Science.gov

Sample records for ablation system coupled

  1. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  2. 1-D steady state analysis of a two-equation coupled system for determination of tissue temperature in liver during radio frequency ablation.

    PubMed

    Peng, Tingying; O'Neill, David P; Payne, Stephen J

    2009-01-01

    An analytical solution is provided for a two-equation coupled model for determination of liver tissue temperature during radio frequency ablation in the steady state with one-dimension in space. Both analytical analysis and model simulation were conducted to investigate the effects of two crucial system parameters: blood perfusion rate and convective heat transfer coefficient on the tissue temperature field. The quantitative criteria were also derived, under which the two-equation coupled system can be approximated to a conventional single bio-heat equation system such as the Pennes model.

  3. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  4. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  5. Ablation and radiation coupled viscous hypersonic shock layers, volume 1

    NASA Technical Reports Server (NTRS)

    Engel, C. D.

    1971-01-01

    The results for a stagnation-line analysis of the radiative heating of a phenolic-nylon ablator are presented. The analysis includes flow field coupling with the ablator surface, equilibrium chemistry, a step-function diffusion model and a coupled line and continuum radiation calculation. This report serves as the documentation, i e. users manual and operating instructions for the computer programs listed in the report.

  6. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  7. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  8. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  9. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  10. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  11. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  12. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.

    PubMed

    Filadi, Riccardo; Greotti, Elisa; Turacchio, Gabriele; Luini, Alberto; Pozzan, Tullio; Pizzo, Paola

    2015-04-28

    The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER-mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca(2+) transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca(2+) overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER-mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER-mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.

  13. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  14. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  15. Evaluation of Inductively Couple Plasma-time-of-Flight Mass Spectrometry for Laser Ablation Analyses

    SciTech Connect

    S.J. Bajic; D.B. Aeschliman; D.P. Baldwin; R.S. Houk

    2003-09-30

    The purpose of this trip to LECO Corporation was to test the non-matrix matched calibration method and the principal component analysis (PCA) method on a laser ablation-inductively coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) system. An LA-ICP-TOFMS system allows for multielement single-shot analysis as well as spatial analysis on small samples, because the TOFMS acquires an entire mass spectrum for all ions extracted simultaneously from the ICP. The TOFMS system differs from the double-focusing mass spectrometer, on which the above methods were developed, by having lower sensitivity and lower mass resolution.

  16. Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of Planetary Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza

    2013-01-01

    A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.

  17. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  18. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  19. Laser Ablation Solid Sampling processes investigated usinginductively coupled plasma - atomic emission spectroscopy (ICP-AES)

    SciTech Connect

    Mao, X.L.; Ciocan, A.C.; Borisov, O.V.; Russo, R.E.

    1997-07-01

    The symbiotic relationship between laser ablation mechanismsand analytical performance using inductively coupled plasma-atomicemission spectroscopy are addressed in this work. For both cases, it isimportant to ensure that the ICP conditions (temperature and electronnumber density) are not effected by the ablated mass. By ensuring thatthe ICP conditions are constant, changes in spectral emission intensitywill be directly related to changes in laser ablation behavior. Mg ionicline to atomic line ratios and excitation temperature were measured tomonitor the ICP conditions during laser-ablation sample introduction. Thequantity of ablated mass depends on the laser pulse duration andwavelength. The quantity of mass removed per unit energy is larger whenablating with shorter laser wavelengths and pulses. Preferential ablationof constituents from a multicomponent sample was found to depend on thelaser beam properties (wavelength and pulse duration). Fornanosecond-pulsed lasers, thermal vaporization dominates the ablationprocess. For picosecond-pulsed lasers, a non-thermal mechanism appears todominate the ablation process. This work will describe the mass ablationbehavior during nanosecond and picosecond laser sampling into the ICP.The behavior of the ICP under mass loading conditions is firstestablished, followed by studies of the ablation behavior at variouspower densities. A thermal vaporization model is used to explainnanosecond ablation, and a possible non-thermal mechanism is proposed toexplain preferential ablation of Zn and Cu from brass samples duringpicosecond ablation.

  20. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  1. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Márquez, Ciro; Sobral, Hugo

    2013-11-01

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver-copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer-scanning electron microscopy (EDX-SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX-SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm-2.

  2. Aerothermodynamic Analysis of Stardust Sample Return Capsule with Coupled Radiation and Ablation. Revised

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.

    2000-01-01

    An aerothermodynamic analysis of the forebody aeroshell of the Stardust Sample Return Capsule is carried out by using the axisymmetric viscous shock-layer equations with and without fully coupled radiation and ablation. Formulation of the viscous shock-layer equations with shoulder radius as the length scale and implementation of the Vigneron pressure condition allow resolution of the flowfield over the shoulder. With a predominantly supersonic outflow over the shoulder, a globally iterated solution or viscous shock-layer equations can be obtained. The stagnation-point results are obtained along a specified trajectory, whereas detailed calculations along the body are provided at the peak-heating point. The equilibrium calculations with ablation injection are the focus of the present study because of the lack of a general chemical nonequilibrium analysis that accounts for both surface and flowfield effect. The equilibrium calculations also provide a simple way to conserve surface (and flowfield) elemental composition for the current small ablation injection rates, where the surface elemental composition is a mixture of freestream and ablator elements. Therefore, the coupled laminar and turbulent flow solutions with radiation and ablation are obtained by using the equilibrium flow chemistry, whereas a nonequilibrium chemistry model is used for solutions without ablation and turbulence. Various computed results are compared with those obtained by the other researchers.

  3. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Wehe, Christoph A; Thyssen, Georgina M; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation. PMID:25947196

  4. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wehe, Christoph A.; Thyssen, Georgina M.; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation.

  5. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance.

  6. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance. PMID:26460246

  7. A Boundary Condition Relaxation Algorithm for Strongly Coupled, Ablating Flows Including Shape Change

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.

    2011-01-01

    Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.

  8. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2006-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  9. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2005-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  10. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  11. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  12. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    SciTech Connect

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency.

  13. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  14. Representative sampling using single-pulse laser ablation withinductively coupled plasma mass spectroscopy

    SciTech Connect

    Liu, Haichen; Mao, Xianglei; Russo, Richard E.

    2001-04-02

    Single pulse laser ablation sampling with inductively coupled plasma mass spectrometry (ICP-MS) was assessed for accurate chemical analysis. Elemental fractionation (e.g. Pb/U), the quantity of ablated mass (crater volume), ICP-MS intensity and the particle contribution (spike signal) during single pulse ablation of NIST 610 glass were investigated. Pb/U fractionation significantly changed between the first and second laser pulse and showed strong irradiance dependence. The Pb/U ratio obtained by the first pulse was usually higher than that of the second pulse, with the average value close to the representative level. Segregation during laser ablation is proposed to explain the composition change between the first and second pulse. Crater volume measurements showed that the second pulse produced significantly more ablated mass. A roll-off of the crater depth occurred at {approx}750 GW/cm{sup 2}. The absolute ICP-MS intensity from the second pulse showed no correlation with crater depth. Particle induced spikes on the transit signal showed irradiance and elemental species dependence.

  15. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  16. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  17. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples.

  18. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  19. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  20. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  1. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  2. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  3. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  4. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  5. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  6. Coupled transport protein systems.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This set of animated lessons provides examples of how transport proteins interact in coupled systems to produce physiologic effects. The gastric pumps animation depicts the secretion of hydrochloric acid into the gastric lumen. The animation called glucose absorption depicts glucose absorption by intestinal epithelial cells. The CFTR animation explains how the cystic fibrosis conductance transmembrane regulator (CFTR) functions as a key component of a coupled system of transport proteins that clears the pulmonary system of mucus and inhaled particulates. These animations serve as valuable resources for any collegiate-level course that describes these processes. Courses that might use them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.

  7. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions

    NASA Astrophysics Data System (ADS)

    Ciocan, A. C.; Mao, X. L.; Borisov, Oleg V.; Russo, R. E.

    1998-03-01

    The amount of ablated mass can influence the temperature and excitation characteristics of the inductively coupled plasma (ICP) and must be taken into account to ensure accurate chemical analysis. The ICP electron number density was investigated by using measurements of the Mg ionic to atomic resonant-line ratios during laser ablation of an aluminum matrix. The ICP excitation temperature was measured by using selected Fe lines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulse duration) at 266 nm was used for these ablation-sampling studies. Laser energy, power density, and repetition rate were varied in order to change the quantity of ablated mass into the ICP. Over the range of laser operating conditions studied herein, the ICP was not significantly influenced by the quantity of solid sample. Therefore, analytical measurements can be performed accurately and fundamental studies of laser ablation processes (such as ablation mass roll-off, fractional vaporization) can be investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  8. Science to Practice: Systemic Implications of Ablative Tumor Therapies-Reality Uncovered and Myths Exposed?

    PubMed

    Chapiro, Julius; Geschwind, Jean-François

    2016-08-01

    In their effort to characterize the systemic "off-target" effects of radiofrequency (RF) ablation and irreversible electroporation (IRE), Bulvik et al demonstrated substantial differences in physiologic, tumorigenic, and immunologic responses between the two ablative modalities. By establishing that IRE may in fact stimulate more robust inflammatory and systemic reactions than RF at liver ablation, the authors conclude that the selection of a given ablation energy source may alter the clinical outcome depending on the circumstance-both favorably and unfavorably. PMID:27429140

  9. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  10. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  11. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  12. Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth

    1990-01-01

    Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.

  13. Ablative Thermal Protection: An Overview

    NASA Technical Reports Server (NTRS)

    Laub, Bernie

    2003-01-01

    Contents include the following: Why ablative thermal protections - TPS. Ablative TPS chronology: strategic reentry systems, solid rocket motor nozzles, space (manned missions and planetary entry probes). Ablation mechanisms. Ablation material testing. Ablative material testing.

  14. Evaluation of the temporal profiles and the analytical features of a laser ablation - Pulsed glow discharge coupling for optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    González de Vega, Claudia; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-07-01

    The coupling of a glow discharge (GD) in pulsed mode (PGD) as secondary source for excitation/ionization of the material provided by laser ablation (LA) has been investigated using optical emission spectrometry (OES). The variation of the laser pulse delay with respect to the GD pulse allows to producing the ablation process during prepeak, plateau or afterglow GD regions. Emission properties of the LA-PGD plasma in each temporal region of the GD pulse have been evaluated for analytical lines of different elements. Resonant atomic lines have shown higher emission intensity in the prepeak region compared to non-resonant lines. Non-resonant lines showed higher enhancement of the emission intensity in the afterglow region. Moreover, the coupled LA-PGD system offered better linear correlation coefficients using a set of glass standards for calibration as well as lower detection limits (by at least a factor of two) when compared to laser induced breakdown spectroscopy.

  15. Development of a Novel Shock Wave Catheter Ablation System

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Hasebe, Yuhi; Kondo, Masateru; Fukuda, Koji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    Although radio-frequency catheter ablation (RFCA) is quite effective for the treatment tachyarrhythmias, it possesses two fundamental limitations, including limited efficacy for the treatment of ventricular tachyarrhythmias of epicardial origin and the risk of thromboembolism. Consequently, new method is required, which can eradicate arrhythmia source in deep part of cardiac muscle without heating. On the other hand, for a medical application of shock waves, extracorporeal shock wave lithotripter (ESWL) has been established [1]. It was demonstrated that the underwater shock focusing is one of most efficient method to generate a controlled high pressure in a small region [2]. In order to overcome limitations of existing methods, we aimed to develop a new catheter ablation system with underwater shock waves that can treat myocardium at arbitrary depth without causing heat.

  16. High-speed camera imaging for laser ablation process: for further reliable elemental analysis using inductively coupled plasma-mass spectrometry.

    PubMed

    Hirata, Takafumi; Miyazaki, Zen

    2007-01-01

    Production of laser ablation-induced sample aerosols has been visualized using a high-speed camera device coupled with shadowgraphy technique. The time resolution of the method is 1 micros, and production of the sample grains was successfully defined by the imaging system. An argon-fluoride excimer laser operated at 193-nm wavelength was used to ablate the solid samples. When the laser was shot onto the sample (Si wafer), a dome-shaped dark area appeared at the ablation pit. This dark area reflects changes in refractive index of ambient He probably due to emission of electrons or ions from the ablation pit. The dark area expanded hemispherically from the ablation pit with a velocity close to the speed of sound (approximately 1000 m/s for He at 300 K). This was followed by the excitation or ionization of the vaporized sample, known as the plasma plume. Immediately after the formation of the plasma plume, sample aerosols were produced and released from the ablation pit along the propagation of the laser-induced shockwave. Production of the sample aerosols was significantly delayed (approximately 4 micros) from the onset of the laser shot. The typical speed of particles released from the ablation pit was 100-200 m/s, which was significantly slower than the reported velocity of the plasma plume expansion (104 m/s). Since the initial measured speed of the sample particles was rather close to the speed of sound, the sample aerosols could be rapidly decelerated to the terminal velocity by a gas drag force with ambient He. The release angle of the sample aerosols from the ablation pit was very shallow (<10 degrees ), which may be due to the downforce produced by the thermal expansion of the ambient gas above the ablation pit. The shallower release angle and the contribution of the downforce probably results in the redeposition of sample aerosols or vapor around the ablation pit. In fact, the degree of sample redeposition around the ablation pit can be effectively minimized

  17. Ablation Thermal Protection Systems: Suitability of ablation systems to thermal protection depends on complex physical and chemical processes.

    PubMed

    Ungar, E W

    1967-11-10

    The performance of ablation thermal protection systems is intimately related to the mass transfer, heat transfer, and chemical reactions which occur within the gas boundary layer. Production of a liquid layer and phase change or chemical reaction heat sinks greatly improve materials performance. Materials are available which achieve many goals for thermal protection. However, advanced materials which are now being developed provide hope of further reductions in the weight of heat-shielding structures. PMID:17732614

  18. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  19. Finite-element model for endometrial ablation systems

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Platt, Robert C.; Humphries, Stanley, Jr.

    1998-04-01

    Ablation of the endometrium has become a viable treatment for dysfunctional bleeding of the uterus in women. Surgical applications of thermal ablation utilized a rolling electrode to ablate the inner uterine lining, but required practiced surgical skills and made it difficult to assess subsurface damage. Recently, various energy systems have been applied to the endometrium such as lasers, microwaves, RF electrodes, hot water balloons, and cryotherapy. A finite element model is presented to compare a multi-electrode, multiplexed RF device with a balloon containing hot fluid. The temperature fields in the uterine wall are plotted over time for various blood flow values. Assumptions of constant electrical conductivity are compared to temperature- dependent electrical conductivity. Temperatures are shown to be a maximum of about 10 - 20 degree(s)C higher when varying electrical conductivity is used. Results are also shown for cases with a 2 mm blood vessel in the field and how each device adjusts its operation to compensate for this heat sink. Damage integral results will be shown according to the time and temperature of the treatments.

  20. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  1. Simulations of percutaneous RF ablation systems

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Kwok, Jonathan; Beetel, Robert J.

    2003-06-01

    Breast and liver cancers provide an ongoing challenge in regard to treatment efficacy and successful clinical outcomes. A variety of percutaneous technology has been applied for thermal treatment of the liver and breast, including laser, microwave, cryogenic and radiofrequency (RF) devices. When simplicity and cost are factored in, RF hardware and applicators offer the most cost-effective treatment pathway by interventional radiologists and surgeons. To model percutaneous RF treatments in liver and breast, simulations were done in 3D with a finite element model. Three RF systems were modeled, including 1) single needle; 2) clustered needle, cooled and uncooled; and 3) deployable, hook electrodes. The results show the limitations of the systems in percutaneous procedures, depending on temperature limits, duration of treatment, and whether the devices are cooled or uncooled. For thermal treatment, the isotherm of 55°C was considered the margin of coagulation necrosis. The 3-D volumes of 55°C and 65°C isotherm shells aid in the selection of the best method to improve clinical outcomes, while paying attention to the size and shape of the applicator and duration of treatment.

  2. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  3. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  4. Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response?

    PubMed Central

    Mehta, Amol; Oklu, Rahmi

    2016-01-01

    Percutaneous image-guided ablation is an increasingly common treatment for a multitude of solid organ malignancies. While historically these techniques have been restricted to the management of small, unresectable tumors, there is an expanding appreciation for the systemic effects these locoregional interventions can cause. In this review, we summarize the mechanisms of action for the most common thermal ablation modalities and highlight the key advances in knowledge regarding the interactions between thermal ablation and the immune system. PMID:27051417

  5. Plasma confinement to enhance the momentum coupling coefficient in ablative laser micro-propulsion: a novel approach

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Qaiser Zakaria, M.; Hussain, Tousif; Ahmad, Riaz

    2015-07-01

    We introduce for the first time the novel idea of manipulating the momentum coupling coefficient using plasma confinement and shock wave reflection from the cavity walls. The plasma was confined using cylindrical geometries of various cavity aspect ratios to manipulate the momentum coupling coefficient (C m ). The Nd: YAG laser (532 nm, 5 ns pulse duration) was focused on the ferrite sample surface to produce plasma in a region surrounded by cylindrical cavity walls. The multiple reflections of the shockwaves from the cavity walls confined the laser-induced plasma to the central region of the cavity that subsequently resulted in a significant enhancement of the momentum coupling coefficient values. The plasma shielding effect has also been observed for particular values of laser fluencies and cavity aspect ratios. Compared with the direct ablation, the confined ablation provides an effective way to obtain high C m values.

  6. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-07-14

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

  7. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    PubMed

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  8. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    NASA Astrophysics Data System (ADS)

    Hrdlička, Aleš; Otruba, Vítĕzslav; Novotný, Karel; Günther, Detlef; Kanický, Viktor

    2005-03-01

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.

  9. Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.

    2011-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  10. Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.

    2010-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  11. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  12. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.

  13. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    NASA Astrophysics Data System (ADS)

    Claverie, Fanny; Pécheyran, Christophe; Mounicou, Sandra; Ballihaut, Guillaume; Fernandez, Beatriz; Alexis, Joël; Lobinski, Ryszard; Donard, Olivier F. X.

    2009-07-01

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 µm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (Δ T~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak

  14. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  15. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    SciTech Connect

    Perkins, W.T.; Pearce, N.J.G.; Jeffries, T.E. )

    1993-01-01

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs.

  16. Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin

    NASA Astrophysics Data System (ADS)

    Zoriy, Myroslav; Matusch, Andreas; Spruss, Thilo; Becker, J. Sabine

    2007-02-01

    Platinum complexes are used for the treatment of several types of cancer. High platinum concentrations in the target tissue and low concentrations in dose-limiting tissue structures such as renal tubules are desirable to assure selective toxicity. Microlocal analysis of platinum distribution in tissue sections may thus contribute to the optimization of platinum therapy. Scanning laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 14-[mu]m thin sections of kidney tissue from a mouse treated with cis-platin 60 min prior to victimization. The sample surface was scanned (raster area 300 mm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 [mu]m, inter line distance 50 [mu]m and laser power density 3 x 109 W cm-2) in a cooled laser ablation chamber (about -15 [degree sign]C) developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICP-MS. Ion intensities of 63Cu+, 64Zn+, and 196Pt+ were measured within the tissue by LA-ICP-MS. Matrix-matched laboratory standards served for calibration of analytical data. The mass spectrometric analysis yielded an inhomogeneous distribution for Cu, Zn, and Pt in thin kidney sections. Copper was enriched in the capsule and outer cortex, zinc in the inner cortex and the platinum concentration followed a centripetal gradient with clear medullar enrichment. Thus, scanning LA-ICP-MS may be a useful tool in the preclinical development of new and less nephrotoxic platinum complexes.

  17. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  18. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  19. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  20. Online monitoring of nanoparticles formed during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nováková, Hana; Holá, Markéta; Vojtíšek-Lom, Michal; Ondráček, Jakub; Kanický, Viktor

    2016-11-01

    The particle size distribution of dry aerosol originating from laser ablation of glass material was monitored simultaneously with Laser Ablation - Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis and two aerosol spectrometers - Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS). The unique combination of LA-ICP-MS and FMPS offers the possibility of measuring the particle size distribution every 1 s of the ablation process in the size range of 5.6-560 nm. APS extends the information about particle concentration in the size range 0.54-17 μm. Online monitoring of the dry aerosol was performed for two ablation modes (spot and line with a duration of 80 s) with a 193 nm excimer laser system, using the glass reference material NIST 610 as a sample. Different sizes of laser spot for spot ablation and different scan speeds for line ablation were tested. It was found that the FMPS device is capable of detecting changes in particle size distribution at the first pulses of spot laser ablation and is suitable for laser ablation control simultaneously with LA-ICP-MS analysis. The studied parameters of laser ablation have an influence on the resulting particle size distribution. The line mode of laser ablation produces larger particles during the whole ablation process, while spot ablation produces larger particles only at the beginning, during the ablation of the intact layer of the ablated material. Moreover, spot ablation produces more primary nano-particles (in ultrafine mode size range < 100 nm) than line ablation. This effect is most probably caused by a reduced amount of large particles released from the spot ablation crater. The larger particles scavenge the ultrafine particles during the line ablation mode.

  1. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.

  2. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  3. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  4. Multiobjective synchronization of coupled systems

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an

    2011-06-01

    In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.

  5. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Malherbe, Julien; Claverie, Fanny; Alvarez, Aitor; Fernandez, Beatriz; Pereiro, Rosario; Molloy, John L

    2013-09-01

    Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.e. equilibrate the elements and the added isotopically enriched standards. A comparison of this methodology using two pulsed laser ablation systems (ArF* excimer and Nd:YAG) with different wavelengths as well as two ICP-MS instruments (quadrupole and double-focusing sector field) was performed. Emphasis was put on using standard equipment to show the potential of the proposed strategy for its application in routine laboratories. Cr, Zn, Ba, Sr and Pb were successfully determined by LA-ICP-IDMS in six Standard Reference Materials (SRMs) representing different matrices of environmental interest. Experimental results showed the SRM fused glasses exhibited a low level of heterogeneity (intra- and inter-sample) for both natural abundance and isotopically enriched samples (RSD <3%, n=3, 1σ). A good agreement between experimental results and the certified values was also observed.

  6. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Malherbe, Julien; Claverie, Fanny; Alvarez, Aitor; Fernandez, Beatriz; Pereiro, Rosario; Molloy, John L

    2013-09-01

    Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.e. equilibrate the elements and the added isotopically enriched standards. A comparison of this methodology using two pulsed laser ablation systems (ArF* excimer and Nd:YAG) with different wavelengths as well as two ICP-MS instruments (quadrupole and double-focusing sector field) was performed. Emphasis was put on using standard equipment to show the potential of the proposed strategy for its application in routine laboratories. Cr, Zn, Ba, Sr and Pb were successfully determined by LA-ICP-IDMS in six Standard Reference Materials (SRMs) representing different matrices of environmental interest. Experimental results showed the SRM fused glasses exhibited a low level of heterogeneity (intra- and inter-sample) for both natural abundance and isotopically enriched samples (RSD <3%, n=3, 1σ). A good agreement between experimental results and the certified values was also observed. PMID:23953208

  7. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials

    NASA Astrophysics Data System (ADS)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-08-01

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  8. Beam Delivery System For UV Laser Ablation Of The Cornea

    NASA Astrophysics Data System (ADS)

    Yoder, P. R.; Telfair, W. B.; Warner, J. W.; Martin, C. A.; Bennett, P. S.

    1988-06-01

    We describe an electro-optical apparatus capable of delivering a homogenized, intensity-contoured 193 nm wavelength laser beam to the anterior surface of the cornea. Beam fluence is adequate to produce controlled ablation over areas as large as 7 mm diameter. Preliminary experimental results demonstrating recontouring of the corneal surface as a means of correcting myopia are presented. Means to be used for reducing hyperopia and astigmatism also are described.

  9. Conjunction of Endocardial and Coronary Venous System Mapping to Ablate Ventricular Arrhythmias

    PubMed Central

    Wo, Hung-Ta; Yeh, Jih-Kai; Chang, Po-Cheng; Wen, Ming-Shien; Wang, Chun-Chieh; Chou, Chung-Chuan; Yeh, San-Jou

    2016-01-01

    Background Ablation of idiopathic ventricular arrhythmias (VAs) with epicardial or intramural origins is technically challenging. Herein, we have described the successful ablation of left VAs via the coronary venous system (CVS) in conjunction with endocardial map guided by three-dimensional electroanatomical map in six patients. Methods Out of a total consecutive 84 patients with symptomatic idiopathic VAs, radiofrequency ablation via the CVS was performed on six patients (7%). Furthermore, we reviewed patient records and electrophysiologic studies with respect to clinical characteristics. Results Activation map was conducted in 5 patients, and the earliest activation sites were identified within the CVS. The preceding times to the onset of QRS complex were longer than those at the earliest endocardial sites (36.2 ± 5.6 ms vs. 14.2 ± 6.4 ms, p = 0.02, n = 5). Spiky fractionated long-duration potentials were recorded at the successful ablation sites in all 5 patients. The other patient received pacemapping only because of few spontaneous VAs during the procedure, and the best pacemap spot was found within the CVS. Irrigated catheters were required in 4 out of 6 patients because VAs were temporarily suppressed with regular ones. Conclusions Idiopathic VAs can be ablated via the CVS in conjunction with endocardial mapping. Additionally, spiky fractionated long-duration potential can function as a clue to identify the good ablation site. PMID:27274177

  10. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  11. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder.

  12. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  13. Systemic couple therapy for dysthymia.

    PubMed

    Montesano, Adrián; Feixas, Guillem; Muñoz, Dámaris; Compañ, Victoria

    2014-03-01

    We examined the effect of Systemic Couple Therapy on a patient diagnosed with dysthymic disorder and her partner. Marge and Peter, a middle-aged married couple, showed significant and meaningful changes in their pattern of interaction over the course of the therapy and, by the end of it, Marge no longer met the diagnostic criteria for dysthymic disorder. Her scores on the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Beck Depression Inventory, Second Edition (BDI-II) were in the clinical range before treatment and in the nonclinical one at the end of therapy. Although scores on Dyadic Adjustment Scale showed different patterns, both members reported significant improvement. The analysis of change in the alliance-related behaviors throughout the process concurred with change in couple's pattern of interaction. Treatment effects were maintained at 12-month follow-up. Highlights in the therapy process showed the importance of relational mechanisms of change, such as broadening the therapeutic focus into the couple's pattern of interaction, reducing expressed emotion and resentment, as well as increasing positive exchanges. The results of this evidence-based case study should prompt further investigation of couple therapy for dysthymia disorder. Randomized clinical trial design is needed to reach an evidence-based treatment status.

  14. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-01

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min. PMID:22304477

  15. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-01

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  16. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.

    PubMed

    Vinod, M; Gopchandran, K G

    2015-01-01

    Ag@Au core-shell nanoparticles are synthesised by pulsed laser ablation in water using low energy laser pulses. The plasmon characteristics of these core-shell nanoparticles are found to be highly sensitive to the thickness of Au coating. In the synthesis, at first silver nanocolloid was prepared by ablating Ag target and then it is followed by ablation of Au target for different time durations to form Ag@Au core-shell nanostructures. The effect of plasmon-plasmon coupling on the absorption spectra is investigated by decreasing the effective distance between the nanoparticles. This is achieved by reducing the total volume of the colloidal suspension by simple evaporation of water, the solvent used. The suitability of these core-shell nanostructures for application as surface enhanced Raman scattering substrates are tested with crystal violet as probe molecules. Influence of plasmon coupling on the enhancement of Raman bands is found to be different for different bands.

  17. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  18. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  19. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  20. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    İzgi, Belgin; Kayar, Murat

    2015-07-01

    The polybrominated flame retardants and organotin compounds were screened in terms of bromine and tin content using laser ablation inductively coupled plasma mass spectrometry in plastics. The calibration standards were prepared using the fused-disk technique, and all samples were investigated under optimal conditions. Using a central composite experimental design, laser parameters, laser energy, pulse rate, scan rate and spot size were identified. The detection limits of the method were 1000 mgkg(-1) and 1600 mgkg(-1) for bromide and tin, whereas the relative standard deviation (%) values of the analysis were 9% and 6% (n=3) for ERM EC681k with 770 ± 70 mgkg(-1) Br and 86 ± 6 mgkg(-1) Sn respectively, and 106-115% of Br and 102-104% of Sn were observed for the tetrabromobisphenol A and butyltin trichloride spike plastics, respectively.

  1. Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia.

    PubMed

    Hsieh, Yi-Kong; Jiang, Pei-Shin; Yang, Bing-Shen; Sun, Tian-Ye; Peng, Hsu-Hsia; Wang, Chu-Fang

    2011-08-01

    In this study, we employed laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the spatial distribution of Gd-doped iron oxide nanoparticles (IONPs) in one tumor slice that had been subjected to magnetic fluid hyperthermia (MFH). The mapping results revealed the high resolution of the elemental analysis, with the distribution of Gd atoms highly correlated with that of the Fe atoms. The spatial distributions of C, P, S, and Zn atoms revealed that the effect of MFH treatment was significantly dependent on the diffusion of the magnetic fluid in the tissue. An observed enrichment of Cu atoms after MFH treatment was probably due to inflammation in the tumor. The abnormal distribution of Ni atoms suggests a probable biochemical reaction in the tumor. Therefore, this LA-ICP-MS mapping technique can provide novel information regarding the spatial distribution of elements in tumors after cancer therapy.

  2. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  3. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  4. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  5. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  6. The TriBeam system: Femtosecond laser ablation in situ SEM

    SciTech Connect

    Echlin, McLean P.; Straw, Marcus; Randolph, Steven; Filevich, Jorge; Pollock, Tresa M.

    2015-02-15

    Femtosecond laser ablation offers the unique ability to remove material at rates that are orders of magnitude faster than existing ion beam technologies with little or no associated damage. By combining ultrafast lasers with state-of-the-art electron microscopy equipment, we have developed a TriBeam system capable of targeted, in-situ tomography providing chemical, structural, and topographical information in three dimensions of near mm{sup 3} sized volumes. The origins, development, physics, current uses, and future potential for the TriBeam system are described in this tutorial review. - Graphical abstract: Display Omitted - Highlights: • An emerging tool, the TriBeam, for in situ femtosecond (fs) laser ablation is presented. • Fs laser ablation aided tomography at the mm{sup 3}-scale is demonstrated. • Fs laser induced deposition of Pt is demonstrated at sub-diffraction limit resolution. • Fs laser surface structuring is reviewed as well as micromachining applications.

  7. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  8. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  9. System for connecting fluid couplings

    NASA Technical Reports Server (NTRS)

    Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)

    1990-01-01

    A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.

  10. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    SciTech Connect

    Allen, L.A.

    1997-02-01

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  11. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented. PMID:19200475

  12. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  13. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.

  14. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. PMID:26526906

  15. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  16. Microwave Ablation of Pulmonary Malignancies Using a Novel High-energy Antenna System

    SciTech Connect

    Little, Mark W.; Chung, Daniel; Boardman, Philip; Gleeson, Fergus V.; Anderson, Ewan M.

    2013-04-15

    To evaluate the technical success, safety, and imaging follow-up of malignant pulmonary nodules treated with a novel high-energy percutaneous microwave ablation (MWA) system. Between July 2010 and September 2011, a total of 23 patients, 12 men, mean age 68 (range 30-87) years with 29 pulmonary malignancies of median diameter 19 (range 8-57) mm, underwent computed tomography (CT)-guided MWA with a 16G microwave needle antenna enabling power up to 180 W. Technical success was defined as needle placement in the intended lesion without death or serious injury. Adequacy of ablation was assessed at 24 h on contrast-enhanced CT. Circumferential solid or ground glass opacification >5 mm was used to define an ideal ablation. Local tumor recurrence was assessed at 1, 3, and 6 months after ablation on contrast-enhanced CT. MWA was technically successful in 93 % (n = 27). Mean ablation duration was 3.6 (range 1-9) min. Ten patients (43 %) developed a pneumothorax as a result of the MWA; only 3 (13 %) required placement of a chest drain. Thirty-day mortality rate was 0 %. The mean hospital stay was 1.5 (range 1-7) days. A total of 22 lesions (75 %) were surrounded by {>=}5 mm ground glass or solid opacification after the procedure. At a median follow-up of 6 months, local recurrence was identified in 3 out of 26 lesions, giving a local control rate of 88 %. MWA using a high-power antenna of pulmonary malignancies is safe, technically achievable, and enables fast ablation times.

  17. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Dressler, Valderi L; Pozebon, Dirce; Mesko, Marcia Foster; Matusch, Andreas; Kumtabtim, Usarat; Wu, B; Sabine Becker, J

    2010-10-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M(+)/(34)S(+) ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of

  18. Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system.

    PubMed

    Plötz, Christina; Schelle, Florian; Bourauel, Christoph; Frentzen, Matthias; Meister, Jörg

    2015-04-01

    Ultrashort pulsed lasers (USPLs) represent a new generation of laser systems in the field of biophotonical applications. In terms of a pilot project, the study was carried out to evaluate the ablation parameters of bone tissue regarding the medical use of such a laser technology in dentistry. Specimens from ribs of freshly slaughtered pigs were assembled and irradiated with an USP Nd:YVO4 laser (pulse duration 8 ps at 1,064 nm with repetition rates between 50 and 500 kHz) using eligible average output powers in the range of 3.5-9 W and fluences between 1 and 2.5 J/cm(2). Square-shaped cavities of 1-mm edge length in the bone compacta were created employing a scanner system. Cavities were analyzed with an optical profilometer to determine the ablated volume. Ablation rate was calculated by the ablated volume and the recorded irradiation time by the scanner software. Additionally, samples were examined histologically to investigate side effects of the surrounding tissue. Formed cavities showed a precise and sharp-edged appearance in bone compacta. Optimized ablation rate of 5.2 mm(3)/min without any accompanying side effects was obtained with an average output power of 9 W, a pulse repetition rate of 500 kHz, and an applied fluence of 2.5 J/cm(2). Provided that the used laser system will be advanced and adjusted for clinical applications, the outcome of this study shows auspicious possibilities for the use of USPL systems in the preparation of bone tissue.

  19. An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation.

    PubMed

    Huang, Sheng-Chieh; Chang, Yi-Yuan; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-01-01

    Thermal ablation has been a promising method to remove the cancerous tissues. Electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications recently. In this study, a prototype electromagnetic thermotherapy system has been developed with a new coil design and a two-section needle. The coil can generate an alternating electromagnetic field (EMF) with a deep penetration depth to remotely heat the needle which is located up to 15 cm away, enabling percutaneous thermal ablation. Several important parameters, including the heating effects of the needle at different positions, the intensity of the EMF and the induced temperature distribution on the surrounding tissue, are first explored. An in vitro animal experiment has also been performed which shows EMF-induced ablation in a porcine liver by the needle. Furthermore, an in vivo experiment on an animal model (a New Zealand white rabbit) is also conducted in the study. Thus, the two-section needle combined with the coil-generated EMF has been demonstrated to be a promising thermotherapy system for percutaneous thermal ablation. PMID:23990331

  20. An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation.

    PubMed

    Huang, Sheng-Chieh; Chang, Yi-Yuan; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-01-01

    Thermal ablation has been a promising method to remove the cancerous tissues. Electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications recently. In this study, a prototype electromagnetic thermotherapy system has been developed with a new coil design and a two-section needle. The coil can generate an alternating electromagnetic field (EMF) with a deep penetration depth to remotely heat the needle which is located up to 15 cm away, enabling percutaneous thermal ablation. Several important parameters, including the heating effects of the needle at different positions, the intensity of the EMF and the induced temperature distribution on the surrounding tissue, are first explored. An in vitro animal experiment has also been performed which shows EMF-induced ablation in a porcine liver by the needle. Furthermore, an in vivo experiment on an animal model (a New Zealand white rabbit) is also conducted in the study. Thus, the two-section needle combined with the coil-generated EMF has been demonstrated to be a promising thermotherapy system for percutaneous thermal ablation.

  1. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  2. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches.

  3. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  4. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site.

  5. Trace elemental analysis of automotive paints by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Hobbs, Andria L; Almirall, José R

    2003-08-01

    Paints and coatings are frequently encountered as types of materials that are submitted to forensic science laboratories as a result of trace evidence transfers. The aim of this study was to develop a method to complement the commonly used techniques in a forensic laboratory in order to better characterize these samples for forensic purposes. A laser ablation method has been used to simultaneously sample several layers directly prior to introduction into an inductively coupled plasma-mass spectrometer for the detection and quantification of the trace metals present in the layer(s). Time-resolved analysis plots displaying the elemental response and quantification of selected metals are compared to associate/discriminate paint samples. Matrix-matched standards were successfully incorporated into the analysis scheme for quantification of lead in the solid paint samples. Preparation of new matrix-matched standards for quantification of additional elements developed for this study are also presented. A sample set of eighteen (18) survey automotive paint samples have been analyzed with the developed method in order to determine the utility of LA-ICP-MS for trace element analysis of paints.

  6. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  7. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  8. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.

  9. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  10. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  11. A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma

    PubMed Central

    Lazarides, Alexander L.; Whitley, Melodi J.; Strasfeld, David B.; Cardona, Diana M.; Ferrer, Jorge M.; Mueller, Jenna L.; Fu, Henry L.; DeWitt, Suzanne Bartholf; Brigman, Brian E.; Ramanujam, Nimmi; Kirsch, David G.; Eward, William C.

    2016-01-01

    The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer. PMID:26877775

  12. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    PubMed

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  13. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations. PMID:27049132

  14. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations.

  15. Ultrasound-directed robotic system for thermal ablation of liver tumors: a preliminary report

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Tian, Jie; Dai, Yakang; Zhang, Xing; Dong, Di; Xu, Min

    2010-03-01

    Thermal ablation has been proved safe and effective as the treatment for liver tumors that are not suitable for resection. Currently, manually performed thermal ablation is greatly dependent on the surgeon's acupuncture manipulation against hand tremor. Besides that, inaccurate or inappropriate placement of the applicator will also directly decrease the final treatment effect. In order to reduce the influence of hand tremor, and provide an accurate and appropriate guidance for a better treatment, we develop an ultrasound-directed robotic system for thermal ablation of liver tumors. In this paper, we will give a brief preliminary report of our system. Especially, three innovative techniques are proposed to solve the critical problems in our system: accurate ultrasound calibration when met with artifacts, realtime reconstruction with visualization using Graphic Processing Unit (GPU) acceleration and 2D-3D ultrasound image registration. To reduce the error of point extraction with artifacts, we propose a novel point extraction method by minimizing an error function which is defined based on the geometric property of our N-fiducial phantom. Then realtime reconstruction with visualization using GPU acceleration is provided for fast 3D ultrasound volume acquisition with dynamic display of reconstruction progress. After that, coarse 2D-3D ultrasound image registration is performed based on landmark points correspondences, followed by accurate 2D-3D ultrasound image registration based on Euclidean distance transform (EDT). The effectiveness of our proposed techniques is demonstrated in phantom experiments.

  16. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  17. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  18. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  19. Novel coupling scheme to control dynamics of coupled discrete systems

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-08-01

    We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.

  20. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  1. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  2. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  3. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  4. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    NASA Astrophysics Data System (ADS)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  5. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    NASA Astrophysics Data System (ADS)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  6. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  7. Zero-fluoroscopy catheter ablation of severe drug-resistant arrhythmia guided by Ensite NavX system during pregnancy

    PubMed Central

    Chen, Guangzhi; Sun, Ge; Xu, Renfan; Chen, Xiaomei; Yang, Li; Bai, Yang; Yang, Shanshan; Guo, Ping; Zhang, Yan; Zhao, Chunxia; Wang, Dao Wen; Wang, Yan

    2016-01-01

    Abstract Background: Cardiac arrhythmias can occur during pregnancy. Owing to radiation exposure and other uncertain risks for the mother and fetus, catheter ablation has rarely been performed and is often delayed until the postpartum period. We reported 2 pregnant women who were experiencing severe arrhythmias and were successfully ablated without fluoroscopic guidance. We also carried out a literature review of cases of pregnant women who underwent zero-fluoroscopy ablation. Methods and Results: One woman had drug-resistant and poorly tolerated frequent premature ventricular contraction (PVC) and ventricular tachycardia (VT). The other one had persistent and hardly terminated supraventricular tachycardia (SVT) via a right accessory pathway. The 2 patients were successfully underwent zero-fluoroscopy ablation guided by Ensite NavX system. The procedure time was 42 and 71 minutes, respectively. Conclusion: Catheter ablation of SVT or PVC/VT in pregnant patients can be safely and effectively performed with a completely zero-fluoroscopy approach guided by the Ensite NavX system. In the case of a drug refractory, life-threatening arrhythmia during pregnancy, catheter ablation may be considered. PMID:27512864

  8. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    NASA Astrophysics Data System (ADS)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  9. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    PubMed

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  10. Development of a Novel Shock Wave Catheter Ablation System -The First Feasibility Study in Pigs-

    PubMed Central

    Hasebe, Yuhi; Yamamoto, Hiroaki; Fukuda, Koji; Nishimiya, Kensuke; Hanawa, Kenichiro; Shindo, Tomohiko; Kondo, Masateru; Nakano, Makoto; Wakayama, Yuji; Takayama, Kazuyoshi; Shimokawa, Hiroaki

    2015-01-01

    Introduction Radio-frequency catheter ablation (RFCA) using Joule heat has two fundamental weaknesses: the limited depth of treatment and the risk of thrombus formation. In contrast, focused shock wave (SW) therapy could damage tissues at arbitrary depths without heat generation. Thus, we aimed to develop a SW catheter ablation (SWCA) system that could compensate for the weaknesses of RFCA therapy. Methods and Results We developed a SWCA system where the SW generated by a Q-switched Holmium: yttrium aluminum garnet (YAG) laser beam was reflected by a reflector attached to 14-Fr catheter tip and then was converged onto the focus. We examined the feasibility of our system on pigs in vivo. When applied using the epicardial approach, the SWCA caused persistent spheroidal lesions with mild superficial injury than the RFCA. The lesions were created to a depth based on the focal length (2.0 mm) [2.36 ± 0.45 (SD) mm immediately after procedure, n = 16]. When applied to the atrioventricular (AV) node using the endocardial approach, the SWCA caused junctional escape rhythms in 2 pigs and AV block in 12 pigs (complete AV block in 9) in acute phase (n = 14). Nine of the 14 pigs survived with pacemakers for the long-term study, and the AV block persisted for 12.6 ± 3.9 (SD) days in all surviving pigs. Histological examination showed AV nodal cell body atrophy in the acute phase and fibrotic lesions in the chronic phase. Importantly, no acute or chronic fatal complications were noted. Conclusions Our novel SWCA system could be a promising modality as a non-thermal ablation method to compensate for the weaknesses of RFCA therapy. However, further research and development will be necessary as the current prototype still exhibited the presence of micro-thrombus formation in the animal studies. PMID:25633373

  11. Characteristics of Coupled Nongray Radiating Gas Flows with Ablation Product Effects About Blunt Bodies During Planetary Entries. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1973-01-01

    A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.

  12. Formalization of Embodied Sensorimotor Coupling System

    NASA Astrophysics Data System (ADS)

    Nakajima, Kohei

    2008-10-01

    Theoretical conception of an active behavior of the system is one of the most challengeable topics in complex systems research. Recently, especially in the fields of robotics and artificial intelligence, there broadly exists the study to understand the interface between the system and its environment by creating an autonomous agent that carries a sensorimotor coupling. In this paper, an embodied sensorimotor coupling system is discussed. Applying a generative pointer, the system is formalized to contain an intrinsic discrepancy induced by heterarichical duality in a flow construction by using category theory. In the system, the body plays a positive role as a dynamical mediator, or interface, between two conflicting layers, a relational layers and a constituent layers. As a result, it induces a structural change of the system itself. Implementing the construction to a Braitenberg type vehicle, we observed dynamical changes of system parameters and its behavior revealed various motion patterns compared with the conventional sensorimotor coupling system.

  13. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  14. Usefulness of a New Three-Dimensional Simulator System for Radiofrequency Ablation

    PubMed Central

    Hirooka, Masashi; Koizumi, Yohei; Imai, Yusuke; Miyake, Teruki; Watanabe, Takao; Yoshida, Osamu; Takeshita, Eiji; Tokumoto, Yoshio; Abe, Masanori; Hiasa, Yoichi

    2016-01-01

    Multipuncture radiofrequency ablation is expected to produce a large ablated area and reduce intrahepatic recurrence of hepatocellular carcinoma; however, it requires considerable skill. This study evaluated the utility of a new simulator system for multipuncture radiofrequency ablation. To understand positioning of multipuncture electrodes on three-dimensional images, we developed a new technology by expanding real-time virtual ultrasonography. We performed 21 experimental punctures in phantoms. Electrode insertion directions and positions were confirmed on computed tomography, and accuracy and utility of the simulator system were evaluated by measuring angles and intersections for each electrode. Moreover, to appropriately assess placement of the three electrodes, puncture procedures with or without the simulator were performed by experts and non-experts. Technical success was defined as maximum angle and distance ratio, as calculated by maximum and minimum distances between electrodes. In punctures using 2 electrodes, correlations between angles on each imaging modality were strong (ultrasound vs. simulator: r = 0.991, p<0.001, simulator vs. computed tomography: r = 0.991, p<0.001, ultrasound vs. computed tomography: r = 0.999, p<0.001). Correlations between distances in each imaging modality were also strong (ultrasound vs. simulator: r = 0.993, p<0.001; simulator vs. computed tomography: r = 0.994, p<0.001; ultrasound vs. computed tomography: r = 0.994, p<0.001). In cases with 3 electrodes, distances between each electrode correlated strongly (yellow-labeled vs. red-labeled: r = 0.980, p<0.001; red-labeled vs. blue-labeled: r = 0.953, p<0.001; yellow-labeled vs. blue-labeled: r = 0.953, p<0.001). Both angle and distance ratio (expert with simulator vs. without simulator; p = 0.03, p = 0.02) were significantly smaller in procedures performed by experts using the simulator system. The new simulator system appears to accurately guide electrode positioning. This

  15. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  16. Uncertain destination dynamics of delay coupled systems

    NASA Astrophysics Data System (ADS)

    Pal, Santinath; Poria, Swarup

    2015-03-01

    Certain dynamical systems exhibit sensitivity to initial conditions in which the asymptotic state is selected from multiple possible states. The associated uncertain destination dynamics can be analyzed by an appropriate reduction of the full system to a subsystem that explicitly yields the dynamics [1]. These types of systems are known as multistable systems. In this paper, a scheme for designing delay coupled multistable systems is proposed. The scheme considers delay coupled Lorenz-Stenflo systems. The scheme is based on Lyapunov's stability theorem. Numerical simulation results are presented to show the effectiveness of the proposed scheme.

  17. Computational modeling of ultra-short-pulse ablation of enamel

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  18. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  19. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  20. Temperature-controlled cooled-tip radiofrequency linear ablation of the atria guided by a realtime position management system.

    PubMed

    Watanabe, Ichiro; Min, Nuo; Okumura, Yasuo; Ohkubo, Kimie; Kofune, Masayoshi; Ashino, Sonoko; Nagashima, Koichi; Nakai, Toshiko; Kasamaki, Yuji; Hirayama, Atsushi

    2011-01-01

    Due to the difficulty in producing a transmural linear lesion and the possibility of complications such as thrombus formation leading to thromboembolism, the catheter-based maze procedure remains problematic. We tested, in pigs, the possibility of using a temperature-controlled cooled-tip radiofrequency (RF) ablation system together with a realtime position management (RPM) system to create a transmural linear lesion uncomplicated by thrombus formation.Nine pigs underwent insertion of two electrode catheters (each with two ultrasound electrodes), one into the coronary sinus (CS) and one into the right ventricular apex (references for ultrasound-based non-fluoroscopic three-dimensional mapping). A cooled-tip catheter (with two ultrasound electrodes) was introduced into the right atrium. Linear right atrial ablation was performed with a custom radiofrequency (RF) generator. The catheter was perfused with 0.66 mL/second of saline. RF was delivered for 60 seconds at a target temperature of 40°C. A linear ablation line was created between the superior vena cava and inferior vena cava. Three-dimensional isochronal maps were created during CS pacing before and after ablation. In 4 of the 9 pigs, a transmural linear ablation line was confirmed by three-dimensional mapping and postmortem macroscopic examination. No endocardial thrombus formation was noted. Temperature-controlled cooled-tip RF linear ablation guided by an RPM system appears to have potential for creating linear lesions in the atria. Further studies are needed to determine whether such an ablation technique and the parameters used will facilitate successful completion of the catheter-based maze procedure.

  1. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  2. A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples.

    PubMed

    Pickhardt, C; Becker, J S; Dietze, H J

    2000-01-01

    Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%. PMID:11220576

  3. Performance analysis of a dedicated breast MR-HIFU system for tumor ablation in breast cancer patients

    NASA Astrophysics Data System (ADS)

    Deckers, R.; Merckel, L. G.; de Senneville, B. Denis; Schubert, G.; Köhler, M.; Knuttel, F. M.; Mali, W. P. Th M.; Moonen, C. T. W.; van den Bosch, M. A. A. J.; Bartels, L. W.

    2015-07-01

    MR-guided HIFU ablation is a promising technique for the non-invasive treatment of breast cancer. A phase I study was performed to assess the safety and treatment accuracy and precision of MR-HIFU ablation in breast cancer patients (n=10 ) using a newly developed MR-HIFU platform dedicated to applications in the breast. In this paper a technical analysis of the performance of the dedicated breast MR-HIFU system during breast tumors ablation is described. The main points of investigation were the spatial targeting accuracy and precision of the system and the performance of real-time respiration-corrected MR thermometry. The mean targeting accuracy was in the range of 2.4-2.6 mm, whereas the mean targeting precision was in the range of 1.5-1.8 mm. To correct for respiration-induced magnetic field fluctuations during MR temperature mapping a look-up-table (LUT)-based correction method was used. An optimized procedural sedation protocol in combination with the LUT-based correction method allowed for precise MR thermometry during the ablation procedure (temperature standard deviation <3 °C). No unwanted heating in the near field (i.e. skin) nor in the far field (pectoral muscle) was detected. The newly developed dedicated breast MR-HIFU system allows for safe, accurate and precise ablation of breast tumors.

  4. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  5. Kinetic Characterization of Strongly Coupled Systems

    SciTech Connect

    Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.

    2007-01-05

    We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.

  6. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  7. Accidental Inclusions Following Blast Injury in Esthetical Zones: Ablation by a Hydrosurgery System

    PubMed Central

    Siemers, Frank; Mauss, Karl L.; Liodaki, Eirini; Ottomann, Christian; Bergmann, Philipp A.; Mailänder, Peter

    2012-01-01

    In case of blast injuries, traumatic tattoos can result from accidental inclusions of intradermal pigmented particles. To avoid these tattoos, especially in esthetical areas like the head and neck region and the hands, the primary goal in our treatment is to remove all particles and foreign bodies. Superficial foreign bodies can easily be removed by brushes or dermabrasion. Deeper lesions are a challenge for plastic surgeons, because they are not so easily removed. Ablation by a water jet surgical tool, the Versajet-system (Smith & Nephew Inc, Andover, MA), enables the removal of nearly all particles and foreign bodies, which sustained a blast injury of the face or the hands. Aim of this paper is to describe the method of using this hydrosurgery system in blast injuries in esthetical zones and its advantages by presenting cases of two patients of us. PMID:22848777

  8. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  9. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    SciTech Connect

    Messerly, Joshua D.

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  10. Exceptional points in coupled dissipative dynamical systems.

    PubMed

    Ryu, Jung-Wan; Son, Woo-Sik; Hwang, Dong-Uk; Lee, Soo-Young; Kim, Sang Wook

    2015-05-01

    We study the transient behavior in coupled dissipative dynamical systems based on the linear analysis around the steady state. We find that the transient time is minimized at a specific set of system parameters and show that at this parameter set, two eigenvalues and two eigenvectors of the Jacobian matrix coalesce at the same time; this degenerate point is called the exceptional point. For the case of coupled limit-cycle oscillators, we investigate the transient behavior into the amplitude death state, and clarify that the exceptional point is associated with a critical point of frequency locking, as well as the transition of the envelope oscillation.

  11. Colorimetric calibration of coupled infrared simulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  12. Plasma-mediated ablation: An optical tool for submicrometer surgery on neuronal and vascular systems

    PubMed Central

    Tsai, Philbert S.; Blinder, Pablo; Migliori, Benjamin J.; Neev, Joseph; Jin, Yishi; Squier, Jeffrey A.; Kleinfeld, David

    2009-01-01

    Plasma-mediated ablation makes use of high energy laser pulses to ionize molecules within the first few femtoseconds of the pulse. This process leads to a submicrometer-sized bubble of plasma that can ablate tissue with negligible heat transfer and collateral damage to neighboring tissue. We review the physics of plasma-mediated ablation and its use as a tool to generate targeted insults at the subcellular level to neurons and blood vessels deep within nervous tissue. Illustrative examples from axon regeneration and microvascular research illustrate the utility of this tool. We further discuss the use of ablation as an integral part of automated histology. PMID:19269159

  13. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  14. Ablation of incisional atrial tachycardias using a three-dimensional nonfluoroscopic mapping system.

    PubMed

    Leonelli, F M; Tomassoni, G; Richey, M; Natale, A

    2001-11-01

    Incisional atrial reentrant tachycardias are macroreentrant arrhythmias in which surgical scars or prosthetic material constitute one of the constraining barriers of the circuit. Accurate reconstruction based on fluoroscopy-guided endocardial mapping of the reentrant circuit is often incomplete and time consuming explaining, at least in part, the modest long-term results of this technique. Mapping and ablation of these arrhythmias using a three-dimensional nonfluoroscopic mapping system that allows electroanatomic reconstruction of the reentrant circuit could help in identifying the ablation targets and improve long-term outcome. The study included 20 patients (12 men, mean age 45+/-18 years) with corrected congenital heart disease (4 patients), coronary artery bypass surgery (7 patients), mitral or aortic valve replacement or reconstruction (6 patients), valve replacement and coronary revascularization (2 patients), and mitral valve replacement with maze procedure for atrial fibrillation (1 patient). Endocardial mapping with this novel system was complemented by standard electrophysiological techniques used to identify a critical isthmus of conduction. Two or more nonconductive areas of atrial tissue or surgical prosthetic material delimiting a critical isthmus of conduction were identified in every patient. Radiofrequency linear applications spanning two to more boundaries successfully eliminated the tachycardia in every patient. At a follow-up of 11.5+/-5.1 months (range 17-5 months), two (10%) patients developed a new clinical arrhythmia. The remaining 18 had no recurrences off medical therapy. Mean fluoroscopy time was 45.7+/-15.2 minutes for patients with a single scar and 89+/-41.2 minutes in patients with two or more scars. In conclusions, this new nonfluoroscopic mapping system offers the opportunity to achieve a high rate of cure of complex macroreentrant atrial tachycardias by facilitating reconstruction of the macroreentrant circuit and its boundaries.

  15. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  16. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  17. [Wireless ECG measurement system with capacitive coupling].

    PubMed

    Aleksandrowicz, Adrian; Walter, Marian; Leonhardt, Steffen

    2007-04-01

    This paper describes a measurement system that captures an electrocardiogram (ECG) using capacitively coupled electrodes. The measurement system was integrated into an off-the-shelf office chair (so-called "Aachen SmartChair"). Whereas for classical ECG measurement adhesive is used to attach conductively coupled electrodes to bare skin, the system presented allows ECG measurement through clothing without direct skin contact. Furthermore, a ZigBee communication module was integrated to allow wireless transmission of ECG data to a PC or an ICU patient monitor. For system validation, classical ECG using conductive electrodes was obtained simultaneously. First measurement results, including variations of cloth thickness and material, are presented and some of the system-specific problems of this approach are discussed.

  18. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  19. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Wiewior, P. P.; Chalyy, O.

    2015-11-01

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  20. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    SciTech Connect

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O.; Papp, D.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  1. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes

    PubMed Central

    Butler, Julie M.; Field, Karen E.; Maruska, Karen P.

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  2. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.

    PubMed

    Butler, Julie M; Field, Karen E; Maruska, Karen P

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  3. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  4. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  5. Laser ablation inductively coupled plasma-mass spectrometry in combination with gel electrophoresis: a new strategy for speciation of metal binding serum proteins

    NASA Astrophysics Data System (ADS)

    Neilsen, J. L.; Abildtrup, A.; Christensen, J.; Watson, P.; Cox, A.; McLeod, C. W.

    1998-02-01

    A new hyphenated technique-crossed immunoelectrophoresis in combination with laser ablation inductively coupled plasma (ICP)-mass spectrometry—for the identification and quantitation of metal binding proteins in blood serum is described. Human serum enriched with Co was subjected to electrophoresis and the agarose gels corresponding to the first and second dimensions were interrogated and analysed using a Nd Yag laser (1064 nm) interfaced to ICP-mass spectrometry. Comparison of the distribution map for Co with the protein distribution map obtained via Coommassie Brilliant Blue staining allowed identification of main Co binding serum proteins. Signals for Co (single ion monitoring, mle 59) were transient in nature and for gels enriched with increasing concentrations of Co, peak area response was linear with concentration. Precision for replicate analyses was 6% R.S.D. and the limit of detection was - 0.29 ng.

  6. Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry.

    PubMed

    Pérez-Arantegui, J; Resano, M; García-Ruiz, E; Vanhaecke, F; Roldán, C; Ferrero, J; Coll, J

    2008-02-15

    In this work, a comparison of the performances of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) and portable X-ray fluorescence (XRF) spectrometry for the characterization of cobalt blue pigments used in the decoration of Valencian ceramics is presented. Qualitative data on the elemental composition of the blue pigments obtained using both techniques show a good agreement. Moreover, the results clearly illustrate that potters utilized different kinds of cobalt pigments in different historical periods. While both techniques seem suitable for the proposed task, they show different strengths and weaknesses. Portable X-ray fluorescence spectrometry is a cheaper and totally non-destructive technique, capable of providing fast and reliable results at the mgg(-1) level. LA-ICPMS, on the other hand, offers a much higher detection power and better spatial resolution, but its use results in some sample damage (sample consumption at the mug level), while it is a more expensive and non-portable technique.

  7. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect

    Witte, Travis

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  8. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchick, A.M.; Gold, D.M.; Darrown, C.B.; Da Silva, L.B.

    1998-01-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using ultrashort pulse laser (USPL). Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  9. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis. PMID:27464121

  10. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  11. Magnetically Coupled Adjustable Speed Drive Systems

    SciTech Connect

    Chvala, William D.; Winiarski, David W.

    2002-08-18

    Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive

  12. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)

    2002-01-01

    A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.

  13. Controllability analysis of thermally coupled distillation systems

    SciTech Connect

    Hernandez, S.; Jimenez, A.

    1999-10-01

    A comparison of the controllability properties of three thermally coupled distillation sequences (Petlyuk, sequence with side rectifier, and sequence with side stripper) using singular value decomposition is developed. Those properties are also compared to the energy consumption required for separating ternary mixtures. The parameters obtained via singular value decomposition show that sequences with a side rectifier or a side stripper have better control properties than the Petlyuk system, although the Petlyuk scheme has lower energy requirements than the systems with side columns.

  14. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  15. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

  16. Nonlinear coupling in the human motor system

    PubMed Central

    Chen, C.C.; Kilner, J.M.; Friston, K.J.; Kiebel, S. J.; Jolly, R.K.; Ward, N. S.

    2010-01-01

    The synchronous discharge of neuronal assemblies is thought to facilitate communication between areas within distributed networks in the human brain. This oscillatory activity is especially interesting, given the pathological modulation of specific frequencies in diseases affecting the motor system. Many studies investigating oscillatory activity have focussed on same frequency, or linear, coupling between areas of a network. In this study, our aim was to establish a functional architecture in the human motor system responsible for induced responses as measured in normal subjects with magnetoencephalography. Specifically, we looked for evidence for additional nonlinear (between-frequency) coupling among neuronal sources and, in particular, whether nonlinearities were found predominantly in connections within areas (intrinsic), between areas (extrinsic) or both. We modelled the event-related modulation of spectral responses during a simple hand-grip using dynamic casual modelling. We compared models with and without nonlinear connections under conditions of symmetric and asymmetric interhemispheric connectivity. Bayesian model comparison suggested that the task-dependent motor network was asymmetric during right hand movements. Furthermore, it revealed very strong evidence for nonlinear coupling between sources in this distributed network, but interactions among frequencies within a source appeared linear in nature. Our results provide empirical evidence for nonlinear coupling among distributed neuronal sources in the motor system and that these play an important role in modulating spectral responses under normal conditions. PMID:20573886

  17. Wave coupling of atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.

    2011-12-01

    The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.

  18. Non-fluoroscopic navigation systems for radiofrequency catheter ablation for supraventricular tachycardia reduce ionising radiation exposure

    PubMed Central

    See, Jason; Amora, Jonah L; Lee, Sheldon; Lim, Paul; Teo, Wee Siong; Tan, Boon Yew; Ho, Kah Leng; Lee, Chee Wan; Ching, Chi Keong

    2016-01-01

    INTRODUCTION The use of non-fluoroscopic systems (NFS) to guide radiofrequency catheter ablation (RFCA) for the treatment of supraventricular tachycardia (SVT) is associated with lower radiation exposure. This study aimed to determine if NFS reduces fluoroscopy time, radiation dose and procedure time. METHODS We prospectively enrolled patients undergoing RFCA for SVT. NFS included EnSite™ NavX™ or CARTO® mapping. We compared procedure and fluoroscopy times, and radiation exposure between NFS and conventional fluoroscopy (CF) cohorts. Procedural success, complications and one-year success rates were reported. RESULTS A total of 200 patients over 27 months were included and RFCA was guided by NFS for 79 patients; those with atrioventricular nodal reentrant tachycardia (AVNRT), left-sided atrioventricular reentrant tachycardia (AVRT) and right-sided AVRT were included (n = 101, 63 and 36, respectively). Fluoroscopy times were significantly lower with NFS than with CF (10.8 ± 11.1 minutes vs. 32.0 ± 27.5 minutes; p < 0.001). The mean fluoroscopic dose area product was also significantly reduced with NFS (NSF: 5,382 ± 5,768 mGy*cm2 vs. CF: 21,070 ± 23,311 mGy*cm2; p < 0.001); for all SVT subtypes. There was no significant reduction in procedure time, except for left-sided AVRT ablation (NFS: 79.2 minutes vs. CF: 116.4 minutes; p = 0.001). Procedural success rates were comparable (NFS: 97.5% vs. CF: 98.3%) and at one-year follow-up, there was no significant difference in the recurrence rates (NFS: 5.2% vs. CF: 4.2%). No clinically significant complications were observed in both groups. CONCLUSION The use of NFS for RFCA for SVT is safe, with significantly reduced radiation dose and fluoroscopy time. PMID:26805664

  19. Stereotactic ablative radiotherapy and immunotherapy combinations: turning the future into systemic therapy?

    PubMed

    Walshaw, Richard C; Honeychurch, Jamie; Illidge, Tim M

    2016-10-01

    Radiotherapy (RT) is effective at cytoreducing tumours and until relatively recently the focus in radiobiology has been on the direct effects of RT on the tumour. Increasingly, however, the effect of RT on the tumour vasculature, tumour stroma and immune system are recognized as important to the overall outcome. RT is known to lead to the induction of immunogenic cell death (ICD), which can generate tumour-specific immunity. However, systemic immunity leading to "abscopal effects" resulting in tumour shrinkage outside of the RT treatment field is rare, which is thought to be caused by the immunosuppressive nature of the tumour microenvironment. Recent advances in understanding the nature of this immunosuppression and therapeutics targeting immune checkpoints such as programmed death 1 has led to durable clinical responses in a range of cancer types including malignant melanoma and non-small-cell lung cancer. The effects of RT dose and fraction on the generation of ICD and systemic immunity are largely unknown and are currently under investigation. Stereotactic ablative radiotherapy (SABR) provides an opportunity to deliver single or hypofractionated large doses of RT and potentially increase the amount of ICD and the generation of systemic immunity. Here, we review the interplay of RT and the tumour microenvironment and the rationale for combining SABR with immunomodulatory agents to generate systemic immunity and improve outcomes.

  20. Combustion instability coupling with feed system acoustics

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1988-01-01

    High frequency combustion instability has recently been observed by Rocketdyne in a 40K thrust methane/LOX combustion chamber. The oscillations had frequencies as high as 14,000 Hz with pressure amplitudes in the LOX dome of 500 psi at a chamber pressures of 2,000 psi. At this frequency the wave length associated with a period of oscillation is 2.3 inches in LOX and 1.4 inches in methane. These distances are comparable to the lengths of the injector elements which requires that acoustic waves be considered in the feed systems rather than using lumped parameters as is normally considered for feed system coupled oscillations. To expand the capability of existing models, the Feiler and Heidmann feed system coupled instability model was modified to include acoustic oscillations in the feed system. Similarly the vaporization controlled instability model of Heidmann and Wieber was modified to include flow oscillations that would be produced by feed system coupling. The major elements that control oscillations in a rocket combustion chamber are shown and discussed.

  1. Fiber-coupled laser-driven flyer plates system.

    PubMed

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  2. Fiber-coupled laser-driven flyer plates system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  3. Shock transmission in a coupled beam system

    NASA Astrophysics Data System (ADS)

    Vijayan, K.; Woodhouse, J.

    2013-08-01

    This paper investigates the circumstances under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Motivating examples include the design of packaging for transportation of fragile items. The system is modelled in an idealised form using two beams coupled with point connections. A Rayleigh-Ritz model of such coupled beams was validated against measurements on a particular beam system, then the model was used to explore the acceleration response to impulsive driving in the time, frequency and spatial domains. This study is restricted to linear vibration response and additional mechanisms for high internal acceleration due to nonlinear effects such as internal impacts are not considered. Using Monte Carlo simulation in which the indirectly driven beam was perturbed by randomly placed point masses a wide range of system behaviour was explored. This facilitates identification of vulnerable configurations that can lead to high internal acceleration. The results from the study indicate the possibility of curve veering influencing the peak acceleration amplification. The possibility of veering within an ensemble was found to be dependent on the relative coupling strength of the modes. Understanding of the mechanism may help to avoid vulnerable cases, either by design or by preparatory vibration testing.

  4. Irrigated and non-irrigated radiofrequency ablation systems and ways of non-irrigated RF systems development

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. V.; Evtushenko, V. V.; Bykov, A. N.; Sergeev, V. S.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Kurlov, I. O.

    2015-11-01

    Improving of radiofrequency ablation systems for the myocardium is one of the fundamental problems of cardiac surgery. We used pig left ventricular myocardium as a working model. Mean thickness of the left ventricular wall was 10.1 ± 5.6 mm. The studies were performed on 10 hearts. The mean weight of hearts was 294.7 ± 21g. Research is being done on the electrophysical bench in 2 stages. In the first stage the hearts were placed on the electrophysical bench and heated to 36.6°C. In the second stage heart cooled to 20°C. The monopolar radiofrequency exposure was processing on the myocardium by two types of electrodes: spherical irrigated electrode and non-irrigated penetrating one within 20 seconds. The electrical resistance of the myocardium was measured at different temperatures before and after exposure. This paper shows that the decrease in ambient temperature combined with using of new penetrating electrodes for radiofrequency ablation gives better results than using of irrigated and non-irrigated systems. This method allows significantly reduce time exposure for a maximum depth of destruction in the myocardium.

  5. Laser ablation in analytical chemistry-a review.

    PubMed

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  6. Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Becker, J S; Matusch, A; Depboylu, C; Dobrowolska, J; Zoriy, M V

    2007-08-15

    Quantitative imaging analysis of endogenous an exogenous elements throughout entire organisms is required for studies of bioavailability, transport processes, distribution, contamination and to monitor environmental risks using indicator organisms. An imaging mass spectrometric technique using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was developed to analyze selenium and metal distributions in longitudinal sections (thickness, 100 microm) of entire slugs (genus arion). Slugs were fed with either a placebo or solutions containing 1000 microg mL(-1) Se. Samples (raster area, 25 mmx45 mm) were scanned together with synthetic matrix-matched standards with a focused beam of a Nd:YAG laser (wavelength, 266 nm; diameter of laser crater, 50 microm; laser power density, 3x10(9) W cm(-2)) in a large laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a double focusing sector field ICPMS. Ion intensities of selenium (78Se+, 82Se+) were measured together with 13C+, 63Cu+, and 64Zn+ within the entire tissue section. The regression coefficient of the calibration curve was 0.998. Inhomogeneous distributions for Se but also for C, Cu, and Zn were found. Selenium was enriched in the kidney (150 microg g(-1) in Se-treated animals versus 15 microg g(-1) in the placebo-treated animal, respectively) and in the digestive gland (200 microg g(-1) versus 25 microg g(-1)). Highest Se concentrations were detected in the gut of Se-treated slugs (250 microg g(-1)), and additional Se occurred in the skin of these animals. Cu was enriched in the heart and the mucous ventral skin. Interestingly, in addition to the localization in the digestive gland, Zn was detected only in the dorsal skin but not the ventral skin. The developed analytical technique allows the quantitative imaging of selenium together with selected metals in thin sections of biological tissue with limits of detection at the submicrogram per

  7. Reconstruction of the coupling architecture in an ensemble of coupled time-delay systems

    NASA Astrophysics Data System (ADS)

    Sysoev, I. V.; Ponomarenko, V. I.; Prokhorov, M. D.

    2012-08-01

    A method for reconstructing the coupling architecture and values in an ensemble of time-delay interacting systems with an arbitrary number of couplings between ensemble elements is proposed. This method is based on reconstruction of the model equations of ensemble elements and diagnostics of the coupling significance by successive trial exclusion or adding coupling coefficients to the model.

  8. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  9. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  10. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  11. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. PMID:26005744

  12. Radiofrequency ablation coupled with Roux-en-Y gastric bypass: a treatment option for morbidly obese patients with Barrett's esophagus.

    PubMed

    Parikh, Keyur; Khaitan, Leena

    2016-01-01

    Barrett's esophagus (BE) is a premalignant condition that is associated with the development of esophageal adenocarcinoma. Risk factors that have been associated with the development of BE include male gender, Caucasian race, chronic gastroesophageal reflux disease, smoking, age >50 and obesity. The current management of BE is dependent on underlying pathological changes and treatment can range from surveillance endoscopy with daily proton pump inhibitor (PPI) therapy in the setting of intestinal metaplasia or low-grade dysplasia (LGD) to radiofrequency ablation (RFA), endoscopic mucosal resection or surgical resection in the setting of high-grade dysplasia. We report the case of a morbidly obese patient who was found to have long-segment BE with LGD during preoperative work-up for weight loss surgery with Roux-en-Y gastric bypass (RYGBP). The patient underwent successful RFA for the treatment of her BE before and after her RYGBP procedure. At 5-year follow-up, there was minimal progression of BE after treatment. PMID:26945777

  13. Radiofrequency ablation coupled with Roux-en-Y gastric bypass: a treatment option for morbidly obese patients with Barrett's esophagus

    PubMed Central

    Parikh, Keyur; Khaitan, Leena

    2016-01-01

    Barrett's esophagus (BE) is a premalignant condition that is associated with the development of esophageal adenocarcinoma. Risk factors that have been associated with the development of BE include male gender, Caucasian race, chronic gastroesophageal reflux disease, smoking, age >50 and obesity. The current management of BE is dependent on underlying pathological changes and treatment can range from surveillance endoscopy with daily proton pump inhibitor (PPI) therapy in the setting of intestinal metaplasia or low-grade dysplasia (LGD) to radiofrequency ablation (RFA), endoscopic mucosal resection or surgical resection in the setting of high-grade dysplasia. We report the case of a morbidly obese patient who was found to have long-segment BE with LGD during preoperative work-up for weight loss surgery with Roux-en-Y gastric bypass (RYGBP). The patient underwent successful RFA for the treatment of her BE before and after her RYGBP procedure. At 5-year follow-up, there was minimal progression of BE after treatment. PMID:26945777

  14. Catheter Ablation of Right-Sided Accessory Pathways in Adults Using the Three-Dimensional Mapping System: A Randomized Comparison to the Conventional Approach.

    PubMed

    Ma, Yuedong; Qiu, Jia; Yang, Yang; Tang, Anli

    2015-01-01

    Three-dimensional (3D) mapping and navigation systems have been widely used for the ablation of atrial fibrillation and ventricular tachycardia, but the applicability of these systems for the ablation of supraventricular tachycardia (SVT) due to right-sided accessory pathways (RAPs) remains unknown. The goal of this prospective randomized study was to compare the safety, efficiency, and efficacy of nonfluoroscopic and conventional fluoroscopic mapping techniques in guiding catheter ablation of SVT due to RAPs. Of the 393 consecutive patients with SVT who were randomized to receive either conventional fluoroscopic or Ensite NavX mapping-guided ablation, 64 patients with RAPs were included for analysis. Endpoints for ablation were no evidence of RAP conduction and no inducible atrioventricular reentrant tachycardia (AVRT). The 3D group showed fewer ablation pulses and a shorter total ablation time compared to the conventional group, although the acute procedural success did not differ significantly between the two groups. Total procedure time, electrophysiological study time, total fluoroscopy time, and cumulative radiation doses were also significantly reduced in the 3D group. Patients in the conventional group with a right atrium diameter (RAD) ≥ 47 mm required a longer fluoroscopy time. There was no significant difference in the recurrence rates between the two groups over a follow-up period of 3 to 29 months. There were no permanent complications. The 3D mapping system may be a preferred alternative for patients with AVRT due to RAPs, especially for patients with a large RAD (≥ 47 mm).

  15. Catheter Ablation of Right-Sided Accessory Pathways in Adults Using the Three-Dimensional Mapping System: A Randomized Comparison to the Conventional Approach

    PubMed Central

    Tang, Anli

    2015-01-01

    Three-dimensional (3D) mapping and navigation systems have been widely used for the ablation of atrial fibrillation and ventricular tachycardia, but the applicability of these systems for the ablation of supraventricular tachycardia (SVT) due to right-sided accessory pathways (RAPs) remains unknown. The goal of this prospective randomized study was to compare the safety, efficiency, and efficacy of nonfluoroscopic and conventional fluoroscopic mapping techniques in guiding catheter ablation of SVT due to RAPs. Of the 393 consecutive patients with SVT who were randomized to receive either conventional fluoroscopic or Ensite NavX mapping-guided ablation, 64 patients with RAPs were included for analysis. Endpoints for ablation were no evidence of RAP conduction and no inducible atrioventricular reentrant tachycardia (AVRT). The 3D group showed fewer ablation pulses and a shorter total ablation time compared to the conventional group, although the acute procedural success did not differ significantly between the two groups. Total procedure time, electrophysiological study time, total fluoroscopy time, and cumulative radiation doses were also significantly reduced in the 3D group. Patients in the conventional group with a right atrium diameter (RAD) ≥ 47 mm required a longer fluoroscopy time. There was no significant difference in the recurrence rates between the two groups over a follow-up period of 3 to 29 months. There were no permanent complications. The 3D mapping system may be a preferred alternative for patients with AVRT due to RAPs, especially for patients with a large RAD (≥ 47 mm). PMID:26083408

  16. A novel thermo-mechanical system enhanced transdermal delivery of hydrophilic active agents by fractional ablation.

    PubMed

    Sintov, Amnon C; Hofmann, Maja A

    2016-09-25

    The Tixel is a novel device based on a thermo-mechanical ablation technology that combines a sophisticated motion and a temperature control. The fractional technology is used to transfer a very precise thermal energy to the skin thereby creating an array of microchannels, accompanying by no signs of pain or inconvenience. This study aimed to evaluate the effect of the Tixel on the skin permeability of three hydrophilic molecular models: verapamil hydrochloride, diclofenac sodium, and magnesium ascorbyl phosphate. Tixel's gold-platted stainless steel tip heated to a temperature of 400°C was applied on skin for 8ms or 9ms at a protrusion of 400μm (the distance in which the tip protrudes beyond the distance gauge). The experiments were carried out partly in vivo in humans using a fluorescent dye and a confocal microscopy and partly in vitro using porcine skin and a Franz diffusion cell system. The results obtained in this study have shown that (a) no significant collateral damage to the skin tissue and no necrosis or dermal coagulation have been noted, (b) the microchannels remained open and endured for at least 6h, and (c) the skin permeability of hydrophilic molecules, which poorly penetrate the lipophilic stratum corneum barrier, was significantly enhanced by using Tixel's pretreatment. PMID:27480396

  17. Picosecond laser ablation system with process control by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Targowski, Piotr; Ostrowski, Roman; Marczak, Jan; Sylwestrzak, Marcin; Kwiatkowska, Ewa A.

    2009-07-01

    In this contribution we describe an apparatus for precise laser ablation of delicate layers, like varnish on pictures. This specific case is very demanding. First of all any changes in colour of remaining varnish layer as well as underneath paint layers are unacceptable. This effect may be induced photochemically or thermically. In the first case strong absorption of the radiation used will eliminate its influence on underlying strata. The thermal effect is limited to so called heat affected zone (HAZ). In addition to colour change, a mechanical damage caused by overheating of the structure adjacent to ablated region should be considered also. All kinds of treads must be carefully eliminated in order to make laser ablation of varnish commonly accepted alternative to chemical and/or mechanical treatments [1]. Since the varnish ablation process is obviously irreversible its effective monitoring is very important to make it safe and trusted. As we showed previously [2-6] optical coherence tomography (OCT) originated from medicine diagnostic method for examination and imaging of cross-sections of weakly absorbing objects can be used for this task. OCT utilises infrared light for non-invasive structure examination and has been under consideration for the examining of objects of art since 2004 [7-10]. In this case the in-depth (axial) resolution is obtained by means of interference of light of high spatial (to ensure sensitivity) and very low temporal coherence (to ensure high axial resolution). In practice, IR sources of bandwidths from 25 to 150 nm are utilised. Resolutions obtained range from 15 down to 2 μm in the media of refracting index equal 1.5. In this contribution we expand application of OCT to space resolved determination of ablation rates, separately for every point of examined area. Such data help in better understanding of the ablation process, fine tuning the laser and finally permit increase of the safety of the ablation process.

  18. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. PMID:20552700

  19. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification.

  20. Visualization of Capsule Reentry Vehicle Heat Shield Ablation using Naphthalene Planar Laser-Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Combs, Christopher; Clemens, Noel; Danehy, Paul

    2012-11-01

    NASA has continued interest in the study of ablation owing to the need to develop suitable thermal protection systems for spacecraft that undergo planetary entry. Ablation is a complex multi-physics process, and codes that predict it require a number of coupled submodels, each of which requires validation. For example, Reynolds-averaged Navier Stokes (RANS) and large-eddy simulation (LES) codes require models of the turbulent transport of ablation products under variable compressibility and pressure gradient conditions. A new technique has been developed at The University of Texas at Austin that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to enable visualization of the ablation products as they are transported in a boundary layer. While high temperature ablation is extremely difficult to recreate in a laboratory environment, low temperature ablation creates a limited physics problem that can be used to simulate the ablation process. In the current work a subscale capsule reentry vehicle model with a solid naphthalene heat shield is tested in a Mach 5 wind tunnel. PLIF imaging reveals the distribution of the ablation products as they are transported into the boundary layer and over the capsule shoulders. Work supported by NASA Space Technology Research Fellowship Program under grant NNX11AN55H.

  1. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  2. Study of critical defects in ablative heat shield systems for the space shuttle

    NASA Technical Reports Server (NTRS)

    Miller, C. C.; Rummel, W. D.

    1974-01-01

    Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.

  3. Calibration of a distributed ablation model for Zhadang Glacier, Tibetan Plateau,using a time lapse camera system

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Huintjes, E.; Bhattacharya, A.; Sauter, T.; Yang, W.; Bolch, T.; Pieczonka, T.; Maussion, F.; Kang, S.; Buchroithner, M.; Scherer, D.; Yao, T.

    2011-12-01

    A 1-dimensional energy balance model for calculation of snow melt including sub-surface refreezing has been applied in a simplified version for distributed ablation modeling on Zhadang Glacier, Nyainqentanglha Range, Tibetan Plateau. The model includes a distributed computation of short-wave radiation on a digital elevation model. Reduction of short-wave radiation due to cloud cover has been accounted for by comparing calculated radiation against measurements at an automatic weather station (AWS) on the glacier. Air temperature was distributed using the lapse rate as derived from AWS measurements in different altitudes along the Zhadang Valley. Specific humidity and wind speed were assumed to be spatially invariant. Also, ice temperature in spring at 10 m depth was assumed to be equal all over the glacier. In the same way, accumulation as measured at the AWS using an ultra-sonic ranging system was assumed to be the same for the whole glacier surface. Snow accumulation was corrected using daily imagery obtained from an automatic time lapse camera system installed outside the glacier. The same time series of pictures allows for detailed spatial and temporal observation of the transient snow line. Gaps in AWS data are filled by downscaling of the output of WRF numerical atmospheric model output to the AWS location on the glacier. The runs of the ablation model are initialized using spatially distributed snow depth measured at a series of ablation stakes on the glacier. From the model results the location of the transient snow line can be precisely located. The findings are compared to the transient snow line as derived from the picture series. Besides the possibility of post-calibrating the spatially distributed ablation model, the results of this approach also allow for identifying further relevant spatial processes that are not yet considered.

  4. The characterization of coupled plasmonic systems

    NASA Astrophysics Data System (ADS)

    Willingham, Britain

    In this thesis numerical methods are used to understand the individual and collective optical response of metal nanoparticles (MNPs). In particular, finite 1D assemblies of MNPs are characterized by analytical solutions to Maxwell's equations. Small particle solutions such as the well-established plasmon hybridization scheme as well as a novel circuit model explaining the intrinsic mechanisms of free electron dynamics help to characterize the optical response of single and coupled MNPs. Complex systems of closely spaced MNPs with small interparticle gaps are studied with the help of full scattering solutions to Maxwell's equations. It is shown that higher order plasmon modes facilitate strong near-fields between MNPs, and in linear chains foster specific optical attributes which are present in more complex systems, playing a key role in energy propagation along practical MNP waveguides.

  5. Magnetic stability of novel exchange coupled systems

    SciTech Connect

    Inomata, A.; Jiang, J. S.; You, C.-Y.; Pearson, J. E.; Bader, S. D.

    1999-11-08

    The magnetic stability of two different interracial exchange coupled systems are investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10{sup 7} times. For Fe/Cr double-superlattice exchange biased systems, small but rapid initial decay of exchange bias field H{sub E} and the remanent magnetization is observed. Also the Sin-Co/Fe bilayers grown epitaxially with uniaxial in-plane anisotropy show similar decay. However, the H{sub E} of biaxial and random in-plane bilayers, shows gradual decay without large reduction of the magnetization. These different decay behaviors explained by their different microstructure and interracial spin configurations.

  6. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M.; Neev, J.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  7. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    NASA Technical Reports Server (NTRS)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, Dinesh; Kazemba, Cole D.; Venkatapathy, E.

    2016-01-01

    This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles.

  8. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  9. Diverse accumulation and distribution of nutrient elements in developing wheat grain studied by laser ablation inductively coupled plasma mass spectrometry imaging.

    PubMed

    Wu, Bei; Andersch, Franka; Weschke, Winfriede; Weber, Hans; Becker, J Sabine

    2013-09-01

    The present study focused on the elemental distribution in the developing wheat grain by using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging technique. Our studies show that the embryo accumulated high concentrations of nutrient elements, such as Fe, K, Cu, and Zn, while Ca was accumulated in the bran of the wheat grain which might be attributed to its function of structural maintenance. In the endosperm the majority of the nutrients were located in the aleurone layer. Within the grain, the embryo could be considered as a nutrient pool for macro- and micro-elements essential for the development of the seedling. Elemental images showed that considerable amounts of nutrients were stored in the scutellum of the embryo, which might be related to the high gene expression of element transporters in the scutellum. Root primordia and leaf primordia were enriched in particular elements, such as Mn and Zn respectively. In total 34 cross sections were analyzed and used for generation of a sequence of elemental distribution images to demonstrate elemental changes along the perpendicular axis of the wheat grain embryo. Further development of three-dimensional modeling will be combined with physiological studies to better understand the mechanisms of elemental distribution and storage in the wheat grain. These studies will provide fundamental knowledge on improving the nutritional value and agronomic practices.

  10. Determination of impurities in thoria (ThO 2) using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Alamelu, Devanathan; Choudhary, Ashwini Kumar; Aggarwal, Suresh Kumar

    2010-11-01

    Elemental impurities in nuclear grade thoria were determined using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) employing ArF laser (20 ns, 193 nm, 20 Hz). Three certified standards of thoria, prepared in the Department of Atomic Energy (DAE), India were used for this work. Magnesium was used as an internal standard for quantification in view of its addition during fuel fabrication. The concentrations determined for 16 different elements (Al, B, Cd, Ce, Cu, Dy, Er, Eu, Fe, Gd, Mg, Mn, Mo, Ni, Sb, Sm and V), spanning four orders of magnitude, were within 20% of the certified values in the standards. The methodology is of interest to reduce the analytical effort with regard to dissolution of thoria samples, avoid the production of radioactive liquid waste streams and relatively simple mass spectrum as compared to complex emission spectra in atomic emission spectroscopy (AES) and laser induced breakdown spectroscopy (LIBS). The development and validation of analytical methodologies based on independent physico-chemical principles is of great relevance to characterize the in-house prepared working standards for routine applications.

  11. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  12. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  13. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin.

    PubMed

    Köppen, C; Reifschneider, O; Castanheira, I; Sperling, M; Karst, U; Ciarimboli, G

    2015-12-01

    This work presents a quantitative bioimaging method for platinum based on laser ablation-inductively coupled plasma-mass spectrometry and its application for a biomedical study concerning toxic side effects of cisplatin. To trace the histopathology back to cisplatin, platinum was localized and quantified in major functional units of testicle, cochlea, kidney, nerve and brain sections from cisplatin treated mice. The direct consideration of the histology enables precise interpretation of the Pt images and the novel quantitative evaluation approach allows significantly more precise investigations than the pure image. For the first time, platinum was detected and quantified in all major injured structures including organ of Corti of cochlea and seminiferous tubule of testicle. In this way, proximal tubule in kidney, Leydig cells in testicle, stria vascularis and organ of Corti in cochlea and nerve fibers in sciatic nerves are confirmed as targets of cisplatin in these organs. However, the accumulation of platinum in almost all investigated structures also raises questions about more complex pathogenesis including direct and indirect interruption of several biological processes.

  14. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    Relative contributions to ion densities in the inductively coupled plasma (ICP) of particles of various sizes produced by laser ablation (LA) were investigated. Particles generated by 266 nm, ns LA of BaF2, CaF2, and a scandium aluminum alloy, characterized using SEM, consisted of hard and soft agglomerates, spherical particles, and irregularly-shaped particles. Although soft agglomerates and spherical particles were common to aerosols generated by LA in all cases, hard agglomerates appeared to be unique to the scandium aluminum alloy, while irregularly-shaped exfoliated particles were unique to the calcium and barium fluoride windows. The spatial distributions of Ca, Ba, and Sc ions in the ICP were determined from laser-induced fluorescence images taken with filters of pore sizes from 1-8 μm added in-line to the transport tube upstream from the ICP. In all cases, a significant fraction of the ions formed in the ICP originated from micron-sized particles. Differences in the penetration depths of nanometer-sized agglomerates and micron-sized particles were about 2 mm for Ca and 1 mm for Ba. Differences in the penetration depths of nanometer and micron-sized agglomerates observed in the case of aluminum scandium were much less significant. This suggests that micron-sized hard-agglomerates and nanometer-sized soft-agglomerates experience very similar vaporization patterns. Additionally, there was evidence that flow patterns in the transport tube affect the trajectories of particles entering the plasma.

  15. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  16. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    PubMed

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  17. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna.

    PubMed

    Gholap, Deepti S; Izmer, Andrei; De Samber, Björn; van Elteren, Johannes T; Selih, Vid S; Evens, Roel; De Schamphelaere, Karel; Janssen, Colin; Balcaen, Lieve; Lindemann, Inge; Vincze, Laszlo; Vanhaecke, Frank

    2010-04-01

    Visualization of elemental distributions in thin sections of biological tissue is gaining importance in many disciplines of biological and medical research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and scanning micro-X-ray fluorescence spectrometry (micro-XRF) are two widely used microanalytical techniques for elemental mapping. This article compares the capabilities of the two techniques for imaging the distribution of selected elements in the model organism Daphnia magna in terms of detection power and spatial resolution. Sections with a thickness of 10 and 20 microm of the fresh water crustacean Daphnia magna were subjected to LA-ICP-MS and micro-XRF analysis. The elemental distributions obtained for Ca, P, S and Zn allow element-to-tissue correlation. LA-ICP-MS and micro-XRF offer similar limits of detection for the elements Ca and P and thus, allow a cross-validation of the imaging results. LA-ICP-MS was particularly sensitive for determining Zn (LOD 20 microg g(-1), 15 microm spot size) in Daphnia magna, while the detection power of micro-XRF was insufficient in this context. However, LA-ICP-MS was inadequate for the measurement of the S distributions, which could be better visualized with micro-XRF (LOD 160 microg g(-1), 5 s live time). Both techniques are thus complementary in providing an exhaustive chemical profiling of tissue samples.

  18. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  19. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  20. Ablation of intervertebral discs in dogs using a MicroJet-assisted dye-enhanced injection device coupled with the diode laser

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.; Henry, George A.; Dickey, D. Thomas; Stair, Ernest L.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Frederickson, Christopher J.; Hayes, Donald J.; Wallace, David B.

    1998-07-01

    Use of holmium laser energy for vaporization/coagulation of the nucleus pulposus in canine intervertebral discs has been previously reported and is currently being applied clinically in veterinary medicine. The procedure was originally developed in the canine model and intended for potential human use. Since the pulsed (15 Hz) holmium laser energy exerts photomechanical and photothermal effects, the potential for extrusion of additional disc material to the detriment of the patient is possible using the procedure developed for the dog. To reduce this potential complication, use of diode laser (805 nm - CW mode) energy, coupled with indocyanine green (ICG) as a selective laser energy absorber, was formulated as a possible alternative. Delivery of the ICG and diode laser energy was through a MicroJet device that could dispense dye interactively between individual laser 'shots.' Results have shown that it is possible to selectively ablate nucleus pulposus in the canine model using the device described. Acute observations (gross and histopathologic) illustrate that accurate placement of the spinal needle before introduction of the MicroJet device is critically dependent on the expertise of the interventional radiologist. In addition, the success of the overall technique depends on consistent delivery of both ICG and diode laser energy. Minimizing tissue carbonization on the tip of the MicroJet device is also of crucial importance for effective application of the technique in clinical veterinary medicine.

  1. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hormes, J.; Roy, A.; Bovenkamp, G.-L.; Simon, K.; Kim, C.-Y.; Börste, N.; Gai, S.

    2013-04-01

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.

  2. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  3. Radiofrequency catheter ablation: different cooled and noncooled electrode systems induce specific lesion geometries and adverse effects profiles.

    PubMed

    Dorwarth, Uwe; Fiek, Michael; Remp, Thomas; Reithmann, Cristopher; Dugas, Martin; Steinbeck, Gerhard; Hoffmann, Ellen

    2003-07-01

    The success and safety of standard catheter radiofrequency ablation may be limited for ablation of atrial fibrillation and ventricular tachycardia. The aim of this study was to characterize and compare different cooled and noncooled catheter systems in terms of their specific lesion geometry, incidence of impedance rise, and crater and coagulum formation to facilitate appropriate catheter selection for special indications. The study investigated myocardial lesion generation of three cooled catheter systems (7 Fr, 4-mm tip): two saline irrigation catheters with a showerhead-type electrode tip (sprinkler) and a porous metal tip and an internally cooled catheter. Noncooled catheters (7 Fr) had a large tip electrode (8 mm) and a standard tip electrode (4 mm). RF energy was delivered on isolated porcine myocardium superfused with heparinized pig blood (37 degrees C) at power settings of 10-40 W. Both irrigated systems were characterized by a large lesion depth (8.1 +/- 1.6 mm) and a large lesion diameter (13.8 +/- 1.6 mm). In comparison, internally cooled lesions showed a similar lesion depth (8.0 +/- 1.0 mm), but a significantly smaller lesion diameter (12.3 +/- 1.2 mm,P = 0.04). Large tip lesions had a similar lesion diameter (14.5 +/- 1.6 mm), but a significantly smaller lesion depth (6.3 +/- 1.0 mm,P = 0.002) compared to irrigated lesions. However, lesion volume was not significantly different between the three cooled and the large tip catheter. To induce maximum lesion size, power requirements were three times higher for the irrigation systems and two times higher for the internally cooled and the large tip catheter compared to the standard catheter. Impedance rise was rarest with irrigated and large tip ablation. In case of impedance rise crater formation was a frequent observation (61-93%). Irrigated catheters prevented coagulum formation most effectively. Irrigated rather than internally cooled ablation appears to be most adequate for the induction of deep and

  4. Analysis of coupled Sr/Ca and 87Sr/ 86Sr variations in enamel using laser-ablation tandem quadrupole-multicollector ICPMS

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Telouk, Philippe; Reynard, Bruno; Braga, José; Thackeray, Francis; Albarède, Francis

    2008-08-01

    We present in this study results obtained with a laser-ablation coupled with both a quadrupole and a multi-collector ICPMS. The simultaneous in situ Sr/Ca and 87Sr/ 86Sr measurements along growth profiles in enamel allows the concomitant diet and migration patterns in mammals to be reconstructed. Aliquots of the powdered international standard NIST "SRM1400 Bone Ash" with certified Sr and Ca contents, was sintered at high pressure and temperature and was adopted as the reference material for external reproducibility and calibration of the results. A total of 145 coupled elemental and isotopic measurements of herbivores enamel from the Kruger National Park, South Africa, gives intra-tooth Sr/Ca and 87Sr/ 86Sr variations that are well larger than external reproducibility. Sr/Ca profiles systematically decrease from the dentine-enamel junction to the outer enamel whereas 87Sr/ 86Sr profiles exhibit variable patterns. Using a simple geometric model of hypsodont teeth growth, we demonstrate that a continuous recording of the 87Sr/ 86Sr variations can be reconstructed in the tooth length axis. This suggests that the mobility of a mammal can be reconstructed over a period of more than a year with a resolution of a ten of days, by sampling enamel along growth profiles. Our geometric model of hypsodont teeth growth predicts that an optimal distance between two successive profiles is equal to the enamel thickness. However, this model does not apply to the Sr/Ca signal which is likely to be altered during the enamel maturation stage due to differential maturation processes along enamel thickness. Here, the observed constant decreases of the Sr/Ca ratios in the ungulates of Kruger National Park suggests that they did not changed of diet, while some of them were migrating.

  5. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles.

    PubMed

    Pointurier, Fabien; Pottin, Anne-Claire; Hubert, Amélie

    2011-10-15

    For the first time, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their (235)U content was in the femtogram range. (235)U/(238)U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo "X-Series II"). LA-ICPMS results, although less precise and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (~6 × 10(-4)) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. PMID:21875035

  6. Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere

    SciTech Connect

    Mori, Koichi; Maruyama, Ryo; Shimamura, Kohei

    2015-08-21

    Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η{sub bw}, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm{sup 2}. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the laser spot radius to the disk radius, while η{sub bw} could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm{sup 2}, and the ambient pressure from 0.1 to 101 kPa.

  7. Case Study of Hepatic Radiofrequency Ablation Causing a Systemic Inflammatory Response Under Total Intravenous Anesthesia

    PubMed Central

    Schälte, Gereon; Henzler, Dietrich; Waning, Christian; Tacke, Josef; Rossaint, Rolf

    2010-01-01

    Objective To investigate the effects of hepatic radiofrequency ablation (RFA) in patients with malignant liver disease with respect to inflammation activation and stress response. Materials and Methods In an observational trial, we investigated the physiologic parameters of 17 patients (20 interventions) who underwent percutaneous RFA under general anesthesia after applying total intravenous anesthesia. TNFα, IL-6, IL-8, IL-10, adrenaline and noradrenaline, liver enzymes, lactate and creatine kinase were determined pre-interventionally after induction of anesthesia (T1), 90 minutes after initiation of RFA (T2), immediately after the conclusion of the procedure (T3), and 24 hours after the procedure (T4). Results A significant increase in body temperature (p < 0.001), and mean arterial pressure (p = 0.001) were measured intraoperatively (T2) and the day after the procedure (T4). Increased levels of IL-6 were measured at T3 and T4 (p = 0.001). IL-10 increased immediately after the procedure (T3; p = 0.007). IL-6 levels correlated well with the total energy applied (r = 0.837). Significant increases in the levels of adrenaline and noradrenaline were present at T3 and T4 (p < 0.001). The RFA-induced destruction of hepatic tissue was associated with increased levels of AST, ALT, GLDH and LDH. Conclusion Percutaneous RFA of hepatic malignancies causes an inflammatory and endocrine activation, similar to the systemic inflammatory response syndrome. These effects have to be taken in account when dealing with patients susceptible to sepsis or multi-organ failure. PMID:21076590

  8. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  9. Nonlinear Mode-Coupling in Nanomechanical Systems

    PubMed Central

    Matheny, M. H.; Villanueva, L. G.; Karabalin, R. B.; Sader, J. E.; Roukes, M. L.

    2013-01-01

    Understanding and controlling nonlinear coupling between vibrational modes is critical for the development of advanced nanomechanical devices; it has important implications for applications ranging from quantitative sensing to fundamental research. However, achieving accurate experimental characterization of nonlinearities in nanomechanical systems (NEMS) is problematic. Currently employed detection and actuation schemes themselves tend to be highly nonlinear, and this unrelated nonlinear response has been inadvertently convolved into many previous measurements. In this Letter we describe an experimental protocol and a highly linear transduction scheme, specifically designed for NEMS, that enables accurate, in situ characterization of device nonlinearities. By comparing predictions from Euler–Bernoulli theory for the intra- and intermodal nonlinearities of a doubly clamped beam, we assess the validity of our approach and find excellent agreement. PMID:23496001

  10. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  11. Absorption-Ablation-Excitation Mechanism of Laser-Cluster Interactions in a Nanoaerosol System

    NASA Astrophysics Data System (ADS)

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D.; Long, Marshall B.

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16 GW /cm2 , the scattering cross section of TiO2 clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal SlE , Peclet PeE , and Damköhler DaE numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where SlE≫1 , PeE≫1 , and DaE≪1 , the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  12. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption. PMID:25793812

  13. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  14. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. PMID:27566253

  15. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.

    PubMed

    Lopez, Rubén J; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C; Bentzinger, C Florian; Romanino, Klaas; Hall, Michael N; Rüegg, Markus A; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2015-02-15

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]-ryanodine and 3[H]-PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation-contraction (E-C) coupling is affected by mTORC1 signalling.

  16. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  17. Thermal ablation in cancer

    PubMed Central

    Liu, Yong; Cao, Cheng-Song; Yu, Yang; Si, Ya-Meng

    2016-01-01

    Radiofrequency ablation (RFA) and cryoablation are alternative forms of therapy used widely in various pathological states, including treatment of carcinogenesis. The reason is that ablation techniques have ability of modulating the immune system. Furthermore, recent studies have applied this form of therapy on tumor microenvironment and in the systematic circulation. Moreover, RFA and cryoablation result in an inflammatory immune response along with tissue disruption. Evidence has demonstrated that these procedures affect carcinogenesis by causing a significant local inflammatory response leading to an immunogenic gene signature. The present review enlightens the current view of these techniques in cancer. PMID:27703520

  18. Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy

    PubMed Central

    Ahmed, Muneeb; Kumar, Gaurav; Navarro, Gemma; Wang, Yuanguo; Gourevitch, Svetlana; Moussa, Marwan H.; Rozenblum, Nir; Levchenko, Tatyana; Galun, Eithan; Torchilin, Vladimir P.; Goldberg, S. Nahum

    2015-01-01

    Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor. PMID:26154425

  19. CHAP III- CHARRING ABLATOR PROGRAM FOR ADVANCED INVESTIGATION OF THERMAL PROTECTION SYSTEMS FOR ENTRY

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.

    1994-01-01

    The transient response of a thermal protection material to heat applied to the surface can be calculated using the CHAP III computer program. CHAP III can be used to analyze pyrolysis gas chemical kinetics in detail and examine pyrolysis reactions-indepth. The analysis includes the deposition of solid products produced by chemical reactions in the gas phase. CHAP III uses a modelling technique which can approximate a wide range of ablation problems. The energy equation used in CHAP III incorporates pyrolysis (both solid and gas reactions), convection, conduction, storage, work, kinetic energy, and viscous dissipation. The chemically reacting components of the solid are allowed to vary as a function of position and time. CHAP III employs a finite difference method to approximate the energy equations. Input values include specific heat, thermal conductivity, thermocouple locations, enthalpy, heating rates, and a description of the chemical reactions expected. The output tabulates the temperature at locations throughout the ablator, gas flow within the solid, density of the solid, weight of pyrolysis gases, and rate of carbon deposition. A sample case is included, which analyzes an ablator material containing several pyrolysis reactions subjected to an environment typical of entry at lunar return velocity. CHAP III is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer operating under NOS with a central memory requirement of approximately 102K (octal) of 60 bit words. This program was developed in 1985.

  20. Light Weight Ceramic Ablators for Mars Follow-on Mission Vehicle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Hsu, Ming-Ta; Turan, Ryan

    1994-01-01

    New Light Weight Ceramic Ablators (LCA) were produced by using ceramic and carbon fibrous substrates, impregnated with silicone and phenolic resins. The special infiltration techniques (patent pending) were developed to control the amount of organic resins in the highly porous fiber matrices so that the final densities of LCA's range from 0.22 to 0.24 g/cc. This paper presents the thermal and ablative performance of the Silicone Impregnated Reusable Ceramic Ablators (SIRCA) in simulated entry conditions for Mars-Pathfinder in the Ames 60 MW Interaction Heating Facility (I HF). Arc jet test results yielded no evidence of char erosion and mass loss at high stagnation pressures to 0.25 atm. Minimal silica melt was detected on surface char at a stagnation pressure of 0.31 atm. Four ceramic substrates were used in the production of SIRCA's to obtain the effective of boron oxide present in substrate so the thermal performance of SIRCA's. A sample of SIRCA was also exposed to the same heating condition for five cycles and no significant mass loss or recession was observed. Tensile testing established that the SIRCA tensile strength is about a factor of two higher than that of the virgin substrates. Thermogravimetric Analysis (TGA) of the char in nitrogen and air showed no evidence of free carbon in the char. Scanning Electron Microscopy of the post test sample showed that the char surface consists of a fibrous structure that was sealed with a thin layer of silicon oxide melt.

  1. Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronized-coil system.

    PubMed

    Huang, Sheng-Chieh; Kang, Jui-Wen; Tsai, Hung-Wen; Shan, Yan-Shen; Lin, Xi-Zhang; Lee, Gwo-Bin

    2014-11-01

    Thermal ablation by using electromagnetic thermotherapy (EMT) has been a promising cancer modality in recent years. It has relatively few side effects and has therefore been extensively investigated for a variety of medical applications in internal medicine and surgery. The EMT system applies a high-frequency alternating electromagnetic field to heat up the needles which are inserted into the target tumor to cause tumor ablation. In this study, a new synchronized-coil EMT system was demonstrated, which was equipped with two synchronized coils and magnetic field generators to provide a long-range, penetrated electromagnetic field to effectively heat up the needles. The heating effect of the needles at the center of the two coils was first explored. The newly designed two-section needle array combined with the synchronized-coil EMT system was thus demonstrated in the in vitro and in vivo animal experiments. Experimental data showed that the developed system is promising for minimally invasive surgery since it might provide superior performance for thermotherapy in cancer treatment.

  2. Partial ablation of uropygial gland effects on growth hormone concentration and digestive system histometrical aspect of akar putra chicken.

    PubMed

    Jawad, Hasan S A; Lokman, I H; Zuki, A B Z; Kassim, A B

    2016-04-01

    Partial ablation of the uropygial gland is being used in the poultry industry as a new way to enhance body performance of chickens. However, limited data are available estimating the efficacy of partial uropygialectomy (PU) to improve body organ activity. The present study evaluated the effect of partial ablation of the uropygial gland on the serum growth hormone concentration level and digestive system histology of 120 Akar Putra chickens in 5 trials with 3 replicates per trial. The experimental treatments consisted of a control treatment T1; partial ablation of the uropygial gland was applied in the T2, T3, T4, and T5 treatments at 3, 4, 5, and 6 wk of age, respectively. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on wk 7, 10, and 12 to assay the levels of growth hormone concentration. On the last d of the experiment, 4 birds per replicate were randomly isolated and euthanized to perform the necropsy. Digestive system organs' cross sections were measured by a computerized image analyzer after being stained with haematoxylin and eosin. In comparison with the control group, surgical removal of the uropygial gland, especially at wk 3, had a greater (P<0.01) effect on the total duodenum, jejunum, and ilium wall thickness. In addition, effects (P<0.05) were observed on the wall thickness of males' cecum and colon. Moreover, the wall layers of the esophagus, proventriculus, gizzard, and rectum were not affected by the treatment. However, removing the uropygial gland showed significant impact (P<0.05) in males' growth hormone concentration level at wk 7 and (P<0.01) effects at wk 12 in both sexes. This study provides a novel and economic alternative to enhance the body performance of poultry in general and Akar Putra chickens particularly. PMID:26908881

  3. Partial ablation of uropygial gland effects on growth hormone concentration and digestive system histometrical aspect of akar putra chicken.

    PubMed

    Jawad, Hasan S A; Lokman, I H; Zuki, A B Z; Kassim, A B

    2016-04-01

    Partial ablation of the uropygial gland is being used in the poultry industry as a new way to enhance body performance of chickens. However, limited data are available estimating the efficacy of partial uropygialectomy (PU) to improve body organ activity. The present study evaluated the effect of partial ablation of the uropygial gland on the serum growth hormone concentration level and digestive system histology of 120 Akar Putra chickens in 5 trials with 3 replicates per trial. The experimental treatments consisted of a control treatment T1; partial ablation of the uropygial gland was applied in the T2, T3, T4, and T5 treatments at 3, 4, 5, and 6 wk of age, respectively. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on wk 7, 10, and 12 to assay the levels of growth hormone concentration. On the last d of the experiment, 4 birds per replicate were randomly isolated and euthanized to perform the necropsy. Digestive system organs' cross sections were measured by a computerized image analyzer after being stained with haematoxylin and eosin. In comparison with the control group, surgical removal of the uropygial gland, especially at wk 3, had a greater (P<0.01) effect on the total duodenum, jejunum, and ilium wall thickness. In addition, effects (P<0.05) were observed on the wall thickness of males' cecum and colon. Moreover, the wall layers of the esophagus, proventriculus, gizzard, and rectum were not affected by the treatment. However, removing the uropygial gland showed significant impact (P<0.05) in males' growth hormone concentration level at wk 7 and (P<0.01) effects at wk 12 in both sexes. This study provides a novel and economic alternative to enhance the body performance of poultry in general and Akar Putra chickens particularly.

  4. Reforming the Loosely Coupled System: Implications for Jewish Schools

    ERIC Educational Resources Information Center

    Gamoran, Adam

    2008-01-01

    School systems in the United States have long been characterized as "loosely coupled systems," in which decisions and events occurring in one part of the system have little resonance elsewhere. Loose coupling has advantages in that classrooms are buffered from outside interference, but it also makes it difficult to bring about change. Current…

  5. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal.

  6. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  7. Cooperative effects of parameter heterogeneity and coupling on coherence resonance in unidirectional coupled brusselator system

    NASA Astrophysics Data System (ADS)

    Li, Qian-Shu; Shi, Jian-Cheng

    2007-01-01

    Two unidirectional coupled brusselator systems, subject to common and uncorrelated multiplicative noise, are investigated, respectively. It can be found that, the parameter heterogeneity effect may be destroyed above critical coupling strength. Synchronization occurs between subsystems subjected to common noise, but cannot achieve by means of uncorrelated noise.

  8. Vortices in magnetically coupled superconducting layered systems

    SciTech Connect

    Mints, Roman G.; Kogan, Vladimir G.; Clem, John R.

    2000-01-01

    Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that vortices may skip surface layers in samples of less than a certain size R{sub c} which might be macroscopic. The Josephson coupling suppresses R{sub c} estimates. (c) 2000 The American Physical Society.

  9. Surprises of the Transformer as a Coupled Oscillator System

    ERIC Educational Resources Information Center

    Silva, J. P.; Silvestre, A. J.

    2008-01-01

    We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both…

  10. Enhanced Tissue Ablation Efficiency with a Mid-Infrared Nonlinear Frequency Conversion Laser System and Tissue Interaction Monitoring Using Optical Coherence Tomography

    PubMed Central

    Kim, Bongkyun; Kim, Dae Yu

    2016-01-01

    We report development of optical parametric oscillator (OPO)-based mid-infrared laser system that utilizes a periodically poled nonlinear crystal pumped by a near-infrared (NIR) laser. We obtained a mid-infrared average output of 8 W at an injection current of 20 A from a quasi-phase-matched OPO using an external cavity configuration. Laser tissue ablation efficiency is substantially affected by several parameters, including an optical fluence rate, wavelength of the laser source, and the optical properties of target tissue. Dimensions of wavelength and radiant exposure dependent tissue ablation are quantified using Fourier domain optical coherence tomography and the ablation efficiency was compared to a non-converted NIR laser system. PMID:27128916

  11. Successful radiofrequency ablation of atrial tachycardias in surgically repaired Ebstein's anomaly using the Carto XP system and the QwikStar catheter.

    PubMed

    Drago, Fabrizio; Brancaccio, Gianluca; Grutter, Giorgia; De Santis, Antonella; Fazio, Giovanni; Silvetti, Massimo Stefano

    2007-06-01

    We describe the case of a child with three different atrial tachyarrhythmias originating from the right atrium, in whom a limited modified maze procedure was performed during surgical repair of an Ebstein's anomaly. Successful radiofrequency transcatheter ablation of all atrial tachyarrhythmias, one re-entrant and two focal, was obtained using the Carto XP EP three-dimensional navigation and ablation system, the new QwikMap software technology and the new mapping/ablation QwikStar multipolar catheter. No conventional mapping was used in addition to the three-dimensional system. Total procedural time was about 3 h and fluoroscopy time was 40 min. There were neither recurrences of the tachycardias nor complications during the follow-up (15 months).

  12. Enhanced Tissue Ablation Efficiency with a Mid-Infrared Nonlinear Frequency Conversion Laser System and Tissue Interaction Monitoring Using Optical Coherence Tomography.

    PubMed

    Kim, Bongkyun; Kim, Dae Yu

    2016-04-26

    We report development of optical parametric oscillator (OPO)-based mid-infrared laser system that utilizes a periodically poled nonlinear crystal pumped by a near-infrared (NIR) laser. We obtained a mid-infrared average output of 8 W at an injection current of 20 A from a quasi-phase-matched OPO using an external cavity configuration. Laser tissue ablation efficiency is substantially affected by several parameters, including an optical fluence rate, wavelength of the laser source, and the optical properties of target tissue. Dimensions of wavelength and radiant exposure dependent tissue ablation are quantified using Fourier domain optical coherence tomography and the ablation efficiency was compared to a non-converted NIR laser system.

  13. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  14. Coupled dynamic systems and Le Chatelier's principle in noise control

    NASA Astrophysics Data System (ADS)

    Maidanik, G.; Becker, K. J.

    2001-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  15. Coupled Human-Atmosphere-System Thinking

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Chabay, Ilan

    2014-05-01

    minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.

  16. High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples.

    PubMed

    Gundlach-Graham, Alexander; Burger, Marcel; Allner, Steffen; Schwarz, Gunnar; Wang, Hao A O; Gyr, Luzia; Grolimund, Daniel; Hattendorf, Bodo; Günther, Detlef

    2015-08-18

    Low-dispersion laser ablation (LA) has been combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) to provide full-spectrum elemental imaging at high lateral resolution and fast image-acquisition speeds. The low-dispersion LA cell reported here is capable of delivering 99% of the total LA signal within 9 ms, and the prototype TOFMS instrument enables simultaneous and representative determination of all elemental ions from these fast-transient ablation events. This fast ablated-aerosol transport eliminates the effects of pulse-to-pulse mixing at laser-pulse repetition rates up to 100 Hz. Additionally, by boosting the instantaneous concentration of LA aerosol into the ICP with the use of a low-dispersion ablation cell, signal-to-noise (S/N) ratios, and thus limits of detection (LODs), are improved for all measured isotopes; the lowest LODs are in the single digit parts per million for single-shot LA signal from a 10-μm diameter laser spot. Significantly, high-sensitivity, multielemental and single-shot-resolved detection enables the use of small LA spot sizes to improve lateral resolution and the development of single-shot quantitative imaging, while also maintaining fast image-acquisition speeds. Here, we demonstrate simultaneous elemental imaging of major and minor constituents in an Opalinus clay-rock sample at a 1.5 μm laser-spot diameter and quantitative imaging of a multidomain Pallasite meteorite at a 10 μm LA-spot size. PMID:26122331

  17. Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer

    PubMed Central

    Ito, Fumito; Ku, Amy W.; Bucsek, Mark J.; Muhitch, Jason B.; Vardam-Kaur, Trupti; Kim, Minhyung; Fisher, Daniel T.; Camoriano, Marta; Khoury, Thaer; Skitzki, Joseph J.; Gollnick, Sandra O.; Evans, Sharon S.

    2015-01-01

    Purpose While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model. Experimental Design Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma. Results Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity. Conclusion Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant

  18. Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System

    NASA Technical Reports Server (NTRS)

    Kocian, Dean F.

    1992-01-01

    The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.

  19. General mechanism for amplitude death in coupled systems.

    PubMed

    Resmi, V; Ambika, G; Amritkar, R E

    2011-10-01

    We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is known that when two systems are coupled directly, they can synchronize under suitable conditions. When an indirect feedback coupling through an environment or an external system is introduced in them, it is found to induce a tendency for antisynchronization. We show that, for sufficient strengths, these two competing effects can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the transitions can be of two types--continuous and discontinuous. By choosing a variety of dynamics, for example, periodic, chaotic, hyperchaotic, and time-delay systems, we illustrate that this mechanism is quite general and works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings, and for different damped dynamics of the environment.

  20. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  1. A new approach for calibration of laser ablation inductively coupled plasma mass spectrometry using thin layers of spiked agarose gels as references.

    PubMed

    Stärk, H-J; Wennrich, Rainer

    2011-02-01

    Calibration of analytical methods using laser ablation for sample introduction is often problematic. The availability of matrix-adapted standard materials is a crucial factor in the analysis of biological samples in particular. In this work a method for preparation of thin-film references for LA-ICP-MS is presented which is inexpensive, relatively simple and generally practicable. Aqueous solutions of agarose spiked with defined amounts of the analytes were cast on a carrier and then dried. When the thin-film references were characterized the average thickness of the films was 0.03 mm in the centre of the film and the relative standard deviation was 8%. Nebulization ICP-MS analysis after acid digestion of the agarose film was used to investigate the effectiveness of the spiking procedure. Recovery of the spiked elements was frequently in the range 90-110% (for rare earth elements 97-102%). Laser ablation ICP-MS analysis was used to investigate the distribution of the spiked elements in the film. When the laser was scanned across the gel the measured intensities were not constant, but had a peak-shaped profile with a flat top. Use of this flat-top region for analytical purposes, after its characterization by laser ablation ICP-MS, is proposed. Analysis of cell cultures was carried out by direct laser ablation-ICP-MS with the calibration method described. The results were in accordance with values previously achieved by nebulization ICP-MS.

  2. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    NASA Technical Reports Server (NTRS)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, D.; Kazemba, C.; Venkatapathy, E.

    2015-01-01

    The new conformal ablator C-PICA, which was developed under STMD GCD, is an optimal candidate for use on the backshells for high velocity entry vehicles at both Venus and Saturn. The material has been tested at heat fluxes up to 400 Wcm2 in shear and over 1800 Wcm2 and 1.5 atm in stagnation with good results. C-PICA has similar density to PICA, but shows half the thermal penetration and similar recession at the same conditions, allowing for a lighter weight TPS to be flown. This poster for VEXAG will show the progress made in the development of the material and why it should be considered for use.

  3. Ablation of dermal and mucosal lesions with a new CO2 laser application system

    NASA Astrophysics Data System (ADS)

    Jovanovic, Sergije; Sedlmaier, Benedikt W.; Fuehrer, Ariane

    1997-05-01

    Laser treatment of skin changes has become common practice in recent years. The high absorption of the wavelength of the carbon-dioxide laser (10600 nm) is responsible for its low penetration depth in biological tissue. Shortening the exposure time minimizes thermic side effects such as carbonization and coagulation. This effect can be achieved with the SilkTouchTM scanner 767, since the focused laser beam is moved over a defined area by rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles, rhinophyma and benign neoplasms like verruca vulgaris. Cosmetically favorable reepithelialization of the lasered surfaces results within a very short period of time. Benign mucosal changes of the upper aerodigestive tract can also be treated. Ablation is less traumatic for papillomas, fibromas, hyperplasias in the area of Waldeyer's tonsillar ring and certain laryngotracheal pathologies. Clinical examples demonstrate the advantages of this new mode of application.

  4. Design, qualification, manufacturing and integration of IXV Ablative Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Cioeta, Mario; Di Vita, Gandolfo; Signorelli Maria, Teresa; Bianco, Gianluca; Cutroni, Maurizio; Damiani, Francesco; Ferretti, Viviana; Rotondo, Adriano

    2016-07-01

    In the present paper, all the activities carried out by Avio S.p.A in order to define, qualify, manufacture and integrate the IXV Ablative TPS will be presented. In particular the extensive numerical simulation in both small and full scale testing activities will be overviewed. Wide-ranging testing activity has been carried out in order to verify, confirm and correlate the numerical models used for TPS sizing. Tests ranged from classical thermo-mechanical characterization traction specimens to tests in plasma wind tunnels on dedicated prototypes. Finally manufacturing and integration activities will be described emphasizing technological aspects solved in order to meet the stringent requirements in terms of shape accuracy and integration tolerances.

  5. PATH OPTIMIZATION AND CONTROL OF A SHAPE MEMORY ALLOY ACTUATED CATHETER FOR ENDOCARDIAL RADIOFREQUENCY ABLATION

    PubMed Central

    Wiest, Jennifer H.; Buckner, Gregory D.

    2014-01-01

    This paper introduces a real-time path optimization and control strategy for shape memory alloy (SMA) actuated cardiac ablation catheters, potentially enabling the creation of more precise lesions with reduced procedure times and improved patient outcomes. Catheter tip locations and orientations are optimized using parallel genetic algorithms to produce continuous ablation paths with near normal tissue contact through physician-specified points. A nonlinear multivariable control strategy is presented to compensate for SMA hysteresis, bandwidth limitations, and coupling between system inputs. Simulated and experimental results demonstrate efficient generation of ablation paths and optimal reference trajectories. Closed-loop control of the SMA-actuated catheter along optimized ablation paths is validated experimentally. PMID:25684857

  6. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  7. Coupling apparatus for ultrasonic medical diagnostic system

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1978-01-01

    An apparatus for the ultrasonic scanning of a breast or other tissue is reported that contains a cavity for receiving the breast, a vacuum for drawing the breast into intimate contact with the walls of the cavity, and transducers coupled through a fluid to the cavity to transmit sound waves through the breast. Each transducer lies at the end of a tapered chamber which has flexible walls and which is filled with fluid, so that the transducer can be moved in a raster pattern while the chamber walls flex accordingly, with sound transmission always occurring through the fluid.

  8. The Use of Multiple Communication in Systemic Couples Therapy.

    ERIC Educational Resources Information Center

    Keeney, Bradford P.; Siegel, Stanley

    1986-01-01

    Presents a clinical technique for working with troubled couples based on a particular theory of multiple communication in therapy. The technique, a "systemic couples reversal," prescribes a way of managing the multiple communications of stability, change, and meaningful Rorschach. Provides a theoretical map, clinical procedure, and clinical case…

  9. Inverse synchronizations in coupled time-delay systems with inhibitory coupling.

    PubMed

    Senthilkumar, D V; Kurths, J; Lakshmanan, M

    2009-06-01

    Transitions between inverse anticipatory, inverse complete, and inverse lag synchronizations are shown to occur as a function of the coupling delay in unidirectionally coupled time-delay systems with inhibitory coupling. We have also shown that the same general asymptotic stability condition obtained using the Krasovskii-Lyapunov functional theory can be valid for the cases where (i) both the coefficients of the Delta(t) (error variable) and Delta(tau)=Delta(t-tau) (error variable with delay) terms in the error equation corresponding to the synchronization manifold are time independent and (ii) the coefficient of the Delta term is time independent, while that of the Delta(tau) term is time dependent. The existence of different kinds of synchronization is corroborated using similarity function, probability of synchronization, and also from changes in the spectrum of Lyapunov exponents of the coupled time-delay systems.

  10. Transactive memory systems scale for couples: development and validation.

    PubMed

    Hewitt, Lauren Y; Roberts, Lynne D

    2015-01-01

    People in romantic relationships can develop shared memory systems by pooling their cognitive resources, allowing each person access to more information but with less cognitive effort. Research examining such memory systems in romantic couples largely focuses on remembering word lists or performing lab-based tasks, but these types of activities do not capture the processes underlying couples' transactive memory systems, and may not be representative of the ways in which romantic couples use their shared memory systems in everyday life. We adapted an existing measure of transactive memory systems for use with romantic couples (TMSS-C), and conducted an initial validation study. In total, 397 participants who each identified as being a member of a romantic relationship of at least 3 months duration completed the study. The data provided a good fit to the anticipated three-factor structure of the components of couples' transactive memory systems (specialization, credibility and coordination), and there was reasonable evidence of both convergent and divergent validity, as well as strong evidence of test-retest reliability across a 2-week period. The TMSS-C provides a valuable tool that can quickly and easily capture the underlying components of romantic couples' transactive memory systems. It has potential to help us better understand this intriguing feature of romantic relationships, and how shared memory systems might be associated with other important features of romantic relationships.

  11. Fiber-coupled photonic crystal nanocavity for reconfigurable formation of coupled cavity system

    NASA Astrophysics Data System (ADS)

    Tetsumoto, Tomohiro; Ooka, Yuta; Tanabe, Takasumi

    2016-03-01

    High Q optical cavities are employed to realize a coupled cavity system with which to achieve optical signal processing. Photonic crystal (PhC) nanocavities are particularly attractive because they are suitable for integration. However, they usually suffer from low coupling efficiency with optical fiber and poor resonant wavelength controllability. We recently demonstrated cavity mode formation by placing a tapered nanofiber close to a two-dimensional photonic crystal waveguide. The cavity mode couples directly with the nanofiber, which results in a coupling efficiency of 39% with a high Q of over half a million. The cavity is formed due to the modulation of the effective refractive index, which is caused by bringing a nanofiber close to the silicon slab. Precise tuning of the resonant wavelength becomes possible by changing the contact area of the nanofiber. In this study, we demonstrate the coupling and de-coupling of coupled PhC nanocavities formed by a nanofiber placed on a PhC waveguide. The wavelength shift of one of the cavities (mode A) is more sensitive than that of the other cavity (mode B) to a change in the nanofiber contact area. By using this difference, we can tune the resonant wavelength of mode A (Q = 4.6×105) to that of mode B (Q = 6.0×105). Then, a clear anti-crossing with a mode splitting of g/2π = 0.94 GHz is observed, which is the result of the coupling of the two modes. A reconfigurable coupled cavity system was demonstrated.

  12. Radiofrequency ablation of renal tumors with an expandable multitined electrode: results, complications, and pilot evaluation of cooled pyeloperfusion for collecting system protection.

    PubMed

    Rouvière, Olivier; Badet, Lionel; Murat, François Joseph; Maréchal, Jean Marie; Colombel, Marc; Martin, Xavier; Lyonnet, Denis; Gelet, Albert

    2008-01-01

    The objective of this study was to retrospectively evaluate the results of radiofrequency ablation (RFA) of renal tumors with an impedance-based system using an expandable multitined electrode. Twenty-two patients (30 tumors) were treated with RFA over a 7-year period, percutaneously (16 tumors) or intraoperatively (14 tumors). Follow-up imaging was performed at 1-3, 6, and 12 months and yearly thereafter. Twenty-seven of 30 tumors (19/22 patients) showed no residual tumor on the first imaging control. Two residual tumors were successfully ablated by a second RFA procedure. Our mean follow-up period was 35 months (range, 3-84 months). Two tumors that had been completely ablated based on imaging criteria recurred 11 and 48 months after RFA. One was treated by partial nephrectomy. The other one was not treated because the patient developed bone metastases. One patient had nephrectomy because of an RFA-induced ureteropelvic junction stricture. Nine patients (11 sessions) had a pyeloperfusion of cooled saline during RFA. None developed symptomatic complications, even though in three patients the ablation zone extended to the closest calyx (3-5 mm from the tumor). We conclude that RFA of renal tumors is promising, but serious complications to the collecting system must be taken into consideration. Prophylactic per-procedural cooling of the collecting system is feasible but needs further assessment.

  13. Complete chaotic synchronization in mutually coupled time-delay systems.

    PubMed

    Landsman, Alexandra S; Schwartz, Ira B

    2007-02-01

    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems.

  14. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    PubMed

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  15. Superlinearly scalable noise robustness of redundant coupled dynamical systems

    NASA Astrophysics Data System (ADS)

    Kohar, Vivek; Kia, Behnam; Lindner, John F.; Ditto, William L.

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  16. Bifurcation of transition paths induced by coupled bistable systems.

    PubMed

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-01

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.

  17. Bifurcation of transition paths induced by coupled bistable systems.

    PubMed

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-01

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier. PMID:27276971

  18. Bifurcation of transition paths induced by coupled bistable systems

    NASA Astrophysics Data System (ADS)

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-01

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.

  19. 23. FIRE SUPPRESSION SYSTEM PIPE, 'GRINNELL VALVE', 'VICTROLIC COUPLING,' AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. FIRE SUPPRESSION SYSTEM PIPE, 'GRINNELL VALVE', 'VICTROLIC COUPLING,' AND ALARM AT THE REAR OF BAY NO. 5. - Barstow-Daggett Airport, Hangar Shed No. 4, 39500 National Trails Highway, Daggett, San Bernardino County, CA

  20. Reconstructing embedding spaces of coupled dynamical systems from multivariate data.

    PubMed

    Boccaletti, S; Valladares, D L; Pecora, Louis M; Geffert, Hite P; Carroll, T

    2002-03-01

    A method for reconstructing dimensions of subspaces for weakly coupled dynamical systems is offered. The tool is able to extrapolate the subspace dimensions from the zero coupling limit, where the division of dimensions as per the algorithm is exact. Implementation of the proposed technique to multivariate data demonstrates its effectiveness in disentangling subspace dimensionalities also in the case of emergent synchronized motions, for both numerical and experimental systems.

  1. Microwave tumor ablation: cooperative academic-industry development of a high-power gas-cooled system with early clinical results

    NASA Astrophysics Data System (ADS)

    Brace, Christopher L.; Ziemlewicz, Timothy J.; Schefelker, Rick; Hinshaw, J. L.; Lubner, Meghan G.; Lee, Fred T.

    2013-02-01

    Microwave tumor ablation continues to evolve into a viable treatment option for many cancers. Current systems are poised to supplant radiofrequency ablation as the dominant percutaneous thermal therapy. Here is provided an overview of technical details and early clinical results with a high-powered, gas-cooled microwave ablation system. The system was developed with academic-industry collaboration using federal and private funding. The generator comprises three synchronous channels that each produce up to 140W at 2.45GHz. A mountable power distribution module facilitates CT imaging guidance and monitoring and reduces clutter in the sterile field. Cryogenic carbon-dioxide cools the coaxial applicator, permitting a thin applicator profile (~1.5 mm diameter) and high power delivery. A total of 106 liver tumors were treated (96 malignant, 10 benign) from December 2010 to June 2012 at a single academic institution. Mean tumor size +/- standard deviation was 2.5+/-1.3cm (range 0.5-13.9cm). Treatment time was 5.4+/-3.3min (range 1-20min). Median follow-up was 6 months (range 1-16 months). Technical success was reported in 100% of cases. Local tumor progression was noted in 4/96 (4.3%) of malignancies. The only major complication was a pleural effusion that was treated with thoracentesis. Microwave ablation with this system is an effective treatment for liver cancer. Compared to previous data from the same institution, these results suggest an increased efficacy and equivalent safety to RF ablation. Additional data from the lung and kidney support this conclusion.

  2. Conservative tightly-coupled simulations of stochastic multiscale systems

    NASA Astrophysics Data System (ADS)

    Taverniers, Søren; Pigarov, Alexander Y.; Tartakovsky, Daniel M.

    2016-05-01

    Multiphysics problems often involve components whose macroscopic dynamics is driven by microscopic random fluctuations. The fidelity of simulations of such systems depends on their ability to propagate these random fluctuations throughout a computational domain, including subdomains represented by deterministic solvers. When the constituent processes take place in nonoverlapping subdomains, system behavior can be modeled via a domain-decomposition approach that couples separate components at the interfaces between these subdomains. Its coupling algorithm has to maintain a stable and efficient numerical time integration even at high noise strength. We propose a conservative domain-decomposition algorithm in which tight coupling is achieved by employing either Picard's or Newton's iterative method. Coupled diffusion equations, one of which has a Gaussian white-noise source term, provide a computational testbed for analysis of these two coupling strategies. Fully-converged ("implicit") coupling with Newton's method typically outperforms its Picard counterpart, especially at high noise levels. This is because the number of Newton iterations scales linearly with the amplitude of the Gaussian noise, while the number of Picard iterations can scale superlinearly. At large time intervals between two subsequent inter-solver communications, the solution error for single-iteration ("explicit") Picard's coupling can be several orders of magnitude higher than that for implicit coupling. Increasing the explicit coupling's communication frequency reduces this difference, but the resulting increase in computational cost can make it less efficient than implicit coupling at similar levels of solution error, depending on the communication frequency of the latter and the noise strength. This trend carries over into higher dimensions, although at high noise strength explicit coupling may be the only computationally viable option.

  3. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  4. Radiatively coupled thermionic and thermoelectric power system concept

    SciTech Connect

    Shimada, K.; Ewell, R.

    1981-01-01

    This study shows that the large power systems utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a space shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), (3) elimination of radiator heat pipes, which are required in an all heat pipe power systems. 4 refs.

  5. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  6. Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems

    NASA Astrophysics Data System (ADS)

    Lassiter, J. Britt

    Metallic nanostructures support resonant oscillations of their conduction band electrons called localized surface plasmon resonances. Plasmons couple efficiently to light and have enabled a new class of technology for the manipulation of light at the nanoscale. Nanostructures that support plasmon resonances have the potential for a wide range of applications such as enhanced optical spectroscopy techniques for chemical- and bio-sensing, cancer diagnosis and therapy, metamaterials, and energy harvesting. As the field of plasmonics has progressed, these applications have become more sophisticated, requiring increasingly complex nanostructures. For example, coupled nanostructures of two or more nanoparticles are used extensively in plasmon-enhanced spectroscopy techniques because they exhibit extremely large optical field enhancements. Asymmetric nanostructures, such as nanocups (metallic semishells), have been shown to support magnetic modes that could be used in metamaterials applications. This class of complex plasmonic nanostructures holds great potential for both the observation of new physical phenomena and practical applications. This thesis will focus on the fabrication and characterization of several examples of these complex nanostructures using darkfield spectroscopy. The plasmon modes of a dimer consisting of two nanoshells are investigated in both the separated and conductively overlapping regimes and are interpreted using the plasmon hybridization model. Next, coupled nanoclusters of seven particles arranged in a hexagonal pattern are studied. It is found that these nanoclusters support Fano resonances due to the coupling and interference of degenerate subradiant and superradiant plasmon modes. These structures are found to have an extremely high sensitivity to the local dielectric environment, making them attractive for biosensing applications. Variations on the nanocluster geometry are then explored, and it is observed that by adding more particles and

  7. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  8. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  9. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  10. Discharge transient coupling in large space power systems

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Stillwell, R. P.

    1990-01-01

    Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.

  11. Coupled chemical oscillators and emergent system properties.

    PubMed

    Epstein, Irving R

    2014-09-25

    We review recent work on a variety of systems, from the nanometre to the centimetre scale, including microemulsions, microfluidic droplet arrays, gels and flow reactors, in which chemical oscillators interact to generate novel spatiotemporal patterns and/or mechanical motion. PMID:24835430

  12. A micro-coupling for micro mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  13. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  14. Quantum mechanical study of a generic quadratically coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Shi, H.; Bhattacharya, M.

    2013-04-01

    Typical optomechanical systems involving optical cavities and mechanical oscillators rely on a coupling that varies linearly with the oscillator displacement. However, recently a coupling varying instead as the square of the mechanical displacement has been realized, presenting new possibilities for nondemolition measurements and mechanical squeezing. In this article we present a quantum mechanical study of a generic quadratic-coupling optomechanical Hamiltonian. First, neglecting dissipation, we provide analytical results for the dressed states, spectrum, phonon statistics and entanglement. Subsequently, accounting for dissipation, we supply a numerical treatment using a master equation approach. We expect our results to be of use to optomechanical spectroscopy, state transfer, wave-function engineering, and entanglement generation.

  15. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel

    NASA Astrophysics Data System (ADS)

    Horstwood, M. S. A.; Evans, J. A.; Montgomery, J.

    2008-12-01

    The determination of accurate Sr isotope ratios in calcium phosphate matrices by laser ablation multi-collector ICP-MS is demonstrated as possible even with low Sr concentration archaeological material. Multiple on-line interference correction routines for doubly-charged REE, Ca dimers and Rb with additional calibration against TIMS-characterised materials are required to achieve this. The calibration strategy proposed uses both inorganic and biogenic apatite matrices to monitor and correct for a 40Ca- 31P- 16O polyatomic present at levels of 0.3-1% of the non-oxide peak, which interferes on 87Sr causing inaccuracies of 0.03-0.4% in the 87Sr/ 86Sr isotope ratio. The possibility also exists for synthetic materials to be used in this calibration. After correction for interferences total combined uncertainties of 0.04-0.15% (2SD) are achieved for analyses of 13-24 μg of archaeological tooth enamel with Sr concentrations of ca. 100-500 ppm using MC-ICP-MS. In particular, for samples containing >300 ppm Sr, total uncertainties of ˜0.05% are possible utilising 7-12 ng Sr. Data quality is monitored by determination of 84Sr/ 86Sr ratios. When applied to an archaeological cattle tooth this approach shows Sr-isotope variations along the length of the tooth in agreement with independent TIMS data. The 40Ca- 31P- 16O polyatomic interference is the root cause of the bias at mass 87 during laser ablation ICP-MS analysis of inorganic and biogenic calcium phosphate (apatite) matrices. This results in inaccurate 87Sr/ 86Sr ratios even after correction of Ca dimers and doubly charged rare earth elements. This interference is essentially constant at specific ablation conditions and therefore the effect on 87Sr/ 86Sr data varies in proportion to changes in the Sr concentration of the ablated material. Complete elimination of this interference is unlikely through normal analytical mechanisms and therefore represents a limitation on the achievable accuracy of LA-(MC-)ICP-MS 87Sr/ 86Sr

  16. Exact synchronization bound for coupled time-delay systems.

    PubMed

    Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  17. Exact synchronization bound for coupled time-delay systems

    NASA Astrophysics Data System (ADS)

    Senthilkumar, D. V.; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J.

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  18. Asymptotic behavior of coupled linear systems modeling suspension bridges

    NASA Astrophysics Data System (ADS)

    Dell'Oro, Filippo; Giorgi, Claudio; Pata, Vittorino

    2015-06-01

    We consider the coupled linear system describing the vibrations of a string-beam system related to the well-known Lazer-McKenna suspension bridge model. For ɛ > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.

  19. Practical thermodynamics of Yukawa systems at strong coupling.

    PubMed

    Khrapak, Sergey A; Kryuchkov, Nikita P; Yurchenko, Stanislav O; Thomas, Hubertus M

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed. PMID:26001480

  20. Practical thermodynamics of Yukawa systems at strong coupling

    SciTech Connect

    Khrapak, Sergey A.; Kryuchkov, Nikita P.; Yurchenko, Stanislav O.; Thomas, Hubertus M.

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.

  1. Modified technique for determining therapeutic response to radiofrequency ablation therapy for hepatocellular carcinoma using US-volume system.

    PubMed

    Hiraoka, Atsushi; Hirooka, Masashi; Koizumi, Yohei; Hidaka, Satoshi; Uehara, Takahide; Ichikawa, Soichi; Hasebe, Aki; Miyamoto, Yasunao; Ninomiya, Tomoyuki; Michitaka, Kojiro; Horiike, Norio; Yamashita, Yoshimasa; Hiasa, Yoichi; Matsuura, Bunzo; Onji, Morikazu

    2010-02-01

    In radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC), microbubbles appearing during the procedure make it difficult to determine effectiveness with ultrasonography (US) imaging. We developed a modified US-volume system and evaluated its efficacy for demonstrating response to therapeutic RFA. Our US-volume system displays multiplanar reconstruction (MPR) images providing a synchronized view with a US image along with past US-volume data in real-time side-by-side on a personal computer. Seventy-eight patients (94 nodules) were enrolled, of whom 35 (47 nodules) were evaluated using this system (US-volume group) and compared to the other 43 (47 nodules) examined before development of our system (control group). All nodules were clearly depicted by US. If the shortage of margin was predicted with US-volume system, we performed additional needle insertion. Tumor necrosis following RFA was graded by dynamic computed tomography as follows: Grade A, necrotic area surrounded in all directions with an adequate margin (>or=5 mm); Grade B, necrotic area surrounded in all directions, though some margin areas <5 mm; and Grade C, residual tumor or necrotic area smaller than the target tumor. In the US-volume group, the average tumor size was not smaller than that in the control (15.9+/-4.9 vs. 16.0+/-4.3 mm) and adequate margins were obtained (Grade A, B, C, 45/1/1 vs. 35/8/4; P<0.01). Further, there was a significant reduction in numbers of RFA sessions as compared to the control (1.03+/-0.17 vs. 1.12+/-0.32; P<0.01). In HCC patients undergoing RFA, our modified US-volume system accurately demonstrated therapeutic response, which led to a reduced number of RFA sessions.

  2. Randomized crossover comparison of adhesively coupled colostomy pouching systems.

    PubMed

    Berg, Kirsten; Seidler, Heidi

    2005-03-01

    Ostomy pouching systems affect well being and quality of life, making selection of the appropriate system a key element of ostomy care. Several innovative adhesively coupled, two-piece systems are on the market. They feature flexible low profiles, allowing pouch removal/replacement without changing the skin barrier or wafer. This facilitates inspection or pouch changes without disrupting peristomal skin. Because few controlled trials compare pouching system effectiveness, a prospective, randomized open-label, crossover study was conducted. Under the supervision of ostomy care nurses in six outpatient clinics in Germany, clinical performance of and patient preferences for two adhesively coupled, closed-end pouching systems were compared during normal use. One is a gelatin/pectin-based skin barrier sealed to the pouch with a company-specific adhesive coupling technology (System E); the other, a grooved base plate wafer adhesive pouch coupling system (System F). Seventeen attributes and seven end-of-study measures that included comfort, flexibility, wear time, ease of removal, and overall performance were assessed. Informed, consenting participants were randomly assigned to use one system for five skin barrier/wafer changes or up to 15 days and subsequently switched to the alternative system for a similar period. The 39 participants used a total of 1,645 pouches and 342 skin barriers. All were found safe as determined by incidence and nature of the reported peristomal skin problems, subject withdrawals, and adverse events for both systems. However, System E provided longer pouch wear times (P < 0.01). End-phase ratings favored System E on 10 of the 17 attributes (P < 0.04) and System Fon none. More participants preferred System E on all seven end-of-study measures, five significantly (comfort, flexibility, wear time, ease of removal, and overall performance; (P < 0.02). These participant-reported, ostomy-related outcomes underscore the importance of product evaluation

  3. Thermal Response and Ablation Programs for TPS Sizing Computation

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The computer programs developed at NASA Ames Research Center for TPS sizing computation have been applied to many NASA's space missions, such as Mars Pathfinder, StarDust, Mars 2001, DS-II, and Saturn Entry Probe. These computer programs include FIAT (Fully Implicit Ablation and Thermal Response Program, MAT (Multi-component Ablation Thermochemistry Program), TPSX (Thermal Protection Systems Expert & Material Properties Database), and TPSGui (Thermal Protection Systems Graphical User Interface). For most planetary missions, the aerothermodynamics and material response are strongly coupled; thus a closed loop iteration technique between the FIAT and CFD (Computational Fluid Dynamics) codes has been developed to obtain the high fidelity bench mark TPS sizing solution. The computer codes and predictive methods are presented and discussed in detail.

  4. Discrete synchronization of massively connected systems using hierarchical couplings

    NASA Astrophysics Data System (ADS)

    Poignard, Camille

    2016-04-01

    We study the synchronization of massively connected dynamical systems for which the interactions come from the succession of couplings forming a global hierarchical coupling process. Motivations of this work come from the growing necessity of understanding properties of complex systems that often exhibit a hierarchical structure. Starting with a set of 2n systems, the couplings we consider represent a two-by-two matching process that gather them in larger and larger groups of systems, providing to the whole set a structure in n stages, corresponding to n scales of hierarchy. This leads us naturally to the synchronization of a Cantor set of systems, indexed by { 0 , 1 } N, using the closed-open sets defined by n-tuples of 0 and 1 that permit us to make the link with the finite previous situation of 2n systems: we obtain a global synchronization result generalizing this case. In the same context, we deal with this question when some defects appear in the hierarchy, that is to say when some couplings among certain systems do not happen at a given stage of the hierarchy. We prove we can accept an infinite number of broken links inside the hierarchy while keeping a local synchronization, under the condition that these defects are present at the N smallest scales of the hierarchy (for a fixed integer N) and they be enough spaced out in those scales.

  5. Quantitative solid sample analysis by ArF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; von Oldershausen, Georg

    2005-06-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser Ablation in combination with inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  6. Intrinsic common noise in a system of two coupled Brusselators

    NASA Astrophysics Data System (ADS)

    Nandi, Amitabha; Lindner, Benjamin

    2010-10-01

    We investigate effects of coupling two chemical subsystems through diffusion of chemical species. We consider the Langevin description of the actual microscopic dynamics and show that diffusive coupling gives rise to a common noise term along with the deterministic interaction. As a model example, we study two diffusively coupled Brusselator systems. By numerical Langevin simulations, we inspect the effect of the common noise term on the total correlation between the two Brusselators; we also verify the validity of the Langevin approach by comparison to simulations of the more accurate master equation. The intrinsic common noise has its strongest effect for the Brusselator dynamics operating at a stable fixed point far from the Hopf bifurcation; in this case, the common noise reduces the correlation of the Brusselators significantly. We also show that for specific parameter sets the covariance between the systems is maximized (or minimized) at a finite system size.

  7. Use of laser ablation-inductively coupled plasma-time of flight-mass spectrometry to identify the elemental composition of vanilla and determine the geographic origin by discriminant function analysis.

    PubMed

    Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith

    2013-11-27

    A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.

  8. Lens-coupled x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Fan, Helen Xiang

    Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.

  9. Tunable multiple mode-splitting in coupled graphene resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Jicheng; Xia, Xiushan; Wang, Xiaosai; Liu, Shutian

    2016-05-01

    We investigate a coupled graphene resonator system which exhibits multiple mode-splitting effects and electromagnetically-induced-absorption-like transmission. The finite element method has been employed to study the transmission and electromagnetic responses of our designs at mid-infrared frequency. According to simulation results, the mode-splitting effects are mainly dependent on the destructive interference between two graphene resonators. By varying the chemical potential of graphene or the coupling gap, we are accessible to achieve a dynamically controllable mode-splitting system serving as a sensing application.

  10. Impact of radiofrequency ablation for patients with varicose veins on the budget of the German statutory health insurance system

    PubMed Central

    2013-01-01

    Objectives In contrast to other countries, surgery still represents the common invasive treatment for varicose veins in Germany. However, radiofrequency ablation, e.g. ClosureFast, becomes more and more popular in other countries due to potential better results and reduced side effects. This treatment option may cause less follow-up costs and is a more convenient procedure for patients, which could justify an introduction in the statutory benefits catalogue. Therefore, we aim at calculating the budget impact of a general reimbursement of ClosureFast in Germany. Methods To assess the budget impact of including ClosureFast in the German statutory benefits catalogue, we developed a multi-cohort Markov model and compared the costs of a “World with ClosureFast” with a “World without ClosureFast” over a time horizon of five years. To address the uncertainty of input parameters, we conducted three different types of sensitivity analysis (one-way, scenario, probabilistic). Results In the Base Case scenario, the introduction of the ClosureFast system for the treatment of varicose veins saves costs of about 19.1 Mio. € over a time horizon of five years in Germany. However, the results scatter in the sensitivity analyses due to limited evidence of some key input parameters. Conclusions Results of the budget impact analysis indicate that a general reimbursement of ClosureFast has the potential to be cost-saving in the German Statutory Health Insurance. PMID:23551943

  11. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  12. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  13. Photochemical ablation of organic solids

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.; Garrison, Barbara J.

    2003-04-01

    We have investigated by molecular dynamics simulations the ablation of material that is onset by photochemical processes. We compare this system with only photochemical processes to a system containing photochemical and photothermal processes. The simulations reveal that ablation by purely photochemical processes is accompanied by the ejection of relatively cold massive molecular clusters from the surface of the sample. The top of the plume exhibits high temperatures whereas the residual part of the sample is cold. The removal of the damaged material through big molecular cluster ejection is consistent with experimental observations of low heat damage of material.

  14. Existence of a coupled system of fractional differential equations

    SciTech Connect

    Ibrahim, Rabha W.; Siri, Zailan

    2015-10-22

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.

  15. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  16. Land-surface atmosphere coupling in an earth system model

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2014-05-01

    The interaction between the atmosphere and the strongly heterogeneous land surface is one of the central scientific topics within Earth system sciences and especially climate research. Many processes, such as vegetation dynamics and the development of spatial patterns in the Subtropics and permafrost regions, take place on scales much below the scale of model resolution. Thus, it is an important scientific challenge to consider the influence of sub-scale heterogeneity on the vertical near-surface fluxes of energy and water. Most climate models do not take into account the actual scale of surface heterogeneities. When coupling a heterogeneous surface to the atmosphere often coupling methods are employed, which include the underlying assumption that the horizontal extent of the individual heterogeneity is so small that the turbulent vertical fluxes stemming from the different surface heterogeneities within one grid-box have mixed horizontally below the lowest model level of the atmosphere. This assumption allows a comparatively simple land-surface-atmosphere coupling with a horizontally homogeneous state of the atmosphere, but it may also be the source of significant errors. In order to access the extent of error introduced we designed an experiment in which the results of three different coupling schemes were compared. The first one is a parameter-aggregation scheme, the second a flux-aggregation scheme based on the assumption of a horizontally homogeneous atmosphere on the lowest atmospheric model level and the third one is a coupling scheme which allows, up to a given height, for the atmosphere to be horizontally heterogeneous within a grid-box. These coupling methods were implemented in the land-surface model JSBACH which was then coupled to the general circulation model ECHAM6, both part of the Max Planck Institute for Meteorology's earth system model MPI-ESM. In a first step sensitivity studies are being carried out to gain process understanding and to

  17. Enhancements to the SHARP Build System and NEK5000 Coupling

    SciTech Connect

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    2014-10-01

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that

  18. Chaos Synchronization of Two Coupled Dynamos Systems with Unknown System Parameters

    NASA Astrophysics Data System (ADS)

    Agiza, H. N.

    This paper addresses the synchronization problem of two coupled dynamos systems in the presence of unknown system parameters. Based on Lyapunov stability theory, an active control law is derived and activated to achieve the state synchronization of two identical coupled dynamos systems. By using Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled dynamos systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. Numerical simulations results are used to demonstrate the effectiveness of the proposed control methods.

  19. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  20. The coupled nonlinear dynamics of a lift system

    NASA Astrophysics Data System (ADS)

    Crespo, Rafael Sánchez; Kaczmarczyk, Stefan; Picton, Phil; Su, Huijuan

    2014-12-01

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  1. The coupled nonlinear dynamics of a lift system

    SciTech Connect

    Crespo, Rafael Sánchez E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Picton, Phil E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  2. Current Driven Magnetic Damping in Dipolar-Coupled Spin System

    NASA Astrophysics Data System (ADS)

    Lee, Sung Chul; Pi, Ung Hwan; Kim, Keewon; Kim, Kwang Seok; Shin, Jaikwang; -in Chung, U.

    2012-07-01

    Magnetic damping of the spin, the decay rate from the initial spin state to the final state, can be controlled by the spin transfer torque. Such an active control of damping has given birth to novel phenomena like the current-driven magnetization reversal and the steady spin precession. The spintronic devices based on such phenomena generally consist of two separate spin layers, i.e., free and pinned layers. Here we report that the dipolar coupling between the two layers, which has been considered to give only marginal effects on the current driven spin dynamics, actually has a serious impact on it. The damping of the coupled spin system was greatly enhanced at a specific field, which could not be understood if the spin dynamics in each layer was considered separately. Our results give a way to control the magnetic damping of the dipolar coupled spin system through the external magnetic field.

  3. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations.

  4. Transactive memory systems scale for couples: development and validation

    PubMed Central

    Hewitt, Lauren Y.; Roberts, Lynne D.

    2015-01-01

    People in romantic relationships can develop shared memory systems by pooling their cognitive resources, allowing each person access to more information but with less cognitive effort. Research examining such memory systems in romantic couples largely focuses on remembering word lists or performing lab-based tasks, but these types of activities do not capture the processes underlying couples’ transactive memory systems, and may not be representative of the ways in which romantic couples use their shared memory systems in everyday life. We adapted an existing measure of transactive memory systems for use with romantic couples (TMSS-C), and conducted an initial validation study. In total, 397 participants who each identified as being a member of a romantic relationship of at least 3 months duration completed the study. The data provided a good fit to the anticipated three-factor structure of the components of couples’ transactive memory systems (specialization, credibility and coordination), and there was reasonable evidence of both convergent and divergent validity, as well as strong evidence of test–retest reliability across a 2-week period. The TMSS-C provides a valuable tool that can quickly and easily capture the underlying components of romantic couples’ transactive memory systems. It has potential to help us better understand this intriguing feature of romantic relationships, and how shared memory systems might be associated with other important features of romantic relationships. PMID:25999873

  5. Selective coherence transfers in homonuclear dipolar coupled spin systems

    SciTech Connect

    Ramanathan, Chandrasekhar; Sinha, Suddhasattwa; Havel, Timothy F.; Cory, David G.; Baugh, Jonathan

    2005-02-01

    Controlling the dynamics of a dipolar coupled spin system is critical to the development of solid-state spin-based quantum information processors. Such control remains challenging, as every spin is coupled to a large number of surrounding spins. Here we demonstrate that in an ensemble of spin pairs it is possible to decouple the weaker interactions (weak coupling {omega}{sub D}{sup w}) between different pairs and extend the coherence lifetimes within the two-spin system from 19 {mu}s to 11.1 ms, a factor of 580. This is achieved without decoupling the stronger interaction (strong coupling {omega}{sub D}{sup S}) between the two spins within a pair. An amplitude modulated rf field is applied on resonance with the Larmor frequency of the spins, with amplitude {omega}{sub 1}, and frequency of the modulation matched to the strong coupling. The spin pairs appear isolated from each other in the regime where the rf power satisfies {omega}{sub D}{sup w}<<{omega}{sub 1}<<{omega}{sub D}{sup S}.

  6. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  7. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  8. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  9. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  10. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  11. Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system.

    PubMed

    Papademetriou, Vasilios; Tsioufis, Costas P; Sinhal, Ajay; Chew, Derek P; Meredith, Ian T; Malaiapan, Yuvi; Worthley, Matthew I; Worthley, Stephen G

    2014-09-01

    Renal denervation has emerged as a novel approach for the treatment of patients with drug-resistant hypertension. To date, only limited data have been published using multielectrode radiofrequency ablation systems. In this article, we present the 12-month data of EnligHTN I, a first-in-human study using a multielectrode ablation catheter. EnligHTN I enrolled 46 patients (average age, 60±10 years; on average 4.7±1.0 medications) with drug-resistant hypertension. Eligible patients were on ≥3 antihypertensive medications and had a systolic blood pressure (BP) ≥160 mm Hg (≥150 mm Hg for diabetics). Bilateral renal artery ablation was performed using a percutaneous femoral approach and standardized techniques. The average baseline office BP was 176/96 mm Hg, average 24-hour ambulatory BP was 150/83 mm Hg, and average home BP was 158/90 mm Hg. The average reductions (mm Hg) at 1, 3, 6, and 12 months were as follows: office: -28/-10, -27/-10, -26/-10, and -27/-11 mm Hg (P<0.001 for all); 24-hour ambulatory: -10/-5, -10/-5, -10/-6 (P<0.001 for all), and -7/-4 for 12 months (P<0.0094). Reductions in home measurements (based on 2-week average) were -9/-4, -8/-5,-10/-7, and -11/-6 mm Hg (P<0.001 at 12 months). At 12 months, there were no signals of worsening renal function and no new serious or life-threatening adverse events. One patient with baseline nonocclusive renal artery stenosis progressed to 75% diameter stenosis, requiring renal artery stenting. The 12-month data continue to demonstrate safety and efficacy of the EnligHTN ablation system in patients with drug-resistant hypertension. Home BP measurements parallel measurements obtained with 24-hour ambulatory monitoring.

  12. Spiral wave chimeras in locally coupled oscillator systems.

    PubMed

    Li, Bing-Wei; Dierckx, Hans

    2016-02-01

    The recently discovered chimera state involves the coexistence of synchronized and desynchronized states for a group of identical oscillators. In this work, we show the existence of (inwardly) rotating spiral wave chimeras in the three-component reaction-diffusion systems where each element is locally coupled by diffusion. A transition from spiral waves with the smooth core to spiral wave chimeras is found as we change the local dynamics of the system or as we gradually increase the diffusion coefficient of the activator. Our findings on the spiral wave chimera in the reaction-diffusion systems suggest that spiral chimera states may be found in chemical and biological systems that can be modeled by a large population of oscillators indirectly coupled via a diffusive environment. PMID:26986275

  13. Spiral wave chimeras in locally coupled oscillator systems

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Dierckx, Hans

    2016-02-01

    The recently discovered chimera state involves the coexistence of synchronized and desynchronized states for a group of identical oscillators. In this work, we show the existence of (inwardly) rotating spiral wave chimeras in the three-component reaction-diffusion systems where each element is locally coupled by diffusion. A transition from spiral waves with the smooth core to spiral wave chimeras is found as we change the local dynamics of the system or as we gradually increase the diffusion coefficient of the activator. Our findings on the spiral wave chimera in the reaction-diffusion systems suggest that spiral chimera states may be found in chemical and biological systems that can be modeled by a large population of oscillators indirectly coupled via a diffusive environment.

  14. The exact wavefunction factorization of a vibronic coupling system

    SciTech Connect

    Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.

    2014-02-07

    We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation.

  15. Nature of heat in strongly coupled open quantum systems

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano; Ochoa, Maicol A.; Galperin, Michael

    2015-12-01

    We show that any heat definition expressed as an energy change in the reservoir energy plus any fraction of the system-reservoir interaction is not an exact differential when evaluated along reversible isothermal transformations, except when that fraction is zero. Even in that latter case the reversible heat divided by temperature, namely entropy, does not satisfy the third law of thermodynamics and diverges in the low temperature limit. These results are found within the framework of nonequilibrium Green functions (NEGF) using a single level quantum dot strongly coupled to fermionic reservoirs and subjected to a time-dependent protocol modulating the dot energy as well as the dot-reservoir coupling strength.

  16. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  17. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  18. Dendritic and synaptic effects in systems of coupled cortical oscillators.

    PubMed

    Crook, S M; Ermentrout, G B; Bower, J M

    1998-07-01

    We explore the influence of synaptic location and form on the behavior of networks of coupled cortical oscillators. First, we develop a model of two coupled somatic oscillators that includes passive dendritic cables. Using a phase model approach, we show that the synchronous solution can change from a stable solution to an unstable one as the cable lengthens and the synaptic position moves further from the soma. We confirm this prediction using a system of coupled compartmental models. We also demonstrate that when the synchronous solution becomes unstable, a bifurcation occurs and a pair of asynchronous stable solutions appear, causing a phase lag between the cells in the system. Then using a variety of coupling functions and different synaptic positions, we show that distal connections and broad synaptic time courses encourage phase lags that can be reduced, eliminated, or enhanced by the presence of active currents in the dendrite. This mechanism may appear in neural systems where proximal connections could be used to encourage synchrony, and distal connections and broad synaptic time courses could be used to produce phase lags that can be modulated by active currents.

  19. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  20. Non-Markovian approach to globally coupled excitable systems

    SciTech Connect

    Prager, T.; Schimansky-Geier, L.; Zaks, M. A.; Falcke, M.

    2007-07-15

    We consider stochastic excitable units with three discrete states. Each state is characterized by a waiting time density function. This approach allows for a non-Markovian description of the dynamics of separate excitable units and of ensembles of such units. We discuss the emergence of oscillations in a globally coupled ensemble with excitatory coupling. In the limit of a large ensemble we derive the non-Markovian mean-field equations: nonlinear integral equations for the populations of the three states. We analyze the stability of their steady solutions. Collective oscillations are shown to persist in a large parameter region beyond supercritical and subcritical Hopf bifurcations. We compare the results with simulations of discrete units as well as of coupled FitzHugh-Nagumo systems.

  1. Feedback instability in the magnetosphere-ionosphere coupling system: Revisited

    SciTech Connect

    Watanabe, T.-H.

    2010-02-15

    A coupled set of the reduced magnetohydrodynamic and the two-fluid equations is applied to the magnetosphere-ionosphere (M-I) feedback interactions in relation to growth of quite auroral arcs. A theoretical analysis revisiting the linear feedback instability reveals asymptotic behaviors of the dispersion relation and a non-Hermite property in the M-I coupling. A nonlinear simulation of the feedback instability in the M-I coupling system manifests growth of the Kelvin-Helmholtz-like mode in the magnetosphere as the secondary instability. The distorted vortex and field-aligned current profiles propagating as the shear Alfven waves lead to spontaneous deformation of ionospheric density and current structures associated with auroral arcs.

  2. Development of 3D Woven Ablative Thermal Protection Systems (TPS) for NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Feldman, Jay D.; Ellerby, Don; Stackpoole, Mairead; Peterson, Keith; Venkatapathy, Ethiraj

    2015-01-01

    The development of a new class of thermal protection system (TPS) materials known as 3D Woven TPS led by the Entry Systems and Technology Division of NASA Ames Research Center (ARC) will be discussed. This effort utilizes 3D weaving and resin infusion technologies to produce heat shield materials that are engineered and optimized for specific missions and requirements. A wide range of architectures and compositions have been produced and preliminarily tested to prove the viability and tailorability of the 3D weaving approach to TPS.

  3. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts

  4. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems.

    PubMed

    Brummitt, Charles D; Barnett, George; D'Souza, Raissa M

    2015-11-01

    An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast-slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to 'hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets.

  5. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems.

    PubMed

    Brummitt, Charles D; Barnett, George; D'Souza, Raissa M

    2015-11-01

    An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast-slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to 'hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684

  6. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

    PubMed Central

    Barnett, George; D'Souza, Raissa M.

    2015-01-01

    An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684

  7. High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.

    2003-06-01

    Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.

  8. Development of a Fieldable Air-Coupled Ultrasonic Inspection System

    NASA Astrophysics Data System (ADS)

    Peters, J. J.; Barnard, D. J.; Hsu, D. K.

    2004-02-01

    This paper describes the development of a non-mechanically encoded, simple, field-worthy air-coupled ultrasonic scanning system that gives quantitative information about the size of damage and underlying structure in composite and aluminum aerospace structures. The system consists of the AIRSCAN® air-coupled ultrasonic testing system, the Flock of Birds® real-time motion tracking equipment, a lightweight composite yoke, and laptop PC with data acquisition and processing software. Through transmission C-scan images are generated manually by moving transducers attached to a yoke across the part's surface. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Field tests on commercial and military aircraft as well as rotor blades have begun. Initial test results are shown.

  9. Impurity gradients in solution-grown ice and MgSO4·12H2O crystals measured by cryo-laser ablation and high-resolution-induced-coupled plasma mass spectrograph

    NASA Astrophysics Data System (ADS)

    Gärtner, R. S.; Genceli, F. E.; Trambitas, D. O.; Witkamp, G. J.

    2005-02-01

    During the eutectic freeze crystallization (EFC) of an industrial aqueous MgSO4 solution, ice and magnesium sulfate duodecahydrate ( MgSO4·12H2O(s)) were crystallized simultaneously near the eutectic point. It was found that the crystallization was highly selective: although the industrial feed solution contained appreciable levels of inorganic impurities (typically: 320 mg/L Cl-, 410 mg/L Ca2, 40 mg/L Mn, 70 mg/L Na+ and 50 mg/L K+), the formed ice and salt crystals contained lower levels of impurities (typically: 17 mg/L Cl-, 8 mg/L Ca, 17 mg/L Mn, and 5 mg/L Na). Also the ice was pure: only traces (typically: 20 mg/L SO42- and 5 mg/L Mg) of magnesium and sulfate were found in the ice crystals. In this work the spatial distribution of the impurities in the crystals is investigated. Gradients of composition in solids are measured by laser ablation high-resolution inductively coupled plasma mass spectrometry (LA-HR-ICP-MS). A special cryogenic sampling cell (<-80C) for laser ablation has been constructed. The focused (5- 10 μm width) laser shoots at the frozen sample, scanning its surface. The vapor is fed to the mass spectrometer. In this way, the impurity concentration as a function of position in the crystal can be measured. The results of this method with MgSO4·12H2O and ice are presented.

  10. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Esben Poulsen, Carl; Kistrup, Kasper; Korsgaard Andersen, Nis; Taboryski, Rafael; Fougt Hansen, Mikkel; Wolff, Anders

    2016-06-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio (h  ×  w  =  2000 μm  ×  550 μm) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar.

  11. Water Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations

    PubMed Central

    Seadawy, A. R.; El-Rashidy, K.

    2014-01-01

    An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable. PMID:25374940

  12. Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations.

    PubMed

    Seadawy, A R; El-Rashidy, K

    2014-01-01

    An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable. PMID:25374940

  13. From globally coupled maps to complex-systems biology.

    PubMed

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  14. From globally coupled maps to complex-systems biology

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  15. Free Vibration of a Rectangular Plate-Beam Coupled System

    NASA Astrophysics Data System (ADS)

    Chiba, M.; Yoshida, I.

    1996-07-01

    A free vibration analysis by the Rayleigh-Ritz method is presented for a rectangular plate-beam coupled system. The system consists of a cantilever rectangular plate and either a pair of beams or a single beam connected to the free end side furthest away from the support. Natural frequencies and vibration modes are provided for various system configurations: i.e., the length ratio between the plate and the beam, the aspect ratio of the plate, and the distance between beams. To confirm the validity of the analysis, an experiment was also conducted, with polystyrene test plates of 0·5 mm thickness. The respective results are in good agreement.

  16. From globally coupled maps to complex-systems biology

    SciTech Connect

    Kaneko, Kunihiko

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  17. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  18. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  19. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  20. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  1. Mediterranea Forecasting System: a focus on wave-current coupling

    NASA Astrophysics Data System (ADS)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  2. FABP-1 gene ablation impacts brain endocannabinoid system in male mice.

    PubMed

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Huang, Huan; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2016-08-01

    Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO

  3. Development and Evaluation of New Coupling System for Lower Limb Prostheses with Acoustic Alarm System

    PubMed Central

    Eshraghi, Arezoo; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ahmadian, Jalil; Rahmati, Bizhan; Abas, Wan Abu Bakar Wan

    2013-01-01

    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system. PMID:23881340

  4. Quantum Brayton cycle with coupled systems as working substance.

    PubMed

    Huang, X L; Wang, L C; Yi, X X

    2013-01-01

    We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by F(x)) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by F(y)). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by F(x)), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by F(y)). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by F(y), the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.

  5. Equations of motion for coupled n-body systems

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1980-01-01

    Computer program, developed to analyze spacecraft attitude dynamics, can be applied to large class of problems involving objects that can be simplified into component parts. Systems of coupled rigid bodies, point masses, symmetric wheels, and elastically flexible bodies can be analyzed. Program derives complete set of non-linear equations of motion in vectordyadic format. Numerical solutions may be printed out. Program is in FORTRAN IV for batch execution and has been implemented on IBM 360.

  6. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  7. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  8. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  9. Spin-orbit coupling rule in bound fermion systems

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Mutschler, A.; Vretenar, D.

    2016-08-01

    Spin-orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc, and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin-orbit coupling on shell structure is large in nuclei, small in quarkonia and perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin-orbit effect that applies to very different quantum systems, regardless of whether the spin-orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explain the fact that spin-orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin-orbit force, we predict the occurrence of giant spin-orbit energy splittings that dominate the single-particle excitation spectrum.

  10. A coupled "AB" system: Rogue waves and modulation instabilities.

    PubMed

    Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  11. A coupled "AB" system: Rogue waves and modulation instabilities

    NASA Astrophysics Data System (ADS)

    Wu, C. F.; Grimshaw, R. H. J.; Chow, K. W.; Chan, H. N.

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  12. Spin–orbit coupling rule in bound fermion systems

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Mutschler, A.; Vretenar, D.

    2016-08-01

    Spin–orbit coupling characterizes quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc, and is essential for understanding their spectroscopic properties. Depending on the system, the effect of spin–orbit coupling on shell structure is large in nuclei, small in quarkonia and perturbative in atoms. In the standard non-relativistic reduction of the single-particle Dirac equation, we derive a universal rule for the relative magnitude of the spin–orbit effect that applies to very different quantum systems, regardless of whether the spin–orbit coupling originates from the strong or electromagnetic interaction. It is shown that in nuclei the near equality of the mass of the nucleon and the difference between the large repulsive and attractive potentials explain the fact that spin–orbit splittings are comparable to the energy spacing between major shells. For a specific ratio between the particle mass and the effective potential whose gradient determines the spin–orbit force, we predict the occurrence of giant spin–orbit energy splittings that dominate the single-particle excitation spectrum.

  13. Diffusion current in a system of coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.

    2012-08-01

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  14. Diffusion current in a system of coupled Josephson junctions

    SciTech Connect

    Shukrinov, Yu. M. Rahmonov, I. R.

    2012-08-15

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  15. Geometric nonlinear formulation for thermal-rigid-flexible coupling system

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Liu, Jin-Yang

    2013-10-01

    This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.

  16. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  17. Improved analytical characterization of solid waste forms (glass, metals, soils) by fundamental development of the laser ablation technology. 1997 annual progress report

    SciTech Connect

    Russo, R.E.

    1997-01-01

    'Laser ablation is a promising technology for chemical characterization within every DOE EM major problem area (high-level waste tanks, contaminant plumes, D and D activities, spent nuclear fuel, mixed wastes, landfills, nuclear waste disposal, and HEU disposition). This EMSP research endeavors to expand the fundamental basis in laser ablation technology for its application to these DOE characterization needs. Laser ablation must be understood on a fundamental level to ensure confidence in chemical characterization of environmental samples. The goal is to develop a fundamental understanding of laser ablation processes, and to determine the influence of these processes on analytical behavior (sensitivity and accuracy) in order to bring this technology to fruition. This report summarizes the research completed in the first year of this project. The initial work addressed: accuracy of chemical characterization by verifying that the ICP (inductively coupled plasma) was not adversely influenced by ablated mass; accuracy of ablation sampling versus laser pulse time; and sensitivity enhancements through the use of various gas environments. The research and development utilized an existing ICP-AES system. Part of the effort also included the evaluation, purchase, and installation of an ICP-MS system. Three scientific manuscripts were completed and submitted to technical journals. One of the goals of this work is to support the efforts at all the National Laboratories investigating laser ablation technology for the management of DOE radioactive, hazardous chemical, and mixed waste; collaborations with scientists at other National Laboratories have been initiated.'

  18. Optimization of coupled systems: A critical overview of approaches

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Sobieszczanski-Sobieski, J.

    1994-01-01

    A unified overview is given of problem formulation approaches for the optimization of multidisciplinary coupled systems. The overview includes six fundamental approaches upon which a large number of variations may be made. Consistent approach names and a compact approach notation are given. The approaches are formulated to apply to general nonhierarchic systems. The approaches are compared both from a computational viewpoint and a managerial viewpoint. Opportunities for parallelism of both computation and manpower resources are discussed. Recommendations regarding the need for future research are advanced.

  19. Spin pumping in electrodynamically coupled magnon-photon systems

    NASA Astrophysics Data System (ADS)

    Bai, Lihui

    The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.

  20. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  1. Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Kaakkunen, J. J. J.; Paivasaari, K.; Vahimaa, P.

    2011-05-01

    We present a novel method to fabricate hole arrays by forming a four-beam interference pattern with two gratings. In this method a femtosecond laser beam is split into four and collected to interfere using two cascaded diffractive gratings. One benefit of this grating pair is that it is achromatic, because of the geometry of the grating pair, and therefore it is suitable for femtosecond ablation. Grating pairs were designed and fabricated for a standard Ti:sapphire femtosecond laser, with 800-nm central wavelength, so that the interference pattern generates holes with less than 1-μm diameter. Holes with this size diffract with a colorful visual appearance in the visible wavelength range and therefore these structures are suitable for security, authentication and decorative marking. We show that this method is suitable for fast ablation of hole arrays in both silicon and steel.

  2. Theoretical study on perpendicular magnetoelectric coupling in ferroelectromagnet system

    NASA Astrophysics Data System (ADS)

    Zhong, Chonggui; Jiang, Qing

    2002-06-01

    We apply the Heisenberg model for antiferromagnetic interaction and Diffour model for ferroelectric interaction to analyze the magnetic, electric, magnetoelectric property in the system with the spontaneous coexistence of the ferroelectric and antiferromagnetic orders below a certain temperature. The soft mode theory is used to calculate the on-site polarization and mean field theory is applied to deal with the on-site magnetization. We also present the perpendicular magnetoelectric susceptibility χme⊥, polarization susceptibility χp as a function of temperature, and discuss the effect of the inherent magnetoelectric coupling on them. In addition, it is found that an anomaly appears in the curve of the polarization susceptibility due to the coupling between the ferroelectric and antiferromagnetic orders.

  3. Modulation of magnetotransport in asymmetrically coupled double quantum dot system

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Hua; Huang, Jin; Wang, Wei-Zhong

    2016-08-01

    We study the transport properties in double quantum dots asymmetrically coupled to leads in magnetic field. We focus on the situation in which the second dot (QD2) couples with the leads with a weak hybridization function. The results shows that by tuning the energy level 𝜖2 of QD2 one can control the conductance and its spin polarization of the system. In the absence of magnetic field B, with increasing 𝜖2, the conductance shows a dip structure. This behavior of conductance results from a continuous triplet-doublet quantum phase transition. In the presence of magnetic field B, we obtain a perfect spin filtering with a fully-polarized conductance of up-spin or down-spin.

  4. Surface plasmon polaritons mode conversion via a coupled plasmonic system

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Hao

    2016-05-01

    A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric-metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results.

  5. Modulation of magnetotransport in asymmetrically coupled double quantum dot system

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Hua; Huang, Jin; Wang, Wei-Zhong

    2016-01-01

    We study the transport properties in double quantum dots asymmetrically coupled to leads in magnetic field. We focus on the situation in which the second dot (QD2) couples with the leads with a weak hybridization function. The results shows that by tuning the energy level 𝜖2 of QD2 one can control the conductance and its spin polarization of the system. In the absence of magnetic field B, with increasing 𝜖2, the conductance shows a dip structure. This behavior of conductance results from a continuous triplet-doublet quantum phase transition. In the presence of magnetic field B, we obtain a perfect spin filtering with a fully-polarized conductance of up-spin or down-spin.

  6. Coupled harmonic systems as quantum buses in thermal environments

    NASA Astrophysics Data System (ADS)

    Nicacio, F.; Semião, F. L.

    2016-09-01

    In this work, we perform a careful study of a special arrangement of coupled systems that consists of two external harmonic oscillators weakly coupled to an arbitrary network (data bus) of strongly interacting oscillators. Our aim is to establish simple effective Hamiltonians and Liouvillians allowing an accurate description of the dynamics of the external oscillators regardless of the topology of the network. By simple, we mean an effective description using just a few degrees of freedom. With the methodology developed here, we are able to treat general topologies and, under certain structural conditions, to also include the interaction with external environments. In order to illustrate the predictability of the simplified dynamics, we present a comparative study with the predictions of the numerically obtained exact description in the context of propagation of energy through the network.

  7. MRI-guided focused ultrasound (MRgFUS) system for thermal ablation of prostate cancer: pre-clinical evaluation in canines

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Ziso, Hadas; Assif, Benny; Hananel, Arik; Vykhodtseva, Natalia; Gretton, Peri; Pilatou, Magdalini; Haker, Steven; Tempany, Clare

    2009-02-01

    A transrectal MRgFUS system was tested in a canine prostate model. Focal volumes in each half of the prostate were targeted, with high energy in one half of the gland for ablation and in the other with lower-energy sonications to test our ability to localize the focal spot before causing thermal tissue damage. All sonications (n=155) were readily observed with proton resonance frequency (PRF) MR temperature imaging, contrast enhanced MRI and histology. The prostate gland moved during the experiments, demonstrating the need for motion tracking. The resultant focal temperature changes during the experiments were 24.2 +/- 8.2°C.

  8. Effects of energy delivery via a His bundle catheter during closed chest ablation of the atrioventricular conduction system.

    PubMed Central

    Trantham, J L; Gallagher, J J; German, L D; Broughton, A; Guarnieri, T; Kasell, J

    1983-01-01

    In this paper we summarize our experience and report the characteristics of energy delivery in 23 patients who have undergone closed chest ablation of the normal atrioventricular (AV) conduction system for the treatment of refractory supraventricular arrhythmias. The induction of AV block was achieved by the synchronous delivery of electrical energy with a damped sinusoidal waveform utilizing a standard direct current defibrillator and a standard tripolar His bundle catheter. The procedure was well tolerated, though one patient experienced ventricular fibrillation, which was uneventfully converted with external paddles. Complete AV block was achieved in 20 of 23 patients and all were rendered arrhythmia free, though two still required antiarrhythmic drugs. A stable escape rhythm was seen in all patients with a cycle length of 1,294 +/- 243 ms. Creatine phosphokinase-MB was positive at low levels in 19 of 23 patients and cleared within 24 h. 99mTc pyrophosphate scans were faintly positive in only 2 of 22 patients. Left ventricular wall motion and ejection fractions were unchanged in 19 of 19 patients, two-dimensional echocardiography with microcavitation technique was unchanged in 12 of 12 patients, and a slight increase in pulmonary artery wedge pressure was seen in only 1 of 11 patients. Current, voltage, and their product (power) waveforms were recorded in 12 patients (12 recordings at a defibrillator setting of 200 J and 5 recordings at a defibrillator setting of 300 J) and revealed a complex voltage-current relationship due to changes occurring at the catheter electrode-tissue interface. At 200 J the peak values were 42.2 +/- 3.3 A, 2.16 +/- 0.11 kV, and 87.9 +/- 4.7 kW, while at 300 J the peak values were 58.2 +/- 2.8 A, 2.40 +/- 0.10 kV, and 134.4 +/- 6.7 kW, respectively. No instance of catheter disruption was seen, though "pitting" of the distal electrode (through which current passed) occurred in all but one catheter. Images PMID:6605367

  9. Excimer laser ablation of aluminum: influence of spot size on ablation rate

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2016-11-01

    The dependence of ablation rate of an Al alloy on laser beam spot size (10–150 µm) was investigated using an ArF excimer laser operating at a wavelength of 193 nm and pulse width less than 4 ns. Ablation was conducted in air at a fluence of 11 J cm‑2 and at a repetition rate of 20 Hz. Surface morphology and depth of craters produced by a variable number of laser pulses were characterized using optical and scanning electron microscopy. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as an additional diagnostic technique to estimate the amount of material ablated from craters produced by a laser beam of different diameters. Laser beam spot size and number of laser pulses applied to the same spot were found to influence crater morphology, ablation rate, shape and amount of particles deposited at or around the crater rim. Ablation rate was found to be less dependent on spot size for craters greater than 85 µm. A four-fold increase in ablation rate was observed with decreasing crater size from 150 µm to 10 µm.

  10. Quantum hysteresis in coupled qubit-radiation systems

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Rodriguez, F. J.; Quiroga, L.; Johnson, N. F.

    2012-02-01

    We study theoretically the dynamical response of a set of solid-state qubits arbitrarily coupled to a radiation field which is confined in a cavity. Driving the coupling strength in round trips, between weak and strong values, we quantify the hysteresis or irreversible quantum dynamics. The matter-radiation system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity, and superconducting circuit QED. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We identify significant deviations from the conventional Landau-Zener-Stuckelberg formulae, in particular from cycles starting in the superradiant phase. In the diabatic or impulsive regime, the system remains quenched and there is little hysteresis. By contrast, depending on the specifications of the cycle, the radiation subsystem can exhibit the emergence of non-classicality, complexity and sub-Planckian structures as evidenced by its Wigner function.

  11. Decadal variability in coupled sea-ice-thermohaline circulation systems

    SciTech Connect

    Yang, J.; Neelin, J.D.

    1997-12-01

    An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.

  12. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  13. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: An Update of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.

    2014-01-01

    This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to

  14. A regressed phase analysis for coupled joint systems.

    PubMed

    Wininger, Michael

    2011-01-01

    This study aims to address shortcomings of the relative phase analysis, a widely used method for assessment of coupling among joints of the lower limb. Goniometric data from 15 individuals with spastic diplegic cerebral palsy were recorded from the hip and knee joints during ambulation on a flat surface, and from a single healthy individual with no known motor impairment, over at least 10 gait cycles. The minimum relative phase (MRP) revealed substantial disparity in the timing and severity of the instance of maximum coupling, depending on which reference frame was selected: MRP(knee-hip) differed from MRP(hip-knee) by 16.1±14% of gait cycle and 50.6±77% difference in scale. Additionally, several relative phase portraits contained discontinuities which may contribute to error in phase feature extraction. These vagaries can be attributed to the predication of relative phase analysis on a transformation into the velocity-position phase plane, and the extraction of phase angle by the discontinuous arc-tangent operator. Here, an alternative phase analysis is proposed, wherein kinematic data is transformed into a profile of joint coupling across the entire gait cycle. By comparing joint velocities directly via a standard linear regression in the velocity-velocity phase plane, this regressed phase analysis provides several key advantages over relative phase analysis including continuity, commutativity between reference frames, and generalizability to many-joint systems.

  15. Optical modeling of laser ablated microstructures

    NASA Astrophysics Data System (ADS)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  16. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  17. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  18. Link between truncated fractals and coupled oscillators in biological systems.

    PubMed

    Paar, V; Pavin, N; Rosandić, M

    2001-09-01

    This article aims at providing a new theoretical insight into the fundamental question of the origin of truncated fractals in biological systems. It is well known that fractal geometry is one of the characteristics of living organisms. However, contrary to mathematical fractals which are self-similar at all scales, the biological fractals are truncated, i.e. their self-similarity extends at most over a few orders of magnitude of separation. We show that nonlinear coupled oscillators, modeling one of the basic features of biological systems, may generate truncated fractals: a truncated fractal pattern for basin boundaries appears in a simple mathematical model of two coupled nonlinear oscillators with weak dissipation. This fractal pattern can be considered as a particular hidden fractal property. At the level of sufficiently fine precision technique the truncated fractality acts as a simple structure, leading to predictability, but at a lower level of precision it is effectively fractal, limiting the predictability of the long-term behavior of biological systems. We point out to the generic nature of our result.

  19. Robust mean field games for coupled Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Moon, Jun; Başar, Tamer

    2016-07-01

    We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.

  20. A simple solution to expanding available reference materials for Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis: Applications to sedimentary materials

    NASA Astrophysics Data System (ADS)

    Shaheen, Mohamed E.; Fryer, Brian J.

    2011-08-01

    Analytical data on sediments are of great importance in understanding and documenting environmental issues. For laboratories interested in in-situ chemical analysis of sediments by LA-ICP-MS, a major issue is the lack of appropriate matrix matched sediment reference materials. Those available were largely designed for partial extractions which generally do not reflect the total elemental compositions. In this work we provide a comprehensive study on chemical compositions of seven currently available sediment reference materials (Lake sediments: LKSD-1, LKSD-2, LKSD-3, Stream sediments: STSD-2, STSD-3, and Marine sediments: PACS-2, MESS-3) as determined by Solution Nebulization Inductively Coupled Plasma Mass Spectrometry (SN-ICP-MS) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) after digestion in a mixture of concentrated HNO 3 and HF acids. We also report a simple method to prepare these sediment reference materials and more generally appropriate sediment cores for LA-ICP-MS analysis using epoxy resin. This sample preparation method maintains sediment integrity for high spatial resolution analysis which is required for tracing changes in environmental conditions over short time periods. This work also demonstrates the application of fs-LA-ICP-MS as a tool for direct, rapid and high spatial resolution analysis of sediments.

  1. Toxin coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in NOD mice1

    PubMed Central

    Vincent, Benjamin G.; Young, Ellen F.; Buntzman, Adam S.; Stevens, Rosemary; Kepler, Thomas B.; Tisch, Roland; Frelinger, Jeffrey A.; Hess, Paul R.

    2010-01-01

    There is compelling evidence that self reactive CD8+ T cells are a major factor in development and progression of Type 1 diabetes in animals and humans. Hence, great effort has been expended to define the specificity of autoimmune CD8+ T cells, and to alter their responses. Much work has focused on tolerization of T cells using proteins or peptides. A weakness in this approach is residual autoreactive T cells may be activated and exacerbate disease. In this report we use a novel approach - toxin coupled MHC class I tetramers. Used for some time to identify antigen specific cells, here we use that same property to delete the antigen specific cells. We show saporin coupled tetramers can delete IGRP reactive T cells in vitro and in vivo. Sequence analysis of TCRβ chains of IGRP+ cells reveals the repertoire complexity in the islets is markedly decreased as NOD mice age and significantly altered in toxic tetramer treated NOD mice. Further tetramer+ T cells in the islets are almost completely deleted and surprisingly loss of tetramer+ T cells in the islets is long lasting. Finally, we show deletion at 8 weeks of age of IGRP+ CD8+ T cells, but not DMK or InsB reactive cells, significantly delays diabetes in NOD mice. PMID:20220085

  2. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    NASA Astrophysics Data System (ADS)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  3. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-08-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  4. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  5. Dynamic stabilization of a coupled ultracold atom-molecule system.

    PubMed

    Li, Sheng-Chang; Ye, Chong

    2015-12-01

    We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results. PMID:26764672

  6. Mode coupling in living systems: implications for biology and medicine.

    PubMed

    Swain, John

    2008-05-01

    Complex systems, and in particular biological ones, are characterized by large numbers of oscillations of widely differing frequencies. Various prejudices tend to lead to the assumption that such oscillators should generically be very weakly interacting. This paper reviews the basic ideas of linearity and nonlinearity as seen by a physicist, but with a view to biological systems. In particular, it is argued that large couplings between different oscillators of disparate frequencies are common, being present even in rather simple systems which are well-known in physics, although this issue is often glossed over. This suggests new experiments and investigations, as well as new approaches to therapies and human-environment interactions which, without the concepts described here, may otherwise seem unlikely to be interesting. The style of the paper is conversational with a minimum of mathematics, and no attempt at a complete list of references. PMID:18697625

  7. Dynamic stabilization of a coupled ultracold atom-molecule system

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Chang; Ye, Chong

    2015-12-01

    We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results.

  8. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  9. The Application Programming Interface for the PVMEXEC Program and Associated Code Coupling System

    SciTech Connect

    Walter L. Weaver III

    2005-03-01

    This report describes the Application Programming Interface for the PVMEXEC program and the code coupling systems that it implements. The information in the report is intended for programmers wanting to add a new code into the coupling system.

  10. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    SciTech Connect

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  11. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    NASA Technical Reports Server (NTRS)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  12. Recurrent oesophageal intramucosal squamous carcinoma treated by endoscopic mucosal resection and subsequent radiofrequency ablation using HALO system

    PubMed Central

    Kajzrlikova, Ivana; Vitek, Petr; Falt, Premysl; Urban, Ondrej; Kominek, Pavel

    2010-01-01

    The method of radiofrequency ablation (RFA) is currently used for the treatment of high-grade dysplasia in Barrett's oesophagus. It has theoretical potential also for the use in squamous epithelial neoplasias. The authors present a case report of an early diagnosis of squamous cancer in a high-risk patient, its endoscopic treatment and follow-up, and successful RFA of recurrent neoplasia. RFA can expand our therapeutic possibilities for the management of recurrent neoplastic lesions after endoscopic treatment of squamous oesophageal cancer. PMID:22802374

  13. Status of the seamless coupled modelling system ICON-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Rieger, Daniel; Schroeter, Jenniffer; Bischoff-Gauss, Inge; Deetz, Konrad; Eckstein, Johannes; Foerstner, Jochen; Gasch, Philipp; Ruhnke, Roland; Vogel, Heike; Walter, Carolin; Weimer, Michael

    2016-04-01

    The integrated modelling framework ICON-ART [1] (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases) extends the numerical weather prediction modelling system ICON by modules for gas phase chemistry, aerosol dynamics and related feedback processes. The nonhydrostatic global modelling system ICON [2] is a joint development of German Weather Service (DWD) and Max Planck Institute for Meteorology (MPI-M) with local grid refinement down to grid sizes of a few kilometers. It will be used for numerical weather prediction, climate projections and for research purposes. Since January 2016 ICON runs operationally at DWD for weather forecast on the global scale with a grid size of 13 km. Analogous to its predecessor COSMO-ART [3], ICON-ART is designed to account for feedback processes between meteorological variables and atmospheric trace substances. Up to now, ICON-ART contains the dispersion of volcanic ash, radioactive tracers, sea salt aerosol, as well as ozone-depleting stratospheric trace substances [1]. Recently, we have extended ICON-ART by a mineral dust emission scheme with global applicability and nucleation parameterizations which allow the cloud microphysics to explicitly account for prognostic aerosol distributions. Also very recently an emission scheme for volatile organic compounds was included. We present first results of the impact of natural aerosol (i.e. sea salt aerosol and mineral dust) on cloud properties and precipitation as well as the interaction of primary emitted particles with radiation. Ongoing developments are the coupling with a radiation scheme to calculate the photolysis frequencies, a coupling with the RADMKA (1) chemistry and first steps to include isotopologues of water. Examples showing the capabilities of the model system will be presented. This includes a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. [1] Rieger, D., et al

  14. Implantable flexible pressure measurement system based on inductive coupling.

    PubMed

    Oliveira, Cristina C; Sepúlveda, Alexandra T; Almeida, Nuno; Wardle, Brian L; da Silva, José Machado; Rocha, Luís A

    2015-02-01

    One of the currently available treatments for aortic aneurysms is endovascular aneurysm repair (EVAR). In spite of major advances in the operating techniques, complications still occur and lifelong surveillance is recommended. In order to reduce and even eliminate the commonly used surveillance imaging exams, as well as to reduce follow-up costs, new technological solutions are being pursued. In this paper, we describe the development, including design and performance characterization, of a flexible remote pressure measurement system based on inductive-coupling for post-EVAR monitoring purposes. The telemetry system architecture and operation are described and main performance characteristics discussed. The implantable sensor details are provided and its model is presented. Simulations with the reading circuit and the sensor's model were performed and compared with measurements carried out with air and a phantom as media, in order to characterize the telemetry system and validate the models. The transfer characteristic curve (pressure versus frequency) of the monitoring system was obtained with measurements performed with the sensor inside a controlled pressure vacuum chamber. Additional experimental results which proof the system functionality were obtained within a hydraulic test bench that emulates the aorta. Several innovative aspects, when compared to the state of the art, both in the sensor and in the telemetry system were achieved. PMID:25347867

  15. Entropy-complexity analysis in some globally-coupled systems

    NASA Astrophysics Data System (ADS)

    Chrisment, Antoine M.; Firpo, Marie-Christine

    2016-10-01

    Globally-coupled N-body systems are well known to possess an intricate dynamics. When N is large, collective effects may drastically lower the effective dimension of the dynamics breaking the conditions on ergodicity necessary for the applicability of statistical mechanics. These problems are here illustrated and discussed through an entropy-complexity analysis of the repulsive Hamiltonian mean-field model. Using a Poincaré section of the mean-field time series provides a natural sampling time in the entropy-complexity treatment. This approach is shown to single-out the out-of-equilibrium dynamical features and to uncover a transition of the system dynamics from low-energy non-Boltzmann quasi-stationary states to high-energy stochastic-like behavior.

  16. Classification of attractors for systems of identical coupled Kuramoto oscillators.

    PubMed

    Engelbrecht, Jan R; Mirollo, Renato

    2014-03-01

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For [Formula: see text] oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well as chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.

  17. Classification of attractors for systems of identical coupled Kuramoto oscillators

    SciTech Connect

    Engelbrecht, Jan R.; Mirollo, Renato

    2014-03-15

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well as chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.

  18. Double resonance in the system of coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Kulikov, K. V.

    2013-01-01

    The effect of LC shunting on the phase dynamics of coupled Josephson junctions has been examined. It has been shown that additional ( rc) branches appear in the current-voltage characteristics of the junctions when the Josephson frequency ωJ is equal to the natural frequency of the formed resonance circuit ωrc. The effect of the parameters of the system on its characteristics has been studied. Double resonance has been revealed in the system at ωJ = ωrc = 2ωLPW, where ωLPW is the frequency of a longitudinal plasma wave appearing under the parametric-resonance conditions. In this case, electric charge appears in superconducting layers in the interval of the bias current corresponding to the rc branch. The charge magnitude is determined by the accuracy with which the double resonance condition is satisfied. The possibility of the experimental implementation of the effects under study has been estimated.

  19. Emergent Behavior of Coupled Barrier Island - Resort Systems

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Werner, B. T.

    2004-12-01

    Barrier islands are attractive sites for resorts. Natural barrier islands experience beach erosion and island overwash during storms, beach accretion and dune building during inter-storm periods, and migration up the continental shelf as sea level rises. Beach replenishment, artificial dune building, seawalls, jetties and groins have been somewhat effective in protecting resorts against erosion and overwash during storms, but it is unknown how the coupled system will respond to long-term sea level rise. We investigate coupled barrier island - resort systems using an agent-based model with three components: natural barrier islands divided into a series of alongshore cells; resorts controlled by markets for tourism and hotel purchases; and coupling via storm damage to resorts and resort protection by government agents. Modeled barrier islands change by beach erosion, island overwash and inlet cutting during storms, and beach accretion, tidal delta growth and dune and vegetation growth between storms. In the resort hotel market, developer agents build hotels and hotel owning agents purchase them using predictions of future revenue and property appreciation, with the goal of maximizing discounted utility. In the tourism market, hotel owning agents set room rental prices to maximize profit and tourist agents choose vacation destinations maximizing a utility based on beach width, price and word-of-mouth. Government agents build seawalls, groins and jetties, and widen the beach and build up dunes by adding sand to protect resorts from storms, enhance beach quality, and maximize resort revenue. Results indicate that barrier islands and resorts evolve in a coupled manner to resort size saturation, with resorts protected against small-to-intermediate-scale storms under fairly stable sea level. Under extended, rapidly rising sea level, protection measures enhance the effect of large storms, leading to emergent behavior in the form of limit cycles or barrier submergence

  20. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  1. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  2. Metabolic Effects of Cholecystectomy: Gallbladder Ablation Increases Basal Metabolic Rate through G-Protein Coupled Bile Acid Receptor Gpbar1-Dependent Mechanisms in Mice

    PubMed Central

    Cortés, Víctor; Amigo, Ludwig; Zanlungo, Silvana; Galgani, José; Robledo, Fermín; Arrese, Marco; Bozinovic, Francisco; Nervi, Flavio

    2015-01-01

    Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice. PMID:25738495

  3. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  4. Spin-Spin Coupling in the Solar System

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-09-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  5. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-09-10

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  6. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  7. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  8. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season

    PubMed Central

    Lampkin, Derrick; Peng, Rui

    2008-01-01

    Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ∼ ±2%.

  9. Diffusion Couple Investigation of the Mg-Zn System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Phase layer growth and interdiffusion in the binary Mg-Zn system was investigated utilizing solid-to-solid diffusion couples annealed at 295 , 315 and 325 C for 21, 7 and 5 days, respectively. The diffusion microstructure was examined by scanning electron microscopy and concentration profiles were determined using X-ray energy dispersive spectroscopy and electron microprobe analysis. The Mg solid solution, Mg2Zn11, MgZn2 and Mg2Zn3 in all three couples were observed in addition to the high temperature, Mg51Zn20 phase at 325 C. The MgZn2 phase was observed to grow the thickest layer, followed by the Mg2Zn3 and the Mg2Zn11 phases. Activation energies for the parabolic growth were calculated to be 105 kJ/mol and 207 kJ/mol for the Mg2Zn3 and MgZn2, respectively. Relevant interdiffusion coefficients were calculated for the phases present by analyses of concentration profiles. This study was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program (DE-AC05-00OR22725).

  10. Directional radiation pattern in structural-acoustic coupled system.

    PubMed

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  11. Directional radiation pattern in structural-acoustic coupled system.

    PubMed

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm. PMID:16119333

  12. Superharmonic resonances in a strongly coupled cavity-atom system

    NASA Astrophysics Data System (ADS)

    Buks, Eyal; Deng, Chunqing; Orgazzi, Jean-Luc F. X.; Otto, Martin; Lupascu, Adrian

    2016-09-01

    We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity. The fundamental cavity mode is externally driven and the response is investigated in the weak nonlinear regime. We find that near the crossing point, at which the resonance frequencies of the cavity mode and qubit coincide, the sign of the Kerr coefficient changes, and consequently the type of nonlinear response changes from softening to hardening. Furthermore, the cavity response exhibits superharmonic resonances (SHR) when the ratio between the qubit frequency and the cavity fundamental mode frequency is tuned close to an integer value. The nonlinear response is characterized by the method of intermodulation and both signal and idler gains are measured. The experimental results are compared with theoretical predictions and good qualitative agreement is obtained. The SHRs have potential for applications in quantum amplification and generation of entangled states of light.

  13. Long codas of coupled wave systems in seismic basins

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.

    2002-11-01

    Quite some time ago it was pointed out that the damage patterns and Fourier spectra of the 1985 earthquake in Mexico City are only compatible with a resonant effect of horizontal waves with the approximate speed of sound waves in water [see Flores et al., Nature 326, 783 (1987)]. In a more recent paper it was pointed out that this indeed will occur with a very specific frequency selection for a coupled system of Raleigh waves at the interface of the bottom of the ancient lakebed with the more solid deposits, and an evanescent sound wave in the mud above [see J. Flores et al., Bull. Seismol. Soc. Am. 89, 14-21 (1999)]. In the present talk we shall go over these arguments again and show that strong reflection at the edges of the lake must occur to account for the strong magnification entailing necessarily a long coda, and that the mecanism can be understood in the same terms.

  14. Vibrations of three-dimensional pipe systems with acoustic coupling

    NASA Astrophysics Data System (ADS)

    El-Raheb, M.

    1981-09-01

    A general algorithm is developed for estimating the beam type dynamic response of three dimensional multiplane pipe systems consisting of elbows and straight segments with smooth interface. The transfer matrix approach is adopted in modeling the elastodynamics of each duct with allowance for distributed loads. The formulation includes the acoustic coupling of a plane wave and elbow curvature. Secondary loads from plane wave distortion are considered from a modal solution of the Helmholtz equation in an equivalent rigid waveguide with square cross section. The effect of path imperfection is introduced as a perturbation from the hypothetical perfectly straight pipe. The one dimensional plane wave assumption is valid for frequencies below half the first cut-off frequency. Wave asymmetry from elbow curvature produces substantial increase in response level near and above cut-off.

  15. Pfaffian states in coupled atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Hayward, Andrew L. C.; Martin, Andrew M.

    2016-05-01

    Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.

  16. Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime

    SciTech Connect

    Hwang, Myung-Joong; Choi, Mahn-Soo

    2010-08-15

    The nonclassical behavior of a two-level system coupled to a harmonic oscillator is investigated in the ultrastrong coupling regime. We revisit the variational solution of the ground state and find that the existing solutions do not account accurately for nonclassical effects such as squeezing. We suggest a trial wave function and demonstrate that it has an excellent accuracy for the quantum correlation effects as well as for the energy.

  17. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  18. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-01

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field. PMID:26913559

  19. Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Alexander P.; Turukina, Ludmila V.; Chernyshov, Nikolai Yu.; Sedova, Yuliya V.

    We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase equations are derived, using proper order of expansion over the coupling parameter. The dynamics of the system is studied by means of the bifurcation analysis and with the method of Lyapunov exponent charts. Essential and physically meaningful features of the reactive coupling are discussed.

  20. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  1. Cytokine knockouts in reproduction: the use of gene ablation to dissect roles of cytokines in reproductive biology.

    PubMed

    Ingman, Wendy V; Jones, Rebecca L

    2008-01-01

    Cytokines play many diverse and important roles in reproductive biology, and dissecting the complex interactions between these proteins and the different reproductive organs is a difficult task. One approach is to use gene ablation, or 'knockout', to analyse the effect of deletion of a single cytokine on mouse reproductive function. This review summarizes the essential roles of cytokines in reproductive biology that have been revealed by gene knockout studies, including development and regulation of the hypothalamo-pituitary-gondal axis, ovarian folliculogenesis, implantation and immune system modulation during pregnancy. However, successful utilization of this approach must consider the caveats associated with gene ablation studies, e.g. embryonic lethality, systemic effects of cytokine ablation on local reproductive processes and the limited exposure to pathogens in mice housed in laboratory conditions. New sophisticated technology that temporally or spatially regulates gene ablation can overcome some of these limitations. Discoveries on the roles of cytokines in reproductive function uncovered by gene ablation studies can now be applied to improve in vitro fertilization for infertile couples and in the development of contraceptive therapies.

  2. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  3. Initial report on the application of laser ablation - inductively coupled plasma mass spectrometry for the analysis of radioactive Hanford Tank Waste materials

    SciTech Connect

    Smith, M.R.; Hartman, J.S.; Alexander, M.L.; Mendoza, A.; Hirt, E.H.; Stewart, T.L.; Hansen, M.A.; Park, W.R.; Peters, T.J.; Burghard, B.J.

    1996-12-01

    Initial LA/MS analyses of Hanford tank waste samples were performed successfully using laboratory and hot cell LA/MS instrumentation systems. The experiments described in this report have demonstrated that the LA/MS data can be used to provide rapid analysis of solid, radioactive Hanford tank waste samples to identify major, minor, and trace constituents (elemental and isotopic) and fission products and radioactive isotopes. The ability to determine isotopic constituents using the LA/MS method yielded significant advantages over ICP/AES analysis by providing valuable information on fission products and radioactive constituents.

  4. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  5. Reconstruction of ensembles of coupled time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Sysoev, I. V.; Prokhorov, M. D.; Ponomarenko, V. I.; Bezruchko, B. P.

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  6. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  7. Laser-ablated poly(methyl methacrylate) microdevices for sub-microliter DNA amplification suitable for micro-total analysis systems

    NASA Astrophysics Data System (ADS)

    Lounsbury, Jenny A.; Poe, Brian L.; Do, Michael; Landers, James P.

    2012-08-01

    Biochemical techniques, such as the polymerase chain reaction (PCR), can take up to 3.5 h for completion using a commercial bench-top instrument, creating a bottleneck in sample preparation processes. PCR has been successfully adapted to microfluidic devices, reducing the time needed to as little as 7-10 min. Recently, a trend in the field is to use alternative substrates, such as poly(methyl methacyrlate) (PMMA), for the fabrication of microfluidic devices. PMMA has several advantages over more expensive substrates including rigidity without fragility, disposability, and it is easy to fabricate, using techniques such as hot embossing or CO2 laser ablation. Here, we report the fabrication of PMMA microdevices to explore their effectiveness for PCR amplification. Several types of PMMA microdevices were fabricated using a CO2 laser ablation system, with two or three PMMA layers of different thicknesses. Bonding of the microdevices was significantly improved through the use of a grid system etched into the device, allowing for trapped air to escape, eliminating leakage. Using infrared thermal cycling, the ramping rates were determined to be dependent on the thickness of the PMMA used in fabrication, allowing for customization of cycling conditions. Further reduction of the thermal mass by isolation of the chambers provided a significant increase in the heating and cooling rates (up to 6.19 (±0.32 °C s-1) and -7.99 (±0.06 °C s-1), respectively). Bubble formation, a chronic problem in microfluidic systems in general and problematic during the heating phase of PCR, was minimized through the use of a biocompatible adhesive/manifold combination to seal the reservoirs. Finally, successful PCR amplification was demonstrated with both a fragment from the β-globin gene and 15 tetra-nucleotide repeat regions with a sex-typing marker in a conventional STR kit with the latter facilitated by the dynamic coating of the fluidic architecture with poly(ethylene glycol) (PEG).

  8. A New Ablative Heat Shield Sensor Suite Project

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2014-01-01

    A new sensor suite is developed to measure performance of ablative thermal protection systems used in planetary entry vehicles for robotic and human exploration. The new sensor suite measures ablation of the thermal protection system under extreme heating encountered during planetary entry. The sensor technology is compatible with a variety of thermal protection materials, and is applicable over a wide range of entry conditions.

  9. A new optical antennas based on fiber coupling system and aspherical optical system

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Tian, Shaohua

    2013-08-01

    Space Laser communication is a new technology in recent years of optical communications, optical antenna is a communications front receiving system, compose of the optical antenna receiver, optical fiber coupling lenses. Optical antenna to receive as much as possible the signal light from the target of free space, In this paper, 10.6μm wavelength of infrared light for communication wave, we use spherical mirror and aspheric lens combination of the system, Design of large diameter concave mirror to collect more laser energy, After another spherical convex mirror reflection again to aspherical lens, then coupled into the fiber. The aspheric lens can be a good feature to correct aberration, so this design has less transmission loss and high coupling efficiency. Using Zemax software, we setting reasonable energy analysis and image quality evaluation, design spherical mirrors and aspherical refractive lenses optical system, has good optical performance and economy, can be apply on the atmospheric Laser communication the receiving device.

  10. Metal particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  11. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  12. The Coupling Study for Solar Heating System and Membrane Distillation System

    NASA Astrophysics Data System (ADS)

    Yan, Suying; Zhang, Tao; Professor, Rui Tian; WeiZhang, Wei

    In this paper, it was simplified that the heating system of thermal mass in solar membrane distillation and it was established that the physical model of heat transfer installed the guide plate in the all-glass thermal solar membrane distillation system. The model included the all-glass solar heat collector system and the hot chamber of membrane distillation system. In this paper, it was constructed that the coupling integration points between the two parts and reached setting methods for coupled boundary conditions and unsteady-state flow. It was established that an unsteady three-dimensional CFD model for solar membrane distillation system and drawn solution and ideas and reached the variation law of fluid temperature and flow rate in outlet of fluid connection changes in solar collector system. It was calculated that the coupling model of hot chamber in membrane distillation and obtained the variation law between non-steady-state flux and solar radiation intensity and laid the foundation for coupling utilization of solar energy with membrane distillation.

  13. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling.

    PubMed

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011)]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  14. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  15. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  16. Multisoliton, multipositon, multinegaton, and multiperiodic solutions of a coupled Volterra lattice system and their continuous limits

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-qiong; Zhu, Zuo-nong

    2011-02-01

    This paper aims to find new explicit solutions including multisoliton, multipositon, multinegaton, and multiperiodic for a coupled Volterra lattice system. This coupled lattice system is an integrable discrete version of the coupled Korteweg-deVries (KdV) equation which has many physical applications. The dynamical properties of these new solutions are discussed in detail. We also prove that the theory of the coupled Volterra lattice system including the Lax pair, the Darboux transformation, and explicit solutions yield the corresponding theory of the coupled KdV equation in the continuous limit.

  17. Transcatheter and ablative therapeutic approaches for solid malignancies.

    PubMed

    Liapi, Eleni; Geschwind, Jean-Francois H

    2007-03-10

    The purpose of this article is to present in a concise manner an overview of the most widely used locoregional transcatheter and ablative therapies for solid malignancies. An extensive MEDLINE search was performed for this review. Therapies used for liver cancer were emphasized because these therapies are used most commonly in the liver. Applications in pulmonary, renal, and bone tumors were also discussed. These approaches were divided into catheter-based therapies (such as transcatheter arterial chemoembolization, bland embolization, and the most recent transcatheter arterial approach with drug-eluting microspheres), ablative therapies (such as chemical [ethanol or acetic acid injection]), and thermal ablative therapies (such as radiofrequency ablation, laser induced thermotherapy, microwave ablation, cryoablation, and extracorporeal high-intensity focused ultrasound ablation). A brief description of each technique and analysis of available data was reported for all therapies. Locoregional transcatheter and ablative therapies continue to be used mostly for palliation, but have also been used with curative intent. A growing body of evidence suggests clear survival benefit, excellent results regarding local tumor control, and improved quality of life. Clinical trials are underway to validate these results. Image-guided transcatheter and ablative approaches currently play an important role in the management of patients with various types of cancer-a role that is likely to grow even more given the technological advances in imaging, image-guidance systems, catheters, ablative tools, and drug delivery systems. As a result, the outcomes of patients with cancer undoubtedly will improve.

  18. [Steam ablation of varicose veins].

    PubMed

    van den Bos, Renate R; Malskat, Wendy S J; Neumann, H A M Martino

    2013-01-01

    In many western countries endovenous thermal ablation techniques have largely replaced classical surgery for the treatment of saphenous varicose veins as they are more effective and patient friendly. Because these treatments can be performed under local tumescent anaesthesia, patients can mobilize immediately after the procedure. A new method of thermal ablation is endovenous steam ablation, which is a fast and easy procedure. Steam ablation may cause less pain than laser ablation and it is also cheaper and more flexible than segmental radiofrequency ablation. PMID:23484513

  19. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  20. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  1. Spin pumping in strongly coupled magnon-photon systems

    NASA Astrophysics Data System (ADS)

    Maier-Flaig, H.; Harder, M.; Gross, R.; Huebl, H.; Goennenwein, S. T. B.

    2016-08-01

    We experimentally investigate magnon polaritons arising in ferrimagnetic resonance experiments in a microwave cavity with a tunable quality factor. To this end, we simultaneously measure the electrically detected spin pumping signal and the microwave reflection (the ferrimagnetic resonance signal) of a yttrium iron garnet (YIG)/platinum (Pt) bilayer in the microwave cavity. The coupling strength of the fundamental magnetic resonance mode and the cavity is determined from the microwave reflection data. All features of the magnetic resonance spectra predicted by first principle calculations and an input-output formalism agree with our experimental observations. By changing the decay rate of the cavity at constant magnon-photon coupling rate, we experimentally tune in and out of the strong coupling regime and successfully model the corresponding change of the spin pumping signal and microwave reflection. Furthermore, we observe the coupling and spin pumping of several spin wave modes and provide a quantitative analysis of their coupling rates to the cavity.

  2. Evaluation of Finite-Rate GasSurface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  3. Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems.

    PubMed

    Zhou, Jianhong; Mu, Da; Yang, Jinhua; Han, Wenbo; Di, Xu

    2011-03-14

    We present an optical coupling system, which consists of waveguide, cavity and waveguide resonator, to investigate coupled-resonator-induced transparency effect. The transmission properties are analyzed theoretically by using coupled-mode theory in time domain. We also numerically demonstrate the effect by simulating the propagation of electromagnetic waves in photonic crystals by finite-difference time-domain method.

  4. Determination of the coupling architecture and parameters of elements in ensembles of time-delay systems

    NASA Astrophysics Data System (ADS)

    Sysoev, I. V.; Ponomarenko, V. I.; Prokhorov, M. D.

    2016-01-01

    A method for the reconstruction of the architecture, strength of couplings, and parameters of elements in ensembles of coupled time-delay systems from their time series is proposed. The effectiveness of the method is demonstrated on chaotic time series of the ensemble of diffusively coupled nonidentical Ikeda equations in the presence of noise.

  5. Integrability properties of a coupled KdV system and its supersymmetric extension

    NASA Astrophysics Data System (ADS)

    Sotomayor, Adrián; Restuccia, Alvaro

    2016-05-01

    We discuss several integrability properties of a coupled KdV system. We obtain a new generalization of the already known static solutions for the system. We then consider the supersymmetric extension of the coupled KdV system, it is a new integrable system. We show that for particular Grassmann algebras the system is the limit of a Clifford algebra valued system with nice stability properties. We briefly discuss the hamiltonian structures of this supersymmetric integrable system.

  6. Receptor-coupled effector systems and their interactions

    SciTech Connect

    Wiener, E.C.

    1988-01-01

    We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC{sub 8}) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 {mu}M diC{sub 8} potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE{sub 1}-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE{sub 1} by 30%. Rabbit anti-mouse IgG, its F(ab{prime}){sub 2} fragment, or goat anti-mouse IGM induced increases in the cytosolic free (Ca{sup 2+}), (Ca{sup 2+}){sub i}, which TPA inhibited. In contrast, TPA potential antibody-induced {sup 3}H-thymidine (85x) and {sup 3}H-uridine (30x) uptake in B lymphocytes.

  7. Symmetry breaking in linearly coupled Korteweg-de Vries systems.

    PubMed

    Espinosa-Cerón, A; Malomed, B A; Fujioka, J; Rodríguez, R F

    2012-09-01

    We consider solitons in a system of linearly coupled Korteweg-de Vries (KdV) equations, which model two-layer settings in various physical media. We demonstrate that traveling symmetric solitons with identical components are stable at velocities lower than a certain threshold value. Above the threshold, which is found exactly, the symmetric modes are unstable against spontaneous symmetry breaking, which gives rise to stable asymmetric solitons. The shape of the asymmetric solitons is found by means of a variational approximation and in the numerical form. Simulations of the evolution of an unstable symmetric soliton sometimes produce its breakup into two different asymmetric modes. Collisions between moving stable solitons, symmetric and asymmetric ones, are studied numerically, featuring noteworthy features. In particular, collisions between asymmetric solitons with identical polarities are always elastic, while in the case of opposite polarities the collision leads to a switch of the polarities of both solitons. Three-soliton collisions are studied too, featuring quite complex interaction scenarios. PMID:23020484

  8. Meso-/micro-optical system interface coupling solutions.

    SciTech Connect

    Armendariz, Marcelino G.; Kemme, Shanalyn A.; Boye, Robert R.

    2005-10-01

    Optoelectronic microsystems are more and more prevalent as researchers seek to increase transmission bandwidths, implement electrical isolation, enhance security, or take advantage of sensitive optical sensing methods. Board level photonic integration techniques continue to improve, but photonic microsystems and fiber interfaces remain problematic, especially upon size reduction. Optical fiber is unmatched as a transmission medium for distances ranging from tens of centimeters to kilometers. The difficulty with using optical fiber is the small size of the core (approximately 9 {micro}m for the core of single mode telecommunications fiber) and the tight requirement on spot size and input numerical aperture (NA). Coupling to devices such as vertical cavity emitting lasers (VCSELs) and photodetectors presents further difficulties since these elements work in a plane orthogonal to the electronics board and typically require additional optics. This leads to the need for a packaging solution that can incorporate dissimilar materials while maintaining the tight alignment tolerances required by the optics. Over the course of this LDRD project, we have examined the capabilities of components such as VCSELs and photodetectors for high-speed operation and investigated the alignment tolerances required by the optical system. A solder reflow process has been developed to help fulfill these packaging requirements and the results of that work are presented here.

  9. Managing ecological thresholds in coupled environmental–human systems

    PubMed Central

    Horan, Richard D.; Fenichel, Eli P.; Drury, Kevin L. S.; Lodge, David M.

    2011-01-01

    Many ecosystems appear subject to regime shifts—abrupt changes from one state to another after crossing a threshold or tipping point. Thresholds and their associated stability landscapes are determined within a coupled socioeconomic–ecological system (SES) where human choices, including those of managers, are feedback responses. Prior work has made one of two assumptions about managers: that they face no institutional constraints, in which case the SES may be managed to be fairly robust to shocks and tipping points are of little importance, or that managers are rigidly constrained with no flexibility to adapt, in which case the inferred thresholds may poorly reflect actual managerial flexibility. We model a multidimensional SES to investigate how alternative institutions affect SES stability landscapes and alter tipping points. With institutionally dependent human feedbacks, the stability landscape depends on institutional arrangements. Strong institutions that account for feedback responses create the possibility for desirable states of the world and can cause undesirable states to cease to exist. Intermediate institutions interact with ecological relationships to determine the existence and nature of tipping points. Finally, weak institutions can eliminate tipping points so that only undesirable states of the world remain. PMID:21502517

  10. Fokker Planck equations for globally coupled many-body systems with time delays

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; Beek, P. J.

    2005-10-01

    A Fokker-Planck description for globally coupled many-body systems with time delays was developed by integrating previously derived Fokker-Planck equations for many-body systems and for time-delayed systems. By means of the Fokker-Planck description developed, we examined the dependence of the variability of many-body systems on attractive coupling forces and time delays. For a fundamental class of systems exemplified by a time-delayed Shimizu-Yamada model for muscular contractions, we established that the variability is an invertible one-to-one mapping of coupling forces and time delays and that coupling forces and time delays have opposite effects on system variability, allowing time delays to annihilate the impact of coupling forces. Furthermore, we showed how variability measures could be used to determine coupling parameters and time delays from experimental data.

  11. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  12. Learning Management Systems: Coupled Simulations and Assessments in a Digital Systems Course

    ERIC Educational Resources Information Center

    Wuttke, Heinz-Dietrich; Henke, Karsten

    2009-01-01

    Purpose: The content, provided in learning management systems (LMS), is often text oriented as in a usual textbook, extended by some animations and links. Hands on activities and experiments are not possible. The paper aims to give an overview about the concept to couple smart simulation and assessment tools with an LMS to provide a more…

  13. The use of an integrated electroanatomic mapping system and intracardiac echocardiography to reduce radiation exposure in children and young adults undergoing ablation of supraventricular tachycardia

    PubMed Central

    Mah, Douglas Y.; Miyake, Christina Y.; Sherwin, Elizabeth D.; Walsh, Amy; Anderson, Michael J.; Western, Kara; Abrams, Dominic J.; Alexander, Mark E.; Cecchin, Frank; Walsh, Edward P.; Triedman, John K.

    2014-01-01

    Aims Non-fluoroscopic imaging (NFI) devices are increasingly used in ablations. The objective was to determine the utility of intracardiac echocardiography (ICE) in ablating paediatric supraventricular tachycardias (SVTs) and assess whether its integrated use with electroanatomic mapping (EAM) resulted in lower radiation exposure than use of EAM alone. Methods and results Prospective, controlled, single-centre study of patients (pts) age ≥10 years, weight ≥35 kg, with SVT and normal cardiac anatomy. Patients were randomized to ICE + EAM (ICE) or EAM only (no ICE). Both had access to fluoroscopy as needed. Eighty-four pts were enroled (42 ICE, 42 no ICE). Median age was 15 years (range 10.4–23.7 years); 57% had accessory pathways, 42% atrioventricular nodal reentry tachycardia. There was no difference in radiation dose (9 mGy ICE vs. 23 mGy no ICE, P = 0.37) or fluoroscopy time (1.1 min ICE vs. 1.5 min no ICE, P = 0.38). Transseptal punctures were performed in 25 pts (16 ICE, 9 no ICE), with ICE reducing radiation (8 mGy ICE vs. 62 mGy no ICE, P = 0.002) and fluoroscopy time (1.1 min ICE vs. 4.5 min no ICE, P = 0.01). Zero fluoroscopy was achieved in 13 pts (15% of total, 5 ICE, 8 no ICE), and low-dose cases (<50 mGy) in 57 pts (68% of total, 33 ICE, 24 no ICE). Acute success was 95% for ICE, 88% for no ICE. Conclusion Use of an integrated EAM/ICE system was no better than EAM alone in limiting radiation, but can be helpful for transseptal punctures. Given the low dose savings, use of ICE may be weighed against its financial cost. Low-fluoroscopy cases are performed in most NFI procedures. PMID:23928735

  14. High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film.

    PubMed

    Nishiyama, T; Morinaga, S; Nagayama, K

    2009-03-01

    This paper describes a novel method for the fabrication of a thin film deposited on an appropriate substrate having a continuous composition gradient. The composition gradient was achieved by a combination of pulsed laser ablation (PLA) of the target material with a very strong acceleration field generated on a moving disk rotating at a very high speed. The PLA process was used to produce a cloud of high-energy particles of the target material that will be deposited on a substrate placed on the rotating disk. After deposition, the particles will diffuse on the surface of the thin film under a strong acceleration field. The high energy of the particles and their diffusion on the substrate surface in a high-vacuum environment produces a macroscopic composition distribution in the thin film. We have constructed an experimental apparatus consisting of a vacuum chamber in which a circular disk made of titanium is driven by a high-frequency inductive motor. An acceleration field of up to 10,000 G can be generated by this apparatus. Functionally graded material thin films of FeSi(2) with a continuous concentration gradient were successfully fabricated by this method under a gravity field of 5400 G. A significant advantage of this method is that it allows us to fabricate graded thin films with a very smooth surface covered by few droplets.

  15. High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film.

    PubMed

    Nishiyama, T; Morinaga, S; Nagayama, K

    2009-03-01

    This paper describes a novel method for the fabrication of a thin film deposited on an appropriate substrate having a continuous composition gradient. The composition gradient was achieved by a combination of pulsed laser ablation (PLA) of the target material with a very strong acceleration field generated on a moving disk rotating at a very high speed. The PLA process was used to produce a cloud of high-energy particles of the target material that will be deposited on a substrate placed on the rotating disk. After deposition, the particles will diffuse on the surface of the thin film under a strong acceleration field. The high energy of the particles and their diffusion on the substrate surface in a high-vacuum environment produces a macroscopic composition distribution in the thin film. We have constructed an experimental apparatus consisting of a vacuum chamber in which a circular disk made of titanium is driven by a high-frequency inductive motor. An acceleration field of up to 10,000 G can be generated by this apparatus. Functionally graded material thin films of FeSi(2) with a continuous concentration gradient were successfully fabricated by this method under a gravity field of 5400 G. A significant advantage of this method is that it allows us to fabricate graded thin films with a very smooth surface covered by few droplets. PMID:19334931

  16. Tunable spin-orbit coupling via strong driving in ultracold-atom systems.

    PubMed

    Jiménez-García, K; LeBlanc, L J; Williams, R A; Beeler, M C; Qu, C; Gong, M; Zhang, C; Spielman, I B

    2015-03-27

    Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems-unique in their experimental control and measurement opportunities-provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for controlling spin-orbit coupling in a two-component Bose-Einstein condensate using amplitude-modulated Raman coupling.

  17. Couplings between changes in the climate system and biogeochemistry

    SciTech Connect

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol particles. It also

  18. Nanosecond and femtosecond laser ablation of brass: Particulate and ICPMS measurements

    SciTech Connect

    Liu, C.; Mao, X.L.; Mao, S.; Zeng, X.; Greif, R.; Russo, R.E.

    2003-11-01

    Femtosecond and nanosecond lasers were compared for ablating brass alloys. All operating parameters from both lasers were equal except for the pulse duration. The ablated aerosol vapor was collected on silicon substrates for particle size measurements or sent into an inductively coupled plasma mass spectrometer. The diameters and size distribution of particulates were measured from scanning electron microscope (SEM) images of the collected ablated aerosol. SEM measurements showed that particles ablated using nanosecond pulses were single spherical entities ranging in diameter from several micrometers to several hundred nanometers. Primary particles ablated using femtosecond ablation were {approx}100 nm in diameter but formed large agglomerates. ICPMS showed enhanced signal intensity and stability using femtosecond compared to nanosecond laser ablation.

  19. Infrared laser ablation of dental enamel: influence of an applied water layer on ablation rate and peripheral damage

    NASA Astrophysics Data System (ADS)

    Ashouri, Nahal; Shori, Ramesh K.; Cheung, Jason M.; Fried, Daniel

    2001-04-01

    Studies have shown that a water spray may augment the laser ablation rate of dental hard tissues in addition to reducing heat accumulation. However, the mechanism of augmentation is controversial and poorly understood. The influence of an optically thick applied water layer on the ablation rate was investigated at wavelengths in which water is a primary absorber and the magnitude of absorption varies markedly. Water was manually applied with a pipette and troughs were cut in enamel blocks using a laser scanning system. Q- switched and free running Er:YSGG and Er:YAG, free running Ho:YAG and 9.6 micrometers TEA CO2 laser systems were investigated. The addition of water increased the rate of ablation and produced a more desirable surface morphology during enamel ablation with all the erbium systems. Ablation was markedly more efficient for the Q-switched erbium lasers than for the longer free-running laser systems when a water layer was added. Although, the addition of a thick water layer reduced the rate of ablation during CO2 laser ablation, the addition of the water removed undesirable deposits of non-apatite mineral phases from the crater surface. There was extensive peripheral damage after irradiation with the Ho:YAG laser with and without added water without effective ablation of enamel. The results of this study suggest that water augments the ablation of dental enamel by aiding in the removal of loosely attached deposits of non-apatite mineral phase from the crater surface, thus producing a more desirable crater surface morphology. The non-apatite mineral phase interfere with subsequent laser pulses during erbium laser irradiation reducing the rate of ablation and their removal aids in maintaining efficient ablation during multiple pulses irradiation.

  20. A novel approach to synchronization of nonlinearly coupled network systems with delays

    NASA Astrophysics Data System (ADS)

    Tseng, Jui-Pin

    2016-06-01

    In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.