Science.gov

Sample records for ablation threshold ablation

  1. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  2. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  3. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM. PMID:27607281

  4. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    SciTech Connect

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-07-15

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T{sub c}/T{sub tr} of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E{sub abl} normalized to the cohesion energy, {epsilon}{sub abl}=E{sub abl}/E{sub coh}, are surprisingly universal: all are near 0.3 with {+-}30% scattering. The difference in the ratio T{sub c}/T{sub tr} means that for metals the melting threshold {epsilon}{sub m} is low, {epsilon}{sub m}<{epsilon}{sub abl}, while for LJ it is high, {epsilon}{sub m}>{epsilon}{sub abl}. This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in {epsilon}{sub abl}, metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation.

  5. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  6. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  7. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    SciTech Connect

    Gil-Villalba, A.; Xie, C.; Salut, R.; Furfaro, L.; Giust, R.; Jacquot, M.; Lacourt, P. A.; Dudley, J. M.; Courvoisier, F.

    2015-08-10

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  8. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Freitas, A. Z.; Freschi, L. R.; Samad, R. E.; Zezell, D. M.; Gouw-Soares, S. C.; Vieira, N. D., Jr.

    2010-03-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm2 for the composite resins Z-100 and Z-350, and 0.25 J/cm2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed.

  9. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  10. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver

  11. Generation of nanoparticles at a fluence less than the ablation threshold using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Odachi, Go; Sakamoto, Ryosuke; Hara, Kento; Yagi, Takashi

    2013-10-01

    Femtosecond laser machining of crystalline Si in vacuum resulted in the formation of pillars and particles of ∼100 nm in size at the wall surfaces and the periphery of the ablated hole. These structures were created at a laser fluence below the ablation threshold. The nanopillars and nanoparticles appear to grow from the target surface. The target surface near the particles showed molten features with descending height, indicating significant mass transport from the surface layer to the particles. The nanopillars and nanoparticles likely formed as a result of successive crystal growth processes including amorphization of the laser-irradiated target surface, followed by crystalline nucleation, melting of the amorphous Si surrounding the crystalline particles, and liquid Si creeping over particle surfaces leading to an increase in particle size. By repeating these processes, the particles grow in cumulative laser shots. These particles are the major debris components distributed near micron-sized holes formed at the ablation threshold fluence in vacuum.

  12. Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients

    NASA Astrophysics Data System (ADS)

    Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang; Farooq, Bilal; Kudryashov, Sergey I.; Daskalova, Albena; Bliznakova, Irina; Assion, Andreas

    2016-02-01

    In this paper, the influence of the pulse duration on the ablation threshold and the incubation coefficient was investigated for three different types of materials: metal (copper), semiconductor (silicon) and biopolymer (gelatin). Ablation threshold values and the incubation coefficients have been measured for multiple Ti:sapphire laser pulses (3 to 1000 pulses) and for four different pulse durations (10, 30, 250 and 550 fs). The ablation threshold fluence was determined by extrapolation of curves from squared crater diameter versus fluence plots. For copper and silicon, the experiments were conducted in vacuum and for gelatin in air. For all materials, the ablation threshold fluence increases with the pulse duration. For copper, the threshold increases as τ 0.05, for silicon as τ 0.12 and for gelatin as τ 0.22. By extrapolating the curves of the threshold fluence versus number of pulses, the single-shot threshold fluence was determined for each sample. For 30 fs pulses, the single-shot threshold fluences were found to be 0.79, 0.35, and 0.99 J/cm2 and the incubation coefficients were found to be 0.75, 0.83 and 0.68 for copper, silicon and gelatin, respectively.

  13. Interaction thresholds in Er:YAG laser ablation of organic tissue

    NASA Astrophysics Data System (ADS)

    Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros

    1996-01-01

    Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.

  14. Damage and ablation thresholds of fused-silica in femtosecond regime

    SciTech Connect

    Chimier, B.; Uteza, O.; Sanner, N.; Sentis, M.; Itina, T.; Lassonde, P.; Legare, F.; Vidal, F.; Kieffer, J. C.

    2011-09-01

    We present an experimental and numerical study of the damage and ablation thresholds at the surface of a dielectric material, e.g., fused silica, using short pulses ranging from 7 to 300 fs. The relevant numerical criteria of damage and ablation thresholds are proposed consistently with experimental observations of the laser irradiated zone. These criteria are based on lattice thermal melting and electronic cohesion temperature, respectively. The importance of the three major absorption channels (multi-photon absorption, tunnel effect, and impact ionization) is investigated as a function of pulse duration (7-300 fs). Although the relative importance of the impact ionization process increases with the pulse duration, our results show that it plays a role even at short pulse duration (<50 fs). For few optical cycle pulses (7 fs), it is also shown that both damage and ablation fluence thresholds tend to coincide due to the sharp increase of the free electron density. This electron-driven ablation regime is of primary interest for thermal-free laser-matter interaction and therefore for the development of high quality micromachining processes.

  15. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chefonov, O. V.; Ovchinnikov, A. V.; Il'ina, I. V.; Agranat, M. B.

    2016-03-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 1011 - 1013 W cm-2.

  16. Ablative Thermal Protection: An Overview

    NASA Technical Reports Server (NTRS)

    Laub, Bernie

    2003-01-01

    Contents include the following: Why ablative thermal protections - TPS. Ablative TPS chronology: strategic reentry systems, solid rocket motor nozzles, space (manned missions and planetary entry probes). Ablation mechanisms. Ablation material testing. Ablative material testing.

  17. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  18. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.

  19. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  20. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  1. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  2. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  3. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  4. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  5. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  6. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  7. Single pulse laser excitation of structural vibration using power densities below the surface ablation threshold

    NASA Astrophysics Data System (ADS)

    Philp, W. R.; Booth, D. J.; Perry, N. D.

    1995-08-01

    This paper describes sub-ablation optical excitation of flexural vibration in cantilevers and a suspended truck-wheel rim by using a single 600μs, Nd:glass laser pulse with energies between 1J and 40J. The excitation is consistent with the photothermal production of a localized thermoelastic bending moment at the site of the laser irradiation. This method of excitation has been combined with fibre optic sensing and modal analysis of the resulting vibrations to provide a practical method of remotely measuring the structural properties upon which the frequencies of vibration depend. The modal frequencies of slot-damaged cantilevers are presented to demonstrate the possible application of this non-contact measurement technique for non-destructive testing.

  8. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  9. [Steam ablation of varicose veins].

    PubMed

    van den Bos, Renate R; Malskat, Wendy S J; Neumann, H A M Martino

    2013-01-01

    In many western countries endovenous thermal ablation techniques have largely replaced classical surgery for the treatment of saphenous varicose veins as they are more effective and patient friendly. Because these treatments can be performed under local tumescent anaesthesia, patients can mobilize immediately after the procedure. A new method of thermal ablation is endovenous steam ablation, which is a fast and easy procedure. Steam ablation may cause less pain than laser ablation and it is also cheaper and more flexible than segmental radiofrequency ablation. PMID:23484513

  10. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  11. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  12. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  13. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  14. Thermal ablation in cancer

    PubMed Central

    Liu, Yong; Cao, Cheng-Song; Yu, Yang; Si, Ya-Meng

    2016-01-01

    Radiofrequency ablation (RFA) and cryoablation are alternative forms of therapy used widely in various pathological states, including treatment of carcinogenesis. The reason is that ablation techniques have ability of modulating the immune system. Furthermore, recent studies have applied this form of therapy on tumor microenvironment and in the systematic circulation. Moreover, RFA and cryoablation result in an inflammatory immune response along with tissue disruption. Evidence has demonstrated that these procedures affect carcinogenesis by causing a significant local inflammatory response leading to an immunogenic gene signature. The present review enlightens the current view of these techniques in cancer. PMID:27703520

  15. Investigation of ablation thresholds of optical materials using 1-µm-focusing beam at hard X-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Senba, Yasunori; Tono, Kensuke; Sato, Takahiro; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Mimura, Hidekazu; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko; Ishikawa, Tetsuya

    2013-07-01

    We evaluated the ablation thresholds of optical materials by using hard X-ray free electron laser. A 1-µm-focused beam with 10-keV of photon energy from SPring-8 Angstrom Compact free electron LAser (SACLA) was irradiated onto silicon and SiO2 substrates, as well as the platinum and rhodium thin films on these substrates, which are widely used for optical materials such as X-ray mirrors. We designed and installed a dedicated experimental chamber for the irradiation experiments. For the silicon substrate irradiated at a high fluence, we observed strong mechanical cracking at the surface and a deep ablation hole with a straight side wall. We confirmed that the ablation thresholds of uncoated silicon and SiO2 substrates agree with the melting doses of these materials, while those of the substrates under the metal coating layer are significantly reduced. The ablation thresholds obtained here are useful criteria in designing optics for hard X-ray free electron lasers.

  16. Holmium:YAG (λ=2120nm) vs. Thulium fiber laser (λ=1908nm) ablation of kidney stones: thresholds, rates, and retropulsion

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-03-01

    The Holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but its efficient operation is limited to relatively low pulse rates (~10 Hz) during lithotripsy. On the contrary, the Thulium Fiber Laser (TFL) is limited to low pulse energies, but can operate at very high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion effects for different Ho:YAG and TFL operation modes. The TFL (λ=1908 nm) was operated with pulse energies of 5-35 mJ, 500-μs pulse duration, and pulse rates of 10-400 Hz. The Ho:YAG laser (λ=2120 nm) was operated with pulse energies of 30-550 mJ, 350-μs pulse duration, and pulse rate of 10 Hz. Laser energy was delivered through small-core (200-270-μm) optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 J/cm2and 20.8 J/cm2, respectively. Stone retropulsion with Ho:YAG laser increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies < 175 mJ at 10 Hz, and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies (e.g. 100-200 mJ) and high pulse rates (100-150 Hz) may also provide higher ablation rates, when retropulsion is not the primary concern.

  17. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials.

    PubMed

    Schelle, Florian; Polz, Sebastian; Haloui, Hatim; Braun, Andreas; Dehn, Claudia; Frentzen, Matthias; Meister, Jörg

    2014-11-01

    Modern ultrashort pulse lasers with scanning systems provide a huge set of parameters affecting the suitability for dental applications. The present study investigates thresholds and ablation rates of oral hard tissues and restorative materials with a view towards a clinical application system. The functional system consists of a 10 W Nd:YVO4 laser emitting pulses with a duration of 8 ps at 1,064 nm. Measurements were performed on dentin, enamel, ceramic, composite, and mammoth ivory at a repetition rate of 500 kHz. By employing a scanning system, square-shaped cavities with an edge length of 1 mm were created. Ablation threshold and rate measurements were assessed by variation of the applied fluence. Examinations were carried out employing a scanning electron microscope and optical profilometer. Irradiation time was recorded by the scanner software in order to calculate the overall ablated volume per time. First high power ablation rate measurements were performed employing a laser source with up to 50 W. Threshold values in the range of 0.45 J/cm(2) (composite) to 1.54 J/cm(2) (enamel) were observed. Differences between any two materials are statistically significant (p < 0.05). Preparation speeds up to 37.53 mm(3)/min (composite) were achieved with the 10 W laser source and differed statistically significant for any two materials (p < 0.05) with the exception of dentin and mammoth ivory (p > 0.05). By employing the 50 W laser source, increased rates up to ∼50 mm(3)/min for dentin were obtained. The results indicate that modern USPL systems provide sufficient ablation rates to be seen as a promising technology for dental applications.

  18. Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation

    SciTech Connect

    Siegel, J.; Puerto, D.; Gawelda, W.; Bachelier, G.; Solis, J.; Ehrentraut, L.; Bonse, J.

    2007-08-20

    We have investigated the temporal and spatial evolution of the ablation process induced in fused silica upon irradiation with single 120 fs laser pulses at 800 nm. Time-resolved microscopy images of the surface reflectivity at 400 nm reveal the existence of a transient plasma distribution with annular shape surrounding the visible ablation crater. The material in this annular zone shows an increased reflectivity after irradiation, consistent with a local refractive index increase of approximately 0.01. White light interferometry measurements indicate a shallow surface depression in this outer region, most likely due to material densification.

  19. Ablation of Martian glaciers

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Davis, Philip A.

    1987-01-01

    Glacier like landforms are observed in the fretted terrain of Mars in the latitude belts near + or - 42 deg. It was suggested that sublimation or accumulation-ablation rates could be estimated for these glaciers if their shapes were known. To this end, photoclinometric profiles were obtained of a number of these landforms. On the basis of analyses of these profiles, it was concluded that ice is chiefly ablating from these landforms that either are inactive rock-glaciers or have materials within them that are moving exceedingly slowly at this time. These conclusions are consistent with other geologic information. The analyses were performed using a two-dimensional model of an isothermal glacier.

  20. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  1. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  2. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  3. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  4. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  5. Nanoscale ablation through optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  6. Matricectomy and nail ablation.

    PubMed

    Baran, Robert; Haneke, Eckart

    2002-11-01

    Matricectomy refers to the complete extirpation of the nail matrix, resulting in permanent nail loss. Usually however, matricectomy is only partial, restricted to one or both lateral horns of the matrix. Nail ablation is the definitive removal of the entire nail organ. The most important common denominator in the successful matricectomy is the total removal or destruction of the matrix tissue. Matricectomy may be indicated for the management of onychauxis, onychogryphosis, congenital nail dystrophies, and chronic painful nail, such as recalcitrant ingrown toenail or split within the medial or lateral one-third of the nail.

  7. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  8. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  9. Percutaneous Ablation in the Kidney

    PubMed Central

    Wood, Bradford J.; Gervais, Debra A.

    2011-01-01

    Percutaneous ablation in the kidney is now performed as a standard therapeutic nephron-sparing option in patients who are poor candidates for resection. Its increasing use has been largely prompted by the rising incidental detection of renal cell carcinomas with cross-sectional imaging and the need to preserve renal function in patients with comorbid conditions, multiple renal cell carcinomas, and/or heritable renal cancer syndromes. Clinical studies to date indicate that radiofrequency ablation and cryoablation are effective therapies with acceptable short- to intermediate-term outcomes and with a low risk in the appropriate setting, with attention to pre-, peri-, and postprocedural detail. The results following percutaneous radiofrequency ablation and cryoablation in the treatment of renal cell carcinoma are reviewed in this article, including those of several larger scale studies of ablation of T1a tumors. Clinical and technical considerations unique to ablation in the kidney are presented, and potential complications are discussed. © RSNA, 2011 PMID:22012904

  10. Ultrafast laser ablation of transparent materials

    NASA Astrophysics Data System (ADS)

    Bauer, Lara; Russ, Simone; Kaiser, Myriam; Kumkar, Malte; Faißt, Birgit; Weber, Rudolf; Graf, Thomas

    2016-03-01

    The present work investigates the influence of the pulse duration and the temporal spacing between pulses on the ablation of aluminosilicate glass by comparing the results obtained with pulse durations of 0.4 ps and 6 ps. We found that surface modifications occur already at fluences below the single pulse ablation threshold and that laser-induced periodic surface structures (LIPSS) emerge as a result of those surface modifications. For 0.4 ps the ablation threshold fluences is lower than for 6 ps. Scanning electron micrographs of LIPSS generated with 0.4 ps exhibit a more periodic and less coarse structure as compared to structures generated with 6 ps. Furthermore we report on the influence of temporal spacing between the pulses on the occurrence of LIPSS and the impact on the quality of the cutting edge. Keywords: LIPSS,

  11. Rare event molecular dynamics simulations of plasma induced surface ablation

    SciTech Connect

    Sharia, Onise; Holzgrafe, Jeffrey; Park, Nayoung; Henkelman, Graeme

    2014-08-21

    The interaction of thermal Ar plasma particles with Si and W surfaces is modeled using classical molecular dynamics (MD) simulations. At plasma energies above the threshold for ablation, the ablation yield can be calculated directly from MD. For plasma energies below threshold, the ablation yield becomes exponentially low, and direct MD simulations are inefficient. Instead, we propose an integration method where the yield is calculated as a function of the Ar incident kinetic energy. Subsequent integration with a Boltzmann distribution at the temperature of interest gives the thermal ablation yield. At low plasma temperatures, the ablation yield follows an Arrhenius form in which the activation energy is shown to be the threshold energy for ablation. Interestingly, equilibrium material properties, including the surface and bulk cohesive energy, are not good predictors of the threshold energy for ablation. The surface vacancy formation energy is better, but is still not a quantitative predictor. An analysis of the trajectories near threshold shows that ablation occurs by different mechanisms on different material surfaces, and both the mechanism and the binding of surface atoms determine the threshold energy.

  12. Rare event molecular dynamics simulations of plasma induced surface ablation.

    PubMed

    Sharia, Onise; Holzgrafe, Jeffrey; Park, Nayoung; Henkelman, Graeme

    2014-08-21

    The interaction of thermal Ar plasma particles with Si and W surfaces is modeled using classical molecular dynamics (MD) simulations. At plasma energies above the threshold for ablation, the ablation yield can be calculated directly from MD. For plasma energies below threshold, the ablation yield becomes exponentially low, and direct MD simulations are inefficient. Instead, we propose an integration method where the yield is calculated as a function of the Ar incident kinetic energy. Subsequent integration with a Boltzmann distribution at the temperature of interest gives the thermal ablation yield. At low plasma temperatures, the ablation yield follows an Arrhenius form in which the activation energy is shown to be the threshold energy for ablation. Interestingly, equilibrium material properties, including the surface and bulk cohesive energy, are not good predictors of the threshold energy for ablation. The surface vacancy formation energy is better, but is still not a quantitative predictor. An analysis of the trajectories near threshold shows that ablation occurs by different mechanisms on different material surfaces, and both the mechanism and the binding of surface atoms determine the threshold energy. PMID:25149805

  13. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  14. Epicardial Ablation of Ventricular Tachycardia

    PubMed Central

    Tung, Roderick; Shivkumar, Kalyanam

    2015-01-01

    Epicardial mapping and ablation via a percutaneous subxiphoid technique has been instrumental in improving the working understanding of complex myocardial scars in various arrhythmogenic substrates. Endocardial ablation alone may not be sufficient in patients with ischemic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and Chagas disease to prevent recurrent ventricular tachycardia. Multiple observational studies have demonstrated greater freedom from recurrence with adjunctive epicardial ablation compared with endocardial ablation alone. While epicardial ablation is performed predominantly at tertiary referral centers, knowledge of the technical approach, clinical indications, and potential complications is imperative to maximizing clinical success and patient safety. In 1996, Sosa and colleagues modified the pericardiocentesis technique to enable percutaneous access to the pericardial space for mapping and catheter ablation of ventricular tachycardia.1 Originally developed for patients with epicardial scarring due to chagasic cardiomyopathy and patients with ischemic cardiomyopathy refractory to endocardial ablationm,2,3 this approach has since become an essential part of the armamentarium for the treatment of ventricular tachycardia. Myocardial scars are three-dimensionally complex with varying degrees of transmurality, and the ability to map and ablate the epicardial surface has contributed to a greater understanding of scar-related VT in postinfarction cardiomyopathy and nonischemic substrates including idiopathic dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and chagasic cardiomyopathy. In this review, we highlight the percutaneous approach and discuss clinical indications and potential complications. PMID:26306131

  15. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  16. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  17. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; Lin, C. Wang, H. Y.; Lu, H. Y.; He, X. T.; Yan, X. Q.; Chen, J. E.; Cowan, T. E.

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  18. Ablation of crystalline oxides by infrared femtosecond laser pulses

    SciTech Connect

    Watanabe, Fumiya; Cahill, David G.; Gundrum, Bryan; Averback, R. S.

    2006-10-15

    We use focused laser pulses with duration of 180 fs and wavelength of 800 nm to study the interactions of high power near-infrared light with the surfaces of single-crystal transparent oxides (sapphire, LaAlO{sub 3}, SrTiO{sub 3}, yttria-stabilized ZrO{sub 2}, and MgO); the morphologies of the ablation craters are studied by atomic force microscopy and scanning electron microscopy. With the exception of LaAlO{sub 3}, the high temperature annealing of these oxide crystals produces atomically flat starting surfaces that enable studies of the morphology of ablation craters with subnanometer precision. The threshold fluence for ablation is determined directly from atomic-force microscopy images and increases approximately linearly with the band gap of the oxide. For all oxides except sapphire, the depth of the ablation crater increases approximately as the square root of the difference between the peak laser fluence and the threshold fluence for ablation. Sapphire shows unique behavior: (i) at laser fluences within 1 J/cm{sup 2} of the threshold for ablation, the depth of the ablation crater increases gradually instead of abruptly with laser fluence, and (ii) the rms roughness of the ablation crater shows a pronounced minimum of <0.2 nm at a laser fluence of 1 J/cm{sup 2} above the threshold.

  19. Ablative Approaches for Pulmonary Metastases.

    PubMed

    Boyer, Matthew J; Ricardi, Umberto; Ball, David; Salama, Joseph K

    2016-02-01

    Pulmonary metastases are common in patients with cancer for which surgery is considered a standard approach in appropriately selected patients. A number of patients are not candidates for surgery due to a medical comorbidities or the extent of surgery required. For these patients, noninvasive or minimally invasive approaches to ablate pulmonary metastases are potential treatment strategies. This article summarizes the rationale and outcomes for non-surgical treatment approaches, including radiotherapy, radiofrequency and microwave ablation, for pulmonary metastases.

  20. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  1. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  2. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500  fs, 10  ps, 20  ns.

    PubMed

    Nieto, Daniel; Arines, Justo; O'Connor, Gerard M; Flores-Arias, María Teresa

    2015-10-10

    In this work, we report a comparative study of the laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass as a function of the pulse width and for IR laser wavelengths. We determine the ablation threshold for three different pulse durations: τ=500  fs, 10 ps, and 20 ns. Experiments have been performed using a single laser pulse per shot in an ambient (air) environment. The results show a significant difference, of two orders of magnitude, between the group of ablation thresholds obtained for femtosecond, picosecond, and nanosecond pulses. This difference is reduced to 1 order of magnitude in the soda-lime substrate with tin impurities, pointing out the importance of the incubation effect. The morphology of the marks generated over the different glass materials by one single pulse of different pulse durations has been analyzed using a scanning electron microscope (FESEM ULTRA Plus). Our results are important for practical purposes, providing the ablation threshold data of four commonly used substrates at three different pulse durations in the infrared regime (1030-1064 nm) and complete data for increasing the understanding of the differences in the mechanism's leading ablation in the nanosecond, picosecond, and femtosecond regimes.

  3. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  4. Focal Ablation of Prostate Cancer: Four Roles for MRI Guidance

    PubMed Central

    Sommer, Graham; Bouley, Donna; Gill, Harcharan; Daniel, Bruce; Pauly, Kim Butts; Diederich, Christopher

    2014-01-01

    Introduction There is currently a great deal of interest in the possible use of focal therapies for prostate cancer, since such treatments offer the prospect for control or cure of the primary disease with minimal side effects. Many forms of thermal therapy have been proposed for focal ablation of prostate cancer, including laser, high intensity ultrasound and cryotherapy. This review will demonstrate the important roles that MRI guidance can offer to such focal ablation, focusing on the use of high intensity ultrasonic applicators as an example of one promising technique. Materials and Methods Transurethral and interstitial high intensity ultrasonic applicators, designed specifically for ablation of prostate tissue were tested extensively in vivo in a canine model. The roles of MRI in positioning the devices, monitoring prostate ablation, and depicting ablated tissue were assessed using appropriate MRI sequences. Results MRI guidance provides a very effective tool for the positioning of ablative devices in the prostate, and thermal monitoring successfully predicted ablation of prostate tissue when a threshold of 52°C was achieved. Contrast enhanced MRI accurately depicted the distribution of ablated prostate tissue, which is resorbed at 30 days. Conclusions Guidance of thermal therapies for focal ablation of prostate cancer will likely prove critically dependent on MRI functioning in four separate roles. Our studies indicate that in 3 roles: device positioning; thermal monitoring of prostate ablation; and depiction of ablated prostate tissue, MR techniques are highly accurate and likely to be of great benefit in focal prostate cancer ablation. A fourth critical role, identification of cancer within the gland for targeting of thermal therapy, is more problematic at present, but will likely become practical with further technological advances. PMID:23587506

  5. Current hot potatoes in atrial fibrillation ablation.

    PubMed

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-11-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  6. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  7. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  8. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  9. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  10. Hard tissue ablation with a spray-assisted mid-IR laser.

    PubMed

    Kang, H W; Rizoiu, I; Welch, A J

    2007-12-21

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment. PMID:18065837

  11. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  12. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  13. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  14. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  15. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  16. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  17. Photochemical ablation of organic solids

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.; Garrison, Barbara J.

    2003-04-01

    We have investigated by molecular dynamics simulations the ablation of material that is onset by photochemical processes. We compare this system with only photochemical processes to a system containing photochemical and photothermal processes. The simulations reveal that ablation by purely photochemical processes is accompanied by the ejection of relatively cold massive molecular clusters from the surface of the sample. The top of the plume exhibits high temperatures whereas the residual part of the sample is cold. The removal of the damaged material through big molecular cluster ejection is consistent with experimental observations of low heat damage of material.

  18. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  19. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  20. Atrial Fibrillation Ablation and Stroke.

    PubMed

    Aagaard, Philip; Briceno, David; Csanadi, Zoltan; Mohanty, Sanghamitra; Gianni, Carola; Trivedi, Chintan; Nagy-Baló, Edina; Danik, Stephan; Barrett, Conor; Santoro, Francesco; Burkhardt, J David; Sanchez, Javier; Natale, Andrea; Di Biase, Luigi

    2016-05-01

    Catheter ablation has become a widely available and accepted treatment to restore sinus rhythm in atrial fibrillation patients who fail antiarrhythmic drug therapy. Although generally safe, the procedure carries a non-negligible risk of complications, including periprocedural cerebral insults. Uninterrupted anticoagulation, maintenance of an adequate ACT during the procedure, and measures to avoid and detect thrombus build-up on sheaths and atheters during the procedure, appears useful to reduce the risk of embolic events. This is a review of the incidence, mechanisms, impact, and methods to reduce catheter ablation related cerebral insults. PMID:27150179

  1. Radiofrequency ablation of lung tumours

    PubMed Central

    Goh, PYT

    2006-01-01

    Radiofrequency ablation (RFA) is a well-established local therapy for hepatic malignancies. It is rapidly emerging as an effective treatment modality for small lesions elsewhere in the body, in particular, the kidney and the lung. It is a relatively safe and minimally invasive treatment for small lung malignancies, both primary and secondary. In particular, it is the preferred form of treatment for non-surgical candidates. This paper describes the technique employed for radiofrequency ablation of lung tumours, as well as the protocol established, at the Mount Elizabeth Hospital, Singapore. PMID:21614247

  2. Ablative Therapies for Barrett's Esophagus

    PubMed Central

    Garman, Katherine S.; Shaheen, Nicholas J.

    2011-01-01

    Barrett's esophagus has gained increased clinical attention because of its association with esophageal adenocarcinoma, a cancer with increasing incidence and poor survival rates. The goals of ablating Barrett's esophagus are to decrease esophageal cancer rates and to improve overall survival and quality of life. Different techniques have been developed and tested for their effectiveness eradicating Barrett's epithelium. This review assesses the literature associated with different ablative techniques. The safety and efficacy of different techniques are discussed. This review concludes with recommendations for the clinician, including specific strategies for patient care decisions for patients with Barrett's esophagus with varying degrees of dysplasia. PMID:21373836

  3. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  4. Catheter ablation of parahisian premature ventricular complex.

    PubMed

    Kim, Jun; Kim, Jeong Su; Park, Yong Hyun; Kim, June Hong; Chun, Kook Jin

    2011-12-01

    Catheter ablation is performed in selected patients with a symptomatic premature ventricular complex (PVC) or PVC-induced cardiomyopathy. Ablation of PVC from the His region has a high risk of inducing a complete atrioventricular block. Here we report successful catheter ablation of a parahisian PVC in a 63-year-old man.

  5. Computational modeling of ultra-short-pulse ablation of enamel

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  6. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  7. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  8. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  9. Reconstruction of an ablated breast.

    PubMed

    Scarfì, A; Ordemann, K; Hüter, J

    1986-01-01

    It is the aim of the reconstruction of an ablated breast to repair the woman's integrity. The technique of this operation, according to Bomert, is the sliding of a flap of skin in the case of a horizontal breast scar. For the reconstruction, a silicone prosthesis is implanted which in most cases is prepectoral.

  10. Magnetocardiographically-guided catheter ablation.

    PubMed

    Fenici, R R; Covino, M; Cellerino, C; Di Lillo, M; De Filippo, M C; Melillo, G

    1995-12-01

    After more than 30 years since the first magnetocardiographic (MCG) recording was carried out with induction coils, MCG is now approaching the threshold of clinical use. During the last 5 years, in fact, there has been a growing interest of clinicians in this new method which provides an unrivalled accuracy for noninvasive, three-dimensional localization of intracardiac source. An increasing number of laboratories are reporting data validating the use of MCG as an effective method for preoperative localization of arrhythmogenic substrates and for planning the best catheter ablation approach for different arrhythmogenic substrates. In this article, available data from literature have been reviewed. We consider the clinical use of MCG to localize arrhythmogenic substrates in patients with Wolff-Parkinson-White syndrome and in patients with ventricular tachycardia in order to assess the state-of-the-art of the method on a large number of patients. This article also addresses some suggestions for industrial development of more compact, medically oriented MCG equipments at reasonable cost.

  11. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  12. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  13. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  14. Laser ablation of gall bladder stones

    NASA Astrophysics Data System (ADS)

    Marafi, M.; Makdisi, Y.; Bhatia, K. S.; Abdulah, A. H.; Kokaj, Y.; Mathew, K.; Quinn, F.; Qabazard, A.

    1999-06-01

    Study of laser interaction with calculi is presented. A system of Nd-Yag and Ho-Yag pulsed lasers were used to produce fluorescence and plasma signals at the stone surface surrounded by saline and bile fluids. Fourth harmonic from Nd-Yag laser was transmitted to the samples by graded UV optical fibres. Gall bladder stones of various compositions were subjected to the high power Ho-Yag laser. Temporal transients and spectral evolution of plasma and fluorescence signals were monitored by a streak camera. A profile of acoustic pressures generated by shock waves was recorded with sensitive hydrophones placed in the surrounding fluids. Ablation threshold, cavitation process and fluorescence dependence on the laser parameters were studied in detail. Potential of stone identification by fluorescence and possible hydrodynamic model for ablation of biological samples is discussed.

  15. [Catheter ablation of persistent atrial fibrillation : pulmonary vein isolation, ablation of fractionated electrograms, stepwise approach or rotor ablation?].

    PubMed

    Scherr, D

    2015-02-01

    Catheter ablation is an established treatment option for patients with atrial fibrillation (AF). In paroxysmal AF ablation, pulmonary vein isolation alone is a well-defined procedural endpoint, leading to success rates of up to 80% with multiple procedures over 5 years of follow-up. The success rate in persistent AF ablation is significantly more limited. This is partly due to the rudimentary understanding of the substrate maintaining persistent AF. Three main pathophysiological concepts for this arrhythmia exist: the multiple wavelet hypothesis, the concept of focal triggers, mainly located in the pulmonary veins and the rotor hypothesis. However, the targets and endpoints of persistent AF ablation are ill-defined and there is no consensus on the optimal ablation strategy in these patients. Based on these concepts, several ablation approaches for persistent AF have emerged: pulmonary vein isolation, the stepwise approach (i.e. pulmonary vein isolation, ablation of fractionated electrograms and linear ablation), magnetic resonance imaging (MRI) and rotor-based approaches. Currently, persistent AF ablation is a second-line therapy option to restore and maintain sinus rhythm. Several factors, such as the presence of structural heart disease, duration of persistent AF and dilatation and possibly also the degree of fibrosis of the left atrium should influence the decision to perform persistent AF ablation. PMID:25687615

  16. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  17. UV laser ablation of parylene films from gold substrates

    SciTech Connect

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  18. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  19. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  20. Diagnosing Implosion Velocity and Ablator Dynamics at NIF

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Hayes, Anna; Jungman, Jerry; Wilson, Doug; Wilhelmy, Jerry; Bradley, Paul; Rundberg, Bob; Cerjan, Charlie

    2009-10-01

    An enhanced understanding of the environment in a burning NIF capsule is of interest to both astrophysics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. During the burn,the NIF capsule ablator is moving relative to the 14.1 MeV dt neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The ``point-design'' capsule at the NIF will be based on a ^9Be ablator, and the ^9Be(n,p)^9Li reaction has an energy threshold of 14.2 MeV, making it the ideal probe. As discussed in detail below, differences in the ablator velocity lead to significant differences in the rate of ^9Li production. We present techniques for measuring this ^9Li implosion velocity diagnostic at the NIF. The same experimental techniques, measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density and approximate thickness of the ablator at peak burn.

  1. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  2. Ultraviolet laser ablation of polyimide films

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Braren, B.; Dreyfus, R. W.

    1987-01-01

    Pulsed laser radiation at 193, 248, or 308 nm can etch films of polyimide (DuPont KaptonTM). The mechanism of this process has been examined by the chemical analysis of the condensible products, by laser-induced fluorescence analysis of the diatomic products, and by the measurement of the etch depth per pulse over a range of fluences of the laser pulse. The most important product as well as the only one condensible at room temperature is carbon. Laser-induced fluorescence analysis showed that C2 and CN were present in the ablation plume. At 248 nm, even well below the fluence threshold of 0.08 J/cm2 for significant ablation, these diatomic species are readily detected and are measured to leave the polymer surface with translational energy of ˜5 eV. These results, when combined with the photoacoustic studies of Dyer and Srinivasan [Appl. Phys. Lett. 48, 445 (1986)], show that a simple photochemical mechanism in which one photon or less (on average) is absorbed per monomer is inadequate. The ablation process must involve many photons per monomer unit to account for the production of predominantly small (<4 atoms) products and the ejection of these fragments at supersonic velocities.

  3. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures

    SciTech Connect

    Fiutowski, J.; Maibohm, C.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2011-05-09

    Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures. The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron microscopy and atomic force microscopy. Thickness variation in the polymer film enables the investigation of either the initial ablation phase or ablation induced by collective enhancement effects.

  4. Ultrafast femtosecond laser ablation of graphite

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Mel'nik, N. N.; Saltuganov, Pavel N.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2015-06-01

    Fluence dependences of IR and UV reflectivity of femtosecond laser pulses on a HOPG surface demonstrate their saturation in a certain fluence range, starting from 0.2 J cm-2, where single-shot non-linear plasma emission is detected by electric probe measurements. This correlation between prompt solid-state optical/electronic dynamics and electron-ion plasma emission indicates prompt ‘freezing’ of surface electronic dynamics via its plasma-emission cooling and simultaneous ultrafast shallow laser ablation of the surface. Strong HOPG disordering is observed in Raman spectra for laser fluences, exceeding the plasma emission threshold.

  5. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  6. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm‑1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm‑1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm‑1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  7. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  8. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    SciTech Connect

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-11-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated.

  9. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  10. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  11. High Current Cathodes Fabricated by KrF Laser Ablation

    SciTech Connect

    Gilgenbach, Ronald M.; Lau, Y. Y.; Jones, M. C.; Johnston, M. D.; Jordan, N. M.; Hoff, B. W.

    2010-10-08

    In this paper we review several high power laser ablation techniques that have been utilized to fabricate high current (1-80 kA) electron beam cathodes for accelerators and microwave sources: 1) Projection Ablation Lithography (PAL) cathodes, 2) Ablation Line Focus (ALF) cathodes, and 3) Metal-Oxide-Junction (MOJ) cathodes. Laser-ablative micromachining techniques (PAL and ALF) have been utilized to generate micron-scale features on metal substrates that provide electric field (beta) enhancement for Fowler-Nordheim emission and plasma cathodes. Since these laser-ablated patterns are directly, laser-written on the substrate metal they exhibit much higher thermal conductivity for higher current capability and increased damage thresholds. Metal-Oxide-Junction (MOJ) cathodes exploit the triple-point electron emission that occurs at the interface between metal, insulator and vacuum.The ablation laser is a KrF excimer laser with a pulse energy of 600 mJ and pulselength of 20 ns. Cathode experiments were performed on the MELBA-C accelerator: V = -300 kV, pulselength = 0.5 microsecond. Data will be presented for PAL, ALF and MOJ cathodes.

  12. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  13. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  14. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  15. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  16. Cold ablation driven by localized forces in alkali halides.

    PubMed

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A; Hayes, Stuart A; Manz, Stephanie; Gengler, Regis Y N; Wann, Derek A; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A; Matsuo, Jiro; Sciaini, Germán; Miller, R J Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play. PMID:24835317

  17. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  18. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    PubMed

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material.

  19. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    PubMed

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material. PMID:27157748

  20. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    NASA Astrophysics Data System (ADS)

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  1. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  2. Dynamics of mid-infrared femtosecond laser resonant ablation

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yunxuan; Wang, Qingyue

    2014-06-01

    Resonant ablation is beneficial to avoiding uncontrollable subsurface damages in the laser ablation of polymers. In this paper the dynamics of mid-infrared laser resonant ablation of polylactic acid and toluene was calculated by using fluid dynamic equations. The merits and drawbacks of mid-infrared femtosecond laser resonant ablation of high molecular weight polymers have been discussed.

  3. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  4. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  5. Ablation response testing of aerospace power supplies

    NASA Astrophysics Data System (ADS)

    Lutz, S. A.; Chan, C. C.

    1993-01-01

    An experimental program was performed to assess the aerothermal ablation response of aerospace power supplies. Full-scale General Purpose Heat Source (GPHS) test articles, Graphite Impact Shell (GIS) test articles, and Lightweight Radioisotope Heater Unit (LWRHU) test articles were all tested without nuclear fuel in simulated reentry environments at the NASA Ames Research Center. Stagnation heating, stagnation pressure, stagnation surface temperature, stagnation surface recession profile, and weight loss measurements were obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements showed an effect of surface features on the stagnation face. The surface features altered the local heating which in turn affected the local ablation.

  6. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    SciTech Connect

    Hayes, Anna; Grim, Gary; Jungnam, Jerry; Bradley, Paul; Rundberg, Bob; Wilhelmy, Jerry; Wilson, Doug

    2009-07-09

    An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it the ideal

  7. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  8. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  9. Simple spherical ablative-implosion model

    SciTech Connect

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-06-23

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling.

  10. Nanosecond laser ablation of silver nanoparticle film

    NASA Astrophysics Data System (ADS)

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  11. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  12. Neocuproine ablates melanocytes in adult zebrafish.

    PubMed

    O'Reilly-Pol, Thomas; Johnson, Stephen L

    2008-12-01

    The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.

  13. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  14. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  15. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  16. Ablation studies of Y-Ba-Cu-oxide in oxygen using a pulsed CO 2 laser

    NASA Astrophysics Data System (ADS)

    Dyer, P. E.; Key, P. H.; Monk, P.

    1992-01-01

    The depth of ablation of Y-Ba-Cu-oxide pellets as a function of pulsed CO 2 laser fluence has been measured. Up to fluences of ˜ 5 J cm -2 the data can be well fitted to a Beer's law dependence with absorption coefficient ∝ = 10 4 cm -1 and threshold fluence for ablation of 0.85 J cm -2. At higher fluences a self-regulating ablation rate regime, due to plasma formation, is encountered. Particulate deposits from 10.6 μm laser ablation are found to be much greater than with shorter wavelenghts and evidence of large particle formation by accretion of smaller ablation products is observed. The range of the ablation plume in low pressure oxygen has been studied as a function of laser fluence, irradiation spot size and ambient gas pressure and is compared with modelling.

  17. Principles of the radiative ablation modeling

    NASA Astrophysics Data System (ADS)

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-01

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  18. Principles of the radiative ablation modeling

    SciTech Connect

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-15

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  19. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  20. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.

  1. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  2. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  3. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  4. Laser Ablated Carbon Nanodots for Light Emission

    NASA Astrophysics Data System (ADS)

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-09-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  5. Laser Ablation for Small Hepatocellular Carcinoma

    PubMed Central

    Pacella, Claudio Maurizio; Francica, Giampiero; Di Costanzo, Giovanni Giuseppe

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is increasingly detected at small size (<5 cm) owing to surveillance programmes in high-risk patients. For these cases, curative therapies such as resection, liver transplantation, or percutaneous ablation have been proposed. When surgical options are precluded, image-guided tumor ablation is recommended as the most appropriate therapeutic choice in terms of tumor local control, safety, and improvement in survival. Laser ablation (LA) represents one of currently available loco-ablative techniques: light is delivered via flexible quartz fibers of diameter from 300 to 600 μm inserted into tumor lesion through either fine needles (21g Chiba needles) or large-bore catheters. The thermal destruction of tissue is achieved through conversion of absorbed light (usually infrared) into heat. A range of different imaging modalities have been used to guide percutaneous laser ablation, but ultrasound and magnetic resonance imaging are most widely employed, according to local experience and resource availability. Available clinical data suggest that LA is highly effective in terms of tumoricidal capability with an excellent safety profile; the best results in terms of long-term survival are obtained in early HCC so that LA can be proposed not only in unresectable cases but, not differently from radiofrequency ablation, also as the first-line treatment. PMID:22191028

  6. Optical modeling of laser ablated microstructures

    NASA Astrophysics Data System (ADS)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  7. Micrometeoroid ablation simulated in the laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  8. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength. PMID:27659953

  9. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  10. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  11. Radiofrequency Ablation Beyond the Liver

    PubMed Central

    Neeman, Ziv; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has begun to show promise for extrahepatic indications. Although much of the reported work on image-guided RFA of liver neoplasms is quite promising, it is even earlier in the evaluation and validation process for extrahepatic RFA, with few short-term and no long-term studies reported. Although there are much more data for liver RFA with almost 3,000 cases reported in the literature, there are a number of ongoing investigations of RFA for tumors in the kidney, lung, bone, breast, bone, and adrenal gland. Debulking and pain control with RFA present palliative options becoming increasingly popular weapons in the interventionalist's oncology arsenal. Metastatic disease with a wide variety of primary histologies in a myriad of locations may be treated with RFA after a careful consideration of the risk-to-benefit ratio balance. The RFA technique can be slightly different outside the liver. Specifically, differing dielectric tissue characteristics may markedly alter the RFA treatment. Each different RFA system has a unique risk and advantage profile. Extrahepatic indications and contraindications will be suggested. Treatment tips and the unique complications and considerations will be introduced for some of the more common extrahepatic locations. PMID:12524646

  12. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  13. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  14. Lip Reconstruction after Tumor Ablation

    PubMed Central

    Ebrahimi, Ali; Kalantar Motamedi, Mohammad Hossein; Ebrahimi, Azin; Kazemi, Mohammad; Shams, Amin; Hashemzadeh, Haleh

    2016-01-01

    Approximately 25% of all oral cavity carcinomas involve the lips, and the primary management of these lesions is complete surgical resection. Loss of tissue in the lips after resection is treated with a variety of techniques, depending on the extension and location of the defect. Here we review highly accepted techniques of lip reconstruction and some of new trials with significant clinical results. Reconstruction choice is primarily depend to size of the defect, localization of defect, elasticity of tissues. But patient’s age, comorbidities, and motivation are also important. According to the defect location and size, different reconstruction methods can be used. For defects involved less than 30% of lips, primary closures are sufficient. In defects with 35–70% lip involvement, the Karapandzic, Abbe, Estlander, McGregor or Gillies’ fan flaps or their modifications can be used. When lip remaining tissues are insufficient, cheek tissue can be used in Webster and Bernard advancement flaps and their various modifications. Deltopectoral or radial forearm free flaps can be options for large defects of the lip extending to the Jaws. To achieve best functional and esthetic results, surgeons should be able to choose most appropriate reconstruction method. Considering defects’ size and location, patients’ expects and surgeon’s ability and knowledge, a variety of flaps are presented in order to reconstruct defects resulted from tumor ablation. It’s necessary for surgeons to trace the recent innovations in lip reconstruction to offer best choices to patients. PMID:27308236

  15. A systematic review of surgical ablation versus catheter ablation for atrial fibrillation

    PubMed Central

    Kearney, Katherine; Stephenson, Rowan; Phan, Kevin; Chan, Wei Yen; Huang, Min Yin

    2014-01-01

    Background Atrial fibrillation (AF) is an increasingly prevalent condition in the ageing population, with significantly associated morbidity and mortality. Surgical and catheter ablative strategies both aim to reduce mortality and morbidity through freedom from AF. This review consolidates all currently available comparative data to evaluate these two interventions. Methods A systematic search was conducted across MEDLINE, PubMed, Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews from January 2000 until August 2013. All studies were critically appraised and only those directly comparing surgical and catheter ablation were included. Results Seven studies were deemed suitable for analysis according to the inclusion criteria. Freedom from AF was significantly higher in the surgical ablation group versus the catheter ablation group at 6-month, 12-month and study endpoint follow-up periods. Subgroup analysis demonstrated similar trends, with higher freedom from AF in the surgical ablation group for paroxysmal AF patients. The incidence of pacemaker implantation was higher, while no difference in stroke or cardiac tamponade was demonstrated for the surgical versus catheter ablation groups. Conclusions Current evidence suggests that epicardial ablative strategies are associated with higher freedom from AF, higher pacemaker implantation rates and comparable neurological complications and cardiac tamponade incidence to catheter ablative treatment. Other complications and risks were poorly reported, which warrants further randomized controlled trials (RCTs) of adequate power and follow-up duration. PMID:24516794

  16. Hydrodynamic simulation of ultrashort pulse laser ablation of gold film

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng

    2015-06-01

    The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.

  17. Online monitoring of nanoparticles formed during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nováková, Hana; Holá, Markéta; Vojtíšek-Lom, Michal; Ondráček, Jakub; Kanický, Viktor

    2016-11-01

    The particle size distribution of dry aerosol originating from laser ablation of glass material was monitored simultaneously with Laser Ablation - Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis and two aerosol spectrometers - Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS). The unique combination of LA-ICP-MS and FMPS offers the possibility of measuring the particle size distribution every 1 s of the ablation process in the size range of 5.6-560 nm. APS extends the information about particle concentration in the size range 0.54-17 μm. Online monitoring of the dry aerosol was performed for two ablation modes (spot and line with a duration of 80 s) with a 193 nm excimer laser system, using the glass reference material NIST 610 as a sample. Different sizes of laser spot for spot ablation and different scan speeds for line ablation were tested. It was found that the FMPS device is capable of detecting changes in particle size distribution at the first pulses of spot laser ablation and is suitable for laser ablation control simultaneously with LA-ICP-MS analysis. The studied parameters of laser ablation have an influence on the resulting particle size distribution. The line mode of laser ablation produces larger particles during the whole ablation process, while spot ablation produces larger particles only at the beginning, during the ablation of the intact layer of the ablated material. Moreover, spot ablation produces more primary nano-particles (in ultrafine mode size range < 100 nm) than line ablation. This effect is most probably caused by a reduced amount of large particles released from the spot ablation crater. The larger particles scavenge the ultrafine particles during the line ablation mode.

  18. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  19. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation

    SciTech Connect

    Toftmann, B.; Schou, J.; Doggett, B.; Budtz-Jorgensen, C.; Lunney, J. G.

    2013-02-28

    The ablation plume dynamics arising from ablation of silver with a 500 fs, 248 nm laser at {approx}2 J cm{sup -2} has been studied using angle-resolved Langmuir ion probe and thin film deposition techniques. For the same laser fluence, the time-of-flight ion signals from femtosecond and nanosecond laser ablation are similar; both show a singly peaked time-of-flight distribution. The angular distribution of ion emission and the deposition are well described by the adiabatic and isentropic model of plume expansion, though distributions for femtosecond ablation are significantly narrower. In this laser fluence regime, the energy efficiency of mass ablation is higher for femtosecond pulses than for nanosecond pulses, but the ion production efficiency is lower.

  20. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  1. UV-laser ablation of ionic liquid matrices.

    PubMed

    Hellwig, Nils; Thrun, Alexander; Muskat, Tassilo; Grotemeyer, Jürgen

    2009-12-01

    Ionic liquid matrices are a new class of matrices used in MALDI mass spectrometry. The ablation process of several ionic liquid matrices was studied by determining the velocity distribution of ablated neutral matrix molecules. This was done by a postionization approach, where the neutrals were ionized in the ablation plume by a second laser pulse. It was found that a second, time-delayed ablation event occurs consisting completely of neutral molecules. To explain this, the reflected-shockwave model is used, which assumes that the shockwave emerging from the laser ablation is reflected at the sample holder surface. When the shockwave arrives at the sample surface it causes a second ablation.

  2. Effect of Laser Wavelength and Ablation Time on Pulsed Laser Ablation Synthesis of AL Nanoparticles in Ethanol

    NASA Astrophysics Data System (ADS)

    Baladi, A.; Mamoory, R. Sarraf

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 5-15 minutes using the 1064 and 533 nm wavelengths of a Nd:YAG laser with energies of 280-320 mJ per pulse. It has been found that higher wavelength leads to significantly higher ablation efficiency, and finer spherical nanoparticles are also synthesized. Besides, it was obvious that higher ablation time resulted in higher ablated mass, while lower ablation rate was observed. Finer nanoparticles, moreover, are synthesized in higher ablation times.

  3. [Radiofrequency transcatheter ablation in atrial tachycardia].

    PubMed

    Velázquez Rodríguez, E; Morales Hernández, J A

    2000-01-01

    Incessant atrial tachycardia is an infrequent arrhythmia. Specially difficult to treat medically. Radiofrequency catheter ablation has been used successfully to cure a variety of supraventricular tachycardias. The purpose of this work is to report our initial experience in the treatment of atrial tachycardia. Ten patients, mean age 28.7 +/- 15 year with conventional drug-resistant symptomatic atrial tachycardia were treated with selective ablation of the focus using radiofrequency energy. It was found an abnormal automaticity in 10 tachycardias and in only one patient intra-atrial reentrant was supported. Radiofrequency energy was successful in 10 of 11 tachycardias with a mean of 9.3 +/- 6.8 applications using the technique of local atrial electrogram activation time with a mean value of -54 +/- -31 milliseconds at the successful ablation sites. No complications were observed and one patient had an early clinical recurrence. All patients with successful ablation are symptom-free, in sinus rhythm and without antiarrhythmic medications after 1 to 28 months of follow-up. Our initial experience support that radiofrequency catheter ablation is a safe and effective therapeutic option for incessant atrial tachycardia. PMID:10855411

  4. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  5. Design Calculations for NIF Convergent Ablator Experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Callahan, D. A.; Hicks, D. G.; Landen, O. L.; Langer, S. H.; Meezan, N. B.; Spears, B. K.; Widmann, K.; Kline, J. L.; Wilson, D. C.; Petrasso, R. D.; Leeper, R. J.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics -- 1) Dante measurements of hohlraum x-ray flux and spectrum, 2) streaked radiographs of the imploding ablator shell, 3) wedge range filter measurements of D-He3 proton output spectra, and 4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning. *SNL, LLNL, and LANL are operated under US DOE contracts DE-AC04-94AL85000. DE-AC52-07NA27344, and DE-AC04-94AL85000.

  6. Design calculations for NIF convergent ablator experiments.

    SciTech Connect

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.; Zylstra, A.; Seguin, F.; Landen, Otto L.; Petrasso, R. D.; Rinderknecht, H.; Kline, J. L.; Frenje, J.; Wilson, D. C.; Langer, S. H.; Widmann, K.; Meezan, Nathan B.; Hicks, Damien G.; Olson, Richard Edward

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.

  7. Transcatheter radiofrequency ablation of atrial tissue using a suction catheter.

    PubMed

    Lavergne, T; Prunier, L; Cuize, L; Bruneval, P; Von Euw, D; Le Heuzey, J Y; Peronneau, P

    1989-01-01

    Closed chest ablative technique that avoid barotrauma would be attractive for ablation at thin walled cardiac structures, such as the atrial free wall or coronary sinus. Transcatheter radiofrequency (RF) currents produce tissue necrosis the size of which is dependent on the contact between the tissue and the electrode. In order to assess the effects of transvenous RF ablation of atrial free wall using a suction electrode catheter, we delivered in ten dogs, one single unmodulated RF pulse 1.2 MHz, in a unipolar mode, through the distal electrode of a lumen catheter (USCI 8F) (USCI, Billerica, MA USA) located in the right appendage. During the pulse an 80 KPa vacuum depression was applied to the lumen of the catheter. Each pulse had a 10 seconds duration and the mean delivered power was 4.3 +/- 1.4 W. Aortic pressure and electrocardiogram were monitored during the procedure. A right atrial electrophysiological study was performed at the ablated site, at control, after suction application and after RF pulse delivery. The animals were sacrificed after 14 or 21 days. Atrial pacing threshold values decreased after suction application in comparison to control values after the pulse (0.42 +/- 0.06 vs 0.60 +/- 0.23 mA, P less than O.05) but increased after the pulse delivery (2.60 +/- 1.85 mA, P less than 0.01). In contrast, the atrial effective refractory period did not significantly change after suction, nor after RF pulse delivery. Aortic pressure remained unchanged throughout the procedure. Complex arrhythmias were not observed during or after RF pulse delivery. One dog died suddenly at the first day after ablation, but this death was most probably unrelated to RF ablation. Anatomic lesions had a length of 8.8 +/- 3.3 mm, a width of 4.6 +/- 2.5 mm and a depth of 3.6 +/- 1.1 mm. They were transmural in nine of the ten dogs but without atrial wall perforation in any case. Lesions suggesting tissue volatilization were present in four dogs. These results demonstrate that

  8. Excimer laser ablation of aluminum: influence of spot size on ablation rate

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2016-11-01

    The dependence of ablation rate of an Al alloy on laser beam spot size (10–150 µm) was investigated using an ArF excimer laser operating at a wavelength of 193 nm and pulse width less than 4 ns. Ablation was conducted in air at a fluence of 11 J cm‑2 and at a repetition rate of 20 Hz. Surface morphology and depth of craters produced by a variable number of laser pulses were characterized using optical and scanning electron microscopy. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as an additional diagnostic technique to estimate the amount of material ablated from craters produced by a laser beam of different diameters. Laser beam spot size and number of laser pulses applied to the same spot were found to influence crater morphology, ablation rate, shape and amount of particles deposited at or around the crater rim. Ablation rate was found to be less dependent on spot size for craters greater than 85 µm. A four-fold increase in ablation rate was observed with decreasing crater size from 150 µm to 10 µm.

  9. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  10. Radiofrequency catheter ablation in pediatric patients with supraventricular arrhythmias.

    PubMed

    Rhodes, L A; Lobban, J H; Schmidt, S B

    1995-01-01

    Radiofrequency (RF) ablation of foci leading to abnormal cardiac rhythms is rapidly becoming the procedure of choice in the management of arrhythmias in adults. This report reviews our initial experience with RF ablation in the pediatric population. PMID:8533398

  11. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Herren, Kenneth A.

    2005-04-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period. This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered. The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  12. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  13. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  14. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  15. Deep Dive Topic: Choosing between ablators

    SciTech Connect

    Hurricane, O. A.; Thomas, C.; Olson, R.

    2015-07-14

    Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDC and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.

  16. Effects of endocardial microwave energy ablation

    PubMed Central

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-01-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure. PMID:16943871

  17. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  18. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  19. Image-Guided Spinal Ablation: A Review.

    PubMed

    Tsoumakidou, Georgia; Koch, Guillaume; Caudrelier, Jean; Garnon, Julien; Cazzato, Roberto Luigi; Edalat, Faramarz; Gangi, Afshin

    2016-09-01

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option. PMID:27329231

  20. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  1. Ablation therapy for left atrial autonomic modification.

    PubMed

    Malcolme-Lawes, Louisa; Sandler, Belinda C; Sikkel, Markus B; Lim, Phang Boon; Kanagaratnam, Prapa

    2016-08-01

    The autonomic nervous system is implicated in the multifactorial pathogenesis of atrial fibrillation (AF) but few studies have attempted neural targeting for therapeutic intervention. We have demonstrated that short bursts of stimulation, at specific sites of left atrial ganglionated plexi (GPs), trigger fibrillation-inducing atrial ectopy and importantly continuous stimulation of these sites may not induce AV block, the 'conventional' marker used to locate GPs. We have shown that these ectopy-triggering GP (ET-GP) sites are anatomically stable and can be rendered inactive by either ablation at the site or by ablation between the site and the adjacent pulmonary vein (PV). This may have important implications for planning patient specific strategies for ablation of paroxysmal AF in the future. PMID:27595199

  2. Tumor Ablation: Common Modalities and General Practices

    PubMed Central

    Knavel, Erica M.; Brace, Christopher L.

    2014-01-01

    Tumor ablation is a minimally invasive technique that is commonly used in the treatment of tumors of the liver, kidney, bone, and lung. During tumor ablation, thermal energy is used to heat or cool tissue to cytotoxic levels (less than −40°C or more than 60°C). An additional technique is being developed that targets the permeability of the cell membrane and is ostensibly nonthermal. Within the classification of tumor ablation, there are several modalities used worldwide: radiofrequency, microwave, laser, high-intensity focused ultrasound, cryoablation, and irreversible electroporation. Each technique, although similar in purpose, has specific and optimal indications. This review serves to discuss general principles and technique, reviews each modality, and discusses modality selection. PMID:24238374

  3. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  4. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  5. Indirect-drive ablative Richtmyer Meshkov node scaling

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Baker, K. L.; Clark, D. S.; Goncharov, V. N.; Hammel, B. A.; Ho, D. D.; Hurricane, O. A.; Lindl, J. D.; Loomis, E. N.; Masse, L.; Mauche, C.; Milovich, J. L.; Peterson, J. L.; Smalyuk, V. A.; Yi, S. A.; Velikovich, A. L.; Weber, C.

    2016-05-01

    The ablation front Rayleigh Taylor hydroinstability growth dispersion curve for indirect-drive implosions has been shown to be dependent on the Richtmyer Meshkov growth during the first shock transit phase. In this paper, a simplified treatment of the first shock ablative Richtmyer-Meshkov (ARM) growth dispersion curve is used to extract differences in ablation front perturbation growth behavior as function of foot pulse shape and ablator material for comparing the merits of various ICF design option.

  6. Stereotactic Body Radiotherapy and Ablative Therapies for Lung Cancer.

    PubMed

    Abbas, Ghulam; Danish, Adnan; Krasna, Mark J

    2016-07-01

    The treatment paradigm for early stage lung cancer and oligometastatic disease to the lung is rapidly changing. Ablative therapies, especially stereotactic body radiation therapy, are challenging the surgical gold standard and have the potential to be the standard for operable patients with early stage lung cancer who are high risk due to co- morbidities. The most commonly used ablative modalities include stereotactic body radiation therapy, microwave ablation, and radiofrequency ablation. PMID:27261915

  7. Stereotactic Body Radiotherapy and Ablative Therapies for Lung Cancer.

    PubMed

    Abbas, Ghulam; Danish, Adnan; Krasna, Mark J

    2016-07-01

    The treatment paradigm for early stage lung cancer and oligometastatic disease to the lung is rapidly changing. Ablative therapies, especially stereotactic body radiation therapy, are challenging the surgical gold standard and have the potential to be the standard for operable patients with early stage lung cancer who are high risk due to co- morbidities. The most commonly used ablative modalities include stereotactic body radiation therapy, microwave ablation, and radiofrequency ablation.

  8. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  9. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  10. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  11. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  12. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  13. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  14. A Sensor for Obtaining Ablation Rates

    NASA Technical Reports Server (NTRS)

    Winters, Clyde W.; Bracalente, Emedio

    1961-01-01

    A variable-capacitance ablation-rate sensor which allows continuous measurements of ablation rates for Teflon and similar polymers has been developed and tested i n an ethylene-heated high-temperature jet at stagnation temperatures ranging from 2,400 deg to 3,800 deg F. The data (length changes) were measured by using the same telemeter equipment as that used in rocket-propelled flight vehicles.Results indicate measurement error to be a maximum of 4 percent between the telemetered length changes and the length changes that were obtained from photographic records of the test.

  15. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  16. Dispersive effects in laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Ştefan Andrei; Agop, Maricel; Nica, Petru; Gurlui, Silviu; Mihăileanu, Doina; Toma, Ştefan; Focşa, Cristian

    2014-11-01

    The dynamics of transient plasmas generated by high-fluence nanosecond laser ablation has been investigated by recording the ionic current with a Langmuir probe. Systematic measurements have been carried out on a plasma produced in vacuum by Nd:YAG laser irradiation of a copper target. The temporal evolution of the ionic current for different fluences was investigated, revealing the presence of some periodic oscillations. A theoretical model is proposed in order to describe the nonlinear behavior of the expanding plasma by assuming that the motion curves of the ablated particles are fractals. The behaviors predicted by the proposed theoretical model are in good agreement with the experimental findings.

  17. Experimental measurement of ablation effects in plasma armature railguns

    SciTech Connect

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  18. Ablation techniques for primary and metastatic liver tumors

    PubMed Central

    Ryan, Michael J; Willatt, Jonathon; Majdalany, Bill S; Kielar, Ania Z; Chong, Suzanne; Ruma, Julie A; Pandya, Amit

    2016-01-01

    Ablative treatment methods have emerged as safe and effective therapies for patients with primary and secondary liver tumors who are not surgical candidates at the time of diagnosis. This article reviews the current literature and describes the techniques, complications and results for radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation. PMID:26839642

  19. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  20. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  1. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M.; Neev, J.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  2. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  3. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    PubMed Central

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  4. Laboratory Micrometeroid/Dust Ablation Studies

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Horanyi, M.; Janches, D.; Munsat, T. L.; Plane, J. M. C.; Simolka, J.; Sternovsky, Z.

    2014-12-01

    Each day, somewhere between 5-270 tonnes of meteoric material ablates in Earth's upper atmosphere. Thisenormous range is significant because the Interplanetary Dust Particle (IDP) input has implications in ourunderstanding of meteor transport in the atmosphere, the formation of layers of metal atoms and ions,nucleation of noctilucent clouds, effects on stratospheric aerosols and O3 chemistry, and dust evolution inour solar system. As the dust ablates, it produces light, as well as a plasma trail of ionized atmosphericatoms and electrons. These meteor signatures are detected by photographic means, or by radar, but thereremain uncertainties in the luminous efficiency and ionization coefficient of meteors - two parameters thatare essential to evaluate densities, masses, height distributions and fluxes. Precise measurements of theseparameters would allow for not only an understanding of the layers of metal atoms and ions and meteoricsmoke particles in the mesosphere and lower thermosphere, but also would allow for the Earth's atmosphereto be used as a dust detector to detect and characterize the dust environment in our solar system. This work discusses the preliminary results of the new dust ablation facility at the 3 MV hypervelocity dust accelerator at the Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) at the University of Colorado, which aims to characterize the ionization coefficient and luminous efficiency of ablating micrometeroids.

  5. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  6. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  7. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  8. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time.

  9. Modeling sublimation of a charring ablator

    NASA Technical Reports Server (NTRS)

    Balhoff, J. F.; Pike, R. W.

    1973-01-01

    The Hertz-Knudsen analysis is shown to accurately predict the sublimation rate from a charring ablator. Porosity is shown to have a significant effect on the surface temperature. The predominant carbon species found in the vapor is C3, which agrees well with the results of previous investigations.

  10. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  11. Reflecting ablating heat shields for planetary entry.

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Nachtsheim, P. R.; Howe, J. T.

    1972-01-01

    Heat shielding for planetary entry probes of future Jovian and Venusian missions will encounter heating levels well beyond those previously experienced. These entries are typically dominated by radiative heating from the shock layer. This paper demonstrates the potential of reflecting this incident radiation diffusely from an ablating material. This technique contrasts with the absorption experienced by char-forming or graphitic ablators. Two dielectric materials, Teflon (polytetra-fluoroethylene) and boron nitride, are examined for their ablative performance, including reflection, in a combined convective- and radiative-heating environment. For Teflon, at the conditions obtained, superimposition of radiative heating upon a convective stream causes no additional increase in surface recession over the convective only results. For boron nitride, an excellent room-temperature reflector in the visible spectrum, a decrease in reflectivity from 90 to 55 percent is experienced when the surface undergoes sublimation at high temperatures. The process of reflection in each of these materials is described in terms of backscattering from crystals. The significance of a sizable reflection as a mode of energy accommodation is demonstrated for Venusian entries as a potential reduction in mass loss due to ablation.

  12. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  13. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  14. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  15. Thermochemical Ablation Analysis of the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  16. Laser ablation of a platinum target in water. I. Ablation mechanisms

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the first in a series of three papers aimed at better understanding the processes that lead to nanomaterial formation during laser ablation of solid targets in liquids. Here we study the variation of the target surface morphology versus laser fluence and wavelength in order to suggest an ablation mechanism. A key finding is that an explosive ablation mechanism is prominent for a wide range of laser fluences for all wavelengths tested. Interestingly, however, ultraviolet (355 nm) and infrared (1064 nm) wavelengths show characteristically different explosive behaviors. In the infrared case, numerous large craters with diameters around 20 {mu}m form at localized points within the laser irradiated area. In contrast, ultraviolet ablation results in a striking transition to nanoscale surface roughness across the entire irradiated area. This texture is attributed to spinodal decomposition at the molten target surface. We propose that the wavelength and fluence dependence of the ablation craters can be explained by the amount of energy absorbed in the target. The consequences of the ablation mechanism for nanomaterial synthesis are discussed.

  17. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  18. Ablation of Atrial Fibrillation: Patient Selection, Periprocedural Anticoagulation, Techniques, and Preventive Measures After Ablation.

    PubMed

    Link, Mark S; Haïssaguerre, Michel; Natale, Andrea

    2016-07-26

    Atrial fibrillation (AF) is the most common arrhythmia encountered by cardiologists and is a major cause of morbidity and mortality. Risk factors for AF include age, male sex, genetic predisposition, hypertension, diabetes mellitus, sleep apnea, obesity, excessive alcohol, smoking, hyperthyroidism, pulmonary disease, air pollution, heart failure, and possibly excessive exercise. The management of AF involves decisions about rate versus rhythm control. Asymptomatic patients are generally managed with rate control and anticoagulation. Symptomatic patients will desire rhythm control. Rhythm control options are either antiarrhythmic agents or ablation, with each having its own risks and benefits. Ablation of AF has evolved from a rare and complex procedure to a common electrophysiological technique. Selection of patients to undergo ablation is an important aspect of AF care. Patients with the highest success rates of ablation are those with normal structural hearts and paroxysmal AF, although those with congestive heart failure have the greatest potential benefit of the procedure. Although pulmonary vein isolation of any means/energy source is the approach generally agreed on for those with paroxysmal AF, optimal techniques for the ablation of nonparoxysmal AF are not yet clear. Anticoagulation reduces thromboembolic complications; the newer anticoagulants have eased management for both the patient and the cardiologist. Aggressive management of modifiable risk factors (hypertension, diabetes mellitus, sleep apnea, obesity, excessive alcohol, smoking, hyperthyroidism, pulmonary disease, air pollution, and possibly excessive exercise) after ablation reduces the odds of recurrent AF and is an important element of care. PMID:27462054

  19. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  20. Major ablative procedures in orthopaedic surgery.

    PubMed

    Soucacos, P N; Dailiana, Z H; Beris, A E; Xenakis, T H; Malizos, K N; Chrisovitsinos, J

    1996-01-01

    In the presence of the notable progress in limb-sparing techniques afforded by the developments in microsurgery and musculoskeletal oncology, major ablative surgery of the extremities still remains a last-resort, yet powerful tool in managing patients with primary tumors in whom wide excision is not possible, as well as in cases with severe trauma to the limbs. During the last thirteen years, eight major ablative procedures were performed at the Department of Orthopaedic Surgery of the University of Ioannina Medical School. Seven out of the eight procedures were performed in patients with primary malignant tumors either because the anatomical location or multiple recurrences of the tumor did not allow removal by wide local excision or by amputation at a lower level. In one patient, the procedure was related to a severe, mangling trauma. Four illustrative cases of the eight major ablative procedures performed are reported to highlight the current indications of this rarely used, complex, and extensive surgery. The characteristic cases presented are: hemipelvectomy in a patient with chondrosarcoma of the pelvis, disarticulation of the hip in a patient with a malignant histiocytoma of the supracondylar area of the knee, forequarter amputation in a patient with a basal cell carcinoma of the axilla, and disarticulation of the shoulder in a patient with an incomplete nonviable amputation at the level of the shoulder girdle associated with severe damage to the brachial plexus and axillary artery. After a five to over a ten year follow-up, six of the eight patients who where subjected to major ablative procedures are doing well and are satisfactorily active. These cases reflect the dilemma that orthopaedic surgeons geons still face in selecting limb salvage or major ablative surgery in cases of aggressive malignant tumors to severe trauma. PMID:8771355

  1. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  2. Silicon-Class Ablators for NIC Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, Darwin; Salmonson, Jay; Haan, Steve

    2012-10-01

    We present design studies using silicon-class ablators (i.e., Si, SiC, SiB6, and SiB14) for NIC ignition capsules. These types of ablators have several advantages in that they: (a) require no internal dopant layers and are robust to M-band radiation; (b) have smooth outer surfaces; (c) have stable fuel-ablator interface; and (d) have good 1-D performance. The major disadvantage for some of the ablators in this class is the relatively smaller ablation stabilization. Consequently, the ablator is more susceptible to breakup caused by RT instabilities. However, smoother outer surfaces on this class of ablators can reduce the effect of RT instabilities. 2-D simulations of SiC ablators show ignition failure despite smooth surfaces and good 1-D performance. But SiB6 and SiB14 ablators exhibit promising behaviors. SiB6 (SiB14) ablators have high 1-D ignition margin and high peak core hydrodynamic pressure 880 (900) Gbar. The ablation scale length for SiB6 is longer than that for SiC and for SiB14 is comparable to that of plastic. Therefore, we expect acceptable performance for SiB6 and less RT growth for SiB14. 2-D simulations are now in progress.

  3. Current Status of Thermal Ablation Treatments for Lung Malignancies

    PubMed Central

    Dupuy, Damian E.; Shulman, Maria

    2010-01-01

    About 75% of lung cancer patients are not surgical candidates, either due to advanced disease or medical comorbidities. Furthermore, conventional treatments that can be offered to these patients are beneficial only to a small percentage of them. Thermal ablation is a minimally invasive treatment that is commonly used in this group of patients, and which has shown promising results. Currently, the most widely used ablation techniques in the treatment of lung malignancies are radiofrequency ablation (RFA), microwave ablation, and cryoablation. Although the most studied technique is RFA, recent studies with microwave ablation and cryoablation have shown some advantages over RFA. This article reviews the application of thermal ablation in the thorax, including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparison of ablation techniques. PMID:22550366

  4. Interaction of extreme ultraviolet laser radiation with solid surface: ablation, desorption, nanostructuring

    NASA Astrophysics Data System (ADS)

    Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Frolov, Oleksandr; Juha, Libor; Chalupsky, Jaromir

    2015-02-01

    The area, where interaction of focused XUV laser radiation with solid surface takes place, can be divided according to local fluency into desorption region (if fluency is larger than zero and smaller than ablation threshold) and ablation region (if fluency is equal or larger than this threshold). It turned out that a direct nanostructuring (e.g. imprinting diffraction pattern created on edges of windows of proximity standing grid) is possible in the desorption region only. While for femtosecond pulses the particle (atom/molecule) removal-efficiency η in the desorption region is very small (η < 10%), and hence, it can be easily distinguished from the ablation region with η ~ 100%, for nanosecond pulses in desorption region this η rises at easily ablated materials from 0% at the periphery up to ~90% at the ablation contour and, therefore, the boundary between these two regions can be found with the help of nanostructuring only. This rise of removal efficiency could be explained by gradually increased penetration depth (due to gradually removed material) during laser pulse. This is a warning against blind using crater shape for fluency mapping in the case of long laser pulses. On the other hand it is a motivation to study an ablation plum (or ablation jet) and to create a knowledge bank to be used at future numerical modeling of this process.

  5. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    SciTech Connect

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  6. Ablation and optical third-order nonlinearities in Ag nanoparticles

    PubMed Central

    Torres-Torres, Carlos; Peréa-López, Néstor; Reyes-Esqueda, Jorge Alejandro; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2010-01-01

    The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs) was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR) of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but non-linearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser-induced controlled explosions, with potential applications for biomedical photothermal processes. PMID:21187944

  7. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study.

    PubMed

    Karampatzakis, Andreas; Kühn, Sven; Tsanidis, George; Neufeld, Esra; Samaras, Theodoros; Kuster, Niels

    2013-10-01

    A numerical study of the performance of antenna arrays used in microwave ablation (MWA) is carried out. Double-slot coaxial antennas in triangular and square configurations are studied. Clinical (healthy vs. malignant) and experimental (in vs. ex vivo) scenarios for hepatic cancer treatment are modeled, and further application in bone and lung tissue is examined. It is found that triangular arrays can create spherical ablation zones, while square configurations result in flatter ones. Thresholds in power and application times for creating continuous ablation zones are calculated, and the characteristics of the latter are quantified. PMID:24034722

  8. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Meinertz, J.; Simon, P.; Ihlemann, J.

    2013-01-01

    The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.

  9. Formation of rubrene nanocrystals by laser ablation in liquids utilizing MAPLE deposited thin films

    NASA Astrophysics Data System (ADS)

    O'Malley, Sean M.; Amin, Mitesh; Borchert, James; Jimenez, Richard; Steiner, Matt; Fitz-Gerald, James M.; Bubb, Daniel M.

    2014-03-01

    Nanoparticles (NPs) of the organic semiconductor rubrene were formed utilizing the laser ablation in liquids (LAL) method. Thin-films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) served as the ablation targets. We note in the case of amorphous films targets, the absorbed energy is below the threshold value needed for ablation; though polycrystalline films irradiated under the same LAL conditions result in ejecta. It is suggested this stems from an increase in the effective absorption through light trapping within crystalline domains. An observed red-shift in the absorption edge is attributed to the polar aqueous environment and to the crystalline phase.

  10. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  11. Analysis and removal of ITER relevant materials and deposits by laser ablation

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin

    2014-12-01

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm2, power density 0.3-3.9 GW/cm2). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated.

  12. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  13. Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation.

    PubMed

    Malskat, W S J; Stokbroekx, M A L; van der Geld, C W M; Nijsten, T E C; van den Bos, R R

    2014-03-01

    Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures. PMID

  14. Exogenous chromophores in Nd:YAG laser selective ablation of the model tissue

    NASA Astrophysics Data System (ADS)

    Vinduska, Vladimir

    1993-06-01

    Exogenous chromophores have the capability to enhance atheromatous plaque ablation during laser angioplasty. A number of dyes have been tested for their effect on the tissue absorption for lasers emitting at different wavelengths, but little is known about conditions governing this selectivity. 1064 nm and 1300 nm light transmission and scattering of 0.6 mm thick samples of agar with different concentrations of talc and black ink were compared to those of atheromatous tissue of the same thickness in order to determine the sample with most similar optical properties. We measured ablation threshold in air for both wavelengths, temperatures in adjacent agar in air for both wavelengths, ablation thresholds in water for 1064 nm, temperatures in the adjacent agar in the water for 1064 nm, ablation threshold in the air for 1064 nm and 5, 10, and 15 mm fiber tip distances. Selectivity of the laser ablation is achievable by saturation of the tissue with chromophore dyes. Higher absorption results in lower thermal damage of non-ablated tissue, especially in water. Selectivity in water is more pronounced than that in air. Selectivity was not influenced by the size of the laser spot in the investigated range.

  15. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  16. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  17. Ablative Therapies for Colorectal Polyps and Malignancy

    PubMed Central

    Hochwald, Steven N.; Nurkin, Steven

    2014-01-01

    Endoscopic techniques are gaining popularity in the management of colorectal polyps and occasionally superficial cancers. While their use is in many times palliative, they have proven to be curative in carefully selected patients with polyps or malignancies, with less morbidity than radical resection. However, one should note that data supporting local and ablative therapies for colorectal cancer is scarce and may be subject to publication bias. Therefore, for curative intent, these techniques should only be considered in highly select cases as higher rates of local recurrences have also been reported. The aim of this review is to explain the different modalities of local and ablative therapies specific to colorectal neoplasia and explain the indications and circumstances where they have been most successful. PMID:25089281

  18. Thrust improvement with ablative insert nozzle extension

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.; Back, L. H.

    1986-01-01

    Aspects are examined of an investigation by the Marshall Space Flight Center into the conceptual feasibility of increasing the thrust performance of the Space Shuttle Main Engine (SSME) by using a conical nozzle extension fitted with an ablative insert in order to achieve a low-cost, near-term gain in payload. The ablating insert would provide a controlled increase in nozzle expansion ratio during launch and early climbout (first 30-60 seconds) so as to reduce thrust loss from nozzle over-expansion in the lower atmosphere. Summaries are given of JPL studies in the area of: defining the near-wall flow environment in the extended nozzle insert region; selecting potential insert materials; conceptualizing an extension/insert geometrical configuration; and identifying future experimental efforts necessary to verify the feasibility of the concepts.

  19. Glycine Ablation during Comet/Meteoroid Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Mckay, Christopher P.; Borucki, William J.

    2004-01-01

    Amino acids and other organic compounds important to the chemistry of life are thought to have been delivered to early Earth by asteroids and comets. The survivability of such compounds upon high speed entry is not well understood. If molecular processing occurs during entry, the nature of the new molecules produced by such processing is also an open question. To address this question, we have initiated a study of the ablation of glycine, the simplest amino acid, upon the high speed entry of a comet or meteoroid into an atmosphere. The study assumes glycine is distributed on the surface of the comet/meteoroid. The high speed impact creates electrons, ions, and radicals in the atmosphere that react with the surface and either desorb glycine or break it up. The ablation process is studied as a function of entry speed and atmospheric composition. The AURORA code from the commercially available software package CHEMKIN is used in the study.

  20. Pulmonary radiofrequency ablation (Part 1): current state.

    PubMed

    Plasencia Martínez, J M

    2015-01-01

    The risks involved in surgical treatment and conventional radiotherapy in patients with early lung cancer or lung metastases often make these treatments difficult to justify. However, on the other hand, it is also unacceptable to allow these lesions to evolve freely because, left untreated, these neoplasms will usually lead to the death of the patient. In recent years, alternative local therapies have been developed, such as pulmonary radiofrequency ablation, which has proven to increase survival with a minimal risk of complications. There are common recommendations for these treatments, and although the specific indications for using one technique or another have yet to be established, there are clearly defined situations that will determine the outcome of the treatment. It is important to know these situations, because appropriate patient selection is essential for therapeutic success. This article aims to describe the characteristics and constraints of pulmonary radiofrequency ablation and to outline its role in thoracic oncology in light of the current evidence. PMID:25766072

  1. Palliative Radiofrequency Ablation for Recurrent Prostate Cancer

    SciTech Connect

    Jindal, Gaurav; Friedman, Marc; Locklin, Julia Wood, Bradford J.

    2006-06-15

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive local therapy for cancer. Its efficacy is now becoming well documented in many different organs, including liver, kidney, and lung. The goal of RFA is typically complete eradication of a tumor in lieu of an invasive surgical procedure. However, RFA can also play an important role in the palliative care of cancer patients. Tumors which are surgically unresectable and incompatible for complete ablation present the opportunity for RFA to be used in a new paradigm. Cancer pain runs the gamut from minor discomfort relieved with mild pain medication to unrelenting suffering for the patient, poorly controlled by conventional means. RFA is a tool which can potentially palliate intractable cancer pain. We present here a case in which RFA provided pain relief in a patient with metastatic prostate cancer with pain uncontrolled by conventional methods.

  2. Occipital lobe infarction following cardiac ablation.

    PubMed

    Mirza, Rukhsana G; Biller, Jose; Jay, Walter M

    2004-01-01

    A 60-year-old man presented with the chief complaint of seeing a blurred area just up and to the left of the center of his vision. The patient noted this visual field defect immediately after he awoke from a cardiac electrophysiologic study with a catheter ablation procedure. On neuro-ophthalmologic testing, a small scotoma was present superior and left of fixation in both eyes. MRI showed a small irregular area of abnormal signal in the right occipital lobe consistent with an ischemic lesion. To the best of our knowledge, this represents the first case report of a homonymous visual field defect secondary to an occipital lobe infarction following a cardiac catheter ablation procedure.

  3. Simulation of ablation in Earth atmospheric entry

    NASA Technical Reports Server (NTRS)

    Keenan, James A.; Candler, Graham V.

    1993-01-01

    The process of ablation for Earth atmospheric entry is simulated using a computational approach that allows thermo-chemical nonequilibrium of the flow field and ablation gases. The heat pulse into the heat shield is modeled. The flowfield and graphite heat shield are coupled through surface mass and energy balances. The surface thermochemistry involves the oxidation of graphite and allows for catalytic recombination of diatomic oxygen. Steady-state simulations are performed on a one meter nose radius sphere at an altitude of 65/km and at freestream velocities of 8 km/s and 10 km/s. A transient simulation is performed at 65 km altitude and a freestream velocity of 10 km/s.

  4. Pulmonary radiofrequency ablation (Part 1): current state.

    PubMed

    Plasencia Martínez, J M

    2015-01-01

    The risks involved in surgical treatment and conventional radiotherapy in patients with early lung cancer or lung metastases often make these treatments difficult to justify. However, on the other hand, it is also unacceptable to allow these lesions to evolve freely because, left untreated, these neoplasms will usually lead to the death of the patient. In recent years, alternative local therapies have been developed, such as pulmonary radiofrequency ablation, which has proven to increase survival with a minimal risk of complications. There are common recommendations for these treatments, and although the specific indications for using one technique or another have yet to be established, there are clearly defined situations that will determine the outcome of the treatment. It is important to know these situations, because appropriate patient selection is essential for therapeutic success. This article aims to describe the characteristics and constraints of pulmonary radiofrequency ablation and to outline its role in thoracic oncology in light of the current evidence.

  5. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  6. [Radiofrequency ablation of an unresectable abdominal tumor].

    PubMed

    Sézeur, Alain; Fritsch, Sylvie; Louvet, Christophe; Kujas, Albert; Mosnier, Henri; Talbot, Jean-Noël; Grimberg, Sylvie

    2003-02-01

    Remnant malignant tissue is left behind after conventional surgery for an unresectable intraperitoneal malignant tumor. Standard radiotherapy or chemotherapy rarely enables good tumor control. We report the case of a 74-year-old man who developed a local recurrence of a sigmoid tumor located 5 to 6 cm from the anus. The tumor was fixed to the pelvic wall and could not be totally eradicated with conventional surgery. Preoperative peroperative assessment confirmed the absence of metastatic spread. Radiotherapy could not be performed due to risk of bowel injury. Peroperative radiofrequency ablation was followed by surgical colorectal resection without restoration of intestinal continuity, leaving only tumor tissue destroyed by radiofrequency. No adjuvant treatment was proposed because of intolerance to chemotherapy. Clinical assessment and thoracic and abdominal CT scan confirmed the absence of recurrence 26 months after radiofrequency ablation. Serum markers remained normal.

  7. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices.

  8. Tissue ablation technologies for localized prostate cancer.

    PubMed

    Gillett, Michael D; Gettman, Matthew T; Zincke, Horst; Blute, Michael L

    2004-12-01

    Traditional treatments for men with localized prostate cancer have included both surgical removal and radiation therapy, with their potential adverse effects on patient quality of life. Thus, there has been increasing interest in the development of minimally invasive procedures that use various technologies to deliver lethal doses of heat or cold to the prostate in an attempt to kill cancer cells. At the same time, it is vital that these newer techniques ablate prostate tissue and spare vital periprostatic organs essential for maintaining function and quality of life. In this article, we evaluate the current status of tissue ablation modalities in the treatment of clinically localized prostate cancer, focusing on the different methods, early results, and possible future directions. Although still in the beginning stages, these newer forms of treatment offer exciting potential for first-line and second-line treatment of this common urologic malignancy.

  9. Nozzle designs with pitch precursor ablatives

    NASA Technical Reports Server (NTRS)

    Blevins, H. R.; Bedard, R. J.

    1976-01-01

    Recent developments in carbon phenolic ablatives for solid rocket motor nozzles have yielded a pitch precursor carbon fiber offering significant raw material availability and cost saving advantages as compared to conventional rayon precursor material. This paper discusses the results of an experimental program conducted to assess the thermal performance and characterize the thermal properties of pitch precursor carbon phenolic ablatives. The end result of this program is the complete thermal characterization of pitch fabric, pitch mat, hybrid pitch/rayon fabric and pitch mat molding compound. With these properties determined an analytic capability now exists for predicting the thermal performance of these materials in rocket nozzle liner applications. Further planned efforts to verify material performance and analytical prediction procedures through actual rocket motor firings are also discussed.

  10. Pulmonary Vein Stenosis Complicating Radiofrequency Catheter Ablation

    PubMed Central

    Lu, Hai-Wen; Wei, Ping; Jiang, Sen; Gu, Shu-yi; Fan, Li-Chao; liang, Shuo; Ji, Xiaobin; Rajbanshi, Bhavana; Xu, Jin-Fu

    2015-01-01

    Abstract The aim of this study is to characterize the clinical manifestations and features of pulmonary vein stenosis (PVS) by retrospectively analyzing clinical data of patients in addition to reviewing the literature simultaneously to improve the understanding of PVS complicating radiofrequency catheter ablation and to provide evidence for early diagnosis and timely treatment. Clinical, imaging, and follow-up data of 5 patients with PVS-complicating radiofrequency catheter ablation were retrospectively analyzed between January 2012 and December 2014 in Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. Relevant studies previously reported were also reviewed. Three out of 5 patients received pulmonary angiography. The initial symptoms were not specific, presenting chest pain in 3 cases, hemoptysis in 2 cases. The average duration between radiofrequency ablation to the onset of symptoms was 5.8 months. The chest image results were consolidation and pleural effusion mainly. Veins distributed in the left lungs were mostly influenced in 4 patients, and the inferior veins in 3 patients. Cardiac ultrasound examinations showed pulmonary arterial hypertension in 2 patients. Two patients received selective bronchial artery embolization after bronchial artery radiography because of hemoptysis. One patient underwent video-assisted thoracoscopic biopsy because of the suspicion of tumor. PVS is a condition mostly undetected because of its silent manifestations and inconsistent follow-up. The accurate clinical diagnosis is very difficult. A careful review of medical history and follow-up observation may be useful for all the patients who received the radiofrequency catheter ablation to recognize PVS in the early stage. PMID:26313772

  11. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  12. Design Calculations For NIF Convergent Ablator Experiments

    SciTech Connect

    Olson, R E; Hicks, D G; Meezan, N B; Callahan, D A; Landen, O L; Jones, O S; Langer, S H; Kline, J L; Wilson, D C; Rinderknecht, H; Zylstra, A; Petrasso, R D

    2011-10-25

    The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash rhor, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.

  13. Design calculations for NIF convergent ablator experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Hicks, D. G.; Meezan, N. B.; Callahan, D. A.; Landen, O. L.; Jones, O. S.; Langer, S. H.; Kline, J. L.; Wilson, D. C.; Rinderknecht, H.; Zylstra, A.; Petrasso, R. D.

    2013-11-01

    The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash ρr, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.

  14. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P. )

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  15. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  16. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  17. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-11-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.

  18. A Review of Laser Ablation Propulsion

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Sänger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing "Lightcraft" and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important rôle in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  19. Study of the ablative effects on tektite

    NASA Technical Reports Server (NTRS)

    Chen, K. K.

    1975-01-01

    The tumbling and surface roughness effects on the trajectory of entry tektite are studied in both free molecular and continuum flows. It was concluded that, while surface roughness has negligible effect on trajectory, the tumbling may play an important role in tektite trajectory and the consequent ablation, provided the body shape is different from a sphere. A shape factor was a good parameter for correlations between body shape and tumbling effects.

  20. Microwave soft tissue ablation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Clegg, Peter J.; Cronin, Nigel J.

    2005-04-01

    Microsulis, in conjunction with the University of Bath have developed a set of novel microwave applicators for the ablation of soft tissues. These interstitial applicators have been designed for use in open surgical, laparoscopic and percutaneous settings and range in diameter from 2.4 to 7 mm. A 20 mm diameter flat faced interface applicator was developed as an adjunct to the open surgical interstitial applicator and has been applied to the treatment of surface breaking lesions in hepatobiliary surgery. Taken as a complete tool set the applicators are capable of treating a wide range of conditions in a safe and efficacious manner. The modality employs a radiated electromagnetic field at the allocated medical frequency of 2.45 GHz and powers between 30 and 150 Watts. Computer simulations, bench testing, safety and efficacy testing, ex-vivo and in-vivo work plus clinical trials have demonstrated that these systems are capable of generating large volumes of ablation in short times with favourable ablation geometries. Clinical studies have shown very low complication rates with minimal local recurrence. It is considered that this modality offers major advantages over currently marketed products. The technique is considered to be particularly safe as it is quick and there is no passage of current obviating the requirement for grounding pads. Since the microwave field operates primarily on water and all soft tissues with the exception of fat are made up of approximately 70% water the heating pattern is highly predictable making repeatability a key factor for this modality.

  1. KTP-532 laser ablation of urethral strictures

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    In 1988, the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision, as in urethrotomy, strictures were treated with a 360$DEG contact photoradiation. Thirty-one males, average age 53.2 years, received 37 treatments. Six patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and post-gonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of a circumferential ablation followed by foley catheter placement (mean 10 days). Follow-up on 29 of 31 patients ranged from 1 to 16 months (mean 9.7) Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptoms but no stricture recurrence. Six patients (20.5%) failed therapy requiring additional surgery or regular dilatations. No complications were encountered. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious.

  2. Transurethral radio frequency ablation of the prostate

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1993, radiofrequency ablation of the prostate has been studied as a potential treatment for symptomatic bladder outlet obstruction due to benign prostatic hyperplasia. Two transurethral radiofrequency delivery systems have been developed to the point of undergoing initial human clinical trials. The TUNATM system involves focal interstitial radiofrequency energy application, while the TURAPYTM system involves a circumferential application of radiofrequency energy to the prostatic urethra via a simple delivery catheter. Experimental studies in animal models and human prostate tissue have demonstrated the nature of radiofrequency induced tissue heating and thermal injury. Observed thermal effects are relatively focused, with steep temperature gradients occurring over a few millimeters from the radiofrequency emission source. This allows precise and focused tissue treatment with little or no danger of injury to surrounding structures. Early human clinical experience in the treatment of benign prostatic hyperplasia has demonstrated efficacy in the relief of voiding symptoms and safety and minimal morbidity associated with this technology. The existing operative approaches are relatively simple. Ongoing development of more versatile delivery systems for radiofrequency ablation of the prostate is expected. Results from larger clinical trials with longer term followup will eventually allow adequate assessment of the role of radiofrequency ablation in the surgical management of benign prostatic hyperplasia.

  3. Interactive Volumetry Of Liver Ablation Zones

    PubMed Central

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818

  4. Laparoscopic ablation of symptomatic renal cysts.

    PubMed

    Rubenstein, S C; Hulbert, J C; Pharand, D; Schuessler, W W; Vancaillie, T G; Kavoussi, L R

    1993-10-01

    We report a laparoscopic approach to the drainage and ablation of symptomatic simple renal cysts. Ten patients with chronic pain, 6 of whom failed primary aspiration, underwent laparoscopic cyst ablation: 6 had solitary renal cysts, 3 had multiple cysts and 1 had a peripelvic cyst. The approach was transabdominal in 9 patients and extraperitoneal in 1. Intraoperatively, cyst fluid was obtained for cytological examination, and cyst walls were excised and sent for pathological examination. When possible, the remaining inner cyst walls were fulgurated to prevent recurrence. Mean total operating room time was 2 hours 27 minutes and blood loss was minimal. The sole complication was a postoperative retroperitoneal hematoma, which was managed conservatively. Malignancy was diagnosed in 2 patients, each of whom had a negative preoperative aspiration. These patients subsequently underwent radical nephrectomy. All remaining patients were asymptomatic at a mean followup of 10 months. Laparoscopic ablation of renal cysts is a safe and effective alternative to open surgery in patients who have failed conservative measures. Preoperative and intraoperative evaluation for malignancy should be performed.

  5. Interactive Volumetry Of Liver Ablation Zones

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  6. Ingrowing toenails: studies of segmental chemical ablation.

    PubMed

    Gem, M A; Sykes, P A

    1990-12-01

    Recent studies have suggested that segmental ablation is the treatment of choice for patients with ingrowing toenails and that the success rate is 96%. This procedure has been common practice among chiropodists for 20 years, usually using phenol in the United Kingdom, and sodium hydroxide in the United States. However, there has been little critical evaluation of the relative merits of the two chemicals, of the period of chemical application, or of the duration of post-operative pain and healing time. We therefore embarked upon a number of controlled prospective studies to examine these questions. A prospective study of 422 procedures for patients with ingrowing toenails (onychocryptosis) shows that good results are achieved by segmental chemical ablation performed by chiropodists in 91% of cases. The average period of post-operative pain is 3.6 days. Similar results are obtained using either 80% phenol or 10% sodium hydroxide. We believe that segmental chemical ablation by a chiropodist is the treatment of choice for the typical patient with an ingrowing toe nail. PMID:2102144

  7. Influence of the Liquid on Femtosecond Laser Ablation of Iron

    NASA Astrophysics Data System (ADS)

    Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.

    Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.

  8. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  9. Excimer lasers in cardiovascular surgery: Ablation products and photoacoustic spectrum of the arterial wall

    NASA Astrophysics Data System (ADS)

    Singleton, D. L.; Paraskevopoulos, G.; Jolly, G. S.; Irwin, R. S.; McKenney, D. J.; Nip, W. S.; Farrell, E. M.; Higginson, L. A. J.

    1986-03-01

    Photoacoustic spectra of normal artery wall and of atherosclerotic plaque are reported. Threshold fluences for ablative formation of gaseous products for each excimer laser line were calculated from the photoacoustic spectrum and the measured threshold for the KrF laser.

  10. Percutaneous ablation therapies of inoperable pancreatic cancer: a systematic review

    PubMed Central

    Ierardi, Anna Maria; Lucchina, Natalie; Bacuzzi, Alessandro; Marco, De Chiara; Bracchi, Elena; Cocozza, Eugenio; Dionigi, Gianlorenzo; Tsetis, Dimitrios; Floridi, Chiara; Carrafiello, Gianpaolo

    2015-01-01

    Initial studies about ablation therapies of the pancreas were associated with significant morbidity and mortality, which limited widespread adoption. Development of techniques with high quality imaging used as guidance improve outcomes reducing complications. Moreover, only few experiences of percutaneous pancreatic ablations are reported. They are performed by very skilled operators in highly specialized centers. This review presents the current status of percutaneous local ablative therapies in the treatment of advanced pancreatic cancer. PMID:26424487

  11. Thermal Protection during Percutaneous Thermal Ablation of Renal Cell Carcinoma

    PubMed Central

    Kam, Anthony W.; Littrup, Peter J.; Walther, McClellan M.; Hvizda, Julia; Wood, Bradford J.

    2008-01-01

    Thermal injury to collateral structures is a known complication of thermal ablation of tumors. The authors present the use of CO2 dissection and inserted balloons to protect the bowel during percutaneous radiofrequency (RF) ablation and cryotherapy of primary and locally recurrent renal cell carcinoma. These techniques offer the potential to increase the number of tumors that can be treated with RF ablation or cryotherapy from a percutaneous approach. PMID:15231890

  12. [Successful ablation of an atrioventricular nodal reentrant tachycardia ablation 2 years after orthotopic heart transplantation].

    PubMed

    Bellmann, Barbara; Reith, Sebastian; Gemein, Christopher; Schauerte, Patrick

    2015-09-01

    We report the case of a 48-year-old woman with an orthotopic heart transplantation. Two years after transplantation, the patient reported intermittent palpitations and dyspnea. The results of the 12-lead electrogram provided suspicion of AV nodal reentrant tachycardia (AVNRT), which was confirmed in the electrophysiological examination. The AVNRT was successfully eliminated without complications by radiofrequency catheter ablation of the slow pathway. The case shows that an AVNRT, even with existing sinus rhythm of the original heart, can also occur on the transplanted heart and ablation is safe and feasible. PMID:26208808

  13. Effect of micropulse duration on tissue ablation using a stretched free electron laser pulse train

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Mackanos, Mark A.; Mendenhall, Marcus H.; Jansen, E. Duco

    2004-06-01

    The pulse train from a Mark III FEL tuned to a wavelength of 6.45 microns has been shown to be efficient at ablating soft tissue with minimal collateral damage. This laser has a unique pulse structure consisting of a train of 1ps micropulses spaced 350ps apart, which is maintained for 4-5 microseconds (the macropulse) and is repeated at 1-30Hz. We are investigating the role of the pulse structure in the ablation mechanism. In order to determine the importance of non-linear effects potentially induced by the high peak power of the micropulses, we are using a grating pulse stretcher optimized for 6.45 microns to vary the micropulse duration while maintaining the macropulse duration and micropulse frequency. The technique allows use of the same pulse energy and average power with widely variable peak power. Ablation thresholds were measured using PROB-IT analysis and crater depths were measured using OCT imaging. In water, gelatin, and mouse dermis, we have found no statistically significant difference in the ablation threshold of pulses having widths of 1, 30, 60, and 100ps. The measured ablation efficiency of mouse dermis also showed no significant difference over the same range of pulse widths. This data suggests that the ablation characteristics obtained with the FEL at 6.45 microns are independent of the micropulse duration and do not rely on the high peak power of the FEL pulse train.

  14. Short-wavelength ablation of solids: pulse duration and wavelength effects

    NASA Astrophysics Data System (ADS)

    Juha, Libor; Bittner, Michal; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Prag, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard H.; Ryc, Leszek; Feldhaus, Josef; Boody, Frederick P.; Fiedorowicz, Henryk; Bartnik, Andrzej; Mikolajczyk, Janusz; Rakowski, Rafal; Kubat, P.; Pina, Ladislav; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J. G.

    2004-11-01

    For conventional wavelength (UV-Vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (l < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes it possible to investigate how the ablation characteristics depend on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser (Colorado State University, Fort Collins), focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with those measured for ultrashort pulses, we can study the influence of pulse duration on XUV ablation efficiency. Ablation efficiencies measured with short pulses at various wavelengths (i.e. 86/46.9/21.2 nm from the above-mentioned lasers and ~ 1 nm from the double stream gas-puff Xe plasma source driven by PALS) show that the wavelength influences the etch rate mainly through the different attenuation lengths.

  15. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  16. Stability of a Shock-Decelerated Ablation Front

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-08-21

    Experimental study of a shock-decelerated ablation front is reported. A planar solid plastic target is accelerated by a laser across a vacuum gap and collides with a lower-density plastic foam layer. While the target is accelerated, a fast Rayleigh-Taylor (RT) growth of the seeded single-mode perturbation at the ablation front is observed. After the collision, the velocity of the ablation front is seen to remain constant. The reshock quenches the RT growth but does not trigger any Richtmyer-Meshkov growth at the ablation front, which is shown to be consistent with both theory and simulations.

  17. Wavefront control of optical components by laser-ablative figuring

    NASA Astrophysics Data System (ADS)

    Jitsuno, Takahisa; Akashi, Tomoyoshi; Nakatsuka, Masahiro; Nakai, Sadao; Tokumura, Keiu

    1997-12-01

    A new method for figuring the surface profile of optical plastics and optical glass have been proposed and demonstrated. An ArF excimer laser is used to ablate very thin layer of the surface of the substrates. The shape of the ablated surface is monitored by an interferometer in site condition. The ablation rate of PMMA is 0.08 micrometers per pulse at the energy density of 50 mJ/cm2. The optical glass (BK-7) can be ablated 0.15 micrometers per pulse at the fluence of 1.5 J/cm2.

  18. Recent Advances in Tumor Ablation for Hepatocellular Carcinoma.

    PubMed

    Kang, Tae Wook; Rhim, Hyunchul

    2015-09-01

    Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC.

  19. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    SciTech Connect

    Gebauer, Bernhard Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-04-15

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation.

  20. Image-Guided Tumor Ablation: Emerging Technologies and Future Directions

    PubMed Central

    McWilliams, Justin P.; Lee, Edward W.; Yamamoto, Shota; Loh, Christopher T.; Kee, Stephen T.

    2010-01-01

    As the trend continues toward the decreased invasiveness of medical procedures, image-guided percutaneous ablation has begun to supplant surgery for the local control of small tumors in the liver, kidney, and lung. New ablation technologies, and refinements of existing technologies, will enable treatment of larger and more complex tumors in these and other organs. At the same time, improvements in intraprocedural imaging promise to improve treatment accuracy and reduce complications. In this review, the latest advancements in clinical and experimental ablation technologies will be summarized, and new applications of image-guided tumor ablation will be discussed. PMID:22550370

  1. Transcatheter and ablative therapeutic approaches for solid malignancies.

    PubMed

    Liapi, Eleni; Geschwind, Jean-Francois H

    2007-03-10

    The purpose of this article is to present in a concise manner an overview of the most widely used locoregional transcatheter and ablative therapies for solid malignancies. An extensive MEDLINE search was performed for this review. Therapies used for liver cancer were emphasized because these therapies are used most commonly in the liver. Applications in pulmonary, renal, and bone tumors were also discussed. These approaches were divided into catheter-based therapies (such as transcatheter arterial chemoembolization, bland embolization, and the most recent transcatheter arterial approach with drug-eluting microspheres), ablative therapies (such as chemical [ethanol or acetic acid injection]), and thermal ablative therapies (such as radiofrequency ablation, laser induced thermotherapy, microwave ablation, cryoablation, and extracorporeal high-intensity focused ultrasound ablation). A brief description of each technique and analysis of available data was reported for all therapies. Locoregional transcatheter and ablative therapies continue to be used mostly for palliation, but have also been used with curative intent. A growing body of evidence suggests clear survival benefit, excellent results regarding local tumor control, and improved quality of life. Clinical trials are underway to validate these results. Image-guided transcatheter and ablative approaches currently play an important role in the management of patients with various types of cancer-a role that is likely to grow even more given the technological advances in imaging, image-guidance systems, catheters, ablative tools, and drug delivery systems. As a result, the outcomes of patients with cancer undoubtedly will improve.

  2. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    SciTech Connect

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  3. Metal particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  4. Catheter Ablation for Long-Standing Persistent Atrial Fibrillation.

    PubMed

    Romero, Jorge; Gianni, Carola; Di Biase, Luigi; Natale, Andrea

    2015-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia worldwide and represents a major burden to health care systems. Atrial fibrillation is associated with a 4- to 5-fold increased risk of thromboembolic stroke. The pulmonary veins have been identified as major sources of atrial triggers for AF. This is particularly true in patients with paroxysmal AF but not always the case for those with long-standing persistent AF (LSPAF), in which other locations for ectopic beats have been well recognized. Structures with foci triggering AF include the coronary sinus, the left atrial appendage (LAA), the superior vena cava, the crista terminalis, and the ligament of Marshall. More than 30 studies reporting results on radiofrequency ablation of LSPAF have been published to date. Most of these are observational studies with very different methodologies using different strategies. As a result, there has been remarkable variation in short- and long-term success, which suggests that the optimal ablation technique for LSPAF is still to be elucidated. In this review we discuss the different approaches to LSPAF catheter ablation, starting with pulmonary vein isolation (PVI) through ablation lines in different left atrial locations, the role of complex fractionated atrial electrograms, focal impulses and rotor modulation, autonomic modulation (ganglionated plexi), alcohol ablation, and the future of epicardial mapping and ablation for this arrhythmia. A stepwise ablation approach requires several key ablation techniques, such as meticulous PVI, linear ablation at the roof and mitral isthmus, electrogram-targeted ablation with particular attention to triggers in the coronary sinus and LAA, and discretionary right atrial ablation (superior vena cava, intercaval, or cavotricuspid isthmus lines). PMID:26306125

  5. Catheter Ablation for Long-Standing Persistent Atrial Fibrillation

    PubMed Central

    Romero, Jorge; Gianni, Carola; Di Biase, Luigi; Natale, Andrea

    2015-01-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia worldwide and represents a major burden to health care systems. Atrial fibrillation is associated with a 4- to 5-fold increased risk of thromboembolic stroke. The pulmonary veins have been identified as major sources of atrial triggers for AF. This is particularly true in patients with paroxysmal AF but not always the case for those with long-standing persistent AF (LSPAF), in which other locations for ectopic beats have been well recognized. Structures with foci triggering AF include the coronary sinus, the left atrial appendage (LAA), the superior vena cava, the crista terminalis, and the ligament of Marshall. More than 30 studies reporting results on radiofrequency ablation of LSPAF have been published to date. Most of these are observational studies with very different methodologies using different strategies. As a result, there has been remarkable variation in short- and long-term success, which suggests that the optimal ablation technique for LSPAF is still to be elucidated. In this review we discuss the different approaches to LSPAF catheter ablation, starting with pulmonary vein isolation (PVI) through ablation lines in different left atrial locations, the role of complex fractionated atrial electrograms, focal impulses and rotor modulation, autonomic modulation (ganglionated plexi), alcohol ablation, and the future of epicardial mapping and ablation for this arrhythmia. A stepwise ablation approach requires several key ablation techniques, such as meticulous PVI, linear ablation at the roof and mitral isthmus, electrogram-targeted ablation with particular attention to triggers in the coronary sinus and LAA, and discretionary right atrial ablation (superior vena cava, intercaval, or cavotricuspid isthmus lines). PMID:26306125

  6. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  7. Laser ablation of phenylazide in an argon matrix: direct observation and chemical reactivity of ablated fragments

    NASA Astrophysics Data System (ADS)

    Niino, H.; Sato, T.; Yabe, A.

    Ablation of pentafluorophenylazide (FPA) in an Ar matrix at 8-10 K was carried out upon irradiation with ns-pulsed UV lasers in a vacuum. The plume of ablated products was monitored by a time-resolved imaging/spectroscopic technique using a gated and intensified CCD camera system. A large amount of pentafluorophenylnitrene (FPN) having a high kinetic energy ( 6 eV) was ejected as fragments from the matrix film during ablation. A quantitative formation of triplet FPN from the photolysis of the FPA was observed by spectroscopic measurements in the IR and UV-visible regions, and was confirmed by a theoretical IR spectrum calculated according to density functional theory. A FPN beam is useful for chemical surface modification of organic materials, such as aromatic polyester and alkylthiol. A surface analysis of these materials by X-ray photoelectron spectroscopy and Fourier transform infrared reflection absorption spectroscopy showed that the FPN was immobilized onto the surface through chemical bonds. This technique for the chemical surface modification of materials is made possible by a pulsed beam of reactive fragments with a high density in the laser ablation process.

  8. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  9. Langmuir probe characterization of laser ablation plasmas

    SciTech Connect

    Doggett, Brendan; Lunney, James G.

    2009-02-01

    For laser ablation plumes that are significantly ionized, Langmuir probes have proved to be a useful tool for measuring the plume shape, ion energy distribution, and electron temperature. Typically in laser ablation plasmas the flow velocity is supersonic, which complicates the interpretation of the current-voltage probe characteristic. In this paper we describe some recent developments on the application of Langmuir probes for laser ablation plume diagnosis. We have investigated the behavior of the probe when it is orientated perpendicular, and parallel, to the plasma flow, and show how an analytical model developed for plasma immersion ion implantation, can quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The ion signal recorded by a probe in the parallel position is proportional to the ion density and the square root of the bias voltage. It is shown that the current varies as m{sub i}{sup -1/2} so that by comparing the ion signals from the parallel and perpendicular positions it is possible to estimate the mass of the ions detected. We have also determined the temporal variation of electron temperature. A planar probe oriented parallel to the plasma flow, where the ion current due to the plasma flow is eliminated, gives a more reliable measurement of T{sub e} (<0.6 eV). The measured T{sub e} is consistent with the measured ion current, which is dependent on T{sub e} when the time taken for an element of plasma to traverse the probe is longer than the time taken for the matrix ion sheath extraction phase.

  10. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  11. Dopant Distribution in NIF Beryllium Ablator Capsules

    NASA Astrophysics Data System (ADS)

    Huang, H.; Xu, H. W.; Youngblood, K. P.; Wall, D. R.; Stephens, R. B.; Moreno, K. A.; Nikroo, A.; Salmonson, J. D.; Haan, S. W.; Wu, K. J.; Wang, Y. M.; Hamza, A. V.

    2012-10-01

    Good implosion performance requires capsule ablator material with spherically uniform x-ray opacity, which is controlled by one of several dopants (Cu, Si, Al, etc.) in the Be shell. During production, the dopant concentration is radially stepped. However, the various Be-dopant interactions result in vastly different dopant distribution patterns, some quite inhomogeneous. We have characterized these structures and established the phenomenological basis and the magnitudes of the inhomogeneity both in spatial length scales and in atomic percent. We will discuss the case of inhomogeneous Cu diffusion in detail, followed by discussions of other dopants and the estimate of the impact of these structures on target implosion.

  12. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  13. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  14. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  15. Radiofrequency ablation for benign thyroid nodules.

    PubMed

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.

  16. Sprayable low density ablator and application process

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Hill, W. E.; Simpson, W. G.; Carter, J. M.; Brown, E. L.; King, H. M.; Schuerer, P. H.; Webb, D. D. (Inventor)

    1978-01-01

    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent.

  17. Laser ablation studies in southern Africa

    NASA Astrophysics Data System (ADS)

    McKenzie, Edric; Forbes, A.; Turner, G. R.; Michaelis, Max M.

    2000-08-01

    With the launch of the South African National Laser Centre, new programs will need to be defined. Medical, environmental and industrial laser applications must obviously take top priority -- as opposed to the uranium isotope separation and military applications of the past. We argue however, that a small effort in laser ablation for space propulsion is justifiable, since a few very large CO2 lasers are available and since two tentative propulsion experiments have already been conducted in South Africa. We attempt to give LISP (Laser Impulse Space Propulsion) an equatorial and a Southern dimension.

  18. Laser ablation of silicon induced by a femtosecond optical vortex beam.

    PubMed

    Nivas, Jijil J J; Shutong, He; Anoop, K K; Rubano, A; Fittipaldi, R; Vecchione, A; Paparo, D; Marrucci, L; Bruzzese, R; Amoruso, S

    2015-10-15

    We investigate laser ablation of crystalline silicon induced by a femtosecond optical vortex beam, addressing how beam properties can be obtained by analyzing the ablation crater. The morphology of the surface structures formed in the annular crater surface allows direct visualization of the beam polarization, while analysis of the crater size provides beam spot parameters. We also determine the diverse threshold fluences for the formation of various complex microstructures generated within the annular laser spot on the silicon sample. Our analysis indicates an incubation behavior of the threshold fluence as a function of the number of laser pulses, independent of the optical vortex polarization, in weak focusing conditions. PMID:26469576

  19. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.

    PubMed

    Kozub, John A; Shen, Jin-H; Joos, Karen M; Prasad, Ratna; Hutson, M Shane

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-µm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 µm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 µm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 µm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (~100-µm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies>1 mJ). When the beam is softly focused (~300-µm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  20. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  1. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  2. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.

    PubMed

    Kozub, John A; Shen, Jin-H; Joos, Karen M; Prasad, Ratna; Hutson, M Shane

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-µm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 µm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 µm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 µm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (~100-µm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies>1 mJ). When the beam is softly focused (~300-µm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  3. Infrared laser ablation of dental enamel: influence of an applied water layer on ablation rate and peripheral damage

    NASA Astrophysics Data System (ADS)

    Ashouri, Nahal; Shori, Ramesh K.; Cheung, Jason M.; Fried, Daniel

    2001-04-01

    Studies have shown that a water spray may augment the laser ablation rate of dental hard tissues in addition to reducing heat accumulation. However, the mechanism of augmentation is controversial and poorly understood. The influence of an optically thick applied water layer on the ablation rate was investigated at wavelengths in which water is a primary absorber and the magnitude of absorption varies markedly. Water was manually applied with a pipette and troughs were cut in enamel blocks using a laser scanning system. Q- switched and free running Er:YSGG and Er:YAG, free running Ho:YAG and 9.6 micrometers TEA CO2 laser systems were investigated. The addition of water increased the rate of ablation and produced a more desirable surface morphology during enamel ablation with all the erbium systems. Ablation was markedly more efficient for the Q-switched erbium lasers than for the longer free-running laser systems when a water layer was added. Although, the addition of a thick water layer reduced the rate of ablation during CO2 laser ablation, the addition of the water removed undesirable deposits of non-apatite mineral phases from the crater surface. There was extensive peripheral damage after irradiation with the Ho:YAG laser with and without added water without effective ablation of enamel. The results of this study suggest that water augments the ablation of dental enamel by aiding in the removal of loosely attached deposits of non-apatite mineral phase from the crater surface, thus producing a more desirable crater surface morphology. The non-apatite mineral phase interfere with subsequent laser pulses during erbium laser irradiation reducing the rate of ablation and their removal aids in maintaining efficient ablation during multiple pulses irradiation.

  4. Trowelable ablative coating composition and method of use

    NASA Technical Reports Server (NTRS)

    Headrick, Stephen E. (Inventor); Hill, Roger L. (Inventor)

    1989-01-01

    A trowelable ablative coating composition is disclosed. The composition comprises an epoxy resin, an amide curing agent, glass microspheres and ground cork. A method for protecting a substrate is also disclosed. The method comprises applying the trowelable ablative coating discussed above to a substrate and curing the coating composition.

  5. Trowelable ablative coating composition and method of use

    NASA Technical Reports Server (NTRS)

    Headrick, Stephen E. (Inventor); Hill, Roger L. (Inventor)

    1988-01-01

    A trowelable ablative coating composition is disclosed. The composition comprises an epoxy resin, an amide curing agent, glass microspheres and ground cork. A method for protecting a substrate is also disclosed. The method comprises applying the trowelable ablative coating discussed above to a substrate and curing the coating composition.

  6. Rail gun performance and plasma characteristics due to wall ablation

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  7. Variations in Alaska tidewater glacier frontal ablation, 1985-2013

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Hock, R.; Huss, M.

    2015-01-01

    Our incomplete knowledge of the proportion of mass loss due to frontal ablation (the sum of ice loss through calving and submarine melt) from tidewater glaciers outside of the Greenland and Antarctic ice sheets has been cited as a major hindrance to accurate predictions of global sea level rise. We present a 28 year record (1985-2013) of frontal ablation for 27 Alaska tidewater glaciers (representing 96% of the total tidewater glacier area in the region), calculated from satellite-derived ice velocities and modeled estimates of glacier ice thickness. We account for cross-sectional ice thickness variation, long-term thickness changes, mass lost between an upstream fluxgate and the terminus, and mass change due to changes in terminus position. The total mean rate of frontal ablation for these 27 glaciers over the period 1985-2013 is 15.11 ± 3.63Gta-1. Two glaciers, Hubbard and Columbia, account for approximately 50% of these losses. The regional total ablation has decreased at a rate of 0.14Gta-1 over this time period, likely due to the slowing and thinning of many of the glaciers in the study area. Frontal ablation constitutes only ˜4% of the total annual regional ablation, but roughly 20% of net mass loss. Comparing several commonly used approximations in the calculation of frontal ablation, we find that neglecting cross-sectional thickness variations severely underestimates frontal ablation.

  8. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  9. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging.

    PubMed

    Subramanian, Swetha; Rudich, Steven M; Alqadah, Amel; Karunakaran, Chandra Priya; Rao, Marepalli B; Mast, T Douglas

    2014-01-01

    Previous work indicated that ultrasound echo decorrelation imaging can track and quantify changes in echo signals to predict thermal damage during in vitro radiofrequency ablation (RFA). In the in vivo studies reported here, the feasibility of using echo decorrelation imaging as a treatment monitoring tool was assessed. RFA was performed on normal swine liver (N = 5), and ultrasound ablation using image-ablate arrays was performed on rabbit liver implanted with VX2 tumors (N = 2). Echo decorrelation and integrated backscatter were computed from Hilbert transformed pulse-echo data acquired during RFA and ultrasound ablation treatments. Receiver operating characteristic (ROC) curves were employed to assess the ability of echo decorrelation imaging and integrated backscatter to predict ablation. Area under the ROC curves (AUROC) was determined for RFA and ultrasound ablation using echo decorrelation imaging. Ablation was predicted more accurately using echo decorrelation imaging (AUROC = 0.832 and 0.776 for RFA and ultrasound ablation, respectively) than using integrated backscatter (AUROC = 0.734 and 0.494). PMID:24239361

  10. A New Ablative Heat Shield Sensor Suite Project

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2014-01-01

    A new sensor suite is developed to measure performance of ablative thermal protection systems used in planetary entry vehicles for robotic and human exploration. The new sensor suite measures ablation of the thermal protection system under extreme heating encountered during planetary entry. The sensor technology is compatible with a variety of thermal protection materials, and is applicable over a wide range of entry conditions.

  11. Laser ablation of paper: Raman identification of products

    NASA Astrophysics Data System (ADS)

    Balakhnina, Irina; Brandt, Nikolay; Chikishev, Andrey; Rebrikova, Natalia; Yurchuk, Yuliya

    2014-12-01

    Old paper samples are bleached using pulsed laser radiation with a wavelength of 532 nm. The ablation products of five paper samples that differ by composition and production dates are studied using Raman microspectroscopy. Cellulose, protein, calcite, titanium dioxide (anatase, rutile, and brookite), quartz, lazurite, bonattite, and dolomite are identified as ablation products.

  12. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  13. Laser ablation synthesis and spectral characterization of ruby nanoparticles

    NASA Astrophysics Data System (ADS)

    Baranov, M. S.; Bardina, A. A.; Savelyev, A. G.; Khramov, V. N.; Khaydukov, E. V.

    2016-04-01

    The laser ablation method was implemented for synthesis of ruby nanoparticles. Nanoparticles were obtained by nanosecond ablation of bulk ruby crystal in 10% ethanol water solution. The nanoparticles enable water colloid stability and exhibit narrow photoluminescent line at 694 nm when pumped at blue-green spectral range. The ruby nanoparticles were characterized by SEM and Z-sizer.

  14. Scanning photorefractive keratectomy at 213 nm: PMMA ablations

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Rol, Pascal O.; Wosnitza, Martin; Maine, Patrick; Parel, Jean-Marie A.

    1999-06-01

    Purpose: In scanning photorefractive keratectomy, the corneal surface is reshaped by laser ablation with a scanning beam for the correction of myopia or astigmatism. A precise knowledge of the volume of corneal tissue removed by each laser pulse is necessary to be able to develop accurate ablation algorithms for scanning photorefractive keratectomy. The purpose of this study was to measure the ablation per pulse created on PMMA surfaces with a Q-switched frequency-quintupled Nd:YAG laser emitting at 213 nm. Methods: A frequency-quintupled Nd:YAG laser emitting at 213 nm with a pulse duration of 5 ns and a pulse energy of 1.2 to 1.5 mJ was used. The laser beam was focused on the surface of PMMA blocks and ablation craters were produced with 10, 50 and 100 pulses. The shape of the ablation craters was measured with an optical profilometer and compared with the beam profile measured with a laser beam diagnostic system. Results: The beam intensity distribution in the near-field consisted of two quasi-Gaussian peaks. The ablation craters contained two peaks. Assuming a Gaussian intensity distribution, the ablation per pulse in PMMA at 213 nm can be modeled by a parabolic function. Conclusions: Optical profilometry can be used to accurately measure the ablation per pulse and evaluate the homogeneity of the beam.

  15. A Theoretical Study of Stagnation-Point Ablation

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    A simplified analysis is made of ablation cooling near the stagnation point of a two-dimensional or axisymmetric body which occurs as the body vaporizes directly from the solid state. The automatic shielding mechanism Is discussed and the important thermal properties required by a good ablation material are given. The results of the analysis are given in terms of dimensionless parameters.

  16. Percutaneous Image-Guided Ablation of Breast Tumors: An Overview

    PubMed Central

    Sag, Alan A.; Maybody, Majid; Comstock, Christopher; Solomon, Stephen B.

    2014-01-01

    Percutaneous non-surgical image-guided ablation is emerging as an adjunct or alternative to surgery in the management of benign and malignant breast tumors. This review covers the current state of the literature regarding percutaneous image-guided ablation modalities, clinical factors regarding patient selection, and future directions for research. PMID:25049447

  17. Radiofrequency ablation of hepatic tumors: lessons learned from 3000 procedures.

    PubMed

    Rhim, Hyunchul; Lim, Hyo K; Kim, Young-sum; Choi, Dongil; Lee, Won Jae

    2008-10-01

    Radiofrequency ablation has been accepted as the most popular local ablative therapy for unresectable malignant hepatic tumors. For 9 years from April 1999, we performed 3000 radiofrequency ablation procedures for hepatic tumors in our institution. Our results on the safety (mortality, 0.15%/patient) and therapeutic efficacy (5-year survival rate, 58%) are similar to those of previous studies reported, supporting the growing evidence of a clear survival benefit, excellent results for local tumor control and improved quality of life. The most important lesson learned from our 3000 procedures is that the best planning, safe ablation and complete ablation are key factors for patient outcome. Furthermore, multimodality treatment is the best strategy for recurrent hepatocellular carcinoma encountered after any kind of first-line treatment.

  18. Dynamics of Laser Ablation in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    Buelna, X.; Popov, E.; Eloranta, J.

    2016-10-01

    Pulsed laser ablation of metal targets immersed in superfluid ^4He is visualized by time-resolved shadowgraph photography and the products are analyzed by post-experiment atomic force microscopy (AFM) measurements. The expansion dynamics of the gaseous ablation half-bubble on the target surface appears underdamped and follows the predicted behavior for the thermally induced bubble growth mechanism. An inherent instability of the ablation bubble appears near its maximum radius and no tightly focused cavity collapse or rebound events are observed. During the ablation bubble retreat phase, the presence of sharp edges in the target introduces flow patterns that lead to the creation of large classical vortex rings. Furthermore, on the nanometer scale, AFM data reveal that the metal nanoparticles created by laser ablation are trapped in spherical vortex tangles and quantized vortex rings present in the non-equilibrium liquid.

  19. Arcjet Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  20. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices. PMID:26301907

  1. Radiofrequency Ablation of Intrahepatic Cholangiocarcinoma: Preliminary Experience

    SciTech Connect

    Carrafiello, Gianpaolo Lagana, Domenico; Cotta, Elisa; Mangini, Monica; Fontana, Federico; Bandiera, Francesca; Fugazzola, Carlo

    2010-08-15

    The purpose of this study was to evaluate the safety and efficacy of percutaneous ultrasound (US)-guided radiofrequency ablation (RFA) in patients with intrahepatic cholangiocarcinoma (ICCA) in a small, nonrandomized series. From February 2004 to July 2008, six patients (four men and two women; mean age 69.8 years [range 48 to 83]) with ICCA underwent percutaneous US-guided RFA. Preintervetional transarterial embolization was performed in two cases to decrease heat dispersion during RFA in order to increase the area of ablation. The efficacy of RFA was evaluated using contrast-enhanced dynamic computed tomography (CT) 1 month after treatment and then every 3 months thereafter. Nine RFA sessions were performed for six solid hepatic tumors in six patients. The duration of follow-up ranged from 13 to 21 months (mean 17.5). Posttreatment CT showed total necrosis in four of six tumors after one or two RFA sessions. Residual tumor was observed in two patients with larger tumors (5 and 5.8 cm in diameter). All patients tolerated the procedure, and there with no major complications. Only 1 patient developed post-RFA syndrome (pain, fever, malaise, and leukocytosis), which resolved with oral administration of acetaminophen. Percutaneous RFA is a safe and effective treatment for patients with hepatic tumors: It is ideally suited for those who are not eligible for surgery. Long-term follow-up data regarding local and systemic recurrence and survival are still needed.

  2. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  3. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  4. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  5. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  6. Estrogen sulfotransferase ablation sensitizes mice to sepsis

    PubMed Central

    Chai, Xiaojuan; Guo, Yan; Jiang, Mengxi; Hu, Bingfang; Li, Zhigang; Fan, Jie; Deng, Meihong; Billiar, Timothy R.; Kucera, Heidi; Gaikwad, Nilesh W.; Xu, Meishu; Lu, Peipei; Yan, Jiong; Fu, Haiyan; Liu, Youhua; Yu, Lushan; Huang, Min; Zeng, Su; Xie, Wen

    2015-01-01

    Sepsis is the host's deleterious systemic inflammatory response to microbial infections. Here we report an essential role for the estrogen sulfotransferase (EST or SULT1E1), a conjugating enzyme that sulfonates and deactivates estrogens, in sepsis response. Both the cecal ligation and puncture (CLP) and lipopolysacharide (LPS) models of sepsis induce the expression of EST and compromise the activity of estrogen, an anti-inflammatory hormone. Surprisingly, EST ablation sensitizes mice to sepsis-induced death. Mechanistically, EST ablation attenuates sepsis-induced inflammatory responses due to compromised estrogen deactivation, leading to increased sepsis lethality. In contrast, transgenic overexpression of EST promotes estrogen deactivation and sensitizes mice to CLP-induced inflammatory response. The induction of EST by sepsis is NF-κB dependent and EST is a NF-κB target gene. The reciprocal regulation of inflammation and EST may represent a yet to be explored mechanism of endocrine regulation of inflammation, which has an impact on the clinical outcome of sepsis. PMID:26259151

  7. Producing Uniform Lesion Pattern in HIFU Ablation

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Kargl, Steven G.; Hwang, Joo Ha

    2009-04-01

    High intensity focused ultrasound (HIFU) is emerging as a modality for treatment of solid tumors. The temperature at the focus can reach over 65° C denaturing cellular proteins resulting in coagulative necrosis. Typically, HIFU parameters are the same for each treated spot in most HIFU control systems. Because of thermal diffusion from nearby spots, the size of lesions will gradually become larger as the HIFU therapy progresses, which may cause insufficient treatment of initial spots, and over-treatment of later ones. It is found that the produced lesion pattern also depends on the scanning pathway. From the viewpoint of the physician creating uniform lesions and minimizing energy exposure are preferred in tumor ablation. An algorithm has been developed to adaptively determine the treatment parameters for every spot in a theoretical model in order to maintain similar lesion size throughout the HIFU therapy. In addition, the exposure energy needed using the traditional raster scanning is compared with those of two other scanning pathways, spiral scanning from the center to the outside and from the outside to the center. The theoretical prediction and proposed algorithm were further evaluated using transparent gel phantoms as a target. Digital images of the lesions were obtained, quantified, and then compared with each other. Altogether, dynamically changing treatment parameters can improve the efficacy and safety of HIFU ablation.

  8. Spectroscopic characterization of laser ablated silicon plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Mumtaz, M.; Shahzada, S.; Nadeem, A.; Haq, S. U.

    2014-06-01

    We report plasma parameters of laser ablated silicon plasma using the fundamental (1064 nm) and second harmonics (532 nm) of a Nd : YAG laser. The electron temperature and electron number density are evaluated using the Boltzmann plot method and Stark broadened line profile, respectively. The electron temperature and electron number density are deduced using the same laser irradiance 2-16 GW cm-2 for 1064 nm and 532 nm as 6350-7000 K and (3.42-4.44) × 1016 cm-3 and 6000-6400 K and (4.20-5.72) × 1016 cm-3, respectively. The spatial distribution of plasma parameters shows a decreasing trend of 8200-6300 K and (4.00-3.60) × 1016 cm-3 for 1064 nm and 6400-5500 K and (5.10-4.50) × 1016 cm-3 for 532 nm laser ablation. Furthermore, plasma parameters are also investigated at low pressure from 45 to 550 mbar, yielding the electron temperature as 4580-5535 K and electron number density as (1.51-2.12) × 1016 cm-3. The trend of the above-mentioned results is in good agreement with previous investigations. However, wavelength-dependent studies and the spatial evolution of plasma parameters have been reported for the first time.

  9. Ultrasound catheters for circumferential cardiac ablation

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, William H.; Taylor, Kevin; Maguire, Mark T.; Picazo, Guillermo; Gangu, Madhuri; Lesh, Michael D.

    1999-05-01

    The purpose of this study was to investigate performance characteristics of a catheter-based ultrasound applicator intended for circumferential ablation of cardiac tissue. The catheter design integrates a cylindrical ultrasound transducer within a distendable water filled balloon in order to produce circumferential lesions at sites in the atria (i.e., pulmonary vein ostia), intended for treatment of certain atrial arrhythmias. Biothermal simulations were used to investigate thermal lesion depths corresponding to variations in applied power, duration, balloon diameter, and acoustic efficiency. Prototype applicators of varying frequency (7 - 12 MHz) and balloon diameter were constructed and characterized using measurements of acoustic efficiency and rotational beam plots. In vitro studies were performed in freshly excised beef hearts to characterize the radial penetration, axial length, and angular uniformity of thermal lesions produced by these applicators. Selected applicators were tested in vivo within pulmonary veins, coronary sinus, and atrial appendage of canine and porcine hearts. These preliminary efforts have indicated that circumferential ablation of cardiac tissue using ultrasound balloon catheters is feasible, and devices between 7 - 12 MHz with balloon diameters of 1.5 - 2.0 cm are capable of producing uniform lesions between 1 - 5 mm depth or greater for treatment durations of 120 seconds or less.

  10. Assessment of liver ablation using cone beam computed tomography

    PubMed Central

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-01

    AIM: To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. METHODS: Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. RESULTS: Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm3 (range: 4-95 cm3) and 30 cm3 (range: 4-124 cm3), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. CONCLUSION: Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone. PMID:25593467

  11. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields

    PubMed Central

    Xie, Fei; Varghese, Frency; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Philpott, Jonathan; Zemlin, Christian

    2015-01-01

    Background Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. Methods We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. Results In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Conclusions Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation. PMID:26658139

  12. Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions

    NASA Astrophysics Data System (ADS)

    Majaron, B.; Plestenjak, P.; Lukač, M.

    Characteristics of thermo-mechanical laser ablation process are investigated using an original numerical model. In contrast with previous models, it is based on a microscopic physical model of the micro-explosion process, which combines thermodynamic behavior of tissue water with elastic response of the solid tissue components. Diffusion of dissipated heat is treated in one dimension, and the amount of thermal damage is assessed using the Arrhenius model of the protein denaturation kinetics. Influence of the pulse fluence and duration on temperature profile development, ablation threshold, and depth of thermal damage is analyzed for the case of Er:YAG laser irradiation of human skin. Influence of mechanical properties on the ablation threshold of soft tissue is predicted theoretically for the first time. In addition, feasibility of deep tissue coagulation with a repetitively pulsed Er:YAG laser is indicated from the model.

  13. Comparison of Combination Therapies in the Management of Hepatocellular Carcinoma: Transarterial Chemoembolization with Radiofrequency Ablation versus Microwave Ablation

    PubMed Central

    Ginsburg, Michael; Zivin, Sean P.; Wroblewski, Kristen; Doshi, Taral; Vasnani, Raj J.; Van Ha, Thuong G.

    2015-01-01

    Purpose To compare retrospectively the outcomes and complications of transcatheter arterial chemoembolization with drug-eluting embolic agents combined with radiofrequency (RF) ablation or microwave (MW) ablation in treatment of hepatocellular carcinoma (HCC). Materials and Methods From 2003–2011, 89 patients with HCC received a combination therapy—transcatheter arterial chemoembolization plus RF ablation in 38 patients and transcatheter arterial chemoembolization plus MW ablation in 51 patients. Local tumor response, tumor progression-free survival (PFS), overall PFS, overall survival (OS), and complications were compared. Overall PFS and OS were compared between the two treatment groups in multivariate analysis controlling for Child-Pugh class, Barcelona Clinic Liver Classification stage, and index tumor size. Results Complete local tumor response was achieved in 37 (80.4%) of the tumors treated with transcatheter arterial chemoembolization plus RF ablation and 49 (76.6%) of the tumors treated with transcatheter arterial chemoembolization plus MW ablation (P = .67). The median tumor PFS and overall PFS were 20.8 months and 9.3 months (P = .72) for transarterial chemoembolization plus RF ablation and 21.8 months and 9.2 months for transarterial chemoembolization plus MW ablation (P = .32). The median OS of the transcatheter arterial chemoembolization plus RF ablation group was 23.3 months, and the median OS of the transcatheter arterial chemoembolization plus MW ablation group was 42.6 months, with no significant difference in the survival experience between the two groups (log-rank test, P = .10). In the multivariate analysis, Barcelona Clinic Liver Classification stage was the only factor associated with overall PFS and OS. One patient in the transcatheter arterial chemoembolization plus RF ablation cohort (3%) and two patients in the transcatheter arterial chemoembolization plus MW ablation cohort (4%) required prolonged hospitalization (< 48 h) for pain

  14. Rayleigh-Taylor Instability Evolution in Ablatively Driven Cylindrical Implosions^*,**

    NASA Astrophysics Data System (ADS)

    Hsing, W. W.

    1996-11-01

    The Rayleigh-Taylor instability is an important limitation in ICF capsule designs. Significant work both theoretically and experimentally has been done to demonstrate the stabilizing effects due to material flow through the unstable region. The experimental verification has been done predominantly in planar geometry. Convergent geometry introduces effects not present in planar geometry such as shell thickening and accelerationless growth of modal amplitudes (e.g. Bell-Plesset growth). Amplitude thresholds for the nonlinear regime are reduced, since the wavelength of a mode m decreases with convergence λ ~ r/m, where r is the radius. We have investigated convergent effects using an imploding cylinder driven by x-ray ablation on the NOVA laser. By doping sections of the cylinder with high-Z materials, in conjunction with x-ray backlighting, we have measured the growth and feedthrough of the perturbations from the ablation front to the inner surface of the cylinder for various initial modes and amplitudes from early time through stagnation. Mode coupling of illumination asymmetries with material perturbations is observed, as well as phase reversal of the perturbations from near the ablation front to the inner surface of the cylinder. Imaging is performed with an x-ray pinhole camera coupled to a gated microchannel plate detector. In collaboration with C. W. Barnes, J. B. Beck, N. Hoffman (LANL), D. Galmiche, A. Richard (CEA/L-V), J. Edwards, P. Graham, B. Thomas (AWE). ^**This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  15. Wavelength dependence of boron nitride ablation by TEA CO{sub 2} lasers

    SciTech Connect

    Sumiyoshi, T.; Tomita, H.; Takahashi, A.; Obara, M.; Ishii, K.

    1996-05-01

    Transversely excited atmospheric (TEA) CO{sub 2} laser ablation of boron nitride ceramics in both cubic and hexagonal phases (cBN, hBN) was demonstrated. A TEA CO{sub 2} laser oscillating at a wavelength of 9.2 {mu}m, which coincides with a TO-phonon spectrum of the cBN, could ablate the cBN ceramics more efficiently than with 10 {mu}m band radiation. The hBN samples were also ablated well with 9.2 {mu}m laser irradiation, however, the ablated site color changed to black due to a boron rich phase left on the surface. In the case of hBN sintered with Al{sub 2}O{sub 3} and SiO{sub 2}, the ablation threshold fluence is determined by the one of Al{sub 2}O{sub 3}, which is the highest threshold among the three elements. {copyright} {ital 1996 American Institute of Physics.}

  16. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  17. Photochemical processes in laser ablation of organic solids: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.

    In this thesis, a comprehensive study of the effect of the photochemical processes on laser ablation mechanisms has been conducted using molecular dynamics simulations. We developed a new concept for modeling photochemical processes in laser ablation of organic films using a mesoscopic coarse-grain breathing sphere model for molecular dynamics simulations. The main advantage of our model is the ability to study the dynamics of the system at the mesoscopic length scale, a regime that is not accessible either with atomistic or continuum computational methods. The photodecomposition of the excited molecules and the chemical reaction patterns in our simulations are based on the photochemistry of chlorobenzene due to ease of its fragmentation and available experimental data. Interpretation of the experimental data is the main objective of our theoretical efforts. Molecular dynamics simulations are used to investigate the effect of photochemical processes on molecular ejection mechanisms in 248-nm laser irradiation of organic solids. Photochemical reactions are found to release additional energy into the irradiated sample and decrease the average cohesive energy, therefore decreasing the value of the ablation threshold. The yield of emitted fragments becomes significant only above the ablation threshold. Below the ablation threshold, only the most volatile photoproduct, HCl, is ejected in very small amounts, whereas the remainder of photoproducts are trapped inside the sample. The presence of photochemical decomposition processes and subsequent chemical reactions changes the temporal and spatial energy deposition profile from pure photothermal ablation. The chemical reactions create an additional local pressure build up and, as a result, generate a strong and broad acoustic pressure wave propagating toward the bottom of the computational cell. The strong pressure wave in conjunction with the temperature increase in the absorbing region causes the ejection of hot massive

  18. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  19. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  20. Comparisons of kinetic ablation models for the capillary discharge

    SciTech Connect

    Li Rui; Li Xingwen; Jia Shenli; Murphy, Anthony B.

    2010-07-15

    The properties of kinetic ablation models are considered in this paper. The widely used kinetic ablation model (model-K) only considers monatomic vapor. A revised model (model-Z) was introduced by taking into account the polyatomic vapor's internal degrees of freedom, as well as the temperature dependence of the average particle mass. In this work, both temperature and pressure dependence of average particle mass and the specific heat ratio {gamma} are taken into account, producing an improved version of model-Z (denoted model-Z{sup *}). Ablation data calculated by model-K and model-Z* for two typical capillary materials are presented. Compared to model-K, model-Z* predicts an increased ablation rate at lower plasma temperature and higher plasma density, and a decreased rate for the opposite conditions. Finally, based on the plasma parameters in a typical discharge cycle, all three models are used to calculate the time-dependent ablation rate and the integrated ablated mass. It is found that the main difference between their results arises because of the different average particle masses near the wall surface, and model-Z* is the most accurate for the discharge cycle considered. Further, it is found that the ablation parameters are highly sensitive to the pressure, in particular, through the pressure dependence of average particle mass.

  1. Interferometric analysis of the ablation profile in refractive surgery

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, M. I.; López-Olazagasti, E.; Rosales, M. A.; Ramírez-Zavaleta, G.; Cantú, R.; Tepichín, E.

    2008-08-01

    In ophthalmology, the laser excimer corneal surface ablation used to correct the refractive eye defects, such as myopia, astigmatism and hyperopia and, more recently, presbyopia is known as refractive surgery. Typically, the characterization of the corresponding technique, as well as the laser accuracy, is performed by analyzing standard ablation profiles made on PMMA (polymethylmethacrylate) plates. A drawback of this technique is that those plates do not necessarily represent the dimensions of the cornea during the ablation. On the other hand, due to the time varying process of the eye aberrations, the direct eye refractometric measurements can produce some errors. We report in this work the interferometric analysis of the ablation profile obtained with refractive surgery, applied directly on a contact lens. In this case, the resultant ablation profile might be closer to the real profile as well as time invariant. We use, as a reference, a similar contact lens without ablation. The preliminary results of the characterization of the corresponding ablation profile are also presented.

  2. High-Density Carbon (HDC) Ablator for Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, D.; Haan, S.; Milovich, J.; Salmonson, J.; Zimmerman, G.; Benedict, L.; Biener, J.; Cerjan, C.; Clark, D.; Dewalds, E.; Edwards, J.; Berzak Hopkins, L.; MacKinnon, A.; Marinak, M.; McNaney, J.; Meezan, N.; Ross, S.; Tommasini, R.

    2013-10-01

    HDC ablators show high performance based on simulations and experiments. HDC capsules have good 1-D performance because HDC has high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation, and have good 2-D performance because the ablator surface is substantially smoother than plastic ablators. A 25 μm thick layer doped with 0.26 at.% of W is sufficient to block the M-band radiation. W can be doped very uniformly in HDC. Simulations using NLTE model for W shows that the capsule can tolerate close to 300 ng of W-doped ablator material in the hot spot. If W is replaced with Si, the entire ablator has to be uniformly doped with 3 at.% of Si. Surprisingly, the hot spot can tolerate about the same amount of ablator mass for the 3 at.% Si-doped HDC as it can for W-doped. The main reason is that Si radiates less and consequently raises the hot spot temperature which in term increases the electron heat conduction. 4, 3, and 2-shock designs and their stabilites will be presented. An undoped HDC Symcap with DT fill reached a record neutron yield of 1.7e15. W-doped HDC Symcap and DT-layered shots will be conducted in Fall. Comparison of simulations with measured data will be presented. Performed under US DOE Contract DE-AC52-07NA27344.

  3. Microwave ablation energy delivery: Influence of power pulsing on ablation results in an ex vivo and in vivo liver model

    PubMed Central

    Bedoya, Mariajose; del Rio, Alejandro Muñoz; Chiang, Jason; Brace, Christopher L.

    2014-01-01

    Purpose: The purpose of this study was to compare the impact of continuous and pulsed energy deliveries on microwave ablation growth and shape in unperfused and perfused liver models. Methods: A total of 15 kJ at 2.45 GHz was applied to ex vivo bovine liver using one of five delivery methods (n = 50 total, 10 per group): 25 W continuous for 10 min (25 W average), 50 W continuous for 5 min (50 W average), 100 W continuous for 2.5 min (100 W average), 100 W pulsed for 10 min (25 W average), and 100 W pulsed for 5 min (50 W average). A total of 30 kJ was applied to in vivo porcine livers (n = 35, 7 per group) using delivery methods similar to the ex vivo study, but with twice the total ablation time to offset heat loss to blood perfusion. Temperatures were monitored 5–20 mm from the ablation antenna, with values over 60 °C indicating acute cellular necrosis. Comparisons of ablation size and shape were made between experimental groups based on total energy delivery, average power applied, and peak power using ANOVA with post-hoc pairwise tests. Results: No significant differences were noted in ablation sizes or circularities between pulsed and continuous groups in ex vivo tissue. Temperature data demonstrated more rapid heating in pulsed ablations, suggesting that pulsing may overcome blood perfusion and coagulate tissues more rapidly in vivo. Differences in ablation size and shape were noted in vivo despite equivalent energy delivery among all groups. Overall, the largest ablation volume in vivo was produced with 100 W continuous for 5 min (265.7 ± 208.1 cm3). At 25 W average, pulsed-power ablation volumes were larger than continuous-power ablations (67.4 ± 34.5 cm3 versus 23.6 ± 26.5 cm3, P = 0.43). Similarly, pulsed ablations produced significantly greater length (P ≤ 0.01), with increase in diameter (P = 0.09) and a slight decrease in circularity (P = 0.97). When comparing 50 W average power groups, moderate differences in size were noted (P ≥ 0.06) and

  4. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma

    PubMed Central

    Poulou, Loukia S; Botsa, Evanthia; Thanou, Ioanna; Ziakas, Panayiotis D; Thanos, Loukas

    2015-01-01

    Hepatocellular cancer ranks fifth among cancers and is related to chronic viral hepatitis, alcohol abuse, steatohepatitis and liver autoimmunity. Surgical resection and orthotopic liver transplantation have curative potential, but fewer than 20% of patients are suitable candidates. Interventional treatments are offered to the vast majority of patients. Radiofrequency (RFA) and microwave ablation (MWA) are among the therapeutic modalities, with similar indications which include the presence of up to three lesions, smaller than 3 cm in size, and the absence of extrahepatic disease. The therapeutic effect of both methods relies on thermal injury, but MWA uses an electromagnetic field as opposed to electrical current used in RFA. Unlike MWA, the effect of RFA is partially limited by the heat-sink effect and increased impedance of the ablated tissue. Compared with RFA, MWA attains a more predictable ablation zone, permits simultaneous treatment of multiple lesions, and achieves larger coagulation volumes in a shorter procedural time. Major complications of both methods are comparable and infrequent (approximately 2%-3%), and they include haemorrhage, infection/abscess, visceral organ injury, liver failure, and pneumothorax. RFA may incur the additional complication of skin burns. Nevertheless, there is no compelling evidence for differences in clinical outcomes, including local recurrence rates and survival. PMID:26052394

  5. Efficiency of Planetesimal Ablation in Giant Planetary Envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-09-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km/s are found to ablate by ˜ 60-80% within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  6. High or low dose radioiodine ablation of thyroid remnants?

    PubMed

    Creutzig, H

    1987-01-01

    The need for high dose radioiodine for ablation of remnants in patients with thyroid cancer is still in question. We compared the effectiveness of high and low dose 131I for ablation in patients in a prospective randomized study after surgical thyroidectomy. Twenty patients with differentiated pT2-3NoMo thyroid cancer were studied. The uptake was 5%-10% at 24 h. Ten patients received 100 mCi, the others 30 mCi 131I. Three months later all patients received a therapeutic dose of 150 mCi 131I. Another twenty patients with known distant metastases (pulmonary and/or bone) of differentiated thyroid cancer were studied. The remnant uptake was between 4%-10%. Ten patients received 300 mCi and ten 30 mCi 131I as ablation dose. Three months later all received 300 mCi 131I. The uptake at day seven was calculated for the same metastases from a whole body scan after both treatments. If effective ablation was defined as 24 h uptake in the remnant of less than 1%, then the ablation was effective in eight out of ten of the high dose and in seven out of ten of the low dose group. In pT2-3, N X M1 patients the ablation was effective in seven out of ten cases in both groups. If "effective" ablation was defined as an uptake of less than 0.5%, then the ablation was effective both in NoMo and in N X M1 patients in five out of ten with low dose and in six out of ten with high dose ablation treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3569338

  7. Change in P wave morphology after convergent atrial fibrillation ablation.

    PubMed

    Shrestha, Suvash; Chen, On; Greene, Mary; John, Jinu Jacob; Greenberg, Yisachar; Yang, Felix

    2016-01-01

    Convergent atrial fibrillation ablation involves extensive epicardial as well as endocardial ablation of the left atrium. We examined whether it changes the morphology of the surface P wave. We reviewed electrocardiograms of 29 patients who underwent convergent ablation for atrial fibrillation. In leads V1, II and III, we measured P wave duration, area and amplitude before ablation, and at 1, 3 and 6 months from ablation. After ablation, there were no significant changes in P wave amplitude, area, or duration in leads II and III. There was a significant reduction in the area of the terminal negative deflection of the P wave in V1 from 0.38 mm(2) to 0.13 mm(2) (p = 0.03). There is also an acute increase in the amplitude and duration of the positive component of the P wave in V1 followed by a reduction in both by 6 months. Before ablation, 62.5% of the patients had biphasic P waves in V1. In 6 months, only 39.2% of them had biphasic P waves. Hybrid ablation causes a reduction of the terminal negative deflection of the P wave in V1 as well as temporal changes in the duration and amplitude of the positive component of the P wave in V1. This likely reflects the reduced electrical contribution of the posterior left atrium after ablation as well as anatomical and autonomic remodeling. Recognition of this altered sinus P wave morphology is useful in the diagnosis of atrial arrhythmias in this patient population. PMID:27485559

  8. Recent Advances in Tumor Ablation for Hepatocellular Carcinoma.

    PubMed

    Kang, Tae Wook; Rhim, Hyunchul

    2015-09-01

    Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC. PMID:26674766

  9. Pre-ignition laser ablation of nanocomposite energetic materials

    NASA Astrophysics Data System (ADS)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-01

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 × 104 to 1.7 × 107 K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO2 lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO3) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO3 at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  10. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  11. Laser-induced-plasma-assisted ablation for glass microfabrication

    NASA Astrophysics Data System (ADS)

    Hong, Minghui; Sugioka, Koji; Wu, Ding J.; Wong, L. L.; Lu, Yongfeng; Midorikawa, Katsumi; Chong, Tow Chong

    2001-10-01

    Glass is a hard transparent material with many applications in Photonics and advanced display industries. It is a high challenge to achieve crack-free glass microfabrication due to its special material characteristics. Laser-induced-plasma- assisted ablation is applied in this study to get the high quality glass microfabrication. In this processing, the laser beam goes through the glass substrate first and then irradiates on a solid target behind. For laser fluence above ablation threshold for the target, the generated plasma flies forward at a high speed. At a small target-to-substrate distance, there are strong interactions among laser light, target plasma and glass materials at the rear side of the substrate. Light absorption characteristic at the glass substrate is modified since the plasma may soften and dope into the glass in the interaction area. To have a better understanding of this processing, signal diagnostics are carried out to study the dynamic interaction. It is found that glass microfabrication is closely related to laser fluence, target-to-substrate distance, laser spot size and laser beam scanning speed. With proper control of the processing parameters, glass surface marking patterning and cutting can be achieved. With different materials as the targets, color marking of glass substrate can be obtained.

  12. Spectroscopic characterization of laser ablation brass plasma

    SciTech Connect

    Shaikh, Nek M.; Hafeez, Sarwat; Kalyar, M. A.; Ali, R.; Baig, M. A.

    2008-11-15

    We present optical emission studies of the laser ablation brass plasma generated by the fundamental, second, and third harmonics of a neodymium doped yttrium aluminum garnet laser. The spectra predominantly reveal the spectral lines of the neutral and singly ionized copper and zinc. The excitation temperatures are determined by the Boltzmann plot method, whereas the electron number densities have been extracted from the Stark broadened line profiles. The spatial variations in the spectral line intensities and the plasma parameters at 1000, 500, and 100 mbar air pressures have been evaluated. Besides, the effect of the ambient gases (He, Ne, and Ar), the laser irradiance, and the laser wavelengths on the plasma parameters have been investigated.

  13. On dynamic gas ablation from spherical galaxies

    NASA Astrophysics Data System (ADS)

    Nepveu, M.

    1981-05-01

    Two-dimensional, time dependent gas dynamic calculations are presented on the transonic motion of galaxies through a cluster medium. Lea and De Young's (1976) calculations are extended to include violent behavior in the center. On time scales of 10 to the 8th yr, galaxies in clusters can already lose a significant fraction of their gaseous content (up to 50% has been found in the calculations). This dynamic ablation occurs through rarefaction rather than shock heating. Explosions in spherical galaxies become effective as mechanisms for gas removal only if the galaxy moves with respect to its surroundings. Speculations are made on stripping of spiral galaxies (moving head-on in a cluster); the Gunn and Gott (1972) stripping formula is put to doubt. A method is suggested to obtain information on the state of motion of field galaxies.

  14. Emerging indications of endoscopic radiofrequency ablation

    PubMed Central

    Becq, Aymeric; Camus, Marine; Rahmi, Gabriel; de Parades, Vincent; Marteau, Philippe

    2015-01-01

    Introduction Radiofrequency ablation (RFA) is a well-validated treatment of dysplastic Barrett's esophagus. Other indications of endoscopic RFA are under evaluation. Results Four prospective studies (total 69 patients) have shown that RFA achieved complete remission of early esophageal squamous intra-epithelial neoplasia at a rate of 80%, but with a substantial risk of stricture. In the setting of gastric antral vascular ectasia, two prospective monocenter studies, and a retrospective multicenter study, (total 51 patients), suggest that RFA is efficacious in terms of reducing transfusion dependency. In the setting of chronic hemorrhagic radiation proctopathy, a prospective monocenter study and a retrospective multicenter study (total 56 patients) suggest that RFA is an efficient treatment. A retrospective comparative study (64 patients) suggests that RFA improves stents patency in malignant biliary strictures. Conclusions Endoscopic RFA is an upcoming treatment modality in early esophageal squamous intra-epithelial neoplasia, as well as in gastric, rectal, and biliary diseases. PMID:26279839

  15. Aspergillosis complicating a microwave ablation cavity.

    PubMed

    Singh, Saurabh; Bandula, Steven; Brown, Jeremy; Whelan, Jeremy; Illing, Rowland

    2016-01-01

    We present a case of a patient who following chemotherapy developed semi-invasive pulmonary aspergillosis and an aspergilloma in a lung cavity previously formed by microwave ablation (MWA). A 55-year-old woman presented with cough and shortness of breath after finishing three cycles of chemotherapy for a metastatic nerve sheath tumour. She had been treated by MWA for pulmonary metastases 2 years previously which resulted in a residual right apical lung cavity. Postchemotherapy imaging showed that this cavity had enlarged, developed a thicker wall and contained lobulated soft tissue with a crescent sign on coronal reformats. In addition, the patient's Aspergillus-specific IgG was markedly raised. Treatment with itraconazole improved the symptoms and reduced the cavity size and wall thickness. This case shows that persisting lung cavities after MWA are a potential site for semi-invasive aspergillosis and has implications for the timing of chemotherapy in patient with metastatic lung disease. PMID:27624446

  16. Treatment of ulcers with ablative fractional lasers.

    PubMed

    Morton, Laurel M; Dover, Jeffrey S; Phillips, Tania J; Krakowski, Andrew C; Uebelhoer, Nathan S

    2015-03-01

    Chronic, nonhealing ulcers are a frustrating therapeutic challenge and investigation of innovative therapies continues to be an important research pursuit. One unique and newly applied intervention is the use of ablative fractional lasers. This technology has recently been employed for the treatment of hypertrophic, disfiguring and function-limiting scars, and was first shown to induce healing of chronic wounds in patients with persistent ulcers and erosions within traumatic scars. Recent reports suggest it may be applicable for other types of chronic wounds as well. The mechanism of action for this modality remains to be elucidated but possible factors include laser-induced collagen remodeling, photomicrodebridement and disruption of biofilms, and induction of a proper wound healing cascade.

  17. Radiofrequency Ablation Therapy for Solid Tumors

    SciTech Connect

    Kam, Anthony

    2002-12-04

    Surgical resection, systemic chemotherapy, and local radiation have been the conventional treatments for localized solid cancer. Because certain patients are not candidates for tumor resection and because many tumors are poorly responsive to chemotherapy and radiation, there has been an impetus to develop alternative therapies. Radiofrequency ablation (RFA) is a minimally invasive therapy for localized solid cancers that has gained considerable attention in the last 12 years. Advantages of minimally invasive therapies over surgery include less recovery time, lower morbidity and mortality, eligibility of more patients, and lower cost. RFA has been applied most extensively to inoperable hepatic tumors. It is investigational for tumors in the kidney, lung, bone, breast, and adrenal gland. This colloquium will review the mechanism, techniques, limitations, and clinical applications of RFA. The ultimate role that RFA will play in cancer therapy will depend on the results of long-term follow-up and prospective randomized trials.

  18. Radiofrequency interstitial tumor ablation: dry electrode.

    PubMed

    Johnson, D Brooke; Cadeddu, Jeffrey A

    2003-10-01

    With the shift in the treatment of small renal tumors from radical extirpative surgery to nephron-sparing approaches, dry-electrode radiofrequency ablation (RFA) has emerged as one potential modality. This application of RF energy leads to the production of heat within the treatment zone secondary to the native impedance of living tissue. Animal studies and human clinical series have demonstrated that RFA can create controlled, targeted, reproducible, and lethal lesions. Most clinical series have reported promising results, although some authors question the totality of tumor destruction by RFA. With time, the efficacy of RFA, as measured by patient survival, will be determined. Once this is known, RFA may be compared with other therapeutic modalities for small renal tumors to determine its place.

  19. Radiofrequency ablation of a misdiagnosed Brodie's abscess.

    PubMed

    Chan, Rs; Abdullah, Bjj; Aik, S; Tok, Ch

    2011-04-01

    Radiofrequency ablation (RFA) therapy is recognised as a safe and effective treatment option for osteoid osteoma. This case report describes a 27-year-old man who underwent computed tomography (CT)-guided percutaneous RFA for a femoral osteoid osteoma, which was diagnosed based on his clinical presentation and CT findings. The patient developed worsening symptoms complicated by osteomyelitis after the procedure. His clinical progression and subsequent MRI findings had led to a revised diagnosis of a Brodie's abscess, which was further supported by the eventual resolution of his symptoms following a combination of antibiotics treatment and surgical irrigations. This case report illustrates the unusual MRI features of osteomyelitis mimicking soft tissue tumours following RFA of a misdiagnosed Brodie's abscess and highlights the importance of a confirmatory histopathological diagnosis for an osteoid osteoma prior to treatment.

  20. Early plume and shock wave dynamics in atmospheric-pressure ultraviolet-laser ablation of different matrix-assisted laser ablation matrices

    SciTech Connect

    Schmitz, Thomas A.; Koch, Joachim; Guenther, Detlef; Zenobi, Renato

    2011-06-15

    Pulsed laser ablation of molecular solids is important for identification and quantification in (bio-)organic mass spectrometry, for example using matrix-assisted laser desorption/ionization (MALDI). Recently, there has been a major shift to using MALDI and related laser ablation/post-ionization methods at atmospheric pressure. However, the underlying laser ablation processes, in particular early plume formation and expansion, are still poorly understood. Here, we present a study of the early ablation processes on the ns-time scale in atmospheric pressure UV-laser ablation of anthracene as well as of different common MALDI matrices such as 2,5-dihydroxybenzoic acid (2,5-DHB), {alpha}-cyano-4-hydroxycinnamic acid and sinapinic acid. Material release as well as the formation and expansion of hemi-spherical shock waves were studied by shadowgraphy with high temporal resolution ({approx}5 ns). The applicability of the classical Taylor-Sedov model for expansion of strong shock waves ('point-blast model'), as well as the drag force model, were evaluated to mathematically describe the observed shock wave propagation. The time- and energy-dependent expansion of the shock waves could be described using a Taylor-Sedov scaling law of the form R {proportional_to} t{sup q}, when a q-exponent of {approx}0.5 instead of the theoretical value of q 0.4 was found, indicating a faster expansion than expected. The deviations from the ideal value of q were attributed to the non-negligible influence of ambient pressure, a weak versus strong shock regime, and additional acceleration processes present in laser ablation that surpass the limit of the point-blast model. The onset of shock wave formation at a fluence of {approx}15-30 mJ/cm{sup 2} for the compounds investigated coincides with the onset of bulk material release, whereas, pure desorption below this fluence threshold did not lead to features visible in shadowgraphy.

  1. Catheter microwave ablation therapy for cardiac arrhythmias.

    PubMed

    Lin, J C

    1999-01-01

    This article describes three microwave catheter antennas for percutaneous cardiac ablation. A particular design feature of these antennas is that there is no reflected microwave current from the antenna flowing up the transmission line. Thus, it minimizes heating of the coaxial cable. The power reflection coefficients are very low (4% or less) in phantom equivalent materials. These antennas can also serve as bipolar electrodes for sensing endocardiac electrograms. Our studies in dogs, during both cardiopulmonary bypass and closed-chest operations via the femoral vein, have shown microwave energy greater than 200 joules (J) delivered to the heart through a split-tip dipole catheter antenna can produce irreversible block of the heart rhythms. This energy was achieved either by increasing the delivered power from 20 to 40 watts or by increasing the treatment duration from 7 to 11 s (210 to 330 J per application). It produced an endocardium temperature of about 65 degrees C. We found that the percutaneous, transcatheter microwave system is capable of inducing AV blocks consistently in dogs using the flexible, curved tip, split-tip catheter antenna. In addition, our studies have shown that the width and height of SAR distributions for cap-choke and split-tip catheter antennas are similar for the same antenna length. The cap-slot design had a much longer SAR distribution compared to the others. Moreover, a longer (4 mm) split-tip antenna can also induce larger lesions. These results suggest that it could be possible to ablate a ventricular tachycardia focus using the 4 mm split-tip as well as the cap-slot microwave catheter antennas. PMID:10334721

  2. Radiofrequency Ablation of Renal Tumors: Our Experience

    PubMed Central

    Kim, Jeong Ho; Kim, Tae Hyo; Kim, Soo Dong; Lee, Ki Soo

    2011-01-01

    Purpose To report our results of nephron-sparing radiofrequency ablation (RFA) of renal tumors. Materials and Methods Since August 2004, 49 patients with renal tumors were treated with either percutaneous or laparoscopic RFA. All patients underwent preoperative imaging with contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) and were suspected to have renal cell carcinoma. The follow-up for each patient included a physical examination, chest radiography, liver function tests, and a contrast-enhanced CT or MRI. To confirm the pathologic criteria of complete ablation, 30 patients underwent 6-month or 1-year follow-up biopsy. Recurrence was defined as growth of the tumor or any new enhancing portions at 3 months after confirmed nonenhancement of the initial RFA lesion. Results Technical success was achieved in 46/49 cases (94%). The mean tumor size was 2.4 cm and the mean follow-up period was 31.7 months (range, 6-68 months). Of 49 patients, repeated RFA was necessary in 7 patients (14%). Three patients were found to have recurrence at various follow-up intervals. Twenty-three patients (47%) experienced complications, and all but one necessitated intervention. No distant metastasis was found in any cases, and all patients are alive and are being serially followed up. Conclusions Percutaneous or laparoscopic RFA is considered to be a useful treatment for selected patients with small renal masses and for nephron-sparing. With a mean follow-up of 31.7 months, our intermediate data suggest excellent therapeutic outcome with RFA with effective local tumor control and preservation of renal function. The ultimate role of this modality will continue to evolve and warrants further studies. PMID:21927699

  3. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  4. Conservative Management of Left Atrial Intramural Hematoma after Catheter Ablation

    PubMed Central

    Oraii, Saeed; Roshanali, Farideh; Ghorbanisharif, Alireza; Mikaeili, Javad; Tahraei, Mahmood

    2016-01-01

    Left atrial intramural hematoma is a very rare complication of radiofrequency ablation procedures. A patient with tachyarrhythmia underwent radiofrequency catheter ablation. Echocardiography performed the following morning showed a large mass in the left atrium, suggestive of intramural hematoma formation. The patient was in a stable condition; therefore, it was decided that follow-up should be conservative and her anticoagulation therapy was continued. The size of the hematoma decreased significantly over the following 50 days. This case highlights a rare complication of a complex catheter ablation procedure in the left atrium that was managed via a noninvasive approach, with which all interventionists should be familiar. PMID:27482270

  5. Analysis of illicit drugs by direct ablation of solid samples.

    PubMed

    Bermúdez, Celina; Cabezas, Carlos; Mata, Santiago; Berdakin, Matias; Tejedor, Jesús M; Alonso, José L

    2015-01-01

    Analysis of illicit drugs arises as an important field of work given the high social impacts presented by drugs in the modern society. Direct laser ablation of solid compounds allows their analysis without sampling or preparation procedures. For that purpose, an experimental set-up that combines laser ablation with time-of- flight mass spectrometry has been constructed very recently to perform studies on the mass spectra of such drugs as 3,4-methylenedioxy-N-methylamphetamine, commonly known as MDMA or ecstasy. Analysis of the observed fragmentation pattern in mass spectra may elucidate the ablation-induced photofragmentation phenomena produced, which differ from those previously observed with conventional ionization methods.

  6. Transport properties associated with carbon-phenolic ablators

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1982-01-01

    Entry vehicle heat shields designed for entry into the atmosphere of the outer planets are usually made of carbonaceous material such as carbon-phenolic ablator. Ablative injection of this material is an important mechanism for reducing the heat at the surface of the entry vehicle. Conductive transport properties in the shock layer are important for some entry conditions. The kinetic theory of gases has been used to calculate the transport properties for 17 gaseous species obtained from the ablation of carbon-phenolic heat shields. Results are presented for the pure species and for the gas mixture.

  7. Ablation of film stacks in solar cell fabrication processes

    DOEpatents

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  8. Ablation response testing of simulated radioisotope power supplies

    NASA Astrophysics Data System (ADS)

    Lutz, Steven A.; Chan, Chris C.

    1994-05-01

    Results of an experimental program to assess the aerothermal ablation response of simulated radioisotope power supplies are presented. Full-scale general purpose heat source, graphite impact shell, and lightweight radioisotope heater unit test articles are all tested without nuclear fuel in simulated reentry environments. Convective stagnation heating, stagnation pressure, stagnation surface temperature, surface recession profile, and weight loss measurements are obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements show an effect of surface features on the stagnation face. The surface features alter the local heating which in turn affects the local ablation.

  9. Numerical simulation of film-cooled ablative rocket nozzles

    NASA Technical Reports Server (NTRS)

    Landrum, D. B.; Beard, R. M.

    1996-01-01

    The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.

  10. Bipolar radiofrequency ablation of tibialchondroblastomas: A report of three cases.

    PubMed

    Rajalakshmi, Prathiba; Srivastava, Deep N; Rastogi, Shishir; Julka, Pramod Kumar; Bhatnagar, Sushma; Gamanagatti, Shivanand

    2012-07-28

    Chondroblastoma is a rare benign cartilaginous neoplasm of bone. The recurrence rate is high and complications are frequent following open curettage with bone grafting which is the standard treatment forchondroblastomas. We performed radiofrequency ablation in three cases of tibialchondroblastoma using the bipolar system. One patient experienced residual pain for which repeat ablation was performed. No other complications were observed during follow-up. Radiofrequency ablation may offer an effective alternative for the treatment of selected cases of chondroblastoma. The lesion characteristics which are likely to influence treatment outcome and the advantages offered by the bipolar system are discussed. PMID:22900136

  11. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  12. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  13. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  14. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  15. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  16. Modeling Ablation of Fibrous Materials from Bulk to Knudsen Regime

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean; Mansour, Nagi N.

    2008-01-01

    Material-environment interactions are analyzed at microscopic scale to explain the lower than expected density observed by post-flight analysis of the char layer on the Stardust shield. Mass transfer, ablation (oxidation), and surface recession of fibrous material is simulated in 3D using a Monte-Carlo simulation tool. Ablation is found to occur either at the surface or in volume depending on Knudsen and Thiele number values. This study supports the idea of volume ablation followed by possible carbon fiber spallation that may explain post-flight analyses.

  17. Critical Fluences And Modeling Of CO{sub 2} Laser Ablation Of Polyoxymethylene From Vaporization To The Plasma Regime

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Tsukiyama, Yosuke; Ogita, Naoya; Sasoh, Akihiro; Umehara, Noritsugu; Gregory, Don A.

    2010-05-06

    A CO{sub 2} laser was operated at pulse energies up to 10 J to ablate polyoxymethylene targets in air and vacuum conditions. Critical effects predicted by ablation models are discussed in relation to the experimental data, including specifically the threshold fluences for vaporization and critical plasma formation, and the fluence at which the optimal momentum coupling coefficient is found. Finally, we discuss a new approach for modeling polymers at long wavelengths, including a connection formula that links the vaporization and plasma regimes for laser ablation propulsion.

  18. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    SciTech Connect

    Zhang, Jinping; Chen, Yuping Hu, Mengning; Chen, Xianfeng

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  19. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

  20. A novel instrument to measure differential ablation of meteorite samples and proxies: The Meteoric Ablation Simulator (MASI)

    NASA Astrophysics Data System (ADS)

    Bones, D. L.; Gómez Martín, J. C.; Empson, C. J.; Carrillo Sánchez, J. D.; James, A. D.; Conroy, T. P.; Plane, J. M. C.

    2016-09-01

    On entering the Earth's atmosphere, micrometeoroids partially or completely ablate, leaving behind layers of metallic atoms and ions. The relative concentration of the various metal layers is not well explained by current models of ablation. Furthermore, estimates of the total flux of cosmic dust and meteoroids entering the Earth's atmosphere vary over two orders of magnitude. To better constrain these estimates and to better model the metal layers in the mesosphere, an experimental Meteoric Ablation Simulator (MASI) has been developed. Interplanetary Dust Particle (IDP) analogs are subjected to temperature profiles simulating realistic entry heating, to ascertain the differential ablation of relevant metal species. MASI is the first ablation experiment capable of simulating detailed mass, velocity, and entry angle-specific temperature profiles whilst simultaneously tracking the resulting gas-phase ablation products in a time resolved manner. This enables the determination of elemental atmospheric entry yields which consider the mass and size distribution of IDPs. The instrument has also enabled the first direct measurements of differential ablation in a laboratory setting.

  1. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    SciTech Connect

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  2. Comparing ablation induced by fs, ps, and ns XUV-laser pulses

    NASA Astrophysics Data System (ADS)

    Bittner, Michal; Juha, Libor; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Praeg, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard; Feldhaus, Josef; Boody, Frederick P.; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J.

    2004-09-01

    Ablation thresholds, etch rates, and quality of ablated structures often differ dramatically if a conventional, UV-Vis-IR laser delivers radiation energy onto a material surface in a short (nanosecond) or ultra-short (picosecond/femtosecond) pulses. Various short-wavelength (λ < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes possible to investigate how the ablation characteristics depends on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser, focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with an ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiment the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with the measured ones for ultrashort pulses we may study the influence of pulse duration on the XUV ablation efficiency.

  3. Rat liver regeneration following ablation with irreversible electroporation

    PubMed Central

    Bruinsma, Bote G.; Jaramillo, Maria; Yarmush, Martin L.

    2016-01-01

    During the past decade, irreversible electroporation (IRE) ablation has emerged as a promising tool for the treatment of multiple diseases including hepatic cancer. However, the mechanisms behind the tissue regeneration following IRE ablation have not been investigated. Our results indicate that IRE treatment immediately kills the cells at the treatment site preserving the extracellular architecture, in effect causing in vivo decellularization. Over the course of 4 weeks, progenitor cell differentiation, through YAP and notch pathways, together with hepatocyte expansion led to almost complete regeneration of the ablated liver leading to the formation of hepatocyte like cells at the ablated zone. We did not observe significant scarring or tumor formation at the regenerated areas 6 months post IRE. Our study suggests a new model to study the regeneration of liver when the naïve extracellular matrix is decellularized in vivo with completely preserved extracellular architecture. PMID:26819842

  4. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  5. Multimodality Imaging for Guiding EP Ablation Procedures.

    PubMed

    Njeim, Mario; Desjardins, Benoit; Bogun, Frank

    2016-07-01

    Recent advances in 3-dimensional electroanatomical mapping have been met by continuous improvements in the field of cardiac imaging and image integration during ablation procedures. Echocardiography, computed tomography, cardiac magnetic resonance, and nuclear imaging provide information about cardiac anatomy and ultrastructure of the heart that may be crucial for a successful ablation procedure. Techniques and value of pre-procedural, intraprocedural, and post-procedural imaging and image integration are discussed in this review article. Pre-procedural imaging provides key anatomic information that can be complemented by intraprocedural imaging to minimize procedural complications. Furthermore, the presence and extent of structural heart disease can be assessed pre-procedurally and can be displayed intraprocedurally to limit and focus the mapping and ablation procedure to the area of interest. Pre-procedural imaging combined with imaging obtained during the ablation procedure further enhances procedural safety, reduces exposure to ionizing radiation from fluoroscopy, reduces procedure time, and may improve outcomes. PMID:27388666

  6. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  7. Laser ablation in analytical chemistry-a review.

    PubMed

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  8. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  9. New endometrial ablation techniques for treatment of menorrhagia.

    PubMed

    Bradley, Linda D

    2004-01-01

    Endometrial ablation is an excellent alternative to hysterectomy in women with menorrhagia and small intramural fibroids. Preoperative evaluation, which includes office hysteroscopy or saline infusion sonography, is critical to patient management and choice of procedure. A vast array of endometrial ablation technology is available currently that includes balloon therapy, cryosurgery hot circulating saline, bipolar impedance technology, and microwave: (1) ThermaChoice UTB System (Gynecare, Inc., Somerville, NJ, USA), (2) Uterine Balloon Therapy (UBT) System, HerOption Uterine Cryoblation Therapy System (American Medical Systems, Inc., Minnetonka, MN, USA), (3) Hydro ThermAblator HTA System (BEI Medical/Boston Scientific, Natick, MA), (4) NovaSure System (Novacept, Palo Alto, CA, USA), and (5) Microsulis Microwave Endometrial Ablation (MEA) System (Microsulis Medical Ltd., Pompano Beach, FL, USA). Each method is described herein, and Summary of Safety and Effectiveness Data (SSED) data for each product are reviewed.

  10. The use of radiofrequency catheter ablation to cure dilated cardiomyopathy.

    PubMed

    Schmidt, S B; Lobban, J H; Reddy, S; Hoelper, M; Palmer, D L

    1997-01-01

    Incessant supraventricular tachycardia can cause a dilated cardiomyopathy. This article discusses the case of a 55-year-old woman whose cardiomyopathy was reversed when she underwent successful radiofrequency catheter ablation of a unifocal atrial tachycardia. PMID:9197188

  11. Novel catheter enabling simultaneous radiofrequency ablation and optical coherence reflectometry

    PubMed Central

    Herranz, D.; Lloret, Juan; Jiménez-Valero, Santiago; Rubio-Guivernau, J. L.; Margallo-Balbás, Eduardo

    2015-01-01

    A novel radiofrequency ablation catheter has been developed with integrated custom designed optics, enabling real-time monitoring of radiofrequency ablation procedures through polarization-sensitive optical coherence reflectometry. The optics allow for proper tissue illumination through a view-port machined in the catheter tip, thus providing lesion depth control over the RF ablation treatment. The system was verified in an in-vitro model of swine myocardium. Optical performance and thermal stability was confirmed after more than 25 procedures, without any damage to the optical assembly induced by thermal stress or material degradation. The use of this catheter in RF ablation treatments may make possible to assess lesion depth during therapy, thus translating into a reduction of potential complications on the procedure. PMID:26417499

  12. Combination of erbium and holmium laser radiation for tissue ablation

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans S.; Frenz, Martin; Koenz, Flurin; Altermatt, Hans J.; Weber, Heinz P.

    1996-05-01

    Erbium lasers emitting at 2.94 micrometers and holmium lasers emitting at 2.1 micrometers are interesting tools for cutting, drilling, smoothing and welding of water containing tissues. The high absorption coefficient of water at these wavelengths leads to their good ablation efficiency with controlled thermally altered zones around the ablation sites. Combination of pulses with both wavelengths transmitted through one fiber were used to perform incisions in soft tissue and impacts in bone disks. Histological results and scanning electron microscope evaluations reveal the strong influence of the absorption coefficient on tissue effects, especially on the ablation efficiency and the zone of thermally damaged tissue. It is demonstrated that the combination of high ablation rates and deep coagulation zones can be achieved. The results indicate that this laser system can be considered as a first step towards a multi-functional medical instrument.

  13. Optical ablation by high-power short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D.

    1996-02-01

    Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations {tau} ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}{sup 1/2} scaling that indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional heating and melting for {tau}{approx_gt}50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results. {copyright} {ital 1996 Optical Society of America.}

  14. Surgical Ablation of Atrial Fibrillation during Mitral-Valve Surgery

    PubMed Central

    Gillinov, A. Marc; Gelijns, Annetine C.; Parides, Michael K.; DeRose, Joseph J.; Moskowitz, Alan J.; Voisine, Pierre; Ailawadi, Gorav; Bouchard, Denis; Smith, Peter K.; Mack, Michael J.; Acker, Michael A.; Mullen, John C.; Rose, Eric A.; Chang, Helena L.; Puskas, John D.; Couderc, Jean-Philippe; Gardner, Timothy J.; Varghese, Robin; Horvath, Keith A.; Bolling, Steven F.; Michler, Robert E.; Geller, Nancy L.; Ascheim, Deborah D.; Miller, Marissa A.; Bagiella, Emilia; Moquete, Ellen G.; Williams, Paula; Taddei-Peters, Wendy C.; O’Gara, Patrick T.; Blackstone, Eugene H.; Argenziano, Michael

    2015-01-01

    Background Among patients undergoing mitral-valve surgery, 30 to 50% present with atrial fibrillation, which is associated with reduced survival and increased risk of stroke. Surgical ablation of atrial fibrillation has been widely adopted, but evidence regarding its safety and effectiveness is limited. Methods We randomly assigned 260 patients with persistent or long-standing persistent atrial fibrillation who required mitral-valve surgery to undergo either surgical ablation (ablation group) or no ablation (control group) during the mitral-valve operation. Patients in the ablation group underwent further randomization to pulmonary-vein isolation or a biatrial maze procedure. All patients underwent closure of the left atrial appendage. The primary end point was freedom from atrial fibrillation at both 6 months and 12 months (as assessed by means of 3-day Holter monitoring). Results More patients in the ablation group than in the control group were free from atrial fibrillation at both 6 and 12 months (63.2% vs. 29.4%, P<0.001). There was no significant difference in the rate of freedom from atrial fibrillation between patients who underwent pulmonary-vein isolation and those who underwent the biatrial maze procedure (61.0% and 66.0%, respectively; P = 0.60). One-year mortality was 6.8% in the ablation group and 8.7% in the control group (hazard ratio with ablation, 0.76; 95% confidence interval, 0.32 to 1.84; P = 0.55). Ablation was associated with more implantations of a permanent pacemaker than was no ablation (21.5 vs. 8.1 per 100 patient-years, P = 0.01). There were no significant between-group differences in major cardiac or cerebrovascular adverse events, overall serious adverse events, or hospital readmissions. Conclusions The addition of atrial fibrillation ablation to mitral-valve surgery significantly increased the rate of freedom from atrial fibrillation at 1 year among patients with persistent or long-standing persistent atrial fibrillation, but the

  15. Selective ablation of sub- and supragingival calculus with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1995-05-01

    In a preceding trial the absorption characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to contain chromophores absorbing in the ultraviolet spectral region up to 420 nm. The aim of the actual study was the ablation of sub- and supragingival calculus using a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz). Extracted human teeth presenting sub- and supragingival calculus were irradiated perpendicular to their axis with a laser fluence of 1 Jcm-2. Using a standard application protocol calculus was irradiated at the enamel surface, at the junction between enamel and root, and at the root surface (located on dentin or on cementum). During the irradiation procedure an effective water cooling-system was engaged. For light microscopical investigations undecalcified histological sections were prepared after treatment. The histological sections revealed that a selective and total removal of calculus is possible at all locations without ablation of healthy enamel, dentin or cementum. Even low fluences provide us with a high effectiveness for the ablation of calculus. Thus, based on different absorption characteristics and ablation thresholds, engaging a frequency doubled Alexandrite-laser a fast and, even more, a selective ablation of sub- and supragingival calculus is possible without adverse side effects to the surrounding tissues. Even more, microbial dental plaque can be perfectly removed.

  16. Resonant infrared ablation of polystyrene with single picosecond pulses generated by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Duering, Malte; Haglund, Richard; Luther-Davies, Barry

    2014-01-01

    We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser-target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.

  17. Dynamics of Femtosecond Laser Ablation Plume Studied With Ultrafast X-ray Absorption Fine Structure Imaging

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2010-10-08

    We investigated the dynamic process of an expanding femtosecond laser ablation plume of aluminum generated in an irradiation intensity range of 10{sup 13}-10{sup 15} W/cm{sup 2} with the ultrafast x-ray absorption fine structure (XAFS) imaging technique. The XAFS spectra of the aluminum L{sub II,III} edge of the plume revealed that the plume consists of doubly and singly charged ions, neutral atoms, liquid particles, and possible atomic clusters. Scanning electron microscopy of deposited ablation particles confirmed that the liquid particles corresponds to the spherical nanoparticles with a size ranging from several tens nanometers to approximately 200 nm. The spatiotemporal evolution of the XAFS image of the plume shows the sequential appearance of each ablation particle from aluminum surface according to its ejection velocity. The result suggests that the photomechanical fragmentation process, which was theoretically proposed, is dominant mechanism for the nanoparticle ejection under the irradiation intensity far from the ablation threshold of aluminum. This study clearly demonstrates the potential of our technique for measuring the ultrafast dynamics of femtosecond laser ablation process.

  18. Atrioventricular nodal reentrant tachycardia ablation and inferior vena cava agenesis.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Mabo, Philippe; Martins, Raphaël P

    2016-10-01

    Congenital anomalies of the inferior vena cava (IVC) are rare and very often diagnosed in asymptomatic patients during computed tomography performed for other purposes. These anomalies can have significant clinical implications, for example if electrophysiology procedures are needed. Diagnostic and ablation procedures are difficult since catheter manipulation and positioning are more complex. We present here a case of successful atrioventricular nodal reentrant tachycardia ablation in a patient with unexpected IVC agenesis, using an azygos route. PMID:27633734

  19. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  20. A laser ablation source for offline ion production at LEBIT

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  1. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  2. Percutaneous Renal Cyst Ablation and Review of the Current Literature.

    PubMed

    Desai, Devang; Modi, Sunny; Pavicic, Matthew; Thompson, Melissa; Pisko, John

    2016-01-01

    Renal cysts are common and most often are discovered incidentally, but may require intervention if associated with pain, hypertension, or hematuria. Minimally invasive treatment options are preferred with numerous modalities available, including renal cyst ablation. This case report of a 61-year-old female describes the effective percutaneous drainage and endoscopic ablation of a simple parapelvic renal cyst for management of symptomatic renal calculus. Current literature regarding this surgical intervention and alternative methods is discussed. PMID:27579403

  3. Ablation and radiation coupled viscous hypersonic shock layers, volume 1

    NASA Technical Reports Server (NTRS)

    Engel, C. D.

    1971-01-01

    The results for a stagnation-line analysis of the radiative heating of a phenolic-nylon ablator are presented. The analysis includes flow field coupling with the ablator surface, equilibrium chemistry, a step-function diffusion model and a coupled line and continuum radiation calculation. This report serves as the documentation, i e. users manual and operating instructions for the computer programs listed in the report.

  4. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  5. Dynamics of the plumes produced by ultrafast laser ablation of metals

    SciTech Connect

    Donnelly, T.; Lunney, J. G.; Amoruso, S.; Bruzzese, R.; Wang, X.; Ni, X.

    2010-08-15

    We have analyzed ultrafast laser ablation of a metallic target (Nickel) in high vacuum addressing both expansion dynamics of the various plume components (ionic and nanoparticle) and basic properties of the ultrafast laser ablation process. While the ion temporal profile and ion angular distribution were analyzed by means of Langmuir ion probe technique, the angular distribution of the nanoparticulate component was characterized by measuring the thickness map of deposition on a transparent substrate. The amount of ablated material per pulse was found by applying scanning white light interferometry to craters produced on a stationary target. We have also compared the angular distribution of both the ionic and nanoparticle components with the Anisimov model. While the agreement for the ion angular distribution is very good at any laser fluence (from ablation threshold up to {approx_equal}1 J/cm{sup 2}), some discrepancies of nanoparticle plume angular distribution at fluencies above {approx_equal}0.4 J/cm{sup 2} are interpreted in terms of the influence of the pressure exerted by the nascent atomic plasma plume on the initial hydrodynamic evolution of the nanoparticle component. Finally, analyses of the fluence threshold and maximum ablation depth were also carried out, and compared to predictions of theoretical models. Our results indicate that the absorbed energy is spread over a length comparable with the electron diffusion depth L{sub c} ({approx_equal}30 nm) of Ni on the timescale of electron-phonon equilibration and that a logarithmic dependence is well-suited for the description of the variation in the ablation depth on laser fluence in the investigated range.

  6. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome

    PubMed Central

    Ozbay, Isa; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic. PMID:26064747

  7. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.

    2012-10-01

    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  8. Ventricular dysfunction following direct-current shock atrioventricular junction ablation.

    PubMed

    Warren, R J; Vohra, J K; Chan, W; Lichtenstein, M; Mond, H G; Hunt, D

    1991-02-01

    Catheter-induced His bundle ablation for refractory supraventricular arrhythmias is most commonly performed with direct-current shock energy of 200-300 joules. The high energy pulse delivered by direct-current shock produces a lesion in the atrioventricular node by fulguration, with the residual energy being dissipated as a pressure wave. The effect of direct-current shock His bundle ablation on global and regional ventricular function was assessed in 14 consecutive patients by radionuclide ventriculography performed before and after ablation and again three months later. All studies were performed with ventricular pacing at 110 bpm. Global left ventricular ejection fraction was found to be significantly reduced at the three month study (0.43 +/- 0.03 vs 0.50 +/- 0.03, pre ablation, p = 0.02). A significant reduction in wall-motion score was also seen in six of the seven patients who had normal wall motion in pacing rhythm prior to ablation. Deterioration was mainly seen at the left and right ventricular apices. The observed reduction in ventricular function that follows direct-current shock His bundle ablation may result from myocardial damage from electro-coagulation or from barotrauma and supports continued investigation into alternative, less traumatic energy sources for the procedure. PMID:2036072

  9. Solid sampling with 193-nm excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph

    2007-02-01

    Reproducible and sensitive elemental analysis of solid samples is a crucial task in areas of geology (e.g. microanalysis of fluid inclusions), material sciences, industrial quality control as well as in environmental, forensic and biological studies. To date the most versatile detection method is mass-spectroscopic multi-element analysis. In order to obtain reproducible results, this requires transferring the solid sample into the gas-phase while preserving the sample's stoichiometric composition. Laser ablation in combination with Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is a proven powerful technique to meet the requirements for reliable solid sample analysis. The sample is laser ablated in an air-tight cell and the aerosol is carried by an inert gas to a micro-wave induced plasma where its constituents are atomized and ionized prior to mass analysis. The 193 nm excimer laser ablation, in particular, provides athermal sample ablation with very precise lateral ablation and controlled depth profiling. The high photon energy and beam homogeneity of the 193 nm excimer laser system avoids elemental fractionation and permits clean ablation of even transmissive solid materials such as carbonates, fluorites and pure quartz.

  10. Towards Fully Diagnosed Ablative Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi

    2002-11-01

    The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines the success or failure of inertial fusion energy. The ablative RT instability has also general resemblance to hydrodynamic instabilities occurring in Type Ia supernovae and in interstellar clouds, such as the Eagle Nebula. In the laser fusion community, it is generally accepted that the Bodner-Takabe formula [1] with significant improvement by Betti [2] may predict correct dispersion relation of the growth rates of the ablative RT instability. However, there still exist theoretical uncertainties due to the different treatment of electron transport from the laser absorption region to the ablation region. The difference in the electron transport is most pronounced at short wavelength perturbation that is below spatial resolution of most x-ray imagers. The direct effect of the transport is the ablation density profile, which measurement is also a formidable task with conventional diagnostic techniques. We will present our RT growth as well as the ablation density measurements based on recently developed novel techniques of high spatial resolution: moir interferometry, penumbral imaging, and Fresnel-phase-zone-plate imaging. [1] S. Bodner, Phys. Rev. Lett. 33, 761 (1974); H. Takabe et al., Phys. Fluids 28, 3676 (1985). [2] R. Betti et al., Phys. Plasmas 5, 1446 (1998).

  11. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome.

    PubMed

    Kucur, Cuneyt; Ozbay, Isa; Oghan, Fatih; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic.

  12. Radiofrequency Ablation of Lung Malignancies: Where Do We Stand?

    SciTech Connect

    Lencioni, Riccardo Crocetti, Laura; Cioni, Roberto; Mussi, Alfredo; Fontanini, Gabriella; Ambrogi, Marcello; Franchini, Chiara; Cioni, Dania; Fanucchi, Olivia; Gemignani, Raffaello; Baldassarri, Rubia; Angeletti, Carlo Alberto; Bartolozzi, Carlo

    2004-11-15

    Percutaneous radiofrequency (RF) ablation is a minimally invasive technique used to treat solid tumors. Because of its ability to produce large volumes of coagulation necrosis in a controlled fashion, this technique has gained acceptance as a viable therapeutic option for unresectable liver malignancies. Recently, investigation has been focused on the clinical application of RF ablation in the treatment of lung malignancies. In theory, lung tumors are well suited to RF ablation because the surrounding air in adjacent normal parenchyma provides an insulating effect, thus facilitating energy concentration within the tumor tissue. Experimental studies in rabbits have confirmed that lung RF ablation can be safely and effectively performed via a percutaneous, transthoracic approach, and have prompted the start of clinical investigation. Pilot clinical studies have shown that RF ablation enables successful treatment of relatively small lung malignancies with a high rate of complete response and acceptable morbidity, and have suggested that the technique could represent a viable alternate or complementary treatment method for patients with non-small cell lung cancer or lung metastases of favorable histotypes who are not candidates for surgical resection. This article gives an overview of lung RF ablation, discussing experimental animal findings, rationale for clinical application, technique and methodology, clinical results, and complications.

  13. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  14. Advances in local ablation of malignant liver lesions.

    PubMed

    Eisele, Robert M

    2016-04-21

    Local ablation of liver tumors matured during the recent years and is now proven to be an effective tool in the treatment of malignant liver lesions. Advances focus on the improvement of local tumor control by technical innovations, individual selection of imaging modalities, more accurate needle placement and the free choice of access to the liver. Considering data found in the current literature for conventional local ablative treatment strategies, virtually no single technology is able to demonstrate an unequivocal superiority. Hints at better performance of microwave compared to radiofrequency ablation regarding local tumor control, duration of the procedure and potentially achievable larger size of ablation areas favour the comparably more recent treatment modality; image fusion enables more patients to undergo ultrasound guided local ablation; magnetic resonance guidance may improve primary success rates in selected patients; navigation and robotics accelerate the needle placement and reduces deviation of needle positions; laparoscopic thermoablation results in larger ablation areas and therefore hypothetically better local tumor control under acceptable complication rates, but seems to be limited to patients with no, mild or moderate adhesions following earlier surgical procedures. Apart from that, most techniques appear technically feasible, albeit demanding. Which technology will in the long run become accepted, is subject to future work. PMID:27099433

  15. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  16. Spatiotemporal electrophysiological changes in a murine ablation model

    PubMed Central

    Bernstein, Scott A.; Duggirala, Srikant; Floberg, Michael; Elfvendal, Pehr; Kuznekoff, Laura M.; Lader, Joshua M.; Vasquez, Carolina; Morley, Gregory E.

    2011-01-01

    Aims High recurrence rates after complex radiofrequency ablation procedures, such as for atrial fibrillation, remain a major clinical problem. Local electrophysiological changes that occur following cardiac ablation therapy are incompletely described in the literature. The purpose of this study was to determine whether alterations in conduction velocity, action potential duration (APD), and effective refractory period resolve dynamically following cardiac ablation. Methods and results  Lesions were delivered to the right ventricle of mice using a subxiphoid approach. The sham-operated control group (SHAM) received the same procedure without energy delivery. Hearts were isolated at 0, 1, 7, 30, and 60 days following the procedure and electrophysiological parameters were obtained using high-resolution optical mapping with a voltage-sensitive dye. Conduction velocity was significantly decreased at the lesion border in the 0, 7, and 30 day groups compared to SHAM. APD70 at the lesion border was significantly increased at all time points compared to SHAM. Effective refractory period was significantly increased at the lesion border at 0, 1, 7, and 30 days but not at 60 days post-ablation. This study demonstrated that post-ablation electrophysiological changes take place immediately following energy delivery and resolve within 60 days. Conclusions Cardiac ablation causes significant electrophysiological changes both within the lesion and beyond the border zone. Late recovery of electrical conduction in individual lesions is consistent with clinical data demonstrating that arrhythmia recurrence is associated with failure to maintain bi-directional conduction block. PMID:21712278

  17. Advances in local ablation of malignant liver lesions

    PubMed Central

    Eisele, Robert M

    2016-01-01

    Local ablation of liver tumors matured during the recent years and is now proven to be an effective tool in the treatment of malignant liver lesions. Advances focus on the improvement of local tumor control by technical innovations, individual selection of imaging modalities, more accurate needle placement and the free choice of access to the liver. Considering data found in the current literature for conventional local ablative treatment strategies, virtually no single technology is able to demonstrate an unequivocal superiority. Hints at better performance of microwave compared to radiofrequency ablation regarding local tumor control, duration of the procedure and potentially achievable larger size of ablation areas favour the comparably more recent treatment modality; image fusion enables more patients to undergo ultrasound guided local ablation; magnetic resonance guidance may improve primary success rates in selected patients; navigation and robotics accelerate the needle placement and reduces deviation of needle positions; laparoscopic thermoablation results in larger ablation areas and therefore hypothetically better local tumor control under acceptable complication rates, but seems to be limited to patients with no, mild or moderate adhesions following earlier surgical procedures. Apart from that, most techniques appear technically feasible, albeit demanding. Which technology will in the long run become accepted, is subject to future work. PMID:27099433

  18. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome.

    PubMed

    Kucur, Cuneyt; Ozbay, Isa; Oghan, Fatih; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic. PMID:26064747

  19. Ventricular dysfunction following direct-current shock atrioventricular junction ablation.

    PubMed

    Warren, R J; Vohra, J K; Chan, W; Lichtenstein, M; Mond, H G; Hunt, D

    1991-02-01

    Catheter-induced His bundle ablation for refractory supraventricular arrhythmias is most commonly performed with direct-current shock energy of 200-300 joules. The high energy pulse delivered by direct-current shock produces a lesion in the atrioventricular node by fulguration, with the residual energy being dissipated as a pressure wave. The effect of direct-current shock His bundle ablation on global and regional ventricular function was assessed in 14 consecutive patients by radionuclide ventriculography performed before and after ablation and again three months later. All studies were performed with ventricular pacing at 110 bpm. Global left ventricular ejection fraction was found to be significantly reduced at the three month study (0.43 +/- 0.03 vs 0.50 +/- 0.03, pre ablation, p = 0.02). A significant reduction in wall-motion score was also seen in six of the seven patients who had normal wall motion in pacing rhythm prior to ablation. Deterioration was mainly seen at the left and right ventricular apices. The observed reduction in ventricular function that follows direct-current shock His bundle ablation may result from myocardial damage from electro-coagulation or from barotrauma and supports continued investigation into alternative, less traumatic energy sources for the procedure.

  20. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    PubMed

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  1. Outcomes of Cryoballoon Ablation in High- and Low-Volume Atrial Fibrillation Ablation Centres: A Russian Pilot Survey

    PubMed Central

    Mikhaylov, Evgeny N.; Lebedev, Dmitry S.; Pokushalov, Evgeny A.; Davtyan, Karapet V.; Ivanitskii, Eduard A.; Nechepurenko, Anatoly A.; Kosonogov, Alexey Ya.; Kolunin, Grigory V.; Morozov, Igor A.; Termosesov, Sergey A.; Maykov, Evgeny B.; Khomutinin, Dmitry N.; Eremin, Sergey A.; Mayorov, Igor M.; Romanov, Alexander B.; Shabanov, Vitaliy V.; Shatakhtsyan, Victoria; Tsivkovskii, Viktor; Revishvili, Amiran Sh.; Shlyakhto, Evgeny V.

    2015-01-01

    Purpose. The results of cryoballoon ablation (CBA) procedure have been mainly derived from studies conducted in experienced atrial fibrillation (AF) ablation centres. Here, we report on CBA efficacy and complications resulting from real practice of this procedure at both high- and low-volume centres. Methods. Among 62 Russian centres performing AF ablation, 15 (24%) used CBA technology for pulmonary vein isolation. The centres were asked to provide a detailed description of all CBA procedures performed and complications, if encountered. Results. Thirteen sites completed interviews on all CBAs in their centres (>95% of CBAs in Russia). Six sites were high-volume AF ablation (>100 AF cases/year) centres, and 7 were low-volume AF ablation. There was no statistical difference in arrhythmia-free rates between high- and low-volume centres (64.6 versus 60.8% at 6 months). Major complications developed in 1.5% of patients and were equally distributed between high- and low-volume centres. Minor procedure-related events were encountered in 8% of patients and were more prevalent in high-volume centres. Total event and vascular access site event rates were higher in women than in men. Conclusions. CBA has an acceptable efficacy profile in real practice. In less experienced AF ablation centres, the major complication rate is equal to that in high-volume centres. PMID:26640789

  2. The Influence of Ablation on Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Sutton, Kenneth

    2008-01-01

    Using the coupled ablation and radiation capability recently included in the LAURA flowfield solver, this paper investigates the influence of ablation on the shock-layer radiative heating for Earth entry. The extension of the HARA radiation model, which provides the radiation predictions in LAURA, to treat a gas consisting of the elements C, H, O, and N is discussed. It is shown that the absorption coefficient of air is increased with the introduction of the C and H elements. A simplified shock layer model is studied to show the impact of temperature, as well as the abundance of C and H, on the net absorption or emission from an ablation contaminated boundary layer. It is found that the ablation species reduce the radiative flux in the vacuum ultraviolet, through increased absorption, for all temperatures. However, in the infrared region of the spectrum, the ablation species increase the radiative flux, through strong emission, for temperatures above 3,000 K. Thus, depending on the temperature and abundance of ablation species, the contaminated boundary layer may either provide a net increase or decrease in the radiative flux reaching the wall. To assess the validity of the coupled ablation and radiation LAURA analysis, a previously analyzed Mars-return case (15.24 km/s), which contains significant ablation and radiation coupling, is studied. Exceptional agreement with previous viscous shock-layer results is obtained. A 40% decrease in the radiative flux is predicted for ablation rates equal to 20% of the free-stream mass flux. The Apollo 4 peak-heating case (10.24 km/s) is also studied. For ablation rates up to 3.4% of the free-stream mass flux, the radiative heating is reduced by up to 19%, while the convective heating is reduced by up to 87%. Good agreement with the Apollo 4 radiometer data is obtained by considering absorption in the radiometer cavity. For both the Mars return and the Apollo 4 cases, coupled radiation alone is found to reduce the radiative

  3. Laser ablation plume dynamics in nanoparticle synthesis

    SciTech Connect

    Osipov, V V; Platonov, V V; Lisenkov, V V

    2009-06-30

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO{sub 2} laser pulse with a duration of {approx}500 {mu}s (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 {mu}s after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large ({approx}10 {mu}m) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes. (interaction of laser radiation with matter. laser plasma)

  4. Properties and behavior of diamond ablators

    NASA Astrophysics Data System (ADS)

    Fratanduono, D.; Swift, D. C.; Braun, D. G.; Prisbrey, S.; Barton, N. R.; Marinak, M.; Kraus, R.; Arsenlis, A.

    2015-06-01

    Diamond is an attractive ablator for laser loading experiments as it is efficient in converting laser energy to pressure, it transmits multi-kV x-rays such as are used for in-situ diffraction measurements, and it is readily available as single crystals, which do not produce diffraction rings that could obscure signals from a polycrystalline sample. However, radiation hydrodynamics simulations with standard models do not match the detailed velocity histories in ramp-loading experiments. Experimental measurements at the Omega laser showed that the (110) orientation exhibits much less elastic relaxation following the initial yield than did (100). Stress-density relations deduced from these experiments were consistent with the results obtained previously on thinner samples by Bradley et al., indicating that time-dependence in plastic flow had little effect on these time scales. The effect of dissipation, ignored in the characteristics analysis of ramp experiments, was assessed by analyzing simulated data, and was found to be negligible for diamond. Significant differences were found between equations of state in the several-megabar pressure regime, requiring quite different strength models to reproduce the stress-density relation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric reentry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside the thermal protection material, Phenolic Impregnated Carbon Ablator (PICA). PICA has successfully flown on the Stardust spacecraft and was the TPS material chosen for the Mars Science Laboratory (MSL), that will fly in 2011. Although PICA has good thermal properties, structurally, it is a weak material. To thoroughly understand failure in PICA, experiments were performed using FiberForm(Registered TradeMark) (precursor of PICA), virgin and furnace-charred PICA. Several small samples were tested inside an electron microscope to investigate the failure mechanisms. Micrographs were obtained before and after the failure in order to study crack initiation and growth. Videos were obtained to capture failure mechanisms in real time. Stress-strain data was obtained simultaneously for all the samples with the help of a data acquisition system, integrated to the mechanical stages. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  6. Dissecting microtubule structures by laser ablation.

    PubMed

    Decker, Franziska; Brugués, Jan

    2015-01-01

    Here, we describe a detailed protocol, based on laser ablation and fluorescence optical microscopy, to measure the microtubule organization in spindles, including microtubule length distribution, polarity, and plus and minus end densities. The method uses the asymmetry in microtubule depolymerization after a cut, where the newly created microtubule plus ends depolymerize all the way to the minus ends, whereas the newly created minus ends remain stable. The protocol described in this chapter is optimized for spindles, but can be easily applied to any microtubule-based structure. The chapter is divided into two parts. First, we provide the theoretical basis for the method. Second, we describe in detail all steps necessary to reconstruct the microtubule organization of a spindle assembled in Xenopus laevis egg extract. Compared to electron microscopy, which in theory can resolve individual microtubules in spindles and provide similar structural information, our method is fast and simple enough to allow for a full quantitative reconstruction of the microtubule organization of several X. laevis spindles—which have volumes tens of thousands of times larger than spindles whose structures have been previously solved by electron microscopy—in a single experimental session, as well as to explore how the architecture of these structures changes in response to biochemical perturbations.

  7. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric entry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of research is Phenolic Impregnated Carbon Ablator (PICA). It has successfully flown on the Stardust spacecraft and is the TPS material chosen for the Mars Science Laboratory (MSL) and Dragon spacecraft. Although PICA has good thermal properties, structurally, it is a weak material. In order to thoroughly understand failure in PICA, fracture tests were performed on FiberForm* (precursor of PICA), virgin and charred PICA materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the fracture toughness. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  8. Renaissance of laser interstitial thermal ablation.

    PubMed

    Missios, Symeon; Bekelis, Kimon; Barnett, Gene H

    2015-03-01

    Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating intracranial tumors, originally introduced in 1983. Its use in neurosurgical procedures was historically limited by early technical difficulties related to the monitoring and control of the extent of thermal damage. The development of magnetic resonance thermography and its application to LITT have allowed for real-time thermal imaging and feedback control during laser energy delivery, allowing for precise and accurate provision of tissue hyperthermia. Improvements in laser probe design, surgical stereotactic targeting hardware, and computer monitoring software have accelerated acceptance and clinical utilization of LITT as a neurosurgical treatment alternative. Current commercially available LITT systems have been used for the treatment of neurosurgical soft-tissue lesions, including difficult to access brain tumors, malignant gliomas, and radiosurgery-resistant metastases, as well as for the ablation of such lesions as epileptogenic foci and radiation necrosis. In this review, the authors aim to critically analyze the literature to describe the advent of LITT as a neurosurgical, laser excision tool, including its development, use, indications, and efficacy as it relates to neurosurgical applications. PMID:25727222

  9. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  10. Heating and ablation of tokamak graphite by pulsed nanosecond Nd-YAG lasers

    SciTech Connect

    Semerok, A.; Fomichev, S. V.; Weulersse, J.-M.; Brygo, F.; Thro, P.-Y.; Grisolia, C.

    2007-04-15

    The results on laser heating and ablation of graphite tiles of thermonuclear tokamaks are presented. Two pulsed Nd-YAG lasers (20 Hz repetition rate, 5 ns pulse duration and 10 kHz repetition rate, 100 ns pulse duration) were applied for ablation measurements. The ablation thresholds (1.0{+-}0.5 J/cm{sup 2} for 5 ns and 2.5{+-}0.5 J/cm{sup 2} for 100 ns laser pulses) were determined for the Tore Supra tokamak graphite tiles (backside) nonexposed to plasma. The high repetition rate Nd-YAG laser (10 kHz, 100 ns pulse duration) and the developed pyrometer system were applied for graphite heating measurements. Some unexpected features of laser heating of the graphite surface were observed. They were explained by the presence of a thin surface layer with the properties different from those of the bulk graphite. The theoretical models of laser heating and near-threshold ablation of graphite with imperfectly adhered layer were developed to interpret the experimental results.

  11. Temporal effects of femtosecond-to-nanosecond laser ablation on fresh porcine liver

    NASA Astrophysics Data System (ADS)

    Irwin, Bryan S.; Nguyen, Michael N.; Higbee, Russell G.; Bartels, Kenneth E.; Church, Kenneth H.; Warren, William L.

    2004-07-01

    Using a Ti:Sapphire laser operating at 800nm and a repetition rate of 1 kHz, we investigated the damage induced to fresh cadaveric porcine liver after laser irradiation for pulse widths of 120-fs, 8ps, and 7-ns. The laser was held constant at a focal spot diameter of 100μm yielding a maximum fluence of 9J/cm2. Then, using polarization optics, the energy per pulse was controlled to well below ablation threshold fluences. The tissue samples were translated under the laser via 0.1μm resolution encoded X-Y-Z motorized stages. After irradiation and fixation, we evaluated the tissues using brightfield light microscopy of Hematoxylin and Eosin stained 4 μm thick cross sections, scanning electron microscopy, and transmission electron microscopy. The tissue samples were examined for both removal rates of material, thermal damage to surrounding tissue, and cell disruption for equivalent fluence levels across the temporal range. We found an increase in removal rate along with a decrease in thermal damage as the pulse widths approached the femtosecond regime for a constant fluence. With femtosecond pulses, ablation still occurred below fluences of 2J/cm2. However, for nanosecond pulses, ablation no longer occurred, showing a decrease in ablation threshold as the pulse width decreases. Because of the reduced thermal effects compared to nanosecond pulses, ultrafast lasers may offer a solution to more precise tissue removal with less damage to surrounding cells.

  12. Effects of a high-power high-energy holmium:YAG laser on human meniscal ablation rates

    NASA Astrophysics Data System (ADS)

    Saadatmanesh, Vahid; Vangsness, C. Thomas; Ghaderi, Bahram; Gong, Naomi F.

    1994-09-01

    Using a pulsed Holmium:YAG laser at a wavelength of 2.1 microns, the ablation rates and thermal effects were measured on human meniscal cartilage. The penetration rate of a fiber under saline was measured as well as the mass loss in an air environment. Fluences were varied between 167 - 927 J/cm2/pulse for the penetration rate experiment and between 38 - 490 J/cm2/pulse for the mass loss experiment. Ablation threshold was found to be 10.6 J/cm2 in air. A double pulsing scheme used to reduce acoustic effects showed equivalent tissue ablation effects. The increases in ablation rates were directly proportional to the increases in pulse fluence for both methods. Histologic examination showed the lateral thermal change to be a maximum of 600 microns in air at 24 pulses per second.

  13. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    NASA Astrophysics Data System (ADS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  14. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    SciTech Connect

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  15. Scaling ablation rates for picosecond lasers using burst micromachining

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf; Haloui, Hatim; Seifert, Albert; Weis, Alexander; Nebel, Achim

    2010-02-01

    High-precision micromachining with picosecond lasers became an established process. Power scaling led to industrial lasers, generating average power levels well above 50 W for applications like structuring turbine blades, micro moulds, and solar cells. In this paper we report, how a smart distribution of energy into groups of pulses can significantly improve ablation rates for some materials, also providing a better surface quality. Machining micro moulds in stainless steel, a net ablation rate of ~1 mm3/min is routinely achieved, e.g. using pulse energy of 200 μJ at a repetition rate of 200 kHz. This is industrial standard, and demonstrates an improvement by two orders of magnitude over the recent years. When the energy was distributed to a burst of 10 pulses (25 μJ), repeated with 200 kHz, the ablation rate of stainless steel was 5 times higher with the same 50 W average power. Bursts of 10 pulses repeated with 1 MHz (5 μJ) even resulted in an ablation rate as high as 12 mm3/min. In addition, optimized pulse delays achieved a reduction of the surface roughness by one order of magnitude, providing Ra values as low as 200 nm. Similar results were performed machining silicon, scaling the ablation rate from 1.2 mm3/min (1 pulse, 250 μJ, 200 kHz) to 15 mm3/min (6 pulses, 8 μJ, 1 MHz). Burst machining of ceramics, copper and glass did not change ablation rates, only improved surface quality. For glass machining, we achieved record-high ablation rates of >50 mm3/min, using a new state-of-the-art laser which could generate >70 W of average power and repetition rates as high as 2 MHz.

  16. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    SciTech Connect

    Prasad, Amit Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-15

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used.

  17. Percutaneous ultrasound-guided thermal ablation for intrahepatic cholangiocarcinoma

    PubMed Central

    Xu, H-X; Wang, Y; Lu, M-D; Liu, L-N

    2012-01-01

    Objective The objective of this study was to evaluate the treatment efficacy and overall survival (OS) of percutaneous ultrasound-guided thermal ablation by means of microwave ablation or radiofrequency ablation for intrahepatic cholangiocarcinoma (ICC). Methods 18 patients with 25 ICC nodules underwent ultrasound-guided thermal ablation with curative intention. 8 patients were primary cases and 10 were recurrent cases after curative resection. The local treatment response, complications and survivals were analysed. Results Complete ablation was achieved in 23 (92.0%, 23/25) nodules (diameter, 0.7–4.3 cm; mean, 2.5±0.9 cm) and incomplete ablation was found in 2 (8.0%, 2/25) larger tumours (6.4 and 6.9 cm in diameter). No death associated with the treatment was found. The major complication rate was 5.5% (1/18). The follow-up periods ranged from 1.3 to 86.2 months (mean, 20.5±26.3 months; median, 8.7 months). OS rates for all patients at 6, 12, 36 and 60 months were 66.7%, 36.3%, 30.3% and 30.3%, respectively. By univariate analysis, the patient source (primary or recurrent case) was found to be a significant prognostic factor for OS rates (p=0.001). The patient source (p=0.001) and the number of nodules (p=0.038) were found to be significant prognostic factors for recurrence-free survival. OS rates for the primary ICC at 6, 12, 36 and 60 months were 87.5%, 75.0%, 62.5% and 62.5%, respectively. Conclusion Percutaneous ultrasound-guided thermal ablation is a safe and effective therapeutic technique for ICC. Acceptable survival can be achieved in primary ICCs, whereas the prognosis of recurrent ICCs is relatively poor. PMID:22374282

  18. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  19. Atrial Fibrillation Ablation in Systolic Dysfunction: Clinical and Echocardiographic Outcomes

    PubMed Central

    Lobo, Tasso Julio; Pachon, Carlos Thiene; Pachon, Jose Carlos; Pachon, Enrique Indalecio; Pachon, Maria Zelia; Pachon, Juan Carlos; Santillana, Tomas Guillermo; Zerpa, Juan Carlos; Albornoz, Remy Nelson; Jatene, Adib Domingos

    2015-01-01

    Background Heart failure and atrial fibrillation (AF) often coexist in a deleterious cycle. Objective To evaluate the clinical and echocardiographic outcomes of patients with ventricular systolic dysfunction and AF treated with radiofrequency (RF) ablation. Methods Patients with ventricular systolic dysfunction [ejection fraction (EF) <50%] and AF refractory to drug therapy underwent stepwise RF ablation in the same session with pulmonary vein isolation, ablation of AF nests and of residual atrial tachycardia, named "background tachycardia". Clinical (NYHA functional class) and echocardiographic (EF, left atrial diameter) data were compared (McNemar test and t test) before and after ablation. Results 31 patients (6 women, 25 men), aged 37 to 77 years (mean, 59.8±10.6), underwent RF ablation. The etiology was mainly idiopathic (19 p, 61%). During a mean follow-up of 20.3±17 months, 24 patients (77%) were in sinus rhythm, 11 (35%) being on amiodarone. Eight patients (26%) underwent more than one procedure (6 underwent 2 procedures, and 2 underwent 3 procedures). Significant NYHA functional class improvement was observed (pre-ablation: 2.23±0.56; postablation: 1.13±0.35; p<0.0001). The echocardiographic outcome also showed significant ventricular function improvement (EF pre: 44.68%±6.02%, post: 59%±13.2%, p=0.0005) and a significant left atrial diameter reduction (pre: 46.61±7.3 mm; post: 43.59±6.6 mm; p=0.026). No major complications occurred. Conclusion Our findings suggest that AF ablation in patients with ventricular systolic dysfunction is a safe and highly effective procedure. Arrhythmia control has a great impact on ventricular function recovery and functional class improvement. PMID:25387404

  20. Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Svetlichnyi, Valery A.

    2015-12-01

    Laser ablation of bulk targets in a fluid -- a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed.

  1. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  2. Thermal ablation for the treatment of abdominal tumors.

    PubMed

    Brace, Christopher L; Hinshaw, J Louis; Lubner, Meghan G

    2011-03-07

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue). Microwaves may alleviate some of these problems by producing faster, volumetric heating. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and

  3. Thermal Ablation for the Treatment of Abdominal Tumors

    PubMed Central

    2011-01-01

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates1,2. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma3-5. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue)6,7. Microwaves may alleviate some of these problems by producing faster, volumetric heating8-10. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices11-13. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver14-16. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications17. Cryoablation is often contraindicated for primary liver cancer due to

  4. The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri‐Ablation Period

    PubMed Central

    EYERLY, STEPHANIE A.; VEJDANI‐JAHROMI, MARYAM; DUMONT, DOUGLAS M.; TRAHEY, GREGG E.

    2015-01-01

    Peri‐Ablation Monitoring of RFA Lesion Stiffness Introduction Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri‐ablation period. The aim of this study was to use 2 ultrasound‐based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. Methods and Results In 6 canine subjects, SWEI measurements and 2‐D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5‐fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3‐fold from baseline. Conclusions Ultrasound‐based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity‐based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation. PMID:25970142

  5. Endoscopic radiofrequency ablation for malignant biliary strictures

    PubMed Central

    WANG, FEI; LI, QUANPENG; ZHANG, XIUHUA; JIANG, GUOBING; GE, XIANXIU; YU, HONG; NIE, JUNJIE; JI, GUOZHONG; MIAO, LIN

    2016-01-01

    Endoscopic radiofrequency ablation (RFA) is a novel palliation therapy for malignant biliary stricture; however, its feasibility and safety has not yet been clearly defined. The aim of the present study was to evaluate the feasibility and safety of endoscopic RFA for the treatment of malignant biliary strictures. A total of 12 patients treated by endoscopic RFA between December 2011 and October 2013 were retrospectively analyzed. Adverse events within 30 days post-intervention, stricture diameters prior to and following RFA, stent patency and survival time were investigated. A total of 12 patients underwent 20 RFA procedures as a treatment for malignant biliary strictures. Two patients required repeated elective RFA (4 and 6 times, respectively). All 20 RFA procedures were successfully performed without technical problems. During a 30 day period following each RFA procedure, two patients experienced fever (38.2 and 38.9°C, respectively) and another patient exhibited post-endoscopic retrograde cholangiopancreatography pancreatitis. The 30- and 90-day mortality rates were 0 and 8.3%, respectively. Mean stricture diameter prior to RFA was 5.3 mm (standard deviation (SD), 0.9 mm; range, 5–8 mm), and the mean diameter following RFA was 12.6 mm (SD, 3.1 mm; range, 8–15 mm). There was a significant increase of 7.3 mm in the bile duct diameter following RFA in comparison with prior to RFA (t=8.6; P≤0.001). Of the 11 patients with stents inserted following RFA, the median stent patency was 125.0 days [95% confidence interval (CI), 94.7–155.3 days]. Extrapolated median survival following the first RFA was 232 days (95% CI, 94.3–369.7 days). In conclusion, RFA appears to be an efficient and safe treatment strategy for the palliation of unresectable malignant biliary strictures. PMID:27284336

  6. Hydrocarbon level detection with nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hosseinian S, Raheleh; Nugroho, Waskito; Mohd Marsin, Faridah; Zainal, Jasman

    2013-12-01

    Nanosecond laser induced breakdown in liquid is used as a technique to detect hydrocarbon levels in water. A Q-switched Nd:YAG laser was focused to generate optical breakdown associated with shock wave generation. The shock wave was propagated at the speed of sound in the medium after travelling 1 μs outward from the center of optical breakdown. Different amplitudes of sound were traced with the aid of an ultrasonic probe. The optical properties of the hydrocarbon solution were quantified via fundamental refractive index measurement (the Snell law). A continuous mode diode pumped solid state laser with second harmonic generation was used as the illumination light source. A CCD video camera with Matrox version 4.2 software was utilized to analyze the recording image. Option line analysis was performed to analyze the intensity of optical breakdown at different input energies. Gray level analysis was also conducted on the scattering light after passing through the hydrocarbon solution at different concentrations. The hydrocarbon solution comprised impurities or particles that varied according to the concentration. The average of the gray level is assumed to present the size of the particle. Inherently, as the acoustic wave propagates outward, it transports the mass (particles or impurities) and impacts on the ultrasonic probe. As a result a higher concentration of hydrocarbons reveals a larger amplitude of sound waves. This phenomenon is identified as a finger print for hydrocarbon levels between 100 and 1000 ppm. The transient detection, without complicated sampling preparation and no hazardous chemical involvement, makes laser ablation a promising technique to detect in situ hydrocarbon levels in water.

  7. Pyrolysis of phenolic impregnated carbon ablator (PICA).

    PubMed

    Bessire, Brody K; Lahankar, Sridhar A; Minton, Timothy K

    2015-01-28

    Molar yields of the pyrolysis products of thermal protection systems (TPSs) are needed in order to improve high fidelity material response models. The volatile chemical species evolved during the pyrolysis of a TPS composite, phenolic impregnated carbon ablator (PICA), have been probed in situ by mass spectrometry in the temperature range 100 to 935 °C. The relative molar yields of the desorbing species as a function of temperature were derived by fitting the mass spectra, and the observed trends are interpreted in light of the results of earlier mechanistic studies on the pyrolysis of phenolic resins. The temperature-dependent product evolution was consistent with earlier descriptions of three stages of pyrolysis, with each stage corresponding to a temperature range. The two main products observed were H2O and CO, with their maximum yields occurring at ∼350 °C and ∼450 °C, respectively. Other significant products were CH4, CO2, and phenol and its methylated derivatives; these products tended to desorb concurrently with H2O and CO, over the range from about 200 to 600 °C. H2 is presumed to be the main product, especially at the highest pyrolysis temperatures used, but the relative molar yield of H2 was not quantified. The observation of a much higher yield of CO than CH4 suggests the presence of significant hydroxyl group substitution on phenol prior to the synthesis of the phenolic resin used in PICA. The detection of CH4 in combination with the methylated derivatives of phenol suggests that the phenol also has some degree of methyl substitution. The methodology developed is suitable for real-time measurements of PICA pyrolysis and should lend itself well to the validation of nonequilibrium models whose aim is to simulate the response of TPS materials during atmospheric entry of spacecraft.

  8. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  9. Modeling and validation of microwave ablations with internal vaporization.

    PubMed

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L

    2015-02-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this paper, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10, and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intraprocedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard index of 0.27, 0.49, 0.61, 0.67, and 0.69 at 1, 2, 3, 4, and 5 min, respectively. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  10. Idiopathic ventricular tachycardia: feasibility and efficacy of catheter ablation.

    PubMed

    Velazquez Rodriguez, E; Frank, R; Fontaine, G; Tonet, J; Lascault, G; Rosas, F; Eslami, M; Nakazato, Y

    1995-01-01

    Idiopathic ventricular tachycardia is a well described syndrome of both left and right ventricular origin. This study reports the feasibility and efficacy of catheter ablation in this entity. Fourteen patients (mean age 30 +/- 10 years of age) and six patients (mean age 51 +/- 9 years of age) underwent endocardial catheter ablation with either direct-current shocks and radiofrequency energy, respectively. Earliest right and left ventricular activation and endocardial mapping during tachycardia were made to localize the site of ventricular tachycardia origin. The overall clinical efficacy was 93% for direct-current method with a mean number of shocks of 3.3 +/- 0.9/patient after a mean follow-up of 38 +/- 25 months. Radiofrequency ablation achieved an overall clinical efficacy of 83.6% with a mean of 3.2 pulses/patient during a follow-up of 10.5 +/- 4 months. The isoenzyme MB fraction of peak creatine kinase after ablation was less than 5%. There were no complications in any patient who underwent radiofrequency energy. Endocardial catheter ablation is feasible in patients with idiopathic ventricular tachycardia. Both methods are highly effective but radiofrequency energy is most desirable because of its lack of barotrauma, and may be considered as early therapy. PMID:7620280

  11. Catheter Ablation of Multiple Accessory Pathways in Duchenne Muscular Dystrophy

    PubMed Central

    Stöllberger, Claudia; Steger, Christine; Gatterer, Edmund

    2013-01-01

    A 23-year-old male with Duchenne muscular dystrophy (DMD) experienced self-limiting palpitations at age 19 years for the first time. Palpitations recurred not earlier than at age 23 years, and were attributed to narrow complex tachycardia, which could be terminated with adenosine. Since electrocardiography showed a delta-wave, Wolff-Parkinson-White (WPW) syndrome was diagnosed, ajmaline prescribed and radio-frequency catheter ablation of three accessory pathways carried out one week later. One day after ablation, however, a relapse of the supraventricular tachycardia occurred and was terminated with ajmaline. Re-entry tachycardia occurred a second time six days after ablation, and as before, it was stopped only with ajmaline. Despite administration of verapamil to prevent tachycardia, it occurred a third time four months after ablation. This case shows that cardiac involvement in DMD may manifest also as WPW-syndrome. In these patients, repeated radio-frequency catheter ablation of accessory pathways may be necessary to completely block the re-entry mechanism. PMID:23508228

  12. Modeling and validation of microwave ablations with internal vaporization.

    PubMed

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L

    2015-02-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this paper, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10, and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intraprocedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard index of 0.27, 0.49, 0.61, 0.67, and 0.69 at 1, 2, 3, 4, and 5 min, respectively. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally.

  13. Modeling and Validation of Microwave Ablations with Internal Vaporization

    PubMed Central

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L.

    2014-01-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this work, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10 and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intra-procedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard Index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard Index of 0.27, 0.49, 0.61, 0.67 and 0.69 at 1, 2, 3, 4, and 5 minutes. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  14. Cluster Generation Under Pulsed Laser Ablation Of Compound Semiconductors

    SciTech Connect

    Bulgakov, Alexander V.; Evtushenko, Anton B.; Shukhov, Yuri G.; Ozerov, Igor; Marine, Wladimir

    2010-10-08

    A comparative experimental study of pulsed laser ablation in vacuum of two binary semiconductors, zinc oxide and indium phosphide, has been performed using IR- and visible laser pulses with particular attention to cluster generation. Neutral and cationic Zn{sub n}O{sub m} and In{sub n}P{sub m} particles of various stoichiometry have been produced and investigated by time-of-flight mass spectrometry. At ZnO ablation, large cationic (n>9) and all neutral clusters are mainly stoichiometric in the ablation plume. In contrast, indium phosphide clusters are strongly indium-rich with In{sub 4}P being a magic cluster. Analysis of the plume composition upon laser exposure has revealed congruent vaporization of ZnO and a disproportionate loss of phosphorus by the irradiated InP surface. Plume expansion conditions under ZnO ablation are shown to be favorable for stoichiometric cluster formation. A delayed vaporization of phosphorus under InP ablation has been observed that results in generation of off-stoichiometric clusters.

  15. Direct-drive–ignition designs with mid-Z ablators

    SciTech Connect

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  16. Direct-drive–ignition designs with mid-Z ablators

    SciTech Connect

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-01

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO2) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  17. Successive laser ablation ignition of premixed methane/air mixtures.

    PubMed

    Bak, Moon Soo; Cappelli, Mark A

    2015-06-01

    Laser ablation has been used to study successive ignition in premixed methane/air mixtures under conditions in which the flow speed leads to flame blow-out. A range of laser pulse frequencies is experimentally mimicked by varying the time interval between two closely spaced laser pulses. Emission intensities from the laser ablation kernels are measured to qualitatively estimate laser energy coupling, and flame CH* chemiluminescence is recorded in a time-resolved manner to capture the flame evolution and propagation. A comparison of the measurements is made between the two successive breakdown ignition events. It is found that the formation of the subsequent ablation kernel is almost independent of the previous one, however, for the successive breakdowns, the first breakdown and its ensuing combustion created temporal regions of no energy coupling as they heat the gas and lower the density. Flame imaging shows that the second ablation event successfully produces another flame kernel and is capable of holding the flame-base even at pulse intervals where the second laser pulse cannot form a breakdown. This study demonstrates that successive ablation ignition can allow for the use of higher laser frequencies and enhanced flame stabilization than successive breakdown ignition. PMID:26072866

  18. Picosecond and subpicosecond visible laser ablation of optically transparent polymers

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Skordoulis, C. D.; Makropoulou, M. I.; Kar, A. K.

    1998-09-01

    The ablation rates, as a function of the laser fluence, of the optically transparent polymers, Nylon-6,6 and PMMA, are reported using picosecond and subpicosecond laser pulses, obtained from a Regenerative Amplified Nd:YAG laser system. The laser pulses had a duration of 100 ps at 1064 and 532 nm wavelengths and 0.8 ps at 595 nm. The ablation rate results indicate a strong saturation behaviour for both polymers in the investigated irradiation conditions. The material removal is 2-3 times higher in the case of the visible (532 nm) picosecond laser ablation experiments. The surface topology of the polymers was also studied. The obtained Atomic Force Microscopy images reveal no mechanical damage in the inner ablation crater wall. The qualitative analysis of the ablation mechanism for ultrashort pulse laser irradiation reveals a combination of photochemically induced direct bond dissociation and a photothermal process due to the relaxation of the excited polymers within the vibrational levels of the ground state.

  19. Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    NASA Astrophysics Data System (ADS)

    Court, Richard W.; Tan, Jonathan

    2016-06-01

    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis-Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions.

  20. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    PubMed

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  1. Incidence and Cause of Hypertension During Adrenal Radiofrequency Ablation

    SciTech Connect

    Yamakado, Koichiro Takaki, Haruyuki; Yamada, Tomomi; Yamanaka, Takashi; Uraki, Junji; Kashima, Masataka; Nakatsuka, Atsuhiro; Takeda, Kan

    2012-12-15

    Purpose: To evaluate the incidence and cause of hypertension prospectively during adrenal radiofrequency ablation (RFA). Methods: For this study, approved by our institutional review board, written informed consent was obtained from all patients. Patients who received RFA for adrenal tumors (adrenal ablation) and other abdominal tumors (nonadrenal ablation) were included in this prospective study. Blood pressure was monitored during RFA. Serum adrenal hormone levels including epinephrine, norepinephrine, dopamine, and cortisol levels were measured before and during RFA. The respective incidences of procedural hypertension (systolic blood pressure >200 mmHg) of the two patient groups were compared. Factors correlating with procedural systolic blood pressure were evaluated by regression analysis.ResultsNine patients underwent adrenal RFA and another 9 patients liver (n = 5) and renal (n = 4) RFA. Asymptomatic procedural hypertension that returned to the baseline by injecting calcium blocker was found in 7 (38.9%) of 18 patients. The incidence of procedural hypertension was significantly higher in the adrenal ablation group (66.7%, 6/9) than in the nonadrenal ablation group (11.1%, 1/9, P < 0.0498). Procedural systolic blood pressure was significantly correlated with serum epinephrine (R{sup 2} = 0.68, P < 0.0001) and norepinephrine (R{sup 2} = 0.72, P < 0.0001) levels during RFA. The other adrenal hormones did not show correlation with procedural systolic blood pressure. Conclusion: Hypertension occurs frequently during adrenal RFA because of the release of catecholamine.

  2. Gruneisen-stress induced ablation of biological tissue

    SciTech Connect

    Dingus, R.S.; Scammon, R.J.

    1991-01-01

    The objective of biomedical applications of lasers is frequently to remove tissue in a controlled manner. However, for ablation induced by thermal- or photo-decomposition, damage to surrounding tissue may be excessive in some instances. Tissue can also be ablated by a hydrodynamic process referred to as front surface spallation, in which a thin layer next to a free surface is heated to levels, below vaporization but, so rapidly that it cannot undergo thermal expansion during laser heating. This generates a stress pulse, which propagates away from the heated region, with an initial amplitude that can be calculated using the Grueneisen coefficient. As the pulse reflects from the free surface, a tensile tail can develop of sufficient amplitude, exceeding the material strength, that a layer will be spalled off, taking much of the laser-deposited energy with it. Because tissue is generally a low strength material, this process has the potential of producing controlled ablation with reduced damage to the remaining tissue. However, to achieve these conditions, the laser pulse length, absorption depth and fluence must be properly tailored. This paper presents hydrodynamic calculations and analytical modeling relating to both stress- and thermal-induced ablation as a function of laser and tissue properties to illustrate the potential benefits of stress induced ablation. Also, guidance is given for tailoring the exposure parameters to enhance front surface spallation. 8 refs., 6 figs.

  3. Surgical Ablation of Atrial Fibrillation Using Energy Sources

    PubMed Central

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery. PMID:26934404

  4. Predictive analysis of optical ablation in several dermatological tumoral tissues

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.

  5. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    SciTech Connect

    Gockner, T. L.; Zelzer, S.; Mokry, T. Gnutzmann, D. Bellemann, N.; Mogler, C.; Beierfuß, A. Köllensperger, E. Germann, G.; Radeleff, B. A. Stampfl, U. Kauczor, H. U.; Pereira, P. L.; Sommer, C. M.

    2015-04-15

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  6. Q-value customized ablation (custom-Q) versus wavefront optimized ablation for primary myopia and myopic astigmatism.

    PubMed

    Tawfik, Ahmed; Eid, Ahmed Mostafa; Hasanen, Rabei; Moftah, Ismail A N

    2014-04-01

    Comparison between treatment with wavefront optimized and custom-Q laser-assisted in situ keratomileusis (LASIK) ablations. Our study included 400 eyes of 200 patients divided into two equal groups. All patients were treated for myopia and myopic astigmatism with LASIK. The first group was treated with wavefront optimized ablation and the second group with custom-Q ablation. They were examined preoperatively and postoperatively to assess asphericity, image quality, and other classical outcome parameters. The wavefront optimized ablation group comprised 200 eyes with a mean spherical equivalent refraction (SE) of -5.2188 diopters (D) (range: -1.15 to -10.50 D); the mean Q-value changed from 0.30 preoperatively to 0.06 postoperatively. The custom-Q ablation group also comprised 200 eyes with a mean SE of -5.1575 D (range: -1.35 to -9.00 D); the mean Q-value changed from 0.32 preoperatively to 0.03 postoperatively. A statistically significant difference in postoperative change in Q-values (P = 0.02) and in postoperative visual acuity (P = 0.42) between the two groups was noted. There was no difference between the two groups regarding refractive correction. There was a marginally significant change in BSCVA (best spectacle-corrected visual acuity) between the two groups, and less impairment in the corneal asphericity in the custom-Q group.

  7. Image-guided ablation therapy of bone tumors.

    PubMed

    Sabharwal, Tarun; Katsanos, Konstantinos; Buy, Xavier; Gangi, Afshin

    2009-04-01

    A wide range of thermal and cryoablation methods is currently available for the curative eradication or palliative treatment of a variety of bone and soft-tissue tumors. Radiofrequency ablation has been developed as a multipurpose tool for the skeletal system. Cryoablation has the added advantages of direct computed tomography or magnetic resonance visualization and monitoring of treatment outcome with less peri- and postoperative pain. Use of appropriate thermo-sensors and insulation techniques, like carbon dioxide insufflation, results in enhanced safety and efficacy. Ablation of weight-bearing bones has to be supplemented with cement consolidation. The authors present an overview of the current status of percutaneous image-guided ablation therapy of bone and soft-tissue tumors, analyze the merits and limitations of the various systems available, and discuss possible new applications for the future.

  8. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  9. [Pulmonary vein ablation in atrial fibrillation. Initial experience].

    PubMed

    Velarde, José Luis; Martellotto, Ricardo; Scanavacca, Mauricio; Arévalo, Aldo; Colque, Roberto; Jiménez, Marcelo

    2002-05-01

    Despite the progress in the knowledge of the pathophysiology of the atrial fibrillation (AF), the pharmacologic and non pharmacologic approach to prevent and control this arrhythmia has been shown to be discouraging. In the past few years a new type of AF has been described, of which the focal mechanism -especially bound to the pulmonary veins- allows ablation treatment through the radiofrequency (RF) with a catheter. We present our initial experience with this type of method, in two young patients who suffered from multiples episodes of AF and resistance to the conventional treatment. In both patients the RF ablation was done in the left superior pulmonary vein. One of them received an ablation in only one focus, and the other needed a veno-atrial disconnection through the elimination of the pulmonary venous potential from this vein. After three month of follow-up, patients remain asymptomatic with no relapse. PMID:12015937

  10. Radio frequency ablation registration, segmentation, and fusion tool.

    PubMed

    McCreedy, Evan S; Cheng, Ruida; Hemler, Paul F; Viswanathan, Anand; Wood, Bradford J; McAuliffe, Matthew J

    2006-07-01

    The radio frequency ablation segmentation tool (RFAST) is a software application developed using the National Institutes of Health's medical image processing analysis and visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize, and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented three dimensional (3-D) surface models enables the physician to interactively position the ablation probe to simulate burns and to semimanually simulate sphere packing in an attempt to optimize probe placement. This paper describes software systems contained in RFAST to address the needs of clinicians in planning, evaluating, and simulating RFA treatments of malignant hepatic tissue. PMID:16871716

  11. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  12. Analysis of illicit drugs by direct ablation of solid samples.

    PubMed

    Bermúdez, Celina; Cabezas, Carlos; Mata, Santiago; Berdakin, Matias; Tejedor, Jesús M; Alonso, José L

    2015-01-01

    Analysis of illicit drugs arises as an important field of work given the high social impacts presented by drugs in the modern society. Direct laser ablation of solid compounds allows their analysis without sampling or preparation procedures. For that purpose, an experimental set-up that combines laser ablation with time-of- flight mass spectrometry has been constructed very recently to perform studies on the mass spectra of such drugs as 3,4-methylenedioxy-N-methylamphetamine, commonly known as MDMA or ecstasy. Analysis of the observed fragmentation pattern in mass spectra may elucidate the ablation-induced photofragmentation phenomena produced, which differ from those previously observed with conventional ionization methods. PMID:26764307

  13. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  14. Volumetric HIFU Ablation guided by Multiplane MRI Thermometry

    NASA Astrophysics Data System (ADS)

    Köhler, Max O.; Mougenot, Charles; Quesson, Bruno; Enholm, Julia; Bail, Brigitte Le; Laurent, Christophe; Moonen, Chrit T. W.; Ehnholm, Gösta J.

    2009-04-01

    High Intensity Focused Ultrasound (HIFU) is commonly performed using an iterative point-by-point approach with the sonications interleaved by delays to allow for cool-down of tissue. Although a safe sonication strategy, it remains rather slow due to the suboptimal utilization of deposited heat energy. As an alternative, we propose a volumetric ablation method where volumes larger than a focal spot are ablated per sonication by electronically steering the focal-spot along multiple outwards-moving concentric circles. A common problem of large volume ablations has been their safety with regards to nearfield heating. To this end, rapid multiplane thermometry is also introduced with coverage both parallel and perpendicular to the beam-path. Our approach monitors the temperature rise during sonication at a temporal resolution comparable to that of heat-development. Experiments were performed in an in vivo porcine model to assess the usefulness of the proposed volumetric sonication strategy and multiplane thermometry.

  15. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  16. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2010-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of side pumped, preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  17. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  18. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.; Salmonson, Jay D.; Callahan, Debra A.; Town, Richard P. J.

    2010-05-15

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)], has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of one-dimensional simulations, meant to assess the statistical behavior of the target design, as well as two-dimensional simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  19. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  20. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  1. Dendrin ablation prolongs life span by delaying kidney failure.

    PubMed

    Weins, Astrid; Wong, Jenny S; Basgen, John M; Gupta, Ritu; Daehn, Ilse; Casagrande, Lisette; Lessman, David; Schwartzman, Monica; Meliambro, Kristin; Patrakka, Jaakko; Shaw, Andrey; Tryggvason, Karl; He, John Cijiang; Nicholas, Susanne B; Mundel, Peter; Campbell, Kirk N

    2015-08-01

    Podocyte loss is central to the progression of proteinuric kidney diseases leading to end-stage kidney disease (ESKD), requiring renal replacement therapy, such as dialysis. Despite modern tools and techniques, the 5-year mortality of some patients requiring dialysis remains at about 70% to 80%. Thus, there is a great unmet need for podocyte-specific treatments aimed at preventing podocyte loss and the ensuing development of ESKD. Here, we show that ablation of the podocyte death-promoting protein dendrin delays the onset of ESKD, thereby expanding the life span of mice lacking the adapter protein CD2AP. Ablation of dendrin delays onset and severity of proteinuria and podocyte loss. In addition, dendrin ablation ameliorates mesangial volume expansion and up-regulation of mesangial fibronectin expression, which is mediated by a podocyte-secreted factor. In conclusion, onset of ESKD and death can be markedly delayed by blocking the function of dendrin.

  2. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  3. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  4. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  5. Shuttle solid rocket motor nozzle alternate ablative evaluation

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.; Morrison, B. H.

    1981-01-01

    A series of subscale tests are shown to suggest that a lower-cost ablative material than the rayon-based carbon ablative currently used in the Space Shuttle Solid Rocket Motor (SRM) may be used as a substitute. Six such ablatives with outstanding performance characteristics, using spun PAN and continuous pitch and PAN fibers instead of the present, continuous rayon, were identified in the course of tests with HTPB/AL/AP solid propellant grains with a burn time of 12 sec. The test nozzle features an initial throat diameter of 2.2 in. and a 6.1 expansion ratio. In addition to nozzle structural feature drawings, extensive test data tables and propellant formulation and properties tables are provided.

  6. Nanostructures synthesis by femtosecond laser ablation of glasses

    NASA Astrophysics Data System (ADS)

    Vipparty, D.; Tan, B.; Venkatakrishnan, K.

    2012-10-01

    In this article, we investigate the variations in ablation dynamics that result in diverse nanostructures on SiO2 based glass samples. A three-dimensional fibrous nanoparticle agglomerate was observed on sodalime glass when exposed to femtosecond laser irradiation. The fused nanoparticles have diameters ranging from 30 nm to 70 nm. Long continuous nanofibers of extremely high aspect ratio (certain fibers up to 100 000:1) were obtained by exposing silica glass surface to femtosecond laser irradiation at MHz repetition rate in air. A nanostructure assembly comprising of nanofiber and nanoparticle agglomerates was also observed by ablating silica glass. From our experimental analysis, it was determined that variation in bandgap and material composition alters ablation dynamics and dictates the response of glass to femtosecond laser irradiation, ultimately leading to the formation of structures with varying morphology on silica and sodalime glass. The possible underlying mechanisms that produce such nanostructures on glass specimens have also been explored.

  7. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2013-05-01

    We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

  8. Ultrathin sectioning with DUV-pulsed laser ablation: development of a laser ablation nano tome.

    PubMed

    Kanemaru, Takaaki; Oki, Yuji

    2015-08-01

    The electrically automated ultrathin sectioning apparatus, which has been developed in recent years, can produce consecutive ultrathin sections with a diamond knife and a gallium ion beam. These newly developed apparatuses, however, have several shortcomings, such as the limited block cutting area, thermal damage to the sample by the focused ion beam and a sample electronic charge. To overcome these faults and for easier scanning electron microscopy three-dimensional fine structural reconstruction, we have developed a new cutting method using a deep ultraviolet laser, which we have named the 'LANTome (Light Ablation Nanotome)'. Using this method, we confirmed the widening of sectioning areas, shortening of the sectioning time, automatic smoothing of rough surfaces, no sample electronic charge and minimal heat effects on the sample tissue, such as thermal denaturation. PMID:25888714

  9. A novel cell ablation strategy blocks tobacco anther dehiscence.

    PubMed Central

    Beals, T P; Goldberg, R B

    1997-01-01

    We utilized a new cell ablation strategy to ablate specific anther cell types involved in the dehiscence process. The tobacco TA56 gene promoter is active within the circular cell cluster, stomium, and connective regions of the anther at different developmental stages. We introduced a cytotoxic TA56/barnase gene into tobacco plants together with three different anticytotoxic barstar genes. The anticytotoxic barstar genes were used to protect subsets of anther cell types from the cytotoxic effects of the TA56/barnase gene. The chimeric barstar genes were fused with (1) the tobacco TP12 gene promoter that is active at high levels in most anther cell types; (2) the soybean lectin gene promoter that is active earlier in the connective, and at lower levels in the circular cell cluster and stomium, than is the TA56 promoter; and (3) the tobacco TA20 gene promoter that is active at high levels in most anther cell types but has a different developmental profile than does the TP12 promoter. Normal anther development and dehiscence occurred in plants containing the TA56/barnase and TP12/barstar genes, indicating that barstar protects diverse anther cell types from the cytotoxic effects of barnase. Anthers containing the TA56/barnase and lectin/barstar genes also developed normally but failed to dehisce because of extensive ablation of the circular cell cluster, stomium, and contiguous connective regions. Anthers containing the TA56/barnase and TA20/barstar genes failed to dehisce as well. However, only the stomium region was ablated in these anthers. The connective, circular cell cluster, and adjacent wall regions were protected from ablation by the formation of barnase/barstar complexes. We conclude that anther dehiscence at flower opening depends on the presence of a functional stomium region and that chimeric barnase and barstar genes containing promoters that are active in several overlapping cell types can be used for targeted cell ablation experiments. PMID:9338959

  10. Real-time calibration of temperature estimates during radiofrequency ablation.

    PubMed

    Varghese, T; Daniels, M J

    2004-07-01

    Radiofrequency ablation is an interstitial focal ablative therapy that can be used in a percutaneous fashion and permits in situ destruction of hepatic tumors. Recurrence rates after rf therapy are as high as 34-55%, due to difficulties in accurately identifying the zone of necrosis (thermal lesion) because of the low intrinsic acoustic contrast between normal and ablated liver tissue. Our goal is to provide real-time ultrasonic tracking of temperature changes over the large range of temperatures traditionally used (40-100 degrees C) in rfablation procedures using an external ultrasound transducer. Temperature estimates are obtained using a cross-correlation algorithm applied to rf ultrasound echo signal data acquired at discrete intervals during heating. Apparent tissue displacement estimates obtained at these discrete time-intervals are accumulated to obtain a cumulative displacement map, whose gradient provides after appropriate scaling provides a temperature map at the specified elapsed ablation duration. Temperature maps are used to display the initial temperature rise and to continuously update a thermal map of the treated region. In this paper, we develop calibration curves that relate the echo shift due to the change in the speed of sound and thermal expansion to the corresponding temperature increase on in-vitro tissue specimens. These calibration curves can then be utilized for the real time calibration and analysis of temperature estimates obtained from the rf echo signals during ablation. Temperature maps obtained using the calibration curve compare favorably to temperature estimates observed using the invasive thermosensor readings on the ablation electrode and previous results that utilized a linear calibration factor.

  11. The effect of elastic modulus on ablation catheter contact area

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Linte, Cristian A.; Rettmann, Maryam E.; Sun, Deyu; Packer, Douglas L.; Robb, Richard A.; Holmes, David R.

    2015-03-01

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrodetissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel[1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  12. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  13. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bullock, Anthony Burlingame

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time- delayed, two-color subpicoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence (θdivergence < 5°) shows the ablated plume temperature to be very low at long time delays (T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 μm films show these plumes to be of high neutral atom density (nn of order 10

  14. Radiofrequency Ablation of Osteoid Osteoma: Initial Experience with a New Monopolar Ablation Device

    SciTech Connect

    Mahnken, Andreas H. Bruners, Philipp; Delbrueck, Heide; Guenther, Rolf W.

    2011-06-15

    The purpose of this article is to report our initial experience with the 'off-label' use of a new monopolar radiofrequency (RF) probe for percutaneous ablation of osteoid osteomas. Seventeen patients (12 male and 5 female, mean age 24.8 [range 9-49]) with osteoid osteoma were treated by computed tomography (CT)-guided RF ablation (RFA). All procedures were performed with the patient under general aesthesia. After localization of the nidus, a 13G hollow drill was introduced into the nidus through a 7F introducer sheath. A monopolar 16.5G RF probe with a 9-mm active tip (Soloist; Boston Scientific, Natick, MA) was inserted through the introducer sheath and connected to the RF generator. Energy application was started at 2 W and subsequently increased every 2 min by 1 W to a maximum of 8 W. The procedure ended if impedance increased by 500 Ohm-Sign . Mean duration of energy deposition was 14.2 {+-} 3.3 min. Fourteen of 17 patients (82%) were free of symptoms at 29.9 {+-} 14.8 (range 4 to 47) months of follow-up. The primary and secondary success rates were 83% and 100%, respectively. In 3 patients, recurrence of pain at 6 (n = 1) and 15 (n = 2) months after the initial procedure was successfully treated by reablation. There were no complications. Monopolar RFA using the Soloist probe is effective and safe for the treatment of osteoid osteoma. It results in comparable success rates as other monopolar or bipolar RF systems in the treatment of osteoid osteoma.

  15. Radiofrequency ablation of osteoid osteoma: initial experience with a new monopolar ablation device.

    PubMed

    Mahnken, Andreas H; Bruners, Philipp; Delbrück, Heide; Günther, Rolf W

    2011-06-01

    The purpose of this article is to report our initial experience with the "off-label" use of a new monopolar radiofrequency (RF) probe for percutaneous ablation of osteoid osteomas. Seventeen patients (12 male and 5 female, mean age 24.8 [range 9-49]) with osteoid osteoma were treated by computed tomography (CT)-guided RF ablation (RFA). All procedures were performed with the patient under general aesthesia. After localization of the nidus, a 13G hollow drill was introduced into the nidus through a 7F introducer sheath. A monopolar 16.5G RF probe with a 9-mm active tip (Soloist; Boston Scientific, Natick, MA) was inserted through the introducer sheath and connected to the RF generator. Energy application was started at 2 W and subsequently increased every 2 min by 1 W to a maximum of 8 W. The procedure ended if impedance increased by 500 Ω. Mean duration of energy deposition was 14.2±3.3 min. Fourteen of 17 patients (82%) were free of symptoms at 29.9±14.8 (range 4 to 47) months of follow-up. The primary and secondary success rates were 83% and 100%, respectively. In 3 patients, recurrence of pain at 6 (n=1) and 15 (n=2) months after the initial procedure was successfully treated by reablation. There were no complications. Monopolar RFA using the Soloist probe is effective and safe for the treatment of osteoid osteoma. It results in comparable success rates as other monopolar or bipolar RF systems in the treatment of osteoid osteoma. PMID:20490491

  16. Science to Practice: Systemic Implications of Ablative Tumor Therapies-Reality Uncovered and Myths Exposed?

    PubMed

    Chapiro, Julius; Geschwind, Jean-François

    2016-08-01

    In their effort to characterize the systemic "off-target" effects of radiofrequency (RF) ablation and irreversible electroporation (IRE), Bulvik et al demonstrated substantial differences in physiologic, tumorigenic, and immunologic responses between the two ablative modalities. By establishing that IRE may in fact stimulate more robust inflammatory and systemic reactions than RF at liver ablation, the authors conclude that the selection of a given ablation energy source may alter the clinical outcome depending on the circumstance-both favorably and unfavorably. PMID:27429140

  17. Comparison of the aerodynamic characteristics of an ablating and nonablating blunted conical body

    NASA Technical Reports Server (NTRS)

    Kruse, R. L.

    1973-01-01

    The influence of ablation on the aerodynamic characteristics of a blunted slender cone was investigated. Plastic models were launched in free flight at ablating conditions. The results were compared with results of similar tests using metal nonablating models. Ablation was found to decrease the dynamic stability and the drag, but had little effect on static stability and lift. The plastic models appeared to experience ablation-induced roll.

  18. Technical and Practical Considerations for Device Selection in Locoregional Ablative Therapy

    PubMed Central

    Zivin, Sean P.; Gaba, Ron C.

    2014-01-01

    Percutaneous ablation therapy is an essential component of contemporary interventional oncologic therapy of primary and secondary malignancies. The growing armamentarium of available ablation technologies calls for thorough understanding of the different ablation modalities to optimize device selection in individual clinical settings. The goal of the current article is to provide direction on ablative device selection by reviewing device mechanisms of action, advantages and disadvantages, and practical considerations in real-life case scenarios. PMID:25053866

  19. Nanopillar formation from two-shot femtosecond laser ablation of poly-methyl methacrylate

    NASA Astrophysics Data System (ADS)

    Baset, F.; Popov, K.; Villafranca, A.; Alshehri, A. M.; Guay, J.-M.; Ramunno, L.; Bhardwaj, V. R.

    2015-12-01

    We present experimental and numerical studies on the morphological evolution and dynamics of femtosecond laser ablation of bulk poly-methyl methacrylate (PMMA) irradiated with a pair of pulses. We show that a nanopillar-like structure is formed in the middle of the ablation crater for pulse energies below single-shot ablation threshold. The nanopillar is ∼400 nm long, lies adjacent to a nanopore, and protrudes ∼150 nm above the sample surface. As the pulse energy is increased gradually, the nanopillar disappears and the nanopore inside the ablation crater becomes larger. At higher pulse energies, a volcanic eruption like structure appears in the middle of the crater whose size and height increases with energy. 2D molecular dynamics simulations reveal that a nanojet and other features observed at higher pulse energies can be formed when the reflection of a shockwave, induced by the second laser pulse, causes density pinching in the middle of the interaction region that rapidly pushes out molten material towards the surface. The shockwave is reflected from the cold boundaries of a modified region created by the first laser pulse.

  20. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    SciTech Connect

    Shakeri Jooybari, B. E-mail: hafarideh@aut.ac.ir; Afarideh, H. E-mail: hafarideh@aut.ac.ir; Lamehi-Rachti, M.; Ghergherehchi, M.

    2015-03-07

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39 ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.