphology. Ablation depth was measured by optical microscopy technique. It was observed that both plasma parameters, i.e., excitation temperature and electron density have been significantly influenced by laser irradiance. It is observed that with increasing laser irradiance up to 13 GW/cm2, the electron temperature decreases whereas number density significantly increases and attains its maxima. Afterwards by increasing irradiance electron temperature increases, attains its maxima and a decrease in electron number density is observed at irradiance of 19 GW/cm2. Further increase in irradiance causes saturation with insignificant changes in both electron temperature and electron number density. This saturation in both excitation temperature and electron number density is explainable on the basis of self-sustaining regime. SEM micrographs reveal the ripple and coneformation at the boundaries of ablated region of Ti. The height of cones as well as the ablation depth is maximum at irradiance of 13 GW/cm2 whereas electron number density is also maximum. The maximum electron number density is considered to be responsible for maximum ablation as well as mass removal. A strong correlation between plasma parameters and surface morphology is established.

  1. Instructions for measuring the rate of evaporation from water surfaces

    USGS Publications Warehouse

    U.S. Geological Survey

    1898-01-01

    The ·rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

  2. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment. PMID:22614434

  3. Evaporation as a diagnostic test for hydrodynamic cooling of laser-ablated clusters

    SciTech Connect

    Klots, C.E.

    1991-01-01

    The properties of materials laser-ablated from a surface are of considerable interest. The interrogation of these properties inevitably occurs at a point some distance from the surface. One might then ask what processes have occurred in the intervening path length. Immediately, for example, one wonders whether the material was released as such from the surface or was formed as a result of collisions at a distant point. Similarly, one might ask if an observed temperature'' of the materials is characteristic of the ablation process of of subsequent events. We will indicate here how measurements of metastable evaporation rates can provide clues which are pertinent to these questions. 7 refs.

  4. Microwave Ablation of Hepatic Malignancy

    PubMed Central

    Lubner, Meghan G.; Brace, Christopher L.; Ziemlewicz, Tim J.; Hinshaw, J. Louis; Lee, Fred T.

    2013-01-01

    Microwave ablation is an extremely promising heat-based thermal ablation modality that has particular applicability in treating hepatic malignancies. Microwaves can generate very high temperatures in very short time periods, potentially leading to improved treatment efficiency and larger ablation zones. As the available technology continues to improve, microwave ablation is emerging as a valuable alternative to radiofrequency ablation in the treatment of hepatic malignancies. This article reviews the current state of microwave ablation including technical and clinical considerations. PMID:24436518

  5. Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar; Janicki, Grzegorz

    2014-05-01

    The study on bedload transport was conducted on the gravel-bed Scott River catchment with a glacial alimentation regime, located in the NW part of the Wedel Jarlsberg Land (Spitsbergen) with subpolar climatic conditions. In the melt season of 2010, bedload transport rate was continuously monitored at 24-hour intervals by means of four River Bedload Trap devices aligned across the width of the channel. The maximum bedload transport rate varied strongly at portions of the cross section from 16 to 152 kg m- 1 d- 1 in cross-profile I (c-p I) and 4 to 125 kg m- 1 d- 1 in cross-profile II (c-p II). The maximum channel-mean bedload transport rate (qa) amounted to 54 kg m- 1 d- 1 (c-p I) and 35 kg m- 1 d- 1 (c-p II). Mean daily bedload discharge (Qb) was estimated at a level of 97 kg day- 1 (c-p I) and 35 kg m- 1 d- 1 (c-p II), and the total bedload yield was determined at approx. 4345 kg in the measurement period (2086 kg — c-p I; 2203 kg — c-p II from 13.07 to 10.08). The analysis of the relationship between channel-mean bedload transport rate and water velocity or shear stress revealed a significant value of the correlation coefficient (R2 = 0.6). Discharge and rate of bedload transport were dependent on the weather and number of days with flood discharge. Approx. 58% of the entire discharged bedload was transported during 3 violent ablation-precipitation floods. Bedload grain size distribution was right-skewed and showed moderate sorting.

  6. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  7. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.

    PubMed

    Kozub, John A; Shen, Jin-H; Joos, Karen M; Prasad, Ratna; Hutson, M Shane

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-µm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 µm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 µm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 µm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (~100-µm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies>1 mJ). When the beam is softly focused (~300-µm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  8. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Simpson, D.; Paterson, W.

    2012-01-01

    We present the present status of an investigation of the rotation rate of Saturn 's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. (2005) [1] for SOI and similar to that used by Thomsen et al. (2010). This technique allows one to nearly cover the full energy range of the CAPS IMS from 1 V less than or equal to E/Q less than 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll manoeuvres. We have made comparisons with Wilson et al. (2008) [2] (2005-358 and 2005-284) who performs a bi-Maxwellian fit to the ion singles data and our results are nearly identical. We will also make comparisons with results by Thomsen et al. (2010) [3]. Our analysis uses ion composition data to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. Since our analysis is a velocity moments technique it will work within the inner magnetosphere where pickup ions are important and velocity distributions are non-Maxwellian. So, we will present results inside Enceladus' L shell and determine if mass loading is important. In the future we plan to make comparisons with magnetic field observations, use Saturn ionosphere conductivities as

  9. Ablation and nanostructuring of metals by femtosecond laser pulses

    SciTech Connect

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  10. Solid material evaporation into an ECR source by laser ablation

    SciTech Connect

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-09-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10{sup 7} W/cm{sup 2} has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source.

  11. Lung Cancer Ablation: What Is the Evidence?

    PubMed Central

    de Baere, Thierry; Farouil, Geoffroy; Deschamps, Frederic

    2013-01-01

    Percutaneous ablation of small non-small cell lung cancer (NSCLC) has been demonstrated to be both feasible and safe in nonsurgical candidates. Radiofrequency ablation (RFA), the most commonly used technique for ablation, has a reported rate of complete ablation of ~90%, with best results obtained in tumors <2 to 3 cm in diameter. The best reported 1-, 3-, and 5-year overall survival rates after RFA of NSCLC are 97.7%, 72.9%, and 55.7%, respectively. It is noteworthy that in most studies, cancer-specific survival is greater than overall survival due to severe comorbidities in patients treated with RFA for NSCLC. Aside from tumor size and tumor stage, these comorbidities are predictive of survival. Other ablation techniques such as microwave and irreversible electroporation may in the future prove to overcome some of the limitations of RFA, namely for large tumors or tumors close to large vessels. Stereotactic body radiation therapy has also been demonstrated to be highly efficacious in treating small lung tumors and will need to be compared with percutaneous ablation. This article reviews the current evidence regarding RFA for lung cancer. PMID:24436531

  12. On the spherical chromium oxide particulates via pulsed laser ablation at a very high power density in vacuum with a specified oxygen flow rate

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Shen, P.; Chen, S. Y.

    2010-02-01

    Chromium oxide condensates nearly spherical in shape ranging from 0.1 to 0.2 micron in diameter were fabricated by laser ablation on a Cr target at a very high power density of 1.8×1012 W/cm2 for a very rapid heating and cooling effect. Analytical electron microscopic observations of such spherical particulates revealed three types: (1) α-Cr2O3 single crystal with ( bar{1}101),(bar{1}012) and (1 bar{2}10) facets, (2) spinel-like Cr3O4 polycrystals with spherulitic texture, i.e. a rather corrugated solidification front, (3) recrystallized Cr3O4 polycrystals derived from type 2 by radiant heating. The microstructure and phase difference among the particulates can be attributed to a varied extent of supercooling under the influence of rather complicated Cr2+ solute trapping of the molten and solid phases in the Cr3O4-O pseudo-binary in vacuum. The chromium oxide condensates being spherical yet full of facets, with significant internal compressive stress up to ca. 3.4 GPa according to Raman shift, and with UV-absorbance close to violet light due to the presence of internal stress and/or Cr2+, may have potential optoelectronic and catalytic applications.

  13. The Measurement of Self-Rated Depression: A Multidimensional Approach.

    ERIC Educational Resources Information Center

    Bolon, Kevin; Barling, Julian

    1980-01-01

    Investigates the capacity of the Zung Self-Rating Depression Scale for providing specific multidimensional descriptors of depressive behavior. Ideational, physiological and behavioral depression factors were evident in data from 96 normal, white university student volunteers. (Author/RH)

  14. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  15. A rare complication of radiofrequency ablation: skin burn.

    PubMed

    Ertuğrul, İlker; Karagöz, Tevfik; Aykan, Hayrettin H

    2015-10-01

    Radiofrequency ablation is the first-line treatment for arrhythmias with high success and low complication rates. Skin burns have been reported rarely after electrophysiological procedures, especially procedures in which higher-power energy is used and multiple ablations are performed. Here, we report a case of skin burn that developed after radiofrequency ablation for ventricular tachycardia originating from the right ventricular outflow tract. PMID:25613639

  16. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  17. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.

    PubMed

    Valkirs, Aldis O; Seligman, Peter F; Haslbeck, Elizabeth; Caso, Joaquin S

    2003-06-01

    The release of biocides, such as copper (Cu), from antifouling (AF) coatings on vessel hulls represents a significant proportion of overall Cu loading in those harbors and estuaries where substantial numbers of small craft or large vessels are berthed. Copper release rates were measured on several self-polishing, tin-free coatings and an ablative Cu reference coating applied to steel panels using three measurement methods. The panels were exposed in natural seawater in San Diego Bay, and release rates were measured both in the laboratory and field over 2 years. Results with the static (20 cm x 30 cm) panels indicated that Cu release rates were initially high (25-65 microg Cu cm(-2)day(-1)), with a large range of values between paint types. Release rates declined to substantially lower rates (8-22 microg cm(-2)day(-1)) with reduced variability within 2 months. Release rates continued to decrease over time for approximately 6 months when relatively constant release rates were observed for most coatings. Over time, relative differences in Cu release rates measured by three exposure methods decreased, with all coatings exhibiting similar behavior toward the end of the study. Lowest overall Cu release rates were observed with the self-polishing experimental paint no. 7 in static-dynamic and in situ treatments. The highest periodic release rates were measured from panels that experienced periods of both static and dynamic exposure (8.7 ms(-1) rotation). The lowest release rates were measured from panels that experienced static, constant depth exposure, and where release rates were evaluated in situ, using a novel diver-deployed measurement system. Results from this in situ technique suggests that it more closely reflects actual Cu release rates on vessel hulls measured with intact natural biofilms under ambient conditions than measurements using standardized laboratory release rate methods. In situ measurements made directly on the AF surface of vessels demonstrated

  18. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  19. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  20. Seasonal variations of decay rate measurement data and their interpretation.

    PubMed

    Schrader, Heinrich

    2016-08-01

    Measurement data of long-lived radionuclides, for example, (85)Kr, (90)Sr, (108m)Ag, (133)Ba, (152)Eu, (154)Eu and (226)Ra, and particularly the relative residuals of fitted raw data from current measurements of ionization chambers for half-life determination show small periodic seasonal variations with amplitudes of about 0.15%. The interpretation of these fluctuations is a matter of controversy whether the observed effect is produced by some interaction with the radionuclides themselves or is an artifact of the measuring chain. At the origin of such a discussion there is the exponential decay law of radioactive substances used for data fitting, one of the fundamentals of nuclear physics. Some groups of physicists use statistical methods and analyze correlations with various parameters of the measurement data and, for example, the Earth-Sun distance, as a basis of interpretation. In this article, data measured at the Physikalisch-Technische Bundesanstalt and published earlier are the subject of a correlation analysis using the corresponding time series of data with varying measurement conditions. An overview of these measurement conditions producing instrument instabilities is given and causality relations are discussed. The resulting correlation coefficients for various series of the same radionuclide using similar measurement conditions are in the order of 0.7, which indicates a high correlation, and for series of the same radionuclide using different measurement conditions and changes of the measuring chain of the order of -0.2 or even lower, which indicates an anti-correlation. These results provide strong arguments that the observed seasonal variations are caused by the measuring chain and, in particular, by the type of measuring electronics used. PMID:27258217

  1. Adjusting capitation rates using objective health measures and prior utilization

    PubMed Central

    Newhouse, Joseph P.; Manning, Willard G.; Keeler, Emmett B.; Sloss, Elizabeth M.

    1989-01-01

    Several analysts have proposed adding adjusters based on health status and prior utilization to the adjusted average per capita cost formula. The authors estimate how well such adjusters predict annual medical expenditures among non-elderly adults. Both measures substantially improve on the variables currently used. If only health measures are added, 20-30 percent of the predictable variance is explained; if only prior use is added, more than 40 percent is explained; if both are added, about 60 percent is explained. The results support including some measure of use in the formula until better health measures are developed. PMID:10313096

  2. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Martin, M.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2015-07-01

    Understanding the rate of heat generation in a Li-ion cell is critical for safety and performance of Li-ion cells and systems. Cell performance, cycle life, and system safety all depend on temperature distribution in the cell, which, in turn, depends on heat generation rate within the cell and on heat removal rate at the cell surface. Despite the existence of a number of theoretical models to predict heat generation rate, there is not much literature on experimental measurement at high C-rates. This paper reports measurement of heat generation rate from a Li-ion cell at high discharge rates, up to 9.6C, using measurements of cell temperature and surface heat flux. As opposed to calorimetry-based approaches, this method can be applied in situ to yield measurements of heat generation rate in laboratory or field use provided that at least one a priori test is performed to measure the temperature gradient within a cell in the same ambient condition. This method is based on simultaneous determination of heat stored and heat lost from the cell through heat flux and temperature measurements. A novel method is established for measurement of the internal temperature of the cell. Heat generation measurements are shown to agree with well-established theoretical models. The effect of actively cooling the cell is briefly discussed.

  3. A Coefficient for Measuring the Agreement on Bipolar Rating Scales.

    ERIC Educational Resources Information Center

    Viernstein, Nikolaus

    1990-01-01

    A new coefficient--psi-star--is presented for measuring agreement on bidirectional response continua. The coefficient is designed to measure agreement in larger square contingency tables with even numbers of rows and columns. Advantages of the procedure are discussed. (SLD)

  4. Quality Improvement Guidelines for Radiofrequency Ablation of Liver Tumours

    SciTech Connect

    Crocetti, Laura; Baere, Thierry de; Lencioni, Riccardo

    2010-02-15

    The development of image-guided percutaneous techniques for local tumour ablation has been one of the major advances in the treatment of liver malignancies. Among these methods, radiofrequency ablation (RFA) is currently established as the primary ablative modality at most institutions. RFA is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma (HCC) when liver transplantation or surgical resection are not suitable options [1, 2]. In addition, RFA is considered a viable alternate to surgery (1) for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer, and (2) for patients deemed ineligible for surgical resection because of extent and location of the disease or concurrent medical conditions [3]. These guidelines were written to be used in quality-improvement programs to assess RFA of HCC and liver metastases. The most important processes of care are (1) patient selection, (2) performing the procedure, and (3) monitoring the patient. The outcome measures or indicators for these processes are indications, success rates, and complication rates.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, Taras V.; Konov, Vitalii I.; Garnov, Sergei V.; Danielius, R.; Piskarskas, A.; Tamosauskas, G.; Dausinger, F.

    1999-08-01

    A series of studies was carried out on the ablation of steel, Si3N4 ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 — 103 J cm-2 ). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed.

  6. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  7. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  8. Monoterpene emission rate measurements from a Monterey pine

    NASA Astrophysics Data System (ADS)

    Juuti, Soile; Arey, Janet; Atkinson, Roger

    1990-05-01

    The monoterpenes emitted from a Monterey pine (Pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were α- and β-pinene, d-limonene + β-phellandrene, myrcene, camphene and Δ3-carene, with α- and β-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO2 to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O3 for 3-4 hours, and increased air movement within the enclosure had no observable effect on the monoterpene emission rate at a given temperature. In contrast, "rough handling" of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  9. Monoterpene emission rate measurements from a Monterey pine

    SciTech Connect

    Juuti, S. ); Arey, J.; Atkinson, R. )

    1990-05-20

    The monoterpenes emitted from a Monterey pine (pinus radiata) were investigated using a dynamic flow-through enclosure technique. The monoterpenes identified and quantified were {alpha}- and {beta}-pinene, d-limonene + {beta} phellandrene, myrcene, camphene and {Delta}{sup 3}-carene, with {alpha}- and {beta}-pinene accounting for over 80% of the total monoterpene emissions. The monoterpene emission rate increased with temperature, in good agreement with previous data for other coniferous species. The absence of added CO{sub 2} to the synthetic air flow stream, exposure to elevated levels (300-500 ppb mixing ratio) of O{sub 3} for 3-4 hours, and increased air movement within the enclosure, had no observable effect on the monoterpene emission rate at a given temperature. In contrast, rough handling of the pine during the sampling protocol resulted in increases in the monoterpene emission rate by factors of 10-50. These results will be useful to those designing enclosure sampling protocols for the determination of the emission rates of biogenic organic compounds from vegetation.

  10. MEASUREMENTS OF INFILTRATION RATES IN COMPACTED URBAN SOILS

    EPA Science Inventory

    Previous research hs identified significant reductions in infiltration rates in disturbed urban soils, More than 150 prior tests were conducted in predominately sandy and clayey urban soils in the Birmingham and Mobile, AL areas. Infiltration in Clayey soils ws found to be affect...

  11. Theoretical and Applied Implications of Precisely Measuring Learning Rates

    ERIC Educational Resources Information Center

    Skinner, Christopher H.

    2008-01-01

    Nist and Joseph (2008) have confirmed earlier research showing that adding and interspersing a large number of time-consuming learning trials targeting known items (e.g., incremental rehearsal (IR) or interspersal) retards student learning rates. In addition, their current study has confirmed earlier research that adding and interspersing known…

  12. Outcome Rating Scale and Session Rating Scale in Psychological Practice: Clinical Utility of Ultra-Brief Measures

    ERIC Educational Resources Information Center

    Campbell, Alistair; Hemsley, Samantha

    2009-01-01

    The validity and reliability of the Outcome Rating Scale (ORS) and the Session Rating Scale (SRS) were evaluated against existing longer measures, including the Outcome Questionnaire-45, Working Alliance Inventory, Depression Anxiety Stress Scale-21, Quality of Life Scale, Rosenberg Self-Esteem Scale and General Self-efficacy Scale. The measures…

  13. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  14. Plasma effects during ablation and drilling using pulsed solid-state lasers

    NASA Astrophysics Data System (ADS)

    Breitling, Detlef; Ruf, Andreas; Berger, Peter W.; Dausinger, Friedrich H.; Klimentov, Sergei M.; Pivovarov, Paval A.; Kononenko, Taras V.; Konov, Vitali I.

    2003-09-01

    Plasma and vapor plumes generated by ultrashort laser pulses have been studied by various optical methods for both single pulse ablation as well as high-repetition rate drilling. Time-resolved shadow and resonance absorption photographs enable to determine the plume and vapor expansion behavior and, by means of an analytical shock wave model, allow to estimate an energy balance that can be refined by plasma transmission measurements. The results furthermore suggest that several types of laser-induced plasmas can be distinguished according to their origin: the material vapor plasma originating at the ablated surface even at moderate intensities, a breakdown plasma at increased power densities occurring in cold vapor or dust particles left from previous ablations during repetitively-pulsed processing and, finally, the optical breakdown in the pure atmosphere at high intensities. The latter also gives rise to nonlinear scattering phenomena resulting in a strong redistribution of the energy density in the beam profile.

  15. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization

    SciTech Connect

    Morozov, A. A.; Evtushenko, A. B.; Bulgakov, A. V.

    2015-02-02

    The expansion of a plume produced by low-fluence laser ablation of graphite in vacuum is investigated experimentally and by direct Monte Carlo simulations in an attempt to explain hyperthermal particle energies for thermally vaporized materials. We demonstrate that the translation energy of neutral particles, ∼2 times higher than classical expectations, is due to two effects, hydrodynamic plume acceleration into the forward direction and kinetic selection of fast particles in the on-axis region. Both effects depend on the collision number within the plume and on the particles internal degrees of freedom. The simulations allow ablation properties to be evaluated, such as ablation rate and surface temperature, based on time-of-flight measurements. Available experimental data on kinetic energies of various laser-produced particles are well described by the presented model.

  16. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization

    NASA Astrophysics Data System (ADS)

    Morozov, A. A.; Evtushenko, A. B.; Bulgakov, A. V.

    2015-02-01

    The expansion of a plume produced by low-fluence laser ablation of graphite in vacuum is investigated experimentally and by direct Monte Carlo simulations in an attempt to explain hyperthermal particle energies for thermally vaporized materials. We demonstrate that the translation energy of neutral particles, ˜2 times higher than classical expectations, is due to two effects, hydrodynamic plume acceleration into the forward direction and kinetic selection of fast particles in the on-axis region. Both effects depend on the collision number within the plume and on the particles internal degrees of freedom. The simulations allow ablation properties to be evaluated, such as ablation rate and surface temperature, based on time-of-flight measurements. Available experimental data on kinetic energies of various laser-produced particles are well described by the presented model.

  17. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    NASA Astrophysics Data System (ADS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Sasaki, Takehiko; Terashima, Kazuo

    2011-06-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm2; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3-hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO2 is proposed as a practical method for synthesizing diamondoids.

  18. Ozone Production and Loss Rate Measurements in the Middle Stratosphere

    NASA Technical Reports Server (NTRS)

    Jucks, Kenneth W.; Johnson, David G.; Chance, K. V.; Traub, Wesley A.; Salawitch, R. J.; Stachnik, R. A.

    1996-01-01

    The first simultaneous measurements of HO(x), NO(x), and Cl(x) radicals in the middle stratosphere show that NO(x) catalytic cycles dominate loss of ozone (O3) for altitudes between 24 and 38 km; Cl(x) catalytic cycles are measured to be less effective than previously expected; and there is no 'ozone deficit' in the photochemically dominated altitude range from 31 and 38 km, contrary to some previous theoretical studies.

  19. Heating and ablation of tokamak graphite by pulsed nanosecond Nd-YAG lasers

    SciTech Connect

    Semerok, A.; Fomichev, S. V.; Weulersse, J.-M.; Brygo, F.; Thro, P.-Y.; Grisolia, C.

    2007-04-15

    The results on laser heating and ablation of graphite tiles of thermonuclear tokamaks are presented. Two pulsed Nd-YAG lasers (20 Hz repetition rate, 5 ns pulse duration and 10 kHz repetition rate, 100 ns pulse duration) were applied for ablation measurements. The ablation thresholds (1.0{+-}0.5 J/cm{sup 2} for 5 ns and 2.5{+-}0.5 J/cm{sup 2} for 100 ns laser pulses) were determined for the Tore Supra tokamak graphite tiles (backside) nonexposed to plasma. The high repetition rate Nd-YAG laser (10 kHz, 100 ns pulse duration) and the developed pyrometer system were applied for graphite heating measurements. Some unexpected features of laser heating of the graphite surface were observed. They were explained by the presence of a thin surface layer with the properties different from those of the bulk graphite. The theoretical models of laser heating and near-threshold ablation of graphite with imperfectly adhered layer were developed to interpret the experimental results.

  20. Surgical Ablation of Atrial Fibrillation

    PubMed Central

    Ramlawi, Basel; Abu Saleh, Walid K.

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary “Afib teams

  1. Deposition, characterization, and laser ablation patterning of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Vase, Per; Yueqiang, Shen; Freltoft, Torsten

    1990-12-01

    High quality epitaxial thin films of YBa 2Cu 3O 7 have been deposited on single-crystal MgO(001) substrates by 355 nm Nd:YAG laser ablation. Through a systematic optimization of the deposition parameters, it was found that for a target-substrate distance of 30 mm, the optimal laser intensity, substrate temperature, and deposition oxygen pressure were 300 MW/cm 2, 750 ° C, and 0.5-1.0 mbar, respectively. Microstrips with dimensions down to 10 μm across were fabricated using both a photoresist technique and laser ablation through a metal mask. The superconducting transition takes place over 1 K, and the critical temperature is reproducible within ±1.5 K, the best result being Tc,0 = 90 K. The highest critical current density measured on a 10 X 0.15 μm 2 strips was 4 X 10 6 A/cm 2 at 77 K . Film patterning using laser ablation through a metal mask was studied in detail to investigate the applicability of this method. Etch rates as a function of laser intensity were measured, and the process was followed in situ by on-line monitoring of the film resistivity.

  2. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  3. Measurements and Modelling of Sputtering Rates with Low Energy Ions

    NASA Astrophysics Data System (ADS)

    Ruzic, David N.; Smith, Preston C.; Turkot, Robert B., Jr.

    1996-10-01

    The angular-resolved sputtering yield of Be by D+, and Al by Ar+ was predicted and then measured. A 50 to 1000 eV ion beam from a Colutron was focused on to commercial grade and magnetron target grade samples. The S-65 C grade beryllium samples were supplied by Brush Wellman and the Al samples from TOSOH SMD. In our vacuum chamber the samples can be exposed to a dc D or Ar plasma to remove oxide, load the surface and more-nearly simulate steady state operating conditions in the plasma device. The angular distribution of the sputtered atoms was measured by collection on a single crystal graphite witness plate. The areal density of Be or Al (and BeO2 or Al2O3, after exposure to air) was then measured using a Scanning Auger Spectrometer. Total yield was also measured by deposition onto a quartz crystal oscillator simultaneously to deposition onto the witness plate. A three dimensional version of vectorized fractal TRIM (VFTRIM3D), a Monte-Carlo computer code which includes surface roughness characterized by fractal geometry, was used to predict the angular distribution of the sputtered particles and a global sputtering coefficient. Over a million trajectories were simulated for each incident angle to determine the azimuthal and polar angle distributions of the sputtered atoms. The experimental results match closely with the simulations for total yield, while the measured angular distributions depart somewhat from the predicted cosine curve.

  4. A New Ablative Heat Shield Sensor Suite Project

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2014-01-01

    A new sensor suite is developed to measure performance of ablative thermal protection systems used in planetary entry vehicles for robotic and human exploration. The new sensor suite measures ablation of the thermal protection system under extreme heating encountered during planetary entry. The sensor technology is compatible with a variety of thermal protection materials, and is applicable over a wide range of entry conditions.

  5. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  6. Ablation performances in natural and synthetic quartz using an Infra Red femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Courtieu, C.; D'Abzac, F.; Seydoux-Guillaume, A.; Guillaume, D.

    2009-12-01

    Performances of laser ablation have been widely explored, especially for industrial purposes. Nevertheless, some study fields remain unknown, notably the use of Infra-Red femtosecond pulses for the ablation of hard transparent materials. Thus, we present analytical results on quartz, which is the most widespread mineral in earth sciences, especially for fluid inclusions studies[1]. We used a commercial Ti:Sapphire femtosecond pulsed laser operated at its fundamental wavelength (λ=800nm). Ablation thresholds have been determined for N=1 and 10 consecutive shots (τ=60fs, E(pulse)=0.1-1mJ/pulse)[2]. Sequences from N=10 to 8000 shots (τ=60fs, E(pulse)=1mJ/pulse and f=5Hz) have been carried out with two different focusing optics: a convergent 50mm focusing lens and a 25mm focusing Cassegrain objective (wavefront corrected). Experiments have been realized on polished and unpolished single synthetic and natural (Campério, Swiss Alps) crystals, with a laser beam parallel and perpendicular to the quartz C-axis. Series of craters have then been observed with an optical microscope. Threshold fluence for a single shot is variable from Fth=1.1J.cm-2 (unpolished surface) to Fth=2.9J.cm-2 (polished surface). For N=10, threshold decreases to Fth=0.1J.cm-2 (unpolished surface) and Fth=1.76J.cm-2 (polished surface) respectively. When using lens, a constant ablation rate of ~0.5µm/pulse can be calculated until N=2000 shots. Crater stops developing after N=3000 shots. The maximum depth measured is 1342µm. Ablation pattern is different when using the Cassegrain objective. An initial ablation rate of ~0.5µm/pulse decreases following a logarithmic trend until a maximum crater depth of ~350µm (N=3000 shots). Orientation of the crystal lattice has shown no influence on ablation performances. Data bring evidences of capabilities of Infra Red femtosecond laser ablation, even in high IR-transmitting materials. High fluence regime is not required. Matter removal is not dependant on the

  7. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  8. Microwave ablation versus laser ablation in occluding lateral veins in goats.

    PubMed

    Wang, Xu-hong; Wang, Xiao-ping; Su, Wen-juan; Yuan, Yuan

    2016-02-01

    Increasing number of endovenous techniques are available for the treatment of saphenous vein reflux and endovenous laser ablation (EVLA) is a frequently used method. A newly developed alternative, based on thermal therapy, is endovenous microwave ablation (EMA). This study evaluated the effect of the two procedures, in terms of coagulation and histological changes, in occluding lateral veins in goats. Twelve animals were randomized into two group, with 6 treated with EMA (EMA group), and the rest 6 with EVLA (EVLA group). Results of coagulation, including coagulation, fibrinolysis and platelet activation, were assessed at three or four different time points: before, immediately after, 24 h (and 48 h) after ablation. The diameter change, a measure of efficacy, was ultrasonographically measured before and 1 month after the ablation. Histological changes were grossly and microscopically evaluated immediately, 1 and 3 month(s) after the ablation. The length of the ablated vein and preoperative average diameter were comparable between the two groups. In both EMA and EVLA groups, several coagulation parameters, fibrinolysis and platelet activation parameters only underwent slight changes. Ultrasound imaging displayed that the diameter reduction of the veins treated by EMA was significantly larger than by EVLA, in consistent with the results of macroscopic examination. Microscopic examination revealed necrosis and thickening of the vein wall, and occlusion of the lumen within 3 months after ablation in both EMA and EVLA groups. It is concluded that EMA is a minimally invasive therapy, which appears to be safe and effective for treatment of lateral veins in goats. PMID:26838749

  9. Variance in Broad Reading Accounted for by Measures of Reading Speed Embedded within Maze and Comprehension Rate Measures

    ERIC Educational Resources Information Center

    Hale, Andrea D.; Skinner, Christopher H.; Wilhoit, Brian; Ciancio, Dennis; Morrow, Jennifer A.

    2012-01-01

    Maze and reading comprehension rate measures are calculated by using measures of reading speed and measures of accuracy (i.e., correctly selected words or answers). In sixth- and seventh-grade samples, we found that the measures of reading speed embedded within our Maze measures accounted for 50% and 39% of broad reading score (BRS) variance,…

  10. Measured Aptitudes vs Self-Rating in Identifying Occupations.

    ERIC Educational Resources Information Center

    City Coll. of San Francisco, CA.

    Since 1972, guidance counselors at the City College of San Francisco have been using a computerized system called the Computer Assisted Occupational Survey (CAOS) to help students make career choices. CAOS uses a battery of aptitude tests to measure verbal and numerical abilities, spatial visualization, clerical perception, and general learning…

  11. Application of Lorentz force techniques for flow rate measurement

    NASA Astrophysics Data System (ADS)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  12. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  13. New methods to detect particle velocity and mass flux in arc-heated ablation/erosion facilities

    NASA Technical Reports Server (NTRS)

    Brayton, D. B.; Bomar, B. W.; Seibel, B. L.; Elrod, P. D.

    1980-01-01

    Arc-heated flow facilities with injected particles are used to simulate the erosive and ablative/erosive environments encountered by spacecraft re-entry through fog, clouds, thermo-nuclear explosions, etc. Two newly developed particle diagnostic techniques used to calibrate these facilities are discussed. One technique measures particle velocity and is based on the detection of thermal radiation and/or chemiluminescence from the hot seed particles in a model ablation/erosion facility. The second technique measures a local particle rate, which is proportional to local particle mass flux, in a dust erosion facility by photodetecting and counting the interruptions of a focused laser beam by individual particles.

  14. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  15. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  16. Ablation of kidney tumors.

    PubMed

    Karam, Jose A; Ahrar, Kamran; Matin, Surena F

    2011-04-01

    While surgical excision remains the gold standard for curative treatment of small renal cell carcinomas, ablative therapy has a place as a minimally invasive, kidney function-preserving therapy in carefully selected patients who are poor candidates for surgery. Although laparoscopic cryoablation and percutaneous radiofrequency ablation (RFA) are commonly performed, percutaneous cryoablation and laparoscopic RFA are reportedly being performed with increasing frequency. The renal function and complication profiles following ablative therapy are favorable, while oncologic outcomes lag behind those of surgery, thus reinforcing the need for careful patient selection. PMID:21377587

  17. High-Precision Nucleation Rate Measurements for Higher Melting Metals

    NASA Astrophysics Data System (ADS)

    Bokeloh, Joachim; Wilde, Gerhard

    2014-08-01

    Nucleation of a crystal in undercooled melts of higher melting face-centered-cubic-metals has often been studied in the past. However, the data available were not of sufficient accuracy and only covered nucleation rates in too small of a range to allow precise conclusions concerning the nature of the underlying process as well as concerning important parameters such as the solid-liquid interface free energy that can in principle be deducted from such analyses. One way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single droplet experiments. Application of proper statistics analyses yields nucleation rates that are independent of a specific nucleation model. The first studies that were conducted in accordance with this approach on pure model materials revealed that the approach is valid. The results are comparable to those obtained by classic nucleation theory applied to experimental data, and it was shown that one might need to rethink the common assumption that heterogeneous nucleation is almost always responsible for solidification initiation. The current results also show that often-used models for the solid-liquid interface free energy might lead to overestimated values.

  18. Measurement of pressure effects of n-hexadecane cracking rates

    SciTech Connect

    Jackson, K.J.; Burnham, A.K.; Braun, R.L.; Knauss, K.G.

    1992-06-01

    Experiments designed to determine the possible role of pressure in governing the kinetics of n-hexadecane (n-C[sub l6]) cracking reactions were conducted in Dickson-type autoclaves at temperatures from 300 to 370C at pressures from 150 to 600 bars. Good agreement with published reaction kinetics was obtained at temperatures [le]350C. Values determined at lower temperatures indicate slower rates than predicted from earlier experiments and show a distinct induction period at 300C. Activation energy determined for this reaction is about 60 kcal/mole at T > 330C, but it may exceed 70 kcal/mole at lower temperatures. Product hydrocarbon compounds lighter than n-C[sub 16] seem to follow the single, first order reaction kinetics shown by the disappearance of n-C[sub 16]. Hydrocarbons larger than n-C[sub l6,] however, seem to follow a serial reaction of generation and subsequent destruction (including conversion to solid products) at high percentage conversion. Limited data suggest that the cracking rate of n-C[sub 16] may have a small dependence on pressure.

  19. Measurement of pressure effects of n-hexadecane cracking rates

    SciTech Connect

    Jackson, K.J.; Burnham, A.K.; Braun, R.L.; Knauss, K.G.

    1992-06-01

    Experiments designed to determine the possible role of pressure in governing the kinetics of n-hexadecane (n-C{sub l6}) cracking reactions were conducted in Dickson-type autoclaves at temperatures from 300 to 370C at pressures from 150 to 600 bars. Good agreement with published reaction kinetics was obtained at temperatures {le}350C. Values determined at lower temperatures indicate slower rates than predicted from earlier experiments and show a distinct induction period at 300C. Activation energy determined for this reaction is about 60 kcal/mole at T > 330C, but it may exceed 70 kcal/mole at lower temperatures. Product hydrocarbon compounds lighter than n-C{sub 16} seem to follow the single, first order reaction kinetics shown by the disappearance of n-C{sub 16}. Hydrocarbons larger than n-C{sub l6,} however, seem to follow a serial reaction of generation and subsequent destruction (including conversion to solid products) at high percentage conversion. Limited data suggest that the cracking rate of n-C{sub 16} may have a small dependence on pressure.

  20. A Retrospective Comparison of Microwave Ablation vs. Radiofrequency Ablation for Colorectal Cancer Hepatic Metastases

    PubMed Central

    Correa-Gallego, Camilo; Fong, Yuman; Gonen, Mithat; D'Angelica, Michael I.; Allen, Peter J.; DeMatteo, Ronald P.; Jarnagin, William R.; Kingham, T. Peter

    2015-01-01

    Background Microwave (MWA) and radiofrequency ablation (RFA) are the most commonly used techniques for ablating colorectal-liver metastases (CRLM). The technical and oncologic differences between these modalities are unclear. Methods We conducted a matched-cohort analysis of patients undergoing open MWA or RFA for CRLM at a tertiary-care center between 2008 and 2011; the primary endpoint was ablation-site recurrence. Tumors were matched by size, clinical-risk score, and arterial-intrahepatic or systemic chemotherapy use. Outcomes were compared using conditional logistic regression and stratified log-rank test. Results We matched 254 tumors (127 per group) from 134 patients. MWA and RFA groups were comparable by age, gender, median number of tumors treated, proximity to major vessels, and postoperative complication rates. Patients in the MWA group had lower ablation-site recurrence rates (6% vs. 20%; P < 0.01). Median follow-up, however, was significantly shorter in the MWA group (18 months [95% confidence interval 17–20] vs. 31 months [95% confidence interval 28–35]; P < 0.001). Kaplan–Meier estimates of ablation-site recurrence at 2 years were significantly lower for the lesions treated with MWA (7% vs. 18%, P: 0.01). Conclusions Ablation-site recurrences of CRLM were lower with MWA compared with RFA in this matched cohort analysis. Longer follow-up time in the MWA may increase the recurrence rate; however, actuarial local failure estimations demonstrated better local control with MWA. PMID:24889486

  1. Comparison of subjective and objective measurement of sweat transfer rate.

    PubMed

    Mijović, Budimir; Skenderi, Zenun; Salopek, Ivana

    2009-06-01

    Sweat absorption is investigated using the subjective and objective methods. The subjective investigation analyses the physiological responses of male and female volunteers wearing two kinds of textile fabrics (cotton and polyester) during certain physical activity. The subjects were exposed to the different conditions of ambient temperature (23, 26, 29 and 32 degrees C) and constant relative humidity of 67 +/- 3%. In the objective investigation the sweating guarded hotplate (SGHP) system was used that stimulates the processes of sweat transfer between the human skin, textile material and environment. The results of mass absorption obtained from the objective measurement on the sweating guarded hotplate show the similar trend as the results obtained during the subjective measurement. PMID:19662771

  2. Measurement of vibration rate of manually operated percussion machines

    NASA Technical Reports Server (NTRS)

    Aleksandrov, Y. V.; Flavitskiy, Y. V.

    1973-01-01

    A special apparatus for measurement of accelerations of between 1 and 5000 g and shock stress pulses from 20 kg/cu cm up, with durations of 50.1 million sec and higher was designed and built. The amplitudes and shapes of the peak vibroshock pulses, arising during operation of a hammer, are obtained; the recording time of the continuous process is determined by the time of one revolution of the drum of a specially made mechanical photo attachment.

  3. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  4. Neutron-induced soft error rate measurements in semiconductor memories

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Narayanan, Vijaykrishnan; Çetiner, Sacit M.; Degalahal, Vijay; Irwin, Mary J.

    2007-08-01

    Soft error rate (SER) testing of devices have been performed using the neutron beam at the Radiation Science and Engineering Center at Penn State University. The soft error susceptibility for different memory chips working at different technology nodes and operating voltages is determined. The effect of 10B on SER as an in situ excess charge source is observed. The effect of higher-energy neutrons on circuit operation will be published later. Penn State Breazeale Nuclear Reactor was used as the neutron source in the experiments. The high neutron flux allows for accelerated testing of the SER phenomenon. The experiments and analyses have been performed only on soft errors due to thermal neutrons. Various memory chips manufactured by different vendors were tested at various supply voltages and reactor power levels. The effect of 10B reaction caused by thermal neutron absorption on SER is discussed.

  5. A New Method for Flow Rate Measurement in Millimeter-Scale Pipes

    PubMed Central

    Ji, Haifeng; Gao, Xuemin; Wang, Baoliang; Huang, Zhiyao; Li, Haiqing

    2013-01-01

    Combining the Capacitively Coupled Contactless Conductivity Detection (C4D) technique and the principle of cross correlation flow measurement, a new method for flow rate measurement in millimeter-scale pipes was proposed. The research work included two parts. First, a new five-electrode C4D sensor was developed. Second, with two conductivity signals obtained by the developed sensor, the flow rate measurement was implemented by using the principle of cross correlation flow measurement. The experimental results showed that the proposed flow rate measurement method was effective, the developed five-electrode C4D sensor was successful, and the measurement accuracy was satisfactory. In five millimeter-scale pipes with different inner diameters of 0.5, 0.8, 1.8, 3.0 and 3.9 mm respectively, the maximum relative difference of the flow rate measurement between the reference flow rate and the measured flow rate was less than 5%. PMID:23353139

  6. Development of a scale to measure individuals’ ratings of peace

    PubMed Central

    2014-01-01

    Background The evolving concept of peace-building and the interplay between peace and health is examined in many venues, including at the World Health Assembly. However, without a metric to determine effectiveness of intervention programs all efforts are prone to subjective assessment. This paper develops a psychometric index that lays the foundation for measuring community peace stemming from intervention programs. Methods After developing a working definition of ‘peace’ and delineating a Peace Evaluation Across Cultures and Environments (PEACE) scale with seven constructs comprised of 71 items, a beta version of the index was pilot-tested. Two hundred and fifty subjects in three sites in the U.S. were studied using a five-point Likert scale to evaluate the psychometric functioning of the PEACE scale. Known groups validation was performed using the SOS-10. In addition, test-retest reliability was performed on 20 subjects. Results The preliminary data demonstrated that the scale has acceptable psychometric properties for measuring an individual’s level of peacefulness. The study also provides reliability and validity data for the scale. The data demonstrated internal consistency, correlation between data and psychological well-being, and test-retest reliability. Conclusions The PEACE scale may serve as a novel assessment tool in the health sector and be valuable in monitoring and evaluating the peace-building impact of health initiatives in conflict-affected regions. PMID:25298781

  7. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. PMID:24488638

  8. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  9. Cardiac ablation procedures

    MedlinePlus

    ... Accessory pathway, such as Wolff-Parkinson-White Syndrome Atrial fibrillation and atrial flutter Ventricular tachycardia ... consensus statement on catheter and surgical ablation of atrial fibrillation: ... for personnel, policy, procedures and follow-up. ...

  10. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  11. Measurements of Bed Load Particle Diffusion at Low Transport Rates

    NASA Astrophysics Data System (ADS)

    Ball, A. E.; Furbish, D. J.; Schmeeckle, M. W.

    2012-12-01

    High-speed imaging of coarse sand particles transported as bed load reveals how particle motions possess intrinsic periodicities associated with their start-and-stop behavior. The dominant harmonics in these motions have a primary influence on the rate at which the mean squared particle displacement R(τ) increases with the time interval τ. The mean squared displacement R(τ) is conventionally used to assess the possibility of anomalous diffusion, and over a timescale corresponding to the typical travel time of particles, calculations of R(τ) may ostensibly indicate non-Fickian behavior while actually reflecting the effects of periodicities in particle motions, not anomalous diffusion. We provide the theoretical basis for this observed behavior, and we illustrate how the effective (Fickian) particle diffusivity obtains from G. I. Taylor's classic definition involving the particle velocity autocovariance, including its relation to the ensemble-averaged particle velocity as articulated by O. M. Phillips. Cross-stream diffusivities are an order of magnitude smaller than streamwise diffusivities.

  12. Photothermal ablation of liver tissue with 1940-nm thulium fiber laser: an ex vivo study on lamb liver

    NASA Astrophysics Data System (ADS)

    Alagha, Heba Z.; Gülsoy, Murat

    2016-01-01

    The purpose of this study was to investigate the ablation efficiency of 1940-nm thulium fiber laser on liver tissue, while utilizing a real-time measurement system to monitor the temperature rise in adjacent tissues. Thulium fiber laser was delivered to lamb liver tissue samples via 400-μm bare tip fiber in contact mode. Eight different laser parameter combinations [power, continuous-wave (cw)/pulsed-modulated (pm) mode, and exposure time] were used. Exposure times were chosen to give the same total applied energy of 4 J for comparative purposes. Following laser irradiations, tissues were processed and stained with hematoxylin and eosin for macroscopic evaluation of ablation areas and total altered areas, and ablation efficiencies were calculated. Temperature of the nearby tissue at a distance of 1 mm from the fiber was measured, and rate of temperature change was calculated. A strong correlation between the rate of temperature change and ablation area was noted. Thermal effects increased with increasing power for both modes. The continuous-wave mode yielded higher ablation efficiencies than the pulse-modulated mode. Histological evaluation revealed a narrow vacuolization zone and negligible carbonization for higher-power values.

  13. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  14. Laser ablation loading of a radiofrequency ion trap

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Okhapkin, M. V.; Herrera-Sancho, O. A.; Peik, E.

    2012-06-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10-7 to 10-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  15. Analytical model for CO(2) laser ablation of fused quartz.

    PubMed

    Nowak, Krzysztof M; Baker, Howard J; Hall, Denis R

    2015-10-10

    This paper reports the development of an analytical model, with supporting experimental data, which quite accurately describes the key features of CO2 laser ablation of fused silica glass. The quantitative model of nonexplosive, evaporative material removal is shown to match the experimental data very well, to the extent that it can be used as a tool for ablative measurements of absorption coefficient and vaporization energy. The experimental results indicated that a minimum of 12  MJ kg-1 is required to fully vaporize fused quartz initially held at room temperature, which is in good agreement with the prediction of the model supplied with input data available in the literature. An optimal window for the machining of fused quartz was revealed in terms of pulse duration 20-80 μs and CO2 laser wavelength optimized for maximum absorption coefficient. Material removal rates of 0.33 μm per J cm-2 allow for a high-precision depth control with modest laser stability. The model may also be used as a parameter selection guide for CO2 laser ablation of fused silica or other materials of similar thermophysical properties. PMID:26479800

  16. Ultra-short pulsed laser tissue ablation using focused laser beam

    NASA Astrophysics Data System (ADS)

    Jaunich, Megan K.; Raje, Shreya; Mitra, Kunal; Grace, Michael S.; Fahey, Molly; Spooner, Greg

    2008-02-01

    Short pulse lasers are used for a variety of therapeutic applications in medicine. Recently ultra-short pulse lasers have gained prominence due to the reduction in collateral thermal damage to surrounding healthy tissue during tissue ablation. In this paper, ultra-short pulsed laser ablation of mouse skin tissue is analyzed by assessing the extent of damage produced due to focused laser beam irradiation. The laser used for this study is a fiber-based desktop laser (Raydiance, Inc.) having a wavelength of 1552 nm and a pulse width of 1.3 ps. The laser beam is focused on the sample surface to a spot size on the order of 10 microns, thus producing high peak intensity necessary for precise clean ablation. A parametric study is performed on in vitro mouse tissue specimens and live anaesthetized mice with mammary tumors through variation of laser parameters such as time-averaged laser power, repetition rate, laser scanning rate and irradiation time. Radial temperature distribution is measured using thermal camera to analyze the heat affected zone. Temperature measurements are performed to assess the peak temperature rise attained during ablation. A detailed histological study is performed using frozen section technique to observe the nature and extent of laser-induced damages.

  17. Ablation dynamics in laser sclerotomy ab externo

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Droege, Gerit; Mohrenstecher, Dirk; Scheu, M.; Birngruber, Reginald

    1996-01-01

    Laser sclerostomy ab externo with flashlamp excited mid-IR laser systems emitting in the 2-3 micrometer spectral range is in phase II clinical trials. Although acutely high success rates were achieved, the restenosis rate after several months is about 40%. Laser pulses of several hundreds of microseconds, known to induce thermo-mechanical explosive evaporation were used for this procedure. We investigated the ablation dynamics in tissue and the cavitation bubble dynamics in water by means of an Er:YAG laser system to estimate the extent of mechanical damage zones in the sclera and in the anterior chamber, which may contribute to the clinical failure. We found substantial mechanical tissue deformation during the ablation process caused by the cavitation effects. Stress waves up to several bar generated by explosive evaporization were measured. The fast mechanical stretching and collapsing of the scleral tissue induced by cavitation resulted in tissue dissection as could be proved by flash photography and histology. The observed high restenosis might be a result of a subsequent enhanced wound healing process. Early fistula occlusions due to iris adherences, observed in about 20% of the clinical cases may be attributed to intraocular trauma induced by vapor bubble expansion through the anterior chamber after scleral perforation. An automatic feedback system minimizing adverse effects by steering and terminating the laser process during scleral fistulization is demonstrated. Moreover, a new approach in laser sclerostomy ab externo is presented using a cw-IR laser diode system emitting at the 1.94 micrometer mid-IR water absorption peak. This system was used in vitro and showed smaller damage zones compared to the pulsed laser radiation.

  18. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole

  19. Reconstruction of the reconnection rate from Cluster measurements: First results

    NASA Astrophysics Data System (ADS)

    Semenov, V. S.; Penz, T.; Ivanova, V. V.; Sergeev, V. A.; Biernat, H. K.; Nakamura, R.; Heyn, M. F.; Kubyshkin, I. V.; Ivanov, I. B.

    2005-11-01

    A model of transient time-dependent magnetic reconnection is used to describe the behavior of nightside flux transfers (NFTEs) in the Earth's magnetotail. On the basis of the analytical approach to reconnection developed by Heyn and Semenov (1996) and Semenov et al. (2004a) we calculate the magnetic field and plasma bulk velocity time series observed by a satellite. The solution for the plasma parameters is given in the form of a convolution integral. The calculation of the reconnection electric field is an ill-posed inverse problem, which we treat in the frame of the theory of regularization. This method is applied to Cluster measurements from 8 September 2002, where a series of earthward propagating 1-min scale magnetic field and plasma flow variations are observed outside of the plasma sheet, which are consistent with the theoretical picture of NFTEs. We analyzed three NFTEs and reconstructed the reconnection electric field. Additionally, the position of the satellite with respect to the reconnection site as well as the Alfvén velocity are estimated because they are necessary input parameters for the model. The reconnection electric field is found to be about 1-2 mV/m, while the reconnection site is located about 29-31 RE in the magnetotail.

  20. Prediction of Heart Rates on a Ropes Course from Simple Physical Measures. Research Update.

    ERIC Educational Resources Information Center

    Priest, Simon; Montelpare, William

    1995-01-01

    This study identified the highest heart rates attained on a ropes course for a corporate population; examined relationships between highest heart rate and other physical measures (basal heart rate, blood pressure, height, weight, body girths, cholesterol, maximum number of pushups, and heart rate after brisk walk); and developed an equation for…