Science.gov

Sample records for ablative body radiotherapy

  1. Stereotactic ablative body radiotherapy (SABR) for primary and secondary lung tumours

    PubMed Central

    Gaya, Andrew

    2012-01-01

    Abstract Stereotactic ablative body radiotherapy (SABR) represents a technological breakthrough in radiotherapy technique, with proven benefits to patients in terms of improved tumour control and overall survival. The key components of SABR are described. The current evidence base for SABR for the treatment of primary and secondary lung tumours is appraised, and key ongoing trials are identified. PMID:23023165

  2. Patient specific quality control for Stereotactic Ablative Body Radiotherapy (SABR): it takes more than one phantom

    NASA Astrophysics Data System (ADS)

    Kron, T.; Ungureanu, E.; Antony, R.; Hardcastle, N.; Clements, N.; Ukath, J.; Fox, C.; Lonski, P.; Wanigaratne, D.; Haworth, A.

    2017-01-01

    Stereotactic Ablative Body Radiotherapy (SABR) is an extension of the concepts of Stereotactic Radiosurgery from intracranial procedures to extracranial targets. This brings with it new technological challenges for set-up of a SABR program and continuing quality assurance. Compared with intracranial procedures SABR requires consideration of motion and inhomogeneities and has to deal with a much larger variety of targets ranging from lung to liver, kidney and bone. To meet many of the challenges virtually all advances in modern radiotherapy, such as Intensity Modulated and Image Guided Radiation Therapy (IMRT and IGRT) are used. Considering the few fractions and high doses per fraction delivered to complex targets it is not surprising that patient specific quality control is considered essential for safe delivery. Given the variety of targets and clinical scenarios we employ different strategies for different patients to ensure that the most important aspects of the treatment are appropriately tested, be it steep dose gradients, inhomogeneities or the delivery of dose in the presence of motion. The current paper reviews the different approaches and phantoms utilised at Peter MacCallum Cancer Centre for SABR QA.

  3. Outcomes After Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma

    PubMed Central

    Wahl, Daniel R.; Stenmark, Matthew H.; Tao, Yebin; Pollom, Erqi L.; Caoili, Elaine M.; Lawrence, Theodore S.; Schipper, Matthew J.

    2016-01-01

    Purpose Data guiding selection of nonsurgical treatment of hepatocellular carcinoma (HCC) are lacking. We therefore compared outcomes between stereotactic body radiotherapy (SBRT) and radiofrequency ablation (RFA) for HCC. Patients and Methods From 2004 to 2012, 224 patients with inoperable, nonmetastatic HCC underwent RFA (n = 161) to 249 tumors or image-guided SBRT (n = 63) to 83 tumors. We applied inverse probability of treatment weighting to adjust for imbalances in treatment assignment. Freedom from local progression (FFLP) and toxicity were retrospectively analyzed. Results RFA and SBRT groups were similar with respect to number of lesions treated per patient, type of underlying liver disease, and tumor size (median, 1.8 v 2.2 cm in maximum diameter; P = .14). However, the SBRT group had lower pretreatment Child-Pugh scores (P = .003), higher pretreatment alpha-fetoprotein levels (P = .04), and a greater number of prior liver-directed treatments (P < .001). One- and 2-year FFLP for tumors treated with RFA were 83.6% and 80.2% v 97.4% and 83.8% for SBRT. Increasing tumor size predicted for FFLP in patients treated with RFA (hazard ratio [HR], 1.54 per cm; P = .006), but not with SBRT (HR, 1.21 per cm; P = .617). For tumors ≥ 2 cm, there was decreased FFLP for RFA compared with SBRT (HR, 3.35; P = .025). Acute grade 3+ complications occurred after 11% and 5% of RFA and SBRT treatments, respectively (P = .31). Overall survival 1 and 2 years after treatment was 70% and 53% after RFA and 74% and 46% after SBRT. Conclusion Both RFA and SBRT are effective local treatment options for inoperable HCC. Although these data are retrospective, SBRT appears to be a reasonable first-line treatment of inoperable, larger HCC. PMID:26628466

  4. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  5. Survey of stereotactic ablative body radiotherapy in the UK by the QA group on behalf of the UK SABR Consortium

    PubMed Central

    Baker, A; Scott, A J D; Webster, G J

    2014-01-01

    Objective: To ascertain the progress being made towards the implementation of stereotactic ablative body radiotherapy (SABR) treatment in the UK, to obtain details of current practice in centres with an active treatment programme and to assess the projected future provision. Methods: In August 2012, an online questionnaire was sent to all 65 UK radiotherapy institutions. The included questions covered the current number of patients being treated and the intended number of patients for each clinical site; immobilization and motion management methods; CT scanning protocols; target and organ-at-risk delineation; treatment planning; image-guidance and treatment protocols; and quality assurance methods. Results: 48/65 (74%) institutions responded by the end of November 2012, with 15 indicating an active SABR programme. A further four centres indicated that a SABR protocol had been established but was not yet in clinical use. 14 of the 29 remaining responses stated an intention to develop a SABR programme in the next 2 years. Conclusion: The survey responses confirm that SABR provision in the UK is increasing and that this should be expected to continue in the next 2 years. A projection of the future uptake would suggest that by the end of 2014, UK SABR provision will be broadly in line with international practice. PMID:24620840

  6. A review of kidney motion under free, deep and forced-shallow breathing conditions: implications for stereotactic ablative body radiotherapy treatment.

    PubMed

    Pham, D; Kron, T; Foroudi, F; Schneider, M; Siva, S

    2014-08-01

    Motion management strategies are important during stereotactic ablative body radiotherapy for abdominal targets. The kidney is a mobile retroperitoneal organ that moves with respiration. A review of the literature was performed to investigate the reported degree of kidney motion associated with various breathing conditions. A structured search was performed using Medline from January 1970 to May 2013 for all publications describing cranial-caudal kidney motion. Relevance to radiotherapy practice was reviewed based on any breathing instructions and/or immobilization equipment that could affect breathing pattern. Studies were categorized under three types of breathing conditions: Forced-shallow, breath-hold/deep and free. A total of 25 publications were identified describing cranial-caudal kidney motion with a combined total of 415 participants. Three publications described forced-shallow breathing using prone positioning or abdominal compression plates. Prone positioning, compared to supine positioning, did little to minimise kidney motion, however use of compression plates can result in kidney motion of less than 5 mm. Eight publications described deep breathing/breath hold techniques that showed average kidney motion ranging between 10 mm-40 mm. Fifteen publications investigated kidney motion under free breathing with the majority reporting mean motion of less than 10 mm. Kidney movement of up to 8.1 mm in the anterior posterior direction and 6.2 mm laterally were reported with no indications that breathing technique can influence the extent of this motion. In summary, kidney movement is complex and consideration should be made to ensure that motion management strategies provide the desired radiotherapy benefit. There are limited publications on the effectiveness of abdominal compression on reducing kidney motion which warrant further investigation in this area.

  7. Cost-Effectiveness Analysis of Stereotactic Body Radiotherapy and Radiofrequency Ablation for Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Sher, David J.

    2011-12-01

    Purpose: The standard management of medically inoperable Stage I non-small-cell lung cancer (NSCLC) conventionally has been fractionated three-dimensional conformal radiation therapy (3D-CRT). The relatively poor local control rate and inconvenience associated with this therapy have prompted the development of stereotactic body radiotherapy (SBRT), a technique that delivers very high doses of irradiation typically over 3 to 5 sessions. Radiofrequency ablation (RFA) has also been investigated as a less costly, single-day therapy that thermally ablates small, peripheral tumors. The cost-effectiveness of these three techniques has never been compared. Methods and Materials: We developed a Markov model to describe health states of 65-year-old men with medically inoperable NSCLC after treatment with 3D-CRT, SBRT, and RFA. Given their frail state, patients were assumed to receive supportive care after recurrence. Utility values, recurrence risks, and costs were adapted from the literature. Sensitivity analyses were performed to model uncertainty in these parameters. Results: The incremental cost-effectiveness ratio for SBRT over 3D-CRT was $6,000/quality-adjusted life-year, and the incremental cost-effectiveness ratio for SBRT over RFA was $14,100/quality-adjusted life-year. One-way sensitivity analysis showed that the results were robust across a range of tumor sizes, patient utility values, and costs. This result was confirmed with probabilistic sensitivity analyses that varied local control rates and utilities. Conclusion: In comparison to 3D-CRT and RFA, SBRT was the most cost-effective treatment for medically inoperable NSCLC over a wide range of treatment and disease assumptions. On the basis of efficacy and cost, SBRT should be the primary treatment approach for this disease.

  8. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    SciTech Connect

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  9. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: a case study.

    PubMed

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  10. Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer

    PubMed Central

    Crane, Christopher H.

    2016-01-01

    The role of radiation in locally advanced unresectable pancreatic cancer (LAPC) is controversial. Randomized trials evaluating standard doses of chemoradiation have not shown a significant benefit from the use of consolidative radiation. Results from non-randomized studies of 3–5-fraction stereotactic body radiotherapy (SBRT) have been similar to standard chemoradiation, but with less toxicity and a shorter treatment time. Doses of SBRT have been reduced to subablative levels for the sake of tolerability. The benefit of both options is unclear. In contrast, ablative doses can be delivered using an SBRT technique in 15–28 fractions. The keys to the delivery of ablative doses are computed tomography (CT) image guidance and respiratory gating. Higher doses have resulted in encouraging long-term survival results. In this review, we present a comprehensive solution to achieving ablative doses for selected patients with pancreatic tumors by using a combination of classical, modern and novel concepts of radiotherapy: fractionation, CT image guidance, respiratory gating, intentional dose heterogeneity, and simultaneous integrated protection. PMID:27029741

  11. Stereotactic ablative radiotherapy for oligometastatic disease in liver.

    PubMed

    Kim, Myungsoo; Son, Seok Hyun; Won, Yong Kyun; Kay, Chul Seung

    2014-01-01

    Liver metastasis in solid tumors, including colorectal cancer, is the most frequent and lethal complication. The development of systemic therapy has led to prolonged survival. However, in selected patients with a finite number of discrete lesions in liver, defined as oligometastatic state, additional local therapies such as surgical resection, radiofrequency ablation, cryotherapy, and radiotherapy can lead to permanent local disease control and improve survival. Among these, an advance in radiation therapy made it possible to deliver high dose radiation to the tumor more accurately, without impairing the liver function. In recent years, the introduction of stereotactic ablative radiotherapy (SABR) has offered even more intensive tumor dose escalation in a few fractions with reduced dose to the adjacent normal liver. Many studies have shown that SABR for oligometastases is effective and safe, with local control rates widely ranging from 50% to 100% at one or two years. And actuarial survival at one and two years has been reported ranging from 72% to 94% and from 30% to 62%, respectively, without severe toxicities. In this paper, we described the definition and technical aspects of SABR, clinical outcomes including efficacy and toxicity, and related parameters after SABR in liver oligometastases from colorectal cancer.

  12. Universal Survival Curve and Single Fraction Equivalent Dose: Useful Tools in Understanding Potency of Ablative Radiotherapy

    SciTech Connect

    Park, Clint; Papiez, Lech; Zhang Shichuan; Story, Michael; Timmerman, Robert D.

    2008-03-01

    Purpose: Overprediction of the potency and toxicity of high-dose ablative radiotherapy such as stereotactic body radiotherapy (SBRT) by the linear quadratic (LQ) model led to many clinicians' hesitating to adopt this efficacious and well-tolerated therapeutic option. The aim of this study was to offer an alternative method of analyzing the effect of SBRT by constructing a universal survival curve (USC) that provides superior approximation of the experimentally measured survival curves in the ablative, high-dose range without losing the strengths of the LQ model around the shoulder. Methods and Materials: The USC was constructed by hybridizing two classic radiobiologic models: the LQ model and the multitarget model. We have assumed that the LQ model gives a good description for conventionally fractionated radiotherapy (CFRT) for the dose to the shoulder. For ablative doses beyond the shoulder, the survival curve is better described as a straight line as predicted by the multitarget model. The USC smoothly interpolates from a parabola predicted by the LQ model to the terminal asymptote of the multitarget model in the high-dose region. From the USC, we derived two equivalence functions, the biologically effective dose and the single fraction equivalent dose for both CFRT and SBRT. Results: The validity of the USC was tested by using previously published parameters of the LQ and multitarget models for non-small-cell lung cancer cell lines. A comparison of the goodness-of-fit of the LQ and USC models was made to a high-dose survival curve of the H460 non-small-cell lung cancer cell line. Conclusion: The USC can be used to compare the dose fractionation schemes of both CFRT and SBRT. The USC provides an empirically and a clinically well-justified rationale for SBRT while preserving the strengths of the LQ model for CFRT.

  13. Commissioning and initial stereotactic ablative radiotherapy experience with Vero.

    PubMed

    Solberg, Timothy D; Medin, Paul M; Ramirez, Ezequiel; Ding, Chuxiong; Foster, Ryan D; Yordy, John

    2014-03-06

    The purpose of this study is to describe the comprehensive commissioning process and initial clinical performance of the Vero linear accelerator, a new radiotherapy device recently installed at UT Southwestern Medical Center specifically developed for delivery of image-guided stereotactic ablative radiotherapy (SABR). The Vero system utilizes a ring gantry to integrate a beam delivery platform with image guidance systems. The ring is capable of rotating ± 60° about the vertical axis to facilitate noncoplanar beam arrangements ideal for SABR delivery. The beam delivery platform consists of a 6 MV C-band linac with a 60 leaf MLC projecting a maximum field size of 15 × 15 cm² at isocenter. The Vero planning and delivery systems support a range of treatment techniques, including fixed beam conformal, dynamic conformal arcs, fixed gantry IMRT in either SMLC (step-and-shoot) or DMLC (dynamic) delivery, and hybrid arcs, which combines dynamic conformal arcs and fixed beam IMRT delivery. The accelerator and treatment head are mounted on a gimbal mechanism that allows the linac and MLC to pivot in two dimensions for tumor tracking. Two orthogonal kV imaging subsystems built into the ring facilitate both stereoscopic and volumetric (CBCT) image guidance. The system is also equipped with an always-active electronic portal imaging device (EPID). We present our commissioning process and initial clinical experience focusing on SABR applications with the Vero, including: (1) beam data acquisition; (2) dosimetric commissioning of the treatment planning system, including evaluation of a Monte Carlo algorithm in a specially-designed anthropomorphic thorax phantom; (3) validation using the Radiological Physics Center thorax, head and neck (IMRT), and spine credentialing phantoms; (4) end-to-end evaluation of IGRT localization accuracy; (5) ongoing system performance, including isocenter stability; and (6) clinical SABR applications.

  14. Results of patient specific quality assurance for patients undergoing stereotactic ablative radiotherapy for lung lesions.

    PubMed

    Hardcastle, Nicholas; Clements, Natalie; Chesson, Brent; Aarons, Yolanda; Cramb, Jim; Siva, Shankar; Wanigaratne, Derrick M; Ball, David; Kron, Tomas

    2014-03-01

    Hypofractionated image guided radiotherapy of extracranial targets has become increasingly popular as a treatment modality for inoperable patients with one or more small lesions, often referred to as stereotactic ablative body radiotherapy (SABR). This report details the results of the physical quality assurance (QA) program used for the first 33 lung cancer SABR radiotherapy 3D conformal treatment plans in our centre. SABR involves one or few fractions of high radiation dose delivered in many small fields or arcs with tight margins to mobile targets often delivered through heterogeneous media with non-coplanar beams. We have conducted patient-specific QA similar to the more common intensity modulated radiotherapy QA with particular reference to motion management. Individual patient QA was performed in a Perspex phantom using point dose verification with an ionisation chamber and radiochromic film for verification of the dose distribution both with static and moving detectors to verify motion management strategies. While individual beams could vary by up to 7%, the total dose in the target was found to be within ±2% of the prescribed dose for all 33 plans. Film measurements showed qualitative and quantitative agreement between planned and measured isodose line shapes and dimensions. The QA process highlighted the need to account for couch transmission and demonstrated that the ITV construction was appropriate for the treatment technique used. QA is essential for complex radiotherapy deliveries such as SABR. We found individual patient QA helpful in setting up the technique and understanding potential weaknesses in SABR workflow, thus providing confidence in SABR delivery.

  15. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    SciTech Connect

    Norihisa, Yoshiki; Nagata, Yasushi Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-10-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases.

  16. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    SciTech Connect

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  17. Spinal Cord Tolerance for Stereotactic Body Radiotherapy

    SciTech Connect

    Sahgal, Arjun; Ma Lijun; Gibbs, Iris; Gerszten, Peter C.; Ryu, Sam; Soltys, Scott; Weinberg, Vivian; Wong Shun; Chang, Eric; Fowler, Jack; Larson, David A.

    2010-06-01

    Purpose: Dosimetric data are reported for five cases of radiation-induced myelopathy after stereotactic body radiotherapy (SBRT) to spinal tumors. Analysis per the biologically effective dose (BED) model was performed. Methods and Materials: Five patients with radiation myelopathy were compared to a subset of 19 patients with no radiation myelopathy post-SBRT. In all patients, the thecal sac was contoured to represent the spinal cord, and doses to the maximum point, 0.1-, 1-, 2-, and 5-cc volumes, were analyzed. The mean normalized 2-Gy-equivalent BEDs (nBEDs), calculated using an alpha/beta value of 2 for late toxicity with units Gy 2/2, were compared using the t test and analysis of variance test. Results: Radiation myelopathy was observed at the maximum point with doses of 25.6 Gy in two fractions, 30.9 Gy in three fractions, and 14.8, 13.1, and 10.6 Gy in one fraction. Overall, there was a significant interaction between patient subsets and volume based on the nBED (p = 0.0003). Given individual volumes, a significant difference was observed for the mean maximum point nBED (p = 0.01). Conclusions: The maximum point dose should be respected for spine SBRT. For single-fraction SBRT 10 Gy to a maximum point is safe, and up to five fractions an nBED of 30 to 35 Gy 2/2 to the thecal sac also poses a low risk of radiation myelopathy.

  18. Stereotactic Body Radiotherapy for Primary Hepatocellular Carcinoma

    SciTech Connect

    Andolino, David L.; Johnson, Cynthia S.; Maluccio, Mary; Kwo, Paul; Tector, A. Joseph; Zook, Jennifer; Johnstone, Peter A.S.; Cardenes, Higinia R.

    2011-11-15

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) for the treatment of primary hepatocellular carcinoma (HCC). Methods and Materials: From 2005 to 2009, 60 patients with liver-confined HCC were treated with SBRT at the Indiana University Simon Cancer Center: 36 Child-Turcotte-Pugh (CTP) Class A and 24 CTP Class B. The median number of fractions, dose per fraction, and total dose, was 3, 14 Gy, and 44 Gy, respectively, for those with CTP Class A cirrhosis and 5, 8 Gy, and 40 Gy, respectively, for those with CTP Class B. Treatment was delivered via 6 to 12 beams and in nearly all cases was prescribed to the 80% isodose line. The records of all patients were reviewed, and treatment response was scored according to Response Evaluation Criteria in Solid Tumors v1.1. Toxicity was graded according to the Common Terminology Criteria for Adverse Events v4.0. Local control (LC), time to progression (TTP), progression-free survival (PFS), and overall survival (OS) were calculated according to the method of Kaplan and Meier. Results: The median follow-up time was 27 months, and the median tumor diameter was 3.2 cm. The 2-year LC, PFS, and OS were 90%, 48%, and 67%, respectively, with median TTP of 47.8 months. Subsequently, 23 patients underwent transplant, with a median time to transplant of 7 months. There were no {>=}Grade 3 nonhematologic toxicities. Thirteen percent of patients experienced an increase in hematologic/hepatic dysfunction greater than 1 grade, and 20% experienced progression in CTP class within 3 months of treatment. Conclusions: SBRT is a safe, effective, noninvasive option for patients with HCC {<=}6 cm. As such, SBRT should be considered when bridging to transplant or as definitive therapy for those ineligible for transplant.

  19. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2014-09-01

    Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W...CONTRACT NUMBER Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer 5b. GRANT NUMBER W81XWH-12-1-0236 5c...NOTES 14. ABSTRACT Purpose and scope: Stereotactic ablative radiotherapy (SABR) has become a new standard of care for early stage lung

  20. Stereotactic body radiotherapy in lung cancer: an update *

    PubMed Central

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; de Moraes, Fabio Ynoe; Neves, Wellington Furtado Pimenta; Gadia, Rafael; Carvalho, Heloisa de Andrade

    2015-01-01

    Abstract For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. PMID:26398758

  1. Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription.

    PubMed

    Zindler, Jaap D; Thomas, Charles R; Hahn, Stephen M; Hoffmann, Aswin L; Troost, Esther G C; Lambin, Philippe

    2016-02-01

    To obtain a favorable tradeoff between treatment benefits and morbidity ("therapeutic ratio"), radiotherapy (RT) dose is prescribed according to the tumor volume, with the goal of controlling the disease while respecting normal tissue tolerance levels. We propose a new paradigm for tumor dose prescription in stereotactic ablative radiotherapy (SABR) based on organ-at-risk (OAR) tolerance levels called isotoxic dose prescription (IDP), which is derived from experiences and limitations of conventionally fractionated radiotherapy. With IDP, the radiation dose is prescribed based on the predefined level of normal tissue complication probability of a nearby dose-limiting OAR at a prespecified dose-volume constraint. Simultaneously, the prescribed total tumor dose (TTD) is maximized to the technically highest achievable level in order to increase the local tumor control probability (TCP). IDP is especially relevant for tumors located at eloquent locations or for large tumors in which severe toxicity has been described. IDP will result in a lower RT dose or a treatment scheduled with more fractions if the OAR tolerance level is exceeded, and potential dose escalation occurs when the OAR tolerance level allows it and when it is expected to be beneficial (if TCP < 90%). For patients with small tumors at noneloquent sites, the current SABR dose prescription already results in high rates of local control at low toxicity rates. In this review, the concept of IDP is described in the context of SABR.

  2. A Phase II Trial of Stereotactic Ablative Body Radiotherapy for Low-Risk Prostate Cancer Using a Non-Robotic Linear Accelerator and Real-Time Target Tracking: Report of Toxicity, Quality of Life, and Disease Control Outcomes with 5-Year Minimum Follow-Up

    PubMed Central

    Mantz, Constantine

    2014-01-01

    Purpose/Objective(s): Herein, we report the results of an IRB-approved phase II trial of Varian Trilogy/TrueBeam-based stereotactic ablative body radiotherapy (SABR) monotherapy for low-risk prostate cancer using the Calypso® System to provide real-time electromagnetic tracking of the prostate’s position during treatment delivery. Materials/Methods: A total of 102 low-risk patients completed protocol treatment between January 2007 and May 2009. A total dose of 40.0 Gy in 5 every-other-day fractions of 8.0 Gy was prescribed to the planning target volume. Target setup and tracking procedures were as follows: (1) the Calypso® System was used to achieve target setup prior to each fraction; (2) conebeam CT imaging was then used for correction of setup error and for assessment of target and organs-at-risk deformations; (3) after treatment delivery was initiated, the Calypso® System then provided real-time intrafractional target tracking. The NCI CTCAE v3.0 was used to assess urinary and rectal toxicity during treatment and at defined follow-up time points. Biochemical response and quality of life measurements were made at concurrent follow-up points. Results: Urinary toxicities were most common. At 6 months, 19.6, 2.9, and 4.9% of patients reported grades 1–2 urinary frequency, dysuria, and retention, respectively. Rectal toxicities were uncommon. By 12 months, 2.9% of patients reported painless rectal bleeding with subsequent symptom resolution without requiring invasive interventions. Quality of life measurements demonstrated a significant decline over baseline in urinary irritative/obstructive scores at 1 month following SABR but otherwise did not demonstrate any difference for bowel, bladder, and sexual function scores at any other follow-up time point. One patient suffered biochemical recurrence at 6 years following SABR. Conclusion: At 5 years, minimum follow-up for this favorable patient cohort, prostate SABR resulted in favorable toxicity

  3. Intermittent androgen ablation in patients with biochemical failure after pelvic radiotherapy for localized prostate cancer

    SciTech Connect

    Cury, Fabio L.B.; Souhami, Luis . E-mail: luis.souhami@muhc.mcgill.ca; Rajan, Raghu; Tanguay, Simon; Gagnon, Bruno; Duclos, Marie; Shenouda, George; Faria, Sergio L.; David, Marc; Freeman, Carolyn R.

    2006-03-01

    Purpose: To assess the efficacy of intermittent androgen ablation (IAA) in patients with biochemical failure after radiotherapy for prostate cancer. Methods and Materials: Thirty-nine patients received a luteinizing hormone-releasing hormone analog every 2 months for a total of 4 doses. IAA was then discontinued if serum prostate-specific antigen (PSA) fell to a normal level with a castrate level of testosterone. Therapy was restarted when the serum PSA level reached {>=}10 ng/mL and was discontinued if hormone resistance or unacceptable toxicity occurred. Results: Median PSA was 9.1 ng/mL at the time of first IAA. The median time between the first and the second cycles was 20.1 months, decreasing to 15.5 months between the third and fourth cycles. Two patients discontinued the treatment because of severe hot flushes. Four patients developed hormone resistance. With a median follow-up of 56.4 months, 5-year survival is 92.3%. Three patients died of unrelated causes. The incidence of distant metastasis is 6.8%. Conclusions: The use of IAA seems to be a safe and effective treatment for patients with biochemical failure post radiotherapy and no evidence of metastatic disease. The use of IAA limits hormone-related side effects and health care costs without an apparent increase in the risk for the development of metastatic disease.

  4. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  5. Improved survival with stereotactic ablative radiotherapy (SABR) over lobectomy for early stage non-small cell lung cancer (NSCLC): addressing the fallout of disruptive randomized data

    PubMed Central

    Kavanagh, Brian D.; Karam, Sana D.

    2015-01-01

    The gold-standard therapy for early stage non-small cell lung cancer (esNSCLC) has historically been lobectomy with mediastinal lymph node dissection. However, up to one-third of patients with esNSCLC are considered medically-inoperable due to factors such as advanced age and comorbid illnesses. The past decade has witnessed a dramatic increase in the use of high-dose conformal radiotherapy delivered over 1-5 fractions, synonymously termed stereotactic ablative radiotherapy (SABR) or stereotactic body radiation therapy (SBRT). High rates of tumor control and favorable toxicity profiles have led to the adoption of SABR as the treatment of choice for medically-inoperable patients. Limited but growing data exist using SABR for medically-operable patients who are also candidates for lobectomy. A recent pooled analysis of two multicenter prospective randomized trials, the STARS (NCT00840749) and ROSEL (NCT00687986) protocols, published by Chang and colleagues (PMID 25981812) reported improved overall survival (OS) and reduced toxicity with SABR over lobectomy for medically-operable patients with esNSCLC. In this article we review the outcomes of this analysis in the context of existing radiotherapy and surgical data for NSCLC. Further, we discuss the potential causes and implications of these provocative results, including the shifting balance between oncologic control and treatment-related mortality in comparisons of SABR and surgical resection, termed the Head Start Effect. PMID:26244136

  6. Temporal compartmental dosing effects for robotic prostate stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Shiao, Stephen L.; Sahgal, Arjun; Hu, Weigang; Jabbari, Siavash; Chuang, Cynthia; Descovich, Martina; Hsu, I.-Chow; Gottschalk, Alexander R.; Roach, Mack, III; Ma, Lijun

    2011-12-01

    The rate of dose accumulation within a given area of a target volume tends to vary significantly for non-isocentric delivery systems such as Cyberknife stereotactic body radiotherapy. In this study, we investigated whether intra-target temporal dose distributions produce significant variations in the biological equivalent dose. For the study, time courses of ten patients were reconstructed and calculation of a biologically equivalent uniform dose (EUD) was performed using a formula derived from the linear quadratic model (α/β = 3 for prostate cancer cells). The calculated EUD values obtained for the actual patient treatments were then compared with theoretical EUD values for delivering the same physical dose distribution except that the whole target being irradiated continuously (e.g. large-field ‘dose-bathing’ type of delivery). For all the case, the EUDs for the actual treatment delivery were found to correlate strongly with the EUDs for the large-field delivery: a linear correlation coefficient of R2 = 0.98 was obtained and the average EUD for the actual Cyberknife delivery was somewhat higher (5.0 ± 4.7%) than that for the large-field delivery. However, no statistical significance was detected between the two types of delivery (p = 0.21). We concluded that non-isocentric small-field Cyberknife delivery produced consistent biological dosing that tracked well with the constant-dose-rate, large-field-type delivery for prostate stereotactic body radiotherapy.

  7. Stereotactic ablative radiotherapy with CyberKnife for advanced thymic carcinoma: a case report.

    PubMed

    Fan, C Y; Huang, W Y; Jen, Y M; Lin, M J; Lin, K T

    2015-10-01

    Thymic carcinoma is a rare but lethal mediastinal cancer. The optimal treatment for advanced thymic carcinoma is not yet established. This report is the first known of stereotactic ablative radiotherapy (sabr) with CyberKnife (Accuray, Sunnyvale, CA, U.S.A.) as definitive therapy for thymic carcinoma. The patient, a 70-year-old woman with thymic carcinoma, invasion into neighboring organs, and pleural metastases-underwent CyberKnife sabr at 40 Gy in 5 fractions for two lesions, one in the thymus and one in the right paraspinal pleura. After 61 months of observation, a partial response was observed in the irradiated fields. However, disease progression in the non-irradiated pleura was noted. The patient underwent salvage CyberKnife sabr for the four initially nonirradiated pleural lesions. Computed tomography images obtained 10 months after the salvage therapy revealed a partial response. The patient is living, with progression-free irradiated lesions and no radiation-related toxicity. CyberKnife sabr is feasible for patients who are unable to undergo either surgery or conventionally fractionated radiation therapy.

  8. Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy

    PubMed Central

    Kunos, Charles A.; Fabien, Jeffrey M.; Shanahan, John P.; Collen, Christine; Gevaert, Thierry; Poels, Kenneth; Van den Begin, Robbe; Engels, Benedikt; De Ridder, Mark

    2015-01-01

    Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors. PMID:26131774

  9. A Survey of Stereotactic Body Radiotherapy in Korea

    PubMed Central

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Kay, Chul-Seung; Kim, Woochul; Kim, Eun Seog; Kim, Jin Ho; Kim, Jin Hee; Yang, Kwang Mo; Lee, Kyu Chan; Chang, A Ram; Jo, Sunmi

    2015-01-01

    Purpose The purpose of this study is to investigate the current status of stereotactic body radiotherapy (SBRT) in Korea. A nationwide survey was conducted by the Korean Stereotactic Radiosurgery Group of the Korean Society for Radiation Oncology (KROG 13-13). Materials and Methods SBRT was defined as radiotherapy with delivery of a high dose of radiation to an extracranial lesion in ≤ 4 fractions. A 16-questionnaire survey was sent by e-mail to the chief of radiation oncology at 85 institutions in June 2013. Results All institutions (100%) responded to this survey. Of these, 38 institutions (45%) have used SBRT and 47 institutions (55%) have not used SBRT. Regarding the treatment site, the lung (92%) and liver (76%) were the two most common sites. The most common schedules were 60 Gy/4 fractions for non-small cell lung cancer, 48 Gy/4 fractions for lung metastases, 60 Gy/3 fractions for hepatocellular carcinoma, and 45 Gy/3 fractions or 40 Gy/4 fractions for liver metastases. Four-dimensional computed tomography (CT) was the most common method for planning CT (74%). During planning CT, the most common method of immobilization was the use of an alpha cradle/vacuum-lock (42%). Conclusion Based on this survey, conduct of further prospective studies will be needed in order to determine the appropriate prescribed doses and to standardize the practice of SBRT. PMID:25578057

  10. Stereotactic body radiotherapy: a critical review for nonradiation oncologists.

    PubMed

    Kirkpatrick, John P; Kelsey, Christopher R; Palta, Manisha; Cabrera, Alvin R; Salama, Joseph K; Patel, Pretesh; Perez, Bradford A; Lee, Jason; Yin, Fang-Fang

    2014-04-01

    Stereotactic body radiotherapy (SBRT) involves the treatment of extracranial primary tumors or metastases with a few, high doses of ionizing radiation. In SBRT, tumor kill is maximized and dose to surrounding tissue is minimized, by precise and accurate delivery of multiple radiation beams to the target. This is particularly challenging, because extracranial lesions often move with respiration and are irregular in shape, requiring careful treatment planning and continual management of this motion and patient position during irradiation. This review presents the rationale, process workflow, and technology for the safe and effective administration of SBRT, as well as the indications, outcome, and limitations for this technique in the treatment of lung cancer, liver cancer, and metastatic disease.

  11. Accuracy of Breath-hold CT in Treatment Planning for Lung Stereotactic Ablative Radiotherapy

    PubMed Central

    Martel, Charles; Campeau, Marie-Pierre; Filion, Édith; Roberge, David; Bahig, Houda; Vu, Toni; Lambert, Louise; Boudam, Karim; Carrier, Jean-Francois

    2014-01-01

    Purpose: The objectives of this study are (1) to measure concordance of tumor position on breath-hold (BH) computed tomography (CT) scans relative to the natural tumor path during free breathing (FB) and (2) to evaluate the benefits of the breathing monitoring device Abches (Apex Medical, Tokyo) for stereotactic ablative radiotherapy (SABR) treatment planning. Methods: In 53 lung cancer patients treated with CyberKnife™ robotic radiosurgery system, FB four-dimensional computerized tomography (4DCT) and end-expiration (EE) BH CT images were obtained. Extent of natural tumor motion was assessed with rigid registration derived from end-inspiration (EI) and EE phases of the 4DCT. Tumor displacement in BH scans relative to the natural tumor path was measured relative to the EE 4DCT phase. Results: Mean tumor motion (+/- 1 SD) during natural FB was 1 ± 1 mm, 2 ± 2 mm, and 6 ± 6 mm in medio-lateral, anterior-posterior, and cranio-caudal directions, respectively. Tumor position on BH CT scan was closer to EE than EI 4DCT phase for 35/53 patients (66%). Difference of BH tumor position vs. EE state was 4 ± 3 mm. Gross tumor displacements perpendicular to natural tumor path were as great as 11 mm (anterior-posterior) and were seen with or without the breathing monitoring device. Conclusion: Tumor position during BH CT may not accurately correspond to positions observed on FB 4DCT. Hence, accurate and custom 4D analysis for each individual patient is recommended for treatment planning, especially those involving BH acquisitions. PMID:28003937

  12. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  13. [Effect of mammillary body ablation on extinctive inhibition in cats].

    PubMed

    Voronin, L G; Nikol'skaia, K A

    1978-01-01

    Chronic extinction of chain closed conditioned reflex in intact rabbits took five to six days. The order of extinction of the reflex links was as follows: the nearer to reinforcement the link of the chain, the sooner it was inhibited. In the course of extinction different "compensatory" movements appeared with a high frequency. Unlike the conditioned movements they were not fully extinguished: in the rest periods (lying for 4 to 10 min.), running and sniffing took place 4 to 8 times in the session. After the ablation of the mammilary bodies, extinctive inhibition was developing slower (9 to 13 days) than in the norm. The order of extinction became reverse: the nearer the link of the chain to reinforcement, the greater the difficulty of inhibition. The appearance of "compensatory" movements sharply differed from the norm. The general behaviour of the operated rabbits was peculiar in that during extinction of conditioned movements the short periods of rest (1 to 3 min.) alternated with running, sitting, scratching, washing, etc.

  14. Surgery versus stereotactic ablative radiotherapy (SABR) for early-stage non-small cell lung cancer: less is not more

    PubMed Central

    Swanson, Scott J.

    2016-01-01

    High level evidence from randomized studies comparing surgery to stereotactic ablative radiotherapy (SABR) is lacking and available retrospective cohort and case control studies are highly variable in how thoroughly they define and stage lung cancer, in how they determine operability, and in the offered surgical approaches to operable lung cancer (open vs. video-assisted). This makes it difficult to compare best radiotherapy and best surgery approaches to treatment and to be confident in conclusions of equipoise between the two modalities. What has become clear from the controversy surrounding surgery versus SABR for early stage lung cancer is the desire to optimize treatment efficacy while minimizing invasiveness and morbidity. This review highlights the ongoing debate in light of these goals. PMID:27195137

  15. The Molecular Mechanism of the Supra-Additive Response of Prostate Cancer to Androgen Ablation and Radiotherapy

    DTIC Science & Technology

    2001-02-01

    Biol. Phys., 43: 607-616, 1999. wild-type p53 gene and induction of apoptosis in cervical cancer . 29. Lang, F. F., Yung, W. K. A., Raju, U., Libunao... cervical cancer . Cancer Res 1996;56:3047- 25. Li JH, Lax SA, Kim J, et al. The effects of ionizing radiation 3054. and adenoviral p53 therapy in...Mechanism of the Supra-Additive Response of Prostate Cancer to Androgen Ablation and Radiotherapy PRINCIPAL INVESTIGATOR: Alan Pollack, M.D., Ph.D

  16. Maximizing Benefits from Maintenance Pemetrexed with Stereotactic Ablative Radiotherapy in Oligoprogressive Non-Squamous Non-Small Cell Lung Cancer

    PubMed Central

    Lu, Shao-Lun; Hsu, Feng-Ming; Chen, Kuan-Yu; Ho, Chao-Chi; Yang, James Chih-Hsin; Cheng, Jason Chia-Hsien

    2016-01-01

    Maintenance pemetrexed offers survival benefit with well-tolerated toxicities for advanced non-squamous non-small cell lung cancer (NSCLC). We present 3 consecutively enrolled patients with advanced non-squamous NSCLC, receiving stereotactic ablative radiotherapy (SABR) for oligoprogressive disease during maintenance pemetrexed. All of them had sustained local control of thoracic oligoprogression after the SABR, while maintenance pemetrexed were kept for additionally long progression-free interval. SABR targeting oligoprogression with continued pemetrexed is an effective and safe approach to extend exposure of maintenance pemetrexed, thus maximizing the benefit from it. PMID:27721771

  17. Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy

    SciTech Connect

    Sahgal, Arjun; Ma, Lijun; Weinberg, Vivian; Gibbs, Iris C.; Chao, Sam; Chang, Ung-Kyu; Werner-Wasik, Maria; Angelov, Liliyanna; Chang, Eric L.; Sohn, Moon-Jun; Soltys, Scott G.; Letourneau, Daniel; Ryu, Sam; Gerszten, Peter C.; Fowler, Jack; Wong, C. Shun; and others

    2012-01-01

    Purpose: We reviewed the treatment for patients with spine metastases who initially received conventional external beam radiation (EBRT) and were reirradiated with 1-5 fractions of stereotactic body radiotherapy (SBRT) who did or did not subsequently develop radiation myelopathy (RM). Methods and Materials: Spinal cord dose-volume histograms (DVHs) for 5 RM patients (5 spinal segments) and 14 no-RM patients (16 spine segments) were based on thecal sac contours at retreatment. Dose to a point within the thecal sac that receives the maximum dose (P{sub max}), and doses to 0.1-, 1.0-, and 2.0-cc volumes within the thecal sac were reviewed. The biologically effective doses (BED) using {alpha}/{beta} = 2 Gy for late spinal cord toxicity were calculated and normalized to a 2-Gy equivalent dose (nBED = Gy{sub 2/2}). Results: The initial conventional radiotherapy nBED ranged from {approx}30 to 50 Gy{sub 2/2} (median {approx}40 Gy{sub 2/2}). The SBRT reirradiation thecal sac mean P{sub max} nBED in the no-RM group was 20.0 Gy{sub 2/2} (95% confidence interval [CI], 10.8-29.2), which was significantly lower than the corresponding 67.4 Gy{sub 2/2} (95% CI, 51.0-83.9) in the RM group. The mean total P{sub max} nBED in the no-RM group was 62.3 Gy{sub 2/2} (95% CI, 50.3-74.3), which was significantly lower than the corresponding 105.8 Gy{sub 2/2} (95% CI, 84.3-127.4) in the RM group. The fraction of the total P{sub max} nBED accounted for by the SBRT P{sub max} nBED for the RM patients ranged from 0.54 to 0.78 and that for the no-RM patients ranged from 0.04 to 0.53. Conclusions: SBRT given at least 5 months after conventional palliative radiotherapy with a reirradiation thecal sac P{sub max} nBED of 20-25 Gy{sub 2/2} appears to be safe provided the total P{sub max} nBED does not exceed approximately 70 Gy{sub 2/2}, and the SBRT thecal sac P{sub max} nBED comprises no more than approximately 50% of the total nBED.

  18. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy.

    PubMed

    Moiseenko, V; Liu, M; Loewen, S; Kosztyla, R; Vollans, E; Lucido, J; Fong, M; Vellani, R; Popescu, I A

    2013-10-21

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  19. Apparatus-dependent dosimetric differences in spine stereotactic body radiotherapy.

    PubMed

    Ma, Lijun; Sahgal, Arjun; Cozzi, Luca; Chang, Eric; Shiu, Almon; Letourneau, Daniel; Yin, Fang-Fang; Fogliata, Antonella; Kaissl, Wolfgang; Hyde, Derek; Laperriere, Normand J; Shrieve, Dennis C; Larson, David A

    2010-12-01

    The purpose of this investigation was to study apparatus-dependent dose distribution differences specific to spine stereotactic body radiotherapy (SBRT) treatment planning. This multi-institutional study was performed evaluating an image-guided robotic radiosurgery system (CK), intensity modulated protons (IMP), multileaf collimator (MLC) fixed-field IMRT with 5 mm (11 field), 4 mm (9 field), and 2.5 mm (8- and 9-field) leaf widths and intensity modulated volumetric arc therapy (IMVAT) with a 2.5 mm MLC. Treatment plans were systematically developed for targets consisting of one, two and three consecutive thoracic vertebral bodies (VBs) with the esophagus and spinal cord contoured as the organs at risk. It was found that all modalities achieved acceptable treatment planning constraints. However, following normalization fixed field IMRT with a 2.5 mm MLC, IMVAT and IMP systems yielded the smallest ratio of maximum dose divided by the prescription dose (MD/PD) for one-, two- and three-VB PTVs (ranging from 1.1-1.16). The 2.5 mm MLC 9-field IMRT, IMVAT and CK plans resulted in the least dose to 0.1 cc volumes of spinal cord and esophagus. CK plans had the greatest degree of target dose inhomogeneity. As the level of complexity increased with an increasing number of vertebral bodies, distinct apparatus features such as the use of a high number of beams and a finer leaf size MLC were favored. Our study quantified apparatus-dependent dose-distribution differences specific to spine SBRT given strict, but realistic, constraints and highlights the need to benchmark physical dose distributions for multi-institutional clinical trials.

  20. Stereotactic Body Radiotherapy Reirradiation for Recurrent Epidural Spinal Metastases

    SciTech Connect

    Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard

    2011-12-01

    Purpose: When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. Methods and Materials: SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy Multiplication-Sign 3 = 24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gy x 5 = 25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. Results: The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. Conclusions: SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients.

  1. A Retrospective Review of CyberKnife Stereotactic Body Radiotherapy for Adrenal Tumors (Primary and Metastatic): Winthrop University Hospital Experience.

    PubMed

    Desai, Amishi; Rai, Hema; Haas, Jonathan; Witten, Matthew; Blacksburg, Seth; Schneider, Jeffrey G

    2015-01-01

    The adrenal gland is a common site of cancer metastasis. Surgery remains a mainstay of treatment for solitary adrenal metastasis. For patients who cannot undergo surgery, radiation is an alternative option. Stereotactic body radiotherapy (SBRT) is an ablative treatment option allowing larger doses to be delivered over a shorter period of time. In this study, we report on our experience with the use of SBRT to treat adrenal metastases using CyberKnife technology. We retrospectively reviewed the Winthrop University radiation oncology data base to identify 14 patients for whom SBRT was administered to treat malignant adrenal disease. Of the factors examined, the biological equivalent dose (BED) of radiation delivered was found to be the most important predictor of local adrenal tumor control. We conclude that CyberKnife-based SBRT is a safe, non-invasive modality that has broadened the therapeutic options for the treatment of isolated adrenal metastases.

  2. Stereotactic Body Radiotherapy for Treatment of Adrenal Metastases

    SciTech Connect

    Chawla, Sheema; Chen, Yuhchyau; Katz, Alan W.; Muhs, Ann G.; Philip, Abraham; Okunieff, Paul; Milano, Michael T.

    2009-09-01

    Purpose: To investigate the dosimetry and outcomes of patients undergoing stereotactic body radiotherapy (SBRT) for metastases to the adrenal glands. Methods and Materials: At University of Rochester, patients have been undergoing SBRT for limited metastases since 2001. We retrospectively reviewed 30 patients who had undergone SBRT for adrenal metastases from various primary sites, including lung (n = 20), liver (n = 3), breast (n = 3), melanoma (n = 1), pancreas (n = 1), head and neck (n = 1), and unknown primary (n = 1). Results: Of the 30 patients, 14 with five or fewer metastatic lesions (including adrenal) underwent SBRT, with the intent of controlling all known sites of metastatic disease, and 16 underwent SBRT for palliation or prophylactic palliation of bulky adrenal metastases. The prescribed dose ranged from 16 Gy in 4 fractions to 50 Gy in 10 fractions. The median dose was 40 Gy. Of the 30 patients, 24 had >3 months of follow-up with serial computed tomography. Of these 24 patients, 1 achieved a complete response, 15 achieved a partial response, 4 had stable disease, and 4 developed progressive disease. No patient developed symptomatic progression of their adrenal metastases. The 1-year survival, local control, and distant control rate was 44%, 55%, and 13%, respectively. No patient developed Radiation Therapy Oncology Group Grade 2 or greater toxicity. Conclusion: SBRT for adrenal metastases is well tolerated. Most patients developed widespread metastases shortly after treatment. Local control was poor, although this was a patient population selected for adverse risk factors, such as bulky disease. Additional studies are needed to determine the efficacy of SBRT for oligometastatic adrenal metastases, given the propensity of these patients to develop further disease progression.

  3. Stereotactic Body Radiotherapy and Gemcitabine for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Mahadevan, Anand; Jain, Sanjay; Goldstein, Michael; Miksad, Rebecca; Pleskow, Douglas; Sawhney, Mandeep; Brennan, Darren M.D.; Callery, Mark; Vollmer, Charles

    2010-11-01

    Purpose: Patients with nonmetastatic locally advanced unresectable pancreatic cancer have a dismal prognosis. Conventional concurrent chemoradiotherapy requires 6 weeks of daily treatment and can be arduous. We explored the safety and effectiveness of a 3-day course of hypofractionated stereotactic body radiotherapy (SBRT) followed by gemcitabine in this population. Patients and Methods: A total of 36 patients with nonmetastatic, locally advanced, unresectable pancreatic cancer with {>=}12 months of follow-up were included. They received three fractions of 8, 10, or 12 Gy (total dose, 24-36 Gy) of SBRT according to the tumor location in relation to the stomach and duodenum, using fiducial-based respiratory motion tracking on a robotic radiosurgery system. The patients were then offered gemcitabine for 6 months or until tolerance or disease progression. Results: With an overall median follow-up of 24 months (range, 12-33), the local control rate was 78%, the median overall survival time was 14.3 months, the median carbohydrate antigen 19-9-determined progression-free survival time was 7.9 months, and the median computed tomography-determined progression-free survival time was 9.6 months. Of the 36 patients, 28 (78%) eventually developed distant metastases. Six patients (17%) were free of progression at the last follow-up visit (range, 13-30 months) as determined by normalized tumor markers with stable computed tomography findings. Nine Grade 2 (25%) and five Grade 3 (14%) toxicities attributable to SBRT occurred. Conclusion: Hypofractionated SBRT can be delivered quickly and effectively in patients with nonmetastatic, locally advanced, unresectable pancreatic cancer with acceptable side effects and minimal interference with gemcitabine chemotherapy.

  4. Monitor Unit Checking in Heterogeneous Stereotactic Body Radiotherapy Treatment Planning

    SciTech Connect

    Higgins, Patrick D.; Adolfson, Troy; Cho, L. Chinsoo; Saxena, Rishik

    2011-10-01

    Treatment of lung cancer using very-high-dose fractionation in small fields requires well-tested dose modeling, a method for density-averaging compound targets constructed from different parts of the breathing cycle, and monitor unit verification of the heterogeneity-corrected treatment plans. The quality and safety of each procedure are dependent on these factors. We have evaluated the dosimetry of our first 26 stereotactic body radiotherapy (SBRT) patients, including 260 treatment fields, planned with the Pinnacle treatment planning system. All targets were combined from full expiration and inspiration computed tomography scans and planned on the normal respiration scan with 6-MV photons. Combined GTVs (cGTVs) have been density-averaged in different ways for comparison of the effect on total monitor units. In addition, we have compared planned monitor units against hand calculations using 2 classic 1D correction methods: (1) effective attenuation and (2) ratio of Tissue-Maximum Ratios (TMRs) to determine the range of efficacy of simple verification methods over difficult-to-perform measurements. Different methods of density averaging for combined targets have been found to have minimal impact on total dose as evidenced by the range of total monitor units generated for each method. Nondensity-corrected treatment plans for the same fields were found to require about 8% more monitor units on average. Hand calculations, using the effective attenuation method were found to agree with Pinnacle calculations for nonproblematic fields to within {+-}10% for >95% of the fields tested. The ratio of TMRs method was found to be unacceptable. Reasonable choices for density-averaging of cGTVs using full inspiration/expiration scans should not strongly affect the planning dose. Verification of planned monitor units, as a check for problematic fields, can be done for 6-MV fields with simple 1D effective attenuation-corrected hand calculations.

  5. CyberKnife Stereotactic Ablative Radiotherapy as an Option of Treatment for Patients With Prostate Cancer Having Oligometastatic Lymph Nodes: Single-Center Study Outcome Evaluation.

    PubMed

    Napieralska, Aleksandra; Miszczyk, Leszek; Stąpór-Fudzińska, Małgorzata

    2016-10-01

    The aim of this study was to evaluate the effectiveness of CyberKnife-based stereotactic ablative radiotherapy on prostate cancer lymph node metastases. Our material consisted of 18 patients with 31 metastatic lymph nodes irradiated between 2011 and 2014 using CyberKnife-based stereotactic ablative radiotherapy. Patients were irradiated using fraction dose varied from 6 to 15 Gy (median 10), to the total dose of 24 to 45 Gy (median 30). Irradiated lymph node size varied from 0.4 to 4.0 cm. In all, 9 patients had single lymph node metastasis and 9 patients had metastases of 2 to 4 lymph nodes. Prostate-specific antigen concentration before radiotherapy varied from 0.01 to 15.58 (mean 6.97; median 4.66). All patients at the time of radiotherapy and follow-up received androgen deprivation therapy. Mann-Whitney U, Kaplan-Meier method, and log-rank tests were used in statistical analysis. We obtained the following results: after CyberKnife stereotactic ablative radiotherapy, prostate-specific antigen concentration dropped in majority of cases and during the last control varied from 0.00 to 258.00 (median 2.5), and was lower in patients without dissemination to other organs (P = .01). Complete regression was found in 12 lesions, stable disease in 13, and progression in 4. In 7 patients, the dissemination to other organs occurred. Our results allow us to conclude that CyberKnife stereotactic ablative radiotherapy of prostate cancer lymph node oligometastases gives good local control and relatively good prostate-specific antigen response.

  6. Mathematical modelling of tumour volume dynamics in response to stereotactic ablative radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Tariq, Imran; Humbert-Vidan, Laia; Chen, Tao; South, Christopher P.; Ezhil, Veni; Kirkby, Norman F.; Jena, Rajesh; Nisbet, Andrew

    2015-05-01

    This paper reports a modelling study of tumour volume dynamics in response to stereotactic ablative radiotherapy (SABR). The main objective was to develop a model that is adequate to describe tumour volume change measured during SABR, and at the same time is not excessively complex as lacking support from clinical data. To this end, various modelling options were explored, and a rigorous statistical method, the Akaike information criterion, was used to help determine a trade-off between model accuracy and complexity. The models were calibrated to the data from 11 non-small cell lung cancer patients treated with SABR. The results showed that it is feasible to model the tumour volume dynamics during SABR, opening up the potential for using such models in a clinical environment in the future.

  7. Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung

    SciTech Connect

    Bishawi, Muath; Kim, Bong; Moore, William H.; Bilfinger, Thomas V.

    2012-01-01

    Purpose: Surgical resection remains the standard of care for operable early-stage non-small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patients were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% {<=}50% predicted, FEV%/forced vital capacity [FVC]% {<=}70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 {+-} 5 vs. 40 {+-} 9 (p = 0.4) and 77 {+-} 0.5 vs. 73 {+-} 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL{sub CO}) did significantly increase for the No-COPD group after SBRT treatment: 60 {+-} 24 vs. 69 {+-} 22 (p = 0.022); however, DL{sub CO} was unchanged for the COPD group: 49 {+-} 13 vs. 50 {+-} 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 {+-} 24 to 9 {+-} 16 (p < 0.001), and there was a trend in the COPD patients from 12 {+-} 9 to 6 {+-} 5 (p = 0.06). Conclusion: SBRT did not seem to have an effect on FEV{sub 1} and FVC, but it shrank tumor volume and

  8. Practical patterns for stereotactic body radiotherapy to hepatocellular carcinoma in Korea: a survey of the Korean Stereotactic Radiosurgery Group

    PubMed Central

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Kay, Chul-Seung; Kim, Woochul; Kim, Eun Seog; Kim, Jin Ho; Kim, Jin Hee; Yang, Kwang Mo; Lee, Kyu Chan; Chang, A Ram; Jo, Sunmi

    2016-01-01

    Objective To investigate practical patterns for stereotactic body radiotherapy to hepatocellular carcinoma in Korea. Methods In June 2013, the Korean Stereotactic Radiosurgery Group of the Korean Society for Radiation Oncology conducted a national patterns-of-care survey about stereotactic body radiotherapy to the liver lesion in hepatocellular carcinoma, consisting of 19 questions and 2 clinical scenarios. Results All 208 radiation oncologists (100%), who are regular members of Korean Society for Radiation Oncology, responded to this survey. Among these, 95 radiation oncologists were specialists for hepatology; 64 physicians did not use stereotactic body radiotherapy for hepatocellular carcinoma, and 31 physicians used stereotactic body radiotherapy. Most physicians (52%) performed stereotactic body radiotherapy to hepatocellular carcinoma in ≤5 cases per year. Physicians applied stereotactic body radiotherapy according to tumour size and baseline Child–Pugh class. All physicians agreed the use of stereotactic body radiotherapy to 2.8-cm hepatocellular carcinoma with Child–Pugh class of A, while 23 physicians (74%) selected stereotactic body radiotherapy for Child–Pugh class of B. Nineteen physicians (61%) selected stereotactic body radiotherapy to 5-cm hepatocellular carcinoma with Child–Pugh class of A, and only 14 physicians (45%) selected stereotactic body radiotherapy for Child–Pugh class of B. On the other hand, the preferred dose scheme was same as 60 Gy in three fractions. Conclusions Among radiation oncologists in Korea, there was diversity in the practice for stereotactic body radiotherapy to the liver lesion in hepatocellular carcinoma. Additional prospective studies are necessary to standardize the practice and establish Korea-specific practice guidelines for hepatocellular carcinoma stereotactic body radiotherapy. PMID:26826720

  9. Body radiation exposure in breast cancer radiotherapy: Impact of breast IMRT and virtual wedge compensation techniques

    SciTech Connect

    Woo, Tony; Pignol, Jean-Philippe . E-mail: Jean-Philippe.Pignol@sw.ca; Rakovitch, Eileen; Vu, Toni; Hicks, Deanna; O'Brien, Peter; Pritchard, Kathleen

    2006-05-01

    Purpose: Recent reports demonstrate a dramatically increased rate of secondary leukemia for breast cancer patients receiving adjuvant high-dose anthracycline and radiotherapy, and that radiation is an independent factor for the development of leukemia. This study aimed to evaluate the radiation body exposure during breast radiotherapy and to characterize the factors associated with an increased exposure. Patients and Methods: In a prospective cohort of 120 women, radiation measurements were taken from four sites on the body at the time of adjuvant breast radiotherapy. Multiple regression analysis was performed to analyze patient and treatment factors associated with the amount of scattered radiation. Results: For standard 50 Gy breast radiotherapy, the minimal dose received by abdominal organs is on average 0.45 Gy, ranging from 0.06 to 1.55 Gy. The use of physical wedges as a compensation technique was the most significant factor associated with increased scattered dose (p < 0.001), resulting in approximately three times more exposure compared with breast intensity-modulated radiation therapy (IMRT) and dynamic wedge. Conclusions: The amount of radiation that is scattered to a patient's body is consistent with exposure reported to be associated with excess of leukemia. In accordance with the As Low As Reasonably Achievable (ALARA) principle, we recommend using breast IMRT or virtual wedging for the radiotherapy of breast cancer receiving high-dose anthracycline chemotherapy.

  10. Thymic Carcinoma Treated by CyberKnife Stereotactic Body Radiotherapy

    PubMed Central

    Miyazaki, Shinichiro

    2017-01-01

    The standard treatment for advanced thymic carcinoma has not yet been established. Most patients have no symptoms until the advanced stage. Radiation therapy has been used for advanced stage cancer, usually in combination with surgery or chemotherapy; however, the survival rates are 30%-50%. We performed hypofractionated stereotactic radiotherapy with CyberKnife (Accuray, Sunnyvale, CA, USA) for 10 cases of advanced thymic cancer. All cases reached at least partial remission (PR) in two months with progression-free irradiated lesions and minimal radiation-related toxicity. It took only seven to 12 days for each therapy that did not require admission. CyberKnife is beneficial for patients even at the terminal stage. PMID:28367393

  11. Stereotactic Body Radiotherapy for Hepatocellular Carcinoma Resulting in a Durable Relapse-Free Survival: A Case Report

    PubMed Central

    Francis, Samual; Williams, Ned; Anker, Christopher J; Shaaban, Akram; Kim, Robin; Shrieve, Dennis

    2016-01-01

    The standard of care for localized hepatocellular carcinoma (HCC) is surgical resection. For patients who decline or who are unfit for surgery, stereotactic body radiotherapy (SBRT) is emerging as a viable treatment approach. We present a case of a 77-year-old female in whom an early stage HCC was incidentally discovered. Given her religious edicts as a devout Jehovah’s Witness and her subsequent desire to avoid a blood transfusion, she declined surgical resection or transplant due to the risk of hemorrhage. Ablative therapy was deemed inappropriate given the mass’s size and location adjacent to the inferior vena cava and diaphragm. She was treated with definitive SBRT to a total dose of 60 Gy administered in three 20 Gy fractions every other day. She had a complete response to the treatment and remains without evidence of disease after 39 months of follow-up. Her only treatment-related side effect is a persistent CTCAE Grade 1 myositis on her back overlying the treatment area. We report this case to add to the growing body of literature suggesting SBRT as an effective and safe alternative treatment modality for HCC. PMID:27909629

  12. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  13. Durable control of locally recurrent renal cell carcinoma using stereotactic body radiotherapy

    PubMed Central

    Maclean, Jillian; Breau, Rodney H; Scheida, Nicola; Malone, Shawn

    2014-01-01

    Renal cell carcinoma (RCC) is generally poorly responsive to conventional radiation doses, and patients with inoperable local recurrence have limited therapeutic options. Stereotactic body radiotherapy (SBRT) is an increasingly available technology that allows delivery of a radiation schedule providing doses far more biologically effective against cancer cells than conventional radiotherapy. We present a case where durable disease control was achieved using SBRT in a patient with inoperable locally recurrent RCC who presented 18 years from original nephrectomy. The patient remains asymptomatic with no evidence of active disease 30 months following SBRT. This case highlights the need to reconsider the role of therapies with continuing advances in technology. PMID:25199199

  14. Phase I dose-escalation study of helical intensity-modulated radiotherapy-based stereotactic body radiotherapy for hepatocellular carcinoma

    PubMed Central

    Kim, Jun Won; Seong, Jinsil; Lee, Ik Jae; Woo, Joong Yeol; Han, Kwang-Hyub

    2016-01-01

    Background Phase I trial was conducted to determine feasibility and toxicity of helical intensity-modulated radiotherapy (IMRT)-based stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC). Results Eighteen patients (22 lesions) were enrolled. With no DLT at 52 Gy (13 Gy/fraction), protocol was amended for further escalation to 60 Gy (15 Gy/fraction). Radiologic complete response rate was 88.9%. Two outfield intrahepatic, 2 distant, 4 concurrent local and outfield, and 1 concurrent local, outfield and distant failures (no local failure at dose levels 3–4) occurred. The worst toxicity was grade 3 hematologic in five patients, with no gastrointestinal toxicity > grade 1. At median follow-up of 28 months for living patients, 2-year local control, progression-free (PFS), and overall survival rates were 71.3%, 49.4% and 69.3%, respectively. Multi-segmental recurrences prior to SBRT was independent prognostic factor for PFS (p = 0.033). Materials and Methods Eligible patients had Child-Pugh's class A or B, unresectable HCC, ≤ 3 lesions, and cumulative tumor diameter ≤ 6 cm. Starting at 36 Gy in four fractions, dose was escalated with 2 Gy/fraction per dose-level. CTCAE v 3.0 ≥ grade 3 gastrointestinal toxicity and radiation induced liver disease defined dose-limiting toxicity (DLT). Conclusions Helical IMRT-based SBRT was tolerable and showed encouraging results. Confirmatory phase II trial is underway. PMID:27213593

  15. Outcomes of Stereotactic Ablative Radiotherapy in Patients With Potentially Operable Stage I Non-Small Cell Lung Cancer

    SciTech Connect

    Lagerwaard, Frank J.; Verstegen, Naomi E.; Haasbeek, Cornelis J.A.; Slotman, Ben J.; Paul, Marinus A.; Smit, Egbert F.; Senan, Suresh

    2012-05-01

    Background: Approximately two-thirds of patients with early-stage non-small-cell lung cancer (NSCLC) in The Netherlands currently undergo surgical resection. As an increasing number of fit patients have elected to undergo stereotactic ablative radiotherapy (SABR) in recent years, we studied outcomes after SABR in patients with potentially operable stage I NSCLC. Methods and Materials: In an institutional prospective database collected since 2003, 25% of lung SABR cases (n = 177 patients) were found to be potentially operable when the following patients were excluded: those with (1) synchronous lung tumors or other malignancy, (2) prior high-dose radiotherapy/pneumonectomy, (3) chronic obstructive pulmonary disease with a severity score of 3-4 according to the Global initiative for Obstructive Lung Disease classification. (4) a performance score of {>=}3, and (5) other comorbidity precluding surgery. Study patients included 101 males and 76 females, with a median age of 76 years old, 60% of whom were staged as T1 and 40% of whom were T2. Median Charlson comorbidity score was 2 (range, 0-5). A SABR dose of 60 Gy was delivered using a risk-adapted scheme in 3, 5, or 8 fractions, depending on tumor size and location. Follow-up chest computed tomography scans were obtained at 3, 6, and 12 months and yearly thereafter. Results: Median follow-up was 31.5 months; and median overall survival (OS) was 61.5 months, with 1- and 3-year survival rates of 94.7% and 84.7%, respectively. OS rates at 3 years in patients with (n = 59) and without (n = 118) histological diagnosis did not differ significantly (96% versus 81%, respectively, p = 0.39). Post-SABR 30-day mortality was 0%, while predicted 30-day mortality for a lobectomy, derived using the Thoracoscore predictive model (Falcoz PE et al. J Thorac Cardiovasc Surg 2007;133:325-332), would have been 2.6%. Local control rates at 1 and 3 years were 98% and 93%, respectively. Regional and distant failure rates at 3 years were each

  16. Improved therapeutic outcomes of thermal ablation on rat orthotopic liver allograft sarcoma models by radioiodinated hypericin induced necrosis targeted radiotherapy

    PubMed Central

    Gao, Long; Zhang, Jian; Ma, Tengchuang; Yao, Nan; Gao, Meng; Shan, Xin; Ni, Yicheng; Shao, Haibo; Xu, Ke

    2016-01-01

    Residual tumor resulting in tumor recurrence after various anticancer therapies is an unmet challenge in current clinical oncology. This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models. Thirty Sprague-Dawley (SD) rats with hepatic tumors were divided into three groups: Group A received laparotomy MWA and sequential intravenous injection (i.v.) of 131I labelled hypericin (131I-Hyp) in a time interval of 24 h; Group B received only laparotomy MWA; Group C was a blank control. Tumor inhibitory effects were monitored with in vivo magnetic resonance imaging (MRI) and these findings were compared to histopathology data before (baseline, day 0) and 1, 4, and 8 days after MWA. In addition, biodistribution of 131I-Hyp was assessed with in vivo single-photon emission computed tomography-computed tomography (SPECT-CT) imaging, in vitro autoradiography, fluorescent microscopy, and gamma counting. A fast clearance of 131I-Hyp and increasing deposit in necrotic tumors appeared over time, with a significantly higher radioactivity than other organs (0.9169 ± 1.1138 % ID/g, P < 0.01) on day 9. Tumor growth was significantly slowed down in group A compared to group B and C according to MRI images and corresponding tumor doubling time (12.13 ± 1.99, 4.09 ± 0.97, 3.36 ± 0.72 days respectively). The crescent tagerability of 131I-Hyp to necrosis was visualized consistently by autoradiography and fluorescence microscopy. In conclusion, 131I-Hyp induced necrosis targeted radiotherapy improved therapeutic outcomes of MWA on rat orthotopic liver allograft sarcoma models. PMID:27285983

  17. TRANSIENT RESPONSE OF ABLATING AXISYMMETRIC BODIES INCLUDING THE EFFECTS OF SHAPE CHANGE

    NASA Technical Reports Server (NTRS)

    Howser, L. M.

    1994-01-01

    A computer program has been developed to analyze the transient response of an ablating axisymmetric body, including the effect of shape change. The governing differential equation, the boundary conditions for the analysis on which the computer program is based, and the method of solution of the resulting finite-difference equations are discussed in the documentation. Some of the features of the analysis and the associated program are (1) the ablation material is considered to be orthotropic with temperature-dependent thermal properties; (2) the thermal response of the entire body is considered simultaneously; (3) the heat transfer and pressure distribution over the body are adjusted to the new geometry as ablation occurs; (4) the governing equations and several boundary-condition options are formulated in terms of generalized orthogonal coordinates for fixed points in a moving coordinate system; (5) the finite-difference equations are solved implicitly; and (6) other instantaneous body shapes can be displayed with a user-supplied plotting routine. The physical problem to be modeled with the analysis is described by FORTRAN input variables. For example, the external body geometry is described in the W, Z coordinates; material density is given; and the stagnation cold-wall heating rate is given in a time-dependent array. Other input variables are required which control the solution, specify boundary conditions, and determine output from the program. The equations have been programmed so that either the International System of Units or the U. S. Customary Units may be used. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 Series computer. This program was developed in 1972.

  18. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven

  19. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  20. Alternatives to surgery in early stage disease—stereotactic body radiotherapy

    PubMed Central

    Giuliani, Meredith Elana

    2013-01-01

    The management of early stage non-small cell lung carcinoma (NSCLC) has been revolutionized by the introduction of stereotactic body radiotherapy (SBRT). SBRT is now the standard of care for medically inoperable patients with early stage NSCLC. However, the role of SBRT in medically operable patients remains controversial. This article will review the indications, the technical considerations, image guidance principles, potential toxicities and special circumstances in lung SBRT. PMID:25806252

  1. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  2. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  3. Dose-Volume Comparison of Proton Radiotherapy and Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Kadoya, Noriyuki; Obata, Yasunori; Kato, Takahiro; Kagiya, Masaru; Nakamura, Tatsuya; Tomoda, Takuya; Takada, Akinori; Takayama, Kanako; Fuwa, Nobukazu

    2011-03-15

    Purpose: This study designed photon and proton treatment plans for patients treated with hypofractionated proton radiotherapy (PT) at the Southern Tohoku Proton Therapy Center (STPTC). We then calculated dosimetric parameters and compared results with simulated treatment plans for stereotactic body radiotherapy (SBRT), using dose--volume histograms to clearly explain differences in dose distributions between PT and SBRT. Methods and Materials: Twenty-one patients with stage I non-small-cell lung cancer (stage IA, n = 15 patients; stage IB, n = 6 patients) were studied. All tumors were located in the peripheral lung, and total dose was 66 Gray equivalents (GyE) (6.6 GyE/fraction). For treatment planning, beam incidence for proton beam technique was restricted to two to three directions for PT, and seven or eight noncoplanar beams were manually selected for SBRT to achieve optimal planning target volume (PTV) coverage and minimal dose to organs at risk. Results: Regarding lung tissues, mean dose, V5, V10, V13, V15, and V20 values were 4.6 Gy, 13.2%, 11.4%, 10.6%, 10.1%, and 9.1%, respectively, for PT, whereas those values were 7.8 Gy, 32.0%, 21.8%, 17.4%, 15.3%, and 11.4%, respectively, for SBRT with a prescribed dose of 66 Gy. Pearson product moment correlation coefficients between PTV and dose--volume parameters of V5, V10, V15, and V20 were 0.45, 0.52, 0.58, and 0.63, respectively, for PT, compared to 0.52, 0.45, 0.71, and 0.74, respectively, for SBRT. Conclusions: Correlations between dose--volume parameters of the lung and PTV were observed and may indicate that PT is more advantageous than SBRT when treating a tumor with a relatively large PTV or several tumors.

  4. Stereotactic Ablative Body Radiation Therapy for Octogenarians With Non-Small Cell Lung Cancer

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Eriguchi, Takahisa; Kaneko, Takeshi; Morita, Satoshi; Handa, Hiroshi; Aoki, Yousuke; Oku, Yohei; Kunieda, Etsuo

    2013-06-01

    Purpose: To retrospectively investigate treatment outcomes of stereotactic ablative body radiation therapy (SABR) for octogenarians with non-small cell lung cancer (NSCLC). Methods and Materials: Between 2005 and 2012, 109 patients aged ≥80 years with T1-2N0M0 NSCLC were treated with SABR: 47 patients had histology-unproven lung cancer; 62 patients had pathologically proven NSCLC. The prescribed doses were either 50 Gy/5 fractions for peripheral tumors or 40 Gy/5 fractions for centrally located tumors. The treatment outcomes, toxicities, and the correlating factors for overall survival (OS) were evaluated. Results: The median follow-up duration after SABR was 24.2 (range, 3.0-64.6) months. Only limited toxicities were observed, except for 1 grade 5 radiation pneumonitis. The 3-year local, regional, and distant metastasis-free survival rates were 82.3%, 90.1%, and 76.8%, respectively. The OS and lung cancer-specific survival rates were 53.7% and 70.8%, respectively. Multivariate analysis revealed that medically inoperable, low body mass index, high T stage, and high C-reactive protein were the predictors for short OS. The OS for the operable octogenarians was significantly better than that for inoperable (P<.01). Conclusions: Stereotactic ablative body radiation therapy for octogenarians was feasible, with excellent OS. Multivariate analysis revealed that operability was one of the predictors for OS. For medically operable octogenarians with early-stage NSCLC, SABR should be prospectively compared with resection.

  5. A Treatment Planning Study of Stereotactic Body Radiotherapy for Atrial Fibrillation

    PubMed Central

    Kotecha, Rupesh; Sharma, Naveen; Andrews, Martin; Stephans, Kevin L; Oberti, Carlos; Lin, Sara; Wazni, Oussama; Tchou, Patrick; Saliba, Walid I; Suh, John

    2016-01-01

    Purpose: To explore the feasibility of using stereotactic body radiotherapy (SBRT) to irradiate the antra of the four pulmonary veins while protecting nearby critical organs, such as the esophagus. Materials and Methods: Twenty patients who underwent radiofrequency catheter ablation for atrial fibrillation were selected. For each patient, the antra of the four pulmonary veins were identified as the target volumes on a pre-catheterization contrast or non-contrast CT scan. On each CT scan, the esophagus, trachea, heart, and total lung were delineated and the esophagus was identified as the critical organ. For each patient, three treatment plans were designed with 0, 2, and 5 mm planning margins around the targets while avoiding overlap with a planning organ at risk volume (PRV) generated by a 2 mm expansion of the esophagus. Using three non-coplanar volumetric modulated arcs (VMAT), 60 plans were created to deliver a prescription dose of 50 Gy in five fractions, following the SBRT dose regimen for central lung tumors. With greater than 97% of the planning target volumes (PTV) receiving the prescription doses, we examined dosimetry to 0.03 cc and 5 cc of the esophagus PRV volume as well as other contoured structures. Results: The average PTV-0 mm, PTV-2 mm, and PTV-5 mm volumes were 3.05 ± 1.90 cc, 14.70 ± 5.00 cc, and 40.85 ± 10.20 cc, respectively. With three non-coplanar VMAT arcs, the average conformality indices (ratio of prescription isodose volume to the PTV volume) for the PTV-0 mm, PTV-2 mm and PTV-5 mm were 4.81 ± 2.0, 1.71 ± 0.19, and 1.23 ± 0.08, respectively. Assuming patients were treated under breath-hold with 2 mm planning margins to account for cardiac motion, all plans met esophageal PRV maximum dose limits < 50 Gy to 0.03 cc and 16 plans (80%) met < 27.5 Gy to 5 cc of the esophageal PRVs. For PTV-5 mm plans, 18 plans met the maximum dose limit < 50 Gy to 0.03 cc and only two plans met the maximum dose limit < 27.5 Gy to 5 cc of the

  6. Body-surface potential mapping to aid ablation of scar-related ventricular tachycardia.

    PubMed

    Sapp, John L; Gardner, Martin J; Parkash, Ratika; Basta, Magdy; Warren, James W; Horácek, B Milan

    2006-10-01

    We investigated whether body-surface potential mapping (BSPM) during catheter ablation of scar-related ventricular tachycardia (VT) could assist with the identification of VT exit sites. The study population consisted of 9 patients who underwent catheter ablation for VT, among whom 12 induced VTs with known exit sites were identified by entrainment criteria, pace mapping, or site of successful ablation. Paced activation was initiated at various intracardiac sites (20 +/- 4 sites per patient, a total of 180) documented by nonfluoroscopic electroanatomic mapping. During all episodes of VT and pacing, patients had a 120-lead electrocardiogram recorded, and we analyzed these electrocardiographic data--by means of a similarity coefficient (SC) calculated over 100 milliseconds after the initiation of depolarization--to assess the similarity between the BSPM sequences occurring during VTs and those induced by pacing. Based on 245 observations, the relationship between the SC and the distance of the pacing site from the VT exit site was then obtained for each individual VT by linear regression analysis: the distance D (in millimeters) from the VT exit site was related to SC by the regression equation D = slope (1 - SC2) + intercept. The parameters in this equation varied widely for the 12 VTs, but, in general, the nearer the pacing site was to the exit site, the better the goodness of match. This suggests that, although there is no universally applicable relationship between D and SC, BSPM could provide a useful adjunct to standard pace mapping, although additional processing--namely, an inverse calculation of epicardial potentials/isochrones--may be needed to reliably identify VT exit sites from body-surface electrocardiograms.

  7. The Early Result of Whole Pelvic Radiotherapy and Stereotactic Body Radiotherapy Boost for High-Risk Localized Prostate Cancer

    PubMed Central

    Lin, Yu-Wei; Lin, Li-Ching; Lin, Kuei-Li

    2014-01-01

    Purpose: The rationale for hypofractionated radiotherapy in the treatment of prostate cancer is based on the modern understanding of radiobiology and advances in stereotactic body radiotherapy (SBRT) techniques. Whole-pelvis irradiation combined with SBRT boost for high-risk prostate cancer might escalate biologically effective dose without increasing toxicity. Here, we report our 4-year results of SBRT boost for high-risk localized prostate cancer. Methods and Materials: From October 2009 to August 2012, 41 patients newly diagnosed, high-risk or very high-risk (NCCN definition) localized prostate cancer were treated with whole-pelvis irradiation and SBRT boost. The whole pelvis dose was 45 Gy (25 fractions of 1.8 Gy). The SBRT boost dose was 21 Gy (three fractions of 7 Gy). Ninety percent of these patients received hormone therapy. The toxicities of gastrointestinal (GI) and genitourinary (GU) tracts were scored by Common Toxicity Criteria Adverse Effect (CTCAE v3.0). Biochemical failure was defined by Phoenix definition. Results: Median follow-up was 42 months. Mean PSA before treatment was 44.18 ng/ml. Mean PSA level at 3, 6, 12, 18, and 24 months was 0.94, 0.44, 0.13, 0.12, and 0.05 ng/ml, respectively. The estimated 4-year biochemical failure-free survival was 91.9%. Three biochemical failures were observed. GI and GU tract toxicities were minimal. No grade 3 acute GU or GI toxicity was noted. During radiation therapy, 27% of the patient had grade 2 acute GU toxicity and 12% had grade 2 acute GI toxicity. At 3 months, most toxicity scores had returned to baseline. At the last follow-up, there was no grade 3 late GU or GI toxicity. Conclusions: Whole-pelvis irradiation combined with SBRT boost for high-risk localized prostate cancer is feasible with minimal toxicity and encouraging biochemical failure-free survival. Continued accrual and follow-up would be necessary to confirm the biochemical control rate and the toxicity profiles. PMID

  8. Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies

    NASA Technical Reports Server (NTRS)

    Li, X.; Brinckerhoff, W. B.; Managadze, G. G.; Pugel, D. E.; Corrigan, C. M.; Doty, J. H.

    2012-01-01

    A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies.

  9. Extrapulmonary Soft-Tissue Fibrosis Resulting From Hypofractionated Stereotactic Body Radiotherapy for Pulmonary Nodular Lesions

    SciTech Connect

    Kawase, Takatsugu; Takeda, Atsuya; Kunieda, Etsuo Kokubo, Masaki; Kamikubo, Yoshifumi; Ishibashi, Ryouchi; Nagaoka, Tomoaki; Shigematsu, Naoyuki; Kubo, Atsushi

    2009-06-01

    Purpose: To clarify the incidence, symptoms, and timing of extrapulmonary fibrosis developing after hypofractionated stereotactic body radiotherapy. Patients and Methods: We analyzed 379 consecutive patients who underwent stereotactic body radiotherapy for lung tumors at four institutions between February 2001 and March 2007. The median follow-up time was 29 months (range, 1-72). We investigated the subjective and objective characteristics of the extrapulmonary masses, redelineated the origin tissue of each on the treatment planning computed tomography scan, and generated dose-volume histograms. Results: In 9 patients (2.4%), extrapulmonary masses were found 3-36 months (median, 14) after irradiation. Coexisting swelling occurred in 3 patients, chest pain in 2, thumb numbness in 1, and arm edema in 1 patient. Extrapulmonary masses occurred in 5 (5.4%) of 92 and 4 (1.4%) of 287 patients irradiated with a 62.5-Gy and 48.0-Gy isocenter dose, respectively. The mean and maximal dose to the origin tissue was 25.8-53.9 Gy (median, 43.7) and 47.5-62.5 Gy (median, 50.2), respectively. In 5 of 9 patients, the standardized uptake values on 18F-fluorodeoxyglucose-positron emission tomography was 1.8-2.8 (median, 2.2). Percutaneous needle biopsy was performed in 3 patients, and all the specimens showed benign fibrotic changes without malignant cells. Conclusion: All patients should be carefully followed after stereotactic body radiotherapy. The findings of any new lesion should prompt an assessment for radiation-induced extrapulmonary fibrosis before an immediate diagnosis of recurrence is made. Careful beam-shape modification and dose prescription near the thoracic outlet are required to prevent forearm neuropathy and lymphedema.

  10. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    SciTech Connect

    Wiegner, Ellen A.; King, Christopher R.

    2010-10-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged {>=}70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  11. Stereotactic Body Radiotherapy for Lesions of the Spine and Paraspinal Regions

    SciTech Connect

    Nelson, John W.; Yoo, David S.; Sampson, John H.; Isaacs, Robert E.; Larrier, Nicole A.; Marks, Lawrence B.; Yin Fangfang; Wu, Q. Jackie; Wang Zhiheng; Kirkpatrick, John P.

    2009-04-01

    Purpose: To describe our experience and clinical strategy for stereotactic body radiotherapy (SBRT) of spinal lesions. Methods and Materials: Thirty-two patients with 33 spinal lesions underwent computed tomography-based simulation while free breathing. Gross/clinical target volumes included involved portions of the vertebral body and paravertebral/epidural tumor. Planning target volume (PTV) expansion was 6 mm axially and 3 mm radially; the cord was excluded from the PTV. Biologic equivalent dose was calculated using the linear quadratic model with {alpha}/{beta} = 3 Gy. Treatment was linear accelerator based with on-board imaging; dose was adjusted to maintain cord dose within tolerance. Survival, local control, pain, and neurologic status were monitored. Results: Twenty-one patients are alive at 1 year (median survival, 14 months). Median follow-up is 6 months for all patients (7 months for survivors). Mean previous radiotherapy dose to 22 patients was 35 Gy, and median interval was 17 months. Renal (31%), breast, and lung (19% each) were the most common histologic sites. Three SBRT fractions (range, one to four fractions) of 7 Gy (range, 5-16 Gy) were delivered. Median cord and target biologic equivalent doses were 70 Gy{sub 3} and 34.3 Gy{sub 10}, respectively. Thirteen patients reported complete and 17 patients reported partial pain relief at 1 month. There were four failures (mean, 5.8 months) with magnetic resonance imaging evidence of in-field progression. No dosimetric parameters predictive of failure were identified. No treatment-related toxicity was seen. Conclusions: Spinal SBRT is effective in the palliative/re-treatment setting. Volume expansion must ensure optimal PTV coverage while avoiding spinal cord toxicity. The long-term safety of spinal SBRT and the applicability of the linear-quadratic model in this setting remain to be determined, particularly the time-adjusted impact of prior radiotherapy.

  12. On the dose to a moving target in stereotactic ablative body radiotherapy to lung tumors

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Dilling, T. J.; Moros, E. G.; Zhang, G. G.

    2017-01-01

    This review summarizes the hierarchy of potential dose inaccuracies in lung SABR in terms of their expected clinical impact. The two main terms are targeting accuracy and adequacy of the dose calculation algorithm. One can associate dose-errors at the 50-100% (zero order) and 10-20% (first order) levels with the former and the latter, respectively. At the first order level, strong evidence exists that using dose algorithms which do not account for 3D density scaling is associated with diminished local control. On the other hand, the second-order target dose-errors due to either static approximations to full 4D calculations, or interplay during modulated delivery, are rather unlikely to rise above 5% (conservatively, ≤ 1% tumor control probability change).

  13. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    SciTech Connect

    Sapkaroski, Daniel Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  14. Prostate-specific antigen kinetics following hypofractionated stereotactic body radiotherapy boost as post-external beam radiotherapy versus conventionally fractionated external beam radiotherapy for localized prostate cancer

    PubMed Central

    Phak, Jeong Hoon; Kim, Hun Jung; Kim, Woo Chul

    2015-01-01

    Background Stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. The purpose of this study was to compare the prostate-specific antigen (PSA) kinetics between conventionally fractionated external beam radiotherapy (CF-EBRT) and SBRT boost after whole pelvis EBRT (WP-EBRT) in localized prostate cancer. Methods A total of 77 patients with localized prostate cancer [T-stage, T1–T3; Gleason score (GS) 5–9; PSA < 20 ng/mL] were enrolled. A total of 35 patients were treated with SBRT boost (21 Gy in 3 fractions) after WP-EBRT and 42 patients were treated with CF-EBRT (45 Gy WP-EBRT and boost of 25.2–30.6 Gy in 1.8-Gy fractions). PSA nadir and rate of change in PSA (slope) were calculated and compared. Results With a median follow-up of 52.4 months (range, 14–74 months), the median PSA nadir and slope for SBRT boost were 0.29 ng/mL and −0.506, −0.235, −0.129, and −0.092 ng/mL/mo, respectively, for durations of 1 year, 2 years, 3 years, and 4 years postradiotherapy. Similarly, for CF-EBRT, the median PSA nadir and slopes were 0.39 ng/mL and −0.720 ng/mL/mo, −0.204 ng/mL/mo, −0.121 ng/mL/mo, and −0.067 ng/mL/mo, respectively. The slope of CF-EBRT was significantly different with a greater median rate of change for 1 year postradiotherapy than that of SBRT boost (P = 0.018). Contrastively, the slopes of SBRT boost for durations of 2 years, 3 years, and 4 years tended to be continuously greater than that of CF-EBRT. The significantly lower PSA nadir was observed in SBRT boost (median nadir 0.29 ng/mL) compared with CF-EBRT (median nadir 0.35 ng/mL, P = 0.025). Five-year biochemical failure (BCF) free survival was 94.3% for SBRT boost and 78.6% for CF-EBRT (P = 0.012). Conclusion Patients treated with SBRT boost after WP-EBRT experienced a lower PSA nadir and there tended to be a continuously greater rate of decline of PSA for durations of 2 years, 3 years, and

  15. Salvage Reirradiaton With Stereotactic Body Radiotherapy for Locally Recurrent Head-and-Neck Tumors

    SciTech Connect

    Cengiz, Mustafa; Ozyigit, Goekhan; Yazici, Goezde; Dogan, Ali; Yildiz, Ferah; Zorlu, Faruk; Guerkaynak, Murat; Gullu, Ibrahim H.; Hosal, Sefik; Akyol, Fadil

    2011-09-01

    Purpose: In this study, we present our results of reirradiation of locally recurrent head-and-neck cancer with image-guided, fractionated, frameless stereotactic body radiotherapy technique. Methods and Materials: From July 2007 to February 2009, 46 patients were treated using the CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey. All patients had recurrent, unresectable, and previously irradiated head-and-neck cancer. The most prominent site was the nasopharynx (32.6%), and the most common histopathology was epidermoid carcinoma. The planning target volume was defined as the gross tumor volume identified on magnetic resonance imaging and computed tomography. There were 22 female and 24 male patients. Median age was 53 years (range, 19-87 years). The median tumor dose with stereotactic body radiotherapy was 30 Gy (range, 18-35 Gy) in a median of five (range, one to five) fractions. Results: Of 37 patients whose response to therapy was evaluated, 10 patients (27%) had complete tumor regression, 11 (29.8%) had partial response, and 10 (27%) had stable disease. Ultimate local disease control was achieved in 31 patients (83.8%). The overall survival was 11.93 months in median (ranged, 11.4 - 17.4 months), and the median progression free survival was 10.5 months. One-year progression-free survival and overall survival were 41% and 46%, respectively. Grade II or greater long-term complications were observed in 6 (13.3%) patients. On follow-up, 8 (17.3%) patients had carotid blow-out syndrome, and 7 (15.2%) patients died of bleeding from carotid arteries. We discovered that this fatal syndrome occurred only in patients with tumor surrounding carotid arteries and carotid arteries receiving all prescribed dose. Conclusions: Stereotactic body radiotherapy is an appealing treatment option for patients with recurrent head-and-neck cancer previously treated with radiation to high doses. Good local control with

  16. Stereotactic Body Radiotherapy for Metastatic and Recurrent Ewing Sarcoma and Osteosarcoma

    PubMed Central

    Brown, Lindsay C.; Lester, Rachael A.; Grams, Michael P.; Haddock, Michael G.; Olivier, Kenneth R.; Arndt, Carola A. S.; Rose, Peter S.; Laack, Nadia N.

    2014-01-01

    Background. Radiotherapy has been utilized for metastatic and recurrent osteosarcoma and Ewing sarcoma (ES), in order to provide palliation and possibly prolong overall or progression-free survival. Stereotactic body radiotherapy (SBRT) is convenient for patients and offers the possibility of increased efficacy. We report our early institutional experience using SBRT for recurrent and metastatic osteosarcoma and Ewing sarcoma. Methods. We reviewed all cases of osteosarcoma or ES treated with SBRT between 2008 and 2012. Results. We identified 14 patients with a total of 27 lesions from osteosarcoma (n = 19) or ES (n = 8). The median total curative/definitive SBRT dose delivered was 40 Gy in 5 fractions (range, 30–60 Gy in 3–10 fractions). The median total palliative SBRT dose delivered was 40 Gy in 5 fractions (range, 16–50 Gy in 1–10 fractions). Two grade 2 and 1 grade 3 late toxicities occurred, consisting of myonecrosis, avascular necrosis with pathologic fracture, and sacral plexopathy. Toxicity was seen in the settings of concurrent chemotherapy and reirradiation. Conclusions. This descriptive report suggests that SBRT may be a feasible local treatment option for patients with osteosarcoma and ES. However, significant toxicity can result, and thus systematic study is warranted to clarify efficacy and characterize long-term toxicity. PMID:25548538

  17. Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer.

    PubMed

    Demiral, S; Beyzadeoglu, M; Uysal, B; Oysul, K; Kahya, Y Elcim; Sager, O; Dincoglan, F; Gamsiz, H; Dirican, B; Surenkok, S

    2013-01-01

    The purpose of this study is to evaluate the use of linear accelerator (LINAC)-based stereotactic body radiotherapy (SBRT) boost with multileaf collimator technique after pelvic radiotherapy (RT) in patients with endometrial cancer. Consecutive patients with endometrial cancer treated using LINAC-based SBRT boost after pelvic RT were enrolled in the study. All patients had undergone surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy ± pelvic/paraortic lymphadenectomy before RT. Prescribed external pelvic RT dose was 45 Gray (Gy) in 1.8 Gy daily fractions. All patients were treated with SBRT boost after pelvic RT. The prescribed SBRT boost dose to the upper two thirds of the vagina including the vaginal vault was 18 Gy delivered in 3 fractions with 1-week intervals. Gastrointestinal and genitourinary toxicity was assessed using the Common Terminology Criteria for Adverse Events version 3 (CTCAE v3).Between April 2010 and May 2011, 18 patients with stage I-III endometrial cancer were treated with LINAC-based SBRT boost after pelvic RT. At a median follow-up of 24 (8-26) months with magnetic resonance imaging (MRI) and gynecological examination, local control rate of the study group was 100 % with negligible acute and late toxicity.LINAC-based SBRT boost to the vaginal cuff is a feasible gynecological cancer treatment modality with excellent local control and minimal toxicity that may replace traditional brachytherapy boost in the management of endometrial cancer.

  18. A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

    PubMed Central

    Jung, Sang Hoon; Yu, Jeong Il; Lim, Do Hoon; Han, Youngyih

    2016-01-01

    Purpose In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. Materials and Methods In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45–60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. Results The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R2 of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Conclusion Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer. PMID:27104169

  19. Stereotactic body radiotherapy for the pancreas: a critical review for the medical oncologist

    PubMed Central

    Kim, Samuel K.; Wu, Cheng-Chia

    2016-01-01

    With recent advances in imaging modalities and radiation therapy, stereotactic body radiotherapy (SBRT) has allowed for the delivery of high doses of radiation with accuracy and precision. As such, SBRT has generated favorable results in the treatment of several cancers. Although the role of radiation has been controversial for the treatment of pancreatic ductal adenocarcinoma (PDAC) due to rather lackluster results in clinical trials, SBRT may offer improved outcomes, enhance the quality of life, and aid in palliative care settings for PDAC patients. This review delineates the role of SBRT in the treatment of PDAC, presents the defining principles of radiation biology and the radiation oncology work flow, and discusses the prospects of new treatment regimens involving tumor immunology and radiation therapy. PMID:27284482

  20. Accumulated Dose in Liver Stereotactic Body Radiotherapy: Positioning, Breathing, and Deformation Effects

    SciTech Connect

    Velec, Michael; Moseley, Joanne L.; Craig, Tim; Dawson, Laura A.; Brock, Kristy K.

    2012-07-15

    Purpose: To investigate the accumulated dose deviations to tumors and normal tissues in liver stereotactic body radiotherapy (SBRT) and investigate their geometric causes. Methods and Materials: Thirty previously treated liver cancer patients were retrospectively evaluated. Stereotactic body radiotherapy was planned on the static exhale CT for 27-60 Gy in 6 fractions, and patients were treated in free-breathing with daily cone-beam CT guidance. Biomechanical model-based deformable image registration accumulated dose over both the planning four-dimensional (4D) CT (predicted breathing dose) and also over each fraction's respiratory-correlated cone-beam CT (accumulated treatment dose). The contribution of different geometric errors to changes between the accumulated and predicted breathing dose were quantified. Results: Twenty-one patients (70%) had accumulated dose deviations relative to the planned static prescription dose >5%, ranging from -15% to 5% in tumors and -42% to 8% in normal tissues. Sixteen patients (53%) still had deviations relative to the 4D CT-predicted dose, which were similar in magnitude. Thirty-two tissues in these 16 patients had deviations >5% relative to the 4D CT-predicted dose, and residual setup errors (n = 17) were most often the largest cause of the deviations, followed by deformations (n = 8) and breathing variations (n = 7). Conclusion: The majority of patients had accumulated dose deviations >5% relative to the static plan. Significant deviations relative to the predicted breathing dose still occurred in more than half the patients, commonly owing to residual setup errors. Accumulated SBRT dose may be warranted to pursue further dose escalation, adaptive SBRT, and aid in correlation with clinical outcomes.

  1. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence; Chang, Stephanie; Kuo, Timothy; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Greco, Ralph; Yang, George P.; Koong, Albert C.

    2008-11-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife. Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.

  2. Extracranial stereotactic body radiotherapy. Review of main SBRT features and indications in primary tumors

    PubMed Central

    Rubio, Carmen; Morera, Rosa; Hernando, Ovidio; Leroy, Thomas.; Lartigau, S. Eric

    2013-01-01

    Aim Review of main SBRT features and indications in primary tumors. Background Stereotactic body radiotherapy has been developed in the last few years. SBRT allows the hypofractionated treatment of extra cranial tumors, using either a single or limited number of dose fractions, and resulting in the delivery of a high biological effective dose with low toxicity. Material and methods SBRT requires a high level of accuracy for all phases of the treatment process: effective patient immobilization, precise target localization, highly conformed dosimetry and image guided systems for treatment verification. The implementation of SBRT in routine requires a careful considering of organ motion. Gating and tracking are effective ways to do so, and less invasive technologies “fiducials free” have been developed. Due to the hypofractionated scheme, the physician must pay attention to new dosimetric constraints in organ at risk and new radiobiological models are needed to assess the optimal fractionation and dose schemes. Results Currently, SBRT is safe and effective to treat primary tumors, which are otherwise untreatable with conventional radiotherapy or surgery. SBRT has quickly developed because of its excellent results in terms of tolerance and its high locoregional control rates. SBRT indications in primary tumors, such as lung primary tumors, have become a standard of care for inoperable patients. SBRT seems to be effective in many others indications in curative or palliative intent such as liver primary tumors, and novel indications and strategies are currently emerging in prostate cancer, head and neck tumor recurrences or pelvis reirradiations. Conclusion Currently, SBRT is mainly used when there is no other therapeutic alternative for the patient. This is due to the lack of randomized trials in these settings. However, the results shown in retrospective studies let us hope to impose SBRT as a new standard of care for many patients in the next few years. PMID

  3. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    SciTech Connect

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  4. Clinical Evaluation of an Immbolization System for Stereotactic Body Radiotherapy Using Helical Tomotherapy

    SciTech Connect

    Gutierrez, Alonso N.; Stathakis, Sotirios; Crownover, Richard; Esquivel, Carlos; Shi Chengyu; Papanikolaou, Niko

    2011-07-01

    In this study, a clinical evaluation of the Body Pro-Lok{sup TM} System combined with the TomoTherapy megavoltage computed tomography (MVCT) was performed for lung and liver stereotactic body radiotherapy (SBRT) to reduce interfractional setup uncertainty. Twenty patients treated with 3-5 fractions of SBRT were analyzed retrospectively. The Body Pro-Lok{sup TM} system was used in both CT simulation and during patient treatment setup. Patients were immobilized with a vacuum cushion placed posteriorly over the thoracic region, an abdominal compression plate, and a knee and foot sponge. Pretreatment MVCT scans of the TomoTherapy HI-ART II unit were fused with the planning kVCT before delivery of each fraction to determine the interfractional setup error. A total of 84 shifts were analyzed to assess the interfractional setup accuracy. Results showed that the mean interfractional setup errors and standard deviations were -0.9 {+-} 3.1 mm, 1.2 {+-} 5.5 mm, and 6.5 {+-} 2.6 mm for lateral (IEC-X), longitudinal (IEC-Y), and vertical (IEC-Z) variations, respectively. The maximum motion was 17.1 mm in the longitudinal direction. When all 3 translational coordinates were analyzed, a mean composite displacement vector of 8.2 {+-} 2.0 mm (range 4.1-11.7 mm) was obtained for all patients. Based on the findings, image-guided SBRT using the Body Pro-Lok{sup TM} system in conjunction with the MVCT of TomoTherapy is capable of minimizing interfractional setup error and improving treatment accuracy.

  5. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  6. Stereotactic Body Radiotherapy as Primary Treatment for Elderly Patients with Medically Inoperable Head and Neck Cancer

    PubMed Central

    Vargo, John A.; Ferris, Robert L.; Clump, David A.; Heron, Dwight E.

    2014-01-01

    Purpose: With a growing elderly population, elderly patients with head and neck cancers represent an increasing challenge with limited prospective data to guide management. The complex interplay between advanced age, associated co-morbidities, and conventional local therapies, such as surgery and external beam radiotherapy ± chemotherapy, can significantly impact elderly patients’ quality of life (QoL). Stereotactic body radiotherapy (SBRT) is a well-established curative strategy for medical-inoperable early-stage lung cancers even in elderly populations; however, there is limited data examining SBRT as primary therapy in head and neck cancer. Material/methods: Twelve patients with medically inoperable head and neck cancer treated with SBRT ± cetuximab from 2002 to 2013 were retrospectively reviewed. SBRT consisted of primarily 44 Gy in five fractions delivered on alternating days over 1–2 weeks. Concurrent cetuximab was administered at a dose of 400 mg/m2 on day −7 followed by 250 mg/m2 on day 0 and +7 in n = 3 (25%). Patient-reported quality of life (PRQoL) was prospectively recorded using the previously validated University of Washington quality of life revised (UW-QoL-R). Results: Median clinical follow-up was 6 months (range: 0.5–29 months). The 1-year actuarial local progression-free survival, distant progression-free survival, progression-free survival, and overall survival for definitively treated patients were 69, 100, 69, and 64%, respectively. One patient (8%) experienced acute grade 3 dysphagia and one patient (8%) experienced late grade 3 mucositis; there were no grade 4–5 toxicities. Prospective collection of PRQoL as assessed by UW-QoL-R was preserved across domains. Conclusion: Stereotactic body radiotherapy shows encouraging survival and relatively low toxicity in elderly patients with unresectable head and neck cancer, which may provide an aggressive potentially curative local therapy while maintaining QoL. PMID

  7. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, T. Kanematsu, N.; Tsuji, H.; Kamada, T.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  8. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner12

    PubMed Central

    Feng, Felix Y.; Zhang, Yu; Kothari, Vishal; Evans, Joseph R.; Jackson, William C.; Chen, Wei; Johnson, Skyler B.; Luczak, Connor; Wang, Shaomeng; Hamstra, Daniel A.

    2016-01-01

    PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for

  9. Thermal ablation.

    PubMed

    Webb, Heather; Lubner, Meghan G; Hinshaw, J Louis

    2011-04-01

    Image-guided tumor ablation refers to a group of treatment modalities that have emerged during the past 2 decades as important tools in the treatment of a wide range of tumors throughout the body. Although most widely recognized in the treatment of hepatic and renal malignancies, the role of thermal ablation has expanded to include lesions of the lung, breast, prostate, bone, as well as other organs and its clinical applications continue to increase. In the following article, we discuss the major thermal ablation modalities, their respective strengths and weaknesses, potential complications and how to avoid them, as well as possible future applications.

  10. Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy

    SciTech Connect

    Li, Yongbao; Hoisak, Jeremy D.P.; Li, Nan; Jiang, Carrie; Tian, Zhen; Gautier, Quentin; Zarepisheh, Masoud; Wu, Zhaoxia; Liu, Yaqiang; Jia, Xun; and others

    2015-01-01

    Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volume (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.

  11. [Assessment of overall spatial accuracy in image guided stereotactic body radiotherapy using a spine registration method].

    PubMed

    Nakazawa, Hisato; Uchiyama, Yukio; Komori, Masataka; Hayashi, Naoki

    2014-06-01

    Stereotactic body radiotherapy (SBRT) for lung and liver tumors is always performed under image guidance, a technique used to confirm the accuracy of setup positioning by fusing planning digitally reconstructed radiographs with X-ray, fluoroscopic, or computed tomography (CT) images, using bony structures, tumor shadows, or metallic markers as landmarks. The Japanese SBRT guidelines state that bony spinal structures should be used as the main landmarks for patient setup. In this study, we used the Novalis system as a linear accelerator for SBRT of lung and liver tumors. The current study compared the differences between spine registration and target registration and calculated total spatial accuracy including setup uncertainty derived from our image registration results and the geometric uncertainty of the Novalis system. We were able to evaluate clearly whether overall spatial accuracy is achieved within a setup margin (SM) for planning target volume (PTV) in treatment planning. After being granted approval by the Hospital and University Ethics Committee, we retrospectively analyzed eleven patients with lung tumor and seven patients with liver tumor. The results showed the total spatial accuracy to be within a tolerable range for SM of treatment planning. We therefore regard our method to be suitable for image fusion involving 2-dimensional X-ray images during the treatment planning stage of SBRT for lung and liver tumors.

  12. Fast Arc Delivery for Stereotactic Body Radiotherapy of Vertebral and Lung Tumors

    SciTech Connect

    Ong, Chin Loon; Verbakel, Wilko F.A.R.; Dahele, Max; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2012-05-01

    Purpose: Flattening filter-free (FFF) beams with higher dose rates and faster delivery are now clinically available. The purpose of this planning study was to compare optimized non-FFF and FFF RapidArc plans for stereotactic body radiotherapy (SBRT) and to validate the accuracy of fast arc delivery. Methods and Material: Ten patients with peripheral lung tumors and 10 with vertebral metastases were planned using RapidArc with a flattened 6-MV photon beam and a 10-MV FFF beam for fraction doses of 7.5-18 Gy. Dosimetry of the target and organs at risk (OAR), number of monitor units (MU), and beam delivery times were assessed. GafChromic EBT2 film measurements of FFF plans were performed to compare calculated and delivered dose distributions. Results: No major dosimetric differences were seen between the two delivery techniques. For lung SBRT plans, conformity indices and OAR doses were similar, although the average MU required were higher with FFF plans. For vertebral SBRT, FFF plans provided comparable PTV coverage, with no significant differences in OAR doses. Average beam delivery times were reduced by a factor of up to 2.5, with all FFF fractions deliverable within 4 min. Measured FFF plans showed high agreement with calculated plans, with more than 99% of the area within the region of interest fulfilling the acceptance criterion. Conclusion: The higher dose rate of FFF RapidArc reduces delivery times significantly, without compromising plan quality or accuracy of dose delivery.

  13. Optimal number of beams for stereotactic body radiotherapy of lung and liver lesions

    SciTech Connect

    Liu Ruiguo; Buatti, John M.; Howes, Terese L.; Dill, John; Modrick, Joseph M.; Meeks, Sanford L. . E-mail: sanford.meeks@orhs.org

    2006-11-01

    Purpose: The aim of this study was to determine the optimal number of coplanar and noncoplanar external beams in the setting of stereotactic body radiotherapy (SBRT). Methods and Materials: Spherical targets were delineated within 2 separate extracranial sites, the lung and liver, with diameters varying from 2 cm to 7 cm to cover the range of volumes used in SBRT. Treatment plans were created for all target volumes using 5 to 15 geometrically optimized coplanar and noncoplanar conformal beams. Dose gradient and normal tissue complication probability (NTCP) were evaluated for each set of beam configurations and for each target size. Results: For all lung and liver target volumes, the dose gradient improved with an increase in beam number from 5 to 15 for both coplanar and noncoplanar beam configurations. NTCP decreased as the beam number increased from 5 to 9 beams for all target sizes for both coplanar and noncoplanar beams. There is no significant improvement in NTCP when more than 9 beams were used for treatment planning regardless of target size. Conclusion: Based on dosimetric criteria, the optimal number of external beams is 13 to 15 for SBRT using either coplanar or noncoplanar beam bouquets. Simple biologic models indicate that the optimal number of beams is 9 for SBRT of lung and liver lesions >2 cm, whereas smaller lesions may benefit from plans using up to 13 beams.

  14. Impact of Body Mass Index on Outcomes After Conformal Radiotherapy in Patients With Prostate Cancer

    SciTech Connect

    Geinitz, Hans; Thamm, Reinhard; Mueller, Tobias; Jess, Kerstin; Zimmermann, Frank B.; Molls, Michael; Nieder, Carsten

    2011-09-01

    Purpose: Several retrospective analyses have suggested that obese men with prostate cancer treated with external beam radiotherapy (EBRT) have outcomes inferior to those of normal-weight men. However, a recently presented analysis for the first time challenged this association between body mass index (BMI) and treatment failure. It is therefore important to provide further data on this issue. Methods and Materials: This was a retrospective analysis of 564 men treated with risk-adapted conformal EBRT at a single institution. Low-risk patients received EBRT alone, and the other patients received EBRT plus endocrine treatment. In addition, high-risk patients were treated to higher EBRT doses (74 Gy). A rectal balloon catheter for internal immobilization, which can be identified on portal images, was used in 261 patients (46%). Thus, localization did not rely on bony landmarks alone in these cases. Results: The median BMI was 26, and 15% of patients had BMI {>=}30. Neither univariate nor multivariate analyses detected any significant impact of BMI on biochemical relapse, prostate cancer-specific survival, or overall survival. The 5-year biochemical relapse rate was 21% and prostate cancerspecific survival 96%. Conclusions: The present analysis of a large cohort of consecutively treated patients suggests that efforts to reduce prostate movement and geographic miss might result in comparable outcomes in obese and normal-weight patients.

  15. Clinical outcomes of stereotactic body radiotherapy for spinal metastases from hepatocellular carcinoma

    PubMed Central

    Lee, Eonju; Kim, Tae Gyu; Yu, Jeong Il; Lim, Do Hoon; Nam, Heerim; Lee, Hyebin; Lee, Joon Hyeok

    2015-01-01

    Purpose To investigate the outcomes of patients with spinal metastases from hepatocellular carcinoma (HCC), who were treated by stereotactic body radiotherapy (SBRT). Materials and Methods This retrospective study evaluated 23 patients who underwent SBRT from October 2008 to August 2012 for 36 spinal metastases from HCC. SBRT consisted of approximately 2 fractionation schedules, which were 18 to 40 Gy in 1 to 4 fractions for group A lesions (n = 15) and 50 Gy in 10 fractions for group B lesions (n = 21). Results The median follow-up period was 7 months (range, 2 to 16 months). Seven patients developed grade 1 or 2 gastrointestinal toxicity, and one developed grade 2 leucopenia. Compression fractures occurred in association with 25% of the lesions, with a median time to fracture of 2 months. Pain relief occurred in 92.3% and 68.4% of group A and B lesions, respectively. Radiologic response (complete and partial response) occurred in 80.0% and 61.9% of group A and B lesions, respectively. The estimated 1-year spinal-tumor progression-free survival rate was 78.5%. The median overall survival period and 1-year overall survival rate were 9 months (range, 2 to 16 months) and 25.7%, respectively. Conclusion SBRT for spinal metastases from HCC is well tolerated and effective at providing pain relief and radiologic response. Because compression fractures develop at a high rate following SBRT for spinal metastases from primary HCC, careful follow up of the patient is required. PMID:26484305

  16. Stereotactic body radiotherapy for recurrent head and neck cancer: A critical review.

    PubMed

    Baliga, Sujith; Kabarriti, Rafi; Ohri, Nitin; Haynes-Lewis, Hilda; Yaparpalvi, Ravindra; Kalnicki, Shalom; Garg, Madhur K

    2017-03-01

    The management of patients with recurrent head and neck cancers remains a challenging clinical dilemma. Concerns over toxicity with re-irradiation have limited its use in the clinical setting. Stereotactic Body Radiation Therapy (SBRT) has emerged as a highly conformal and precise type of radiotherapy and has the advantage of sparing normal tissue. Although SBRT is an attractive treatment modality, its use in the clinic is limited, given the technically challenging nature of the procedure. In this review, we attempt to provide a comprehensive overview of the role of re-irradiation in patients with recurrent head and neck cancers, with particular attention to the advent of SBRT and its use with systemic therapies such as cetuximab. In the second portion of this review, we present our systematic review of published experiences with SBRT in recurrent head and neck cancers in an attempt to provide data on response rates (RR), overall survival and toxicity. © 2016 Wiley Periodicals, Inc. Head Neck 39: 595-601, 2017.

  17. Dosimetric benefits of hemigland stereotactic body radiotherapy for prostate cancer: implications for focal therapy

    PubMed Central

    Kishan, Amar U; Park, Sang J; King, Christopher R; Roberts, Kristofer; Kupelian, Patrick A; Steinberg, Michael L

    2015-01-01

    Objective: Compared with standard, whole-gland (WG) therapies for prostate cancer, focal approaches may provide equivalent oncologic outcomes with fewer adverse effects. The purpose of this study was to compare organ-at-risk (OAR) dosimetry between hemigland (HG) and WG stereotactic body radiotherapy (SBRT) plans. Methods: Volumetric-modulated arc radiotherapy-based SBRT plans were designed to treat the left HG, right HG and WG in eight patients, using five fractions of 8 Gy. OARs of interest included the contralateral HG, rectum, urinary bladder, urethra, penile bulb and contralateral neurovascular bundle. Results: Rectal V80% (the percentage of a normal structure receiving a dose of 80%) and V90% were significantly lower with HG plans than with WG plans (median values of 4.4 vs 2.5 cm3 and 2.1 vs 1.1 cm3, respectively, p < 0.05 by Student's t-test). Bladder V50% was also reduced significantly in HG plans (32.3 vs 17.4 cm3, p < 0.05), with a trend towards reduction of V100% (3.4 vs 1.3 cm3, p = 0.09). Urethral maximum dose and mean doses to the penile bulb and contralateral neurovascular bundle were also reduced significantly (42.0 vs 39.7 Gy, p < 0.00001; 13.3 vs 9.2 Gy, p < 0.05; and 40.2 vs 19.3 Gy, p < 0.00001, respectively). Conclusion: Targeting an HG volume rather than a WG volume when delivering SBRT can offer statistically significant reductions for all OARs. Given the large magnitude of the reduction in dose to these OARs, it is anticipated that HG SBRT could offer a superior toxicity profile when compared with WG SBRT. This is likely to be most relevant in the context of salvaging a local failure after radiation therapy. Advances in knowledge: The dosimetric feasibility of HG SBRT is demonstrated. When compared with WG SBRT plans, the HG plans demonstrate statistically significant and large magnitude reduction in doses to the rectum, bladder, urethra, penile bulb and contralateral neurovascular bundle, suggesting

  18. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    SciTech Connect

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-11-15

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  19. Targeted percutaneous microwave ablation at the pulmonary lesion combined with mediastinal radiotherapy with or without concurrent chemotherapy in locally advanced non-small cell lung cancer evaluation in a randomized comparison study.

    PubMed

    Xu, Xinglu; Ye, Xin; Liu, Gang; Zhang, Tingping

    2015-09-01

    Concurrent chemoradiotherapy is the standard treatment for patients with locally advanced lung cancer. The most common dose-limiting adverse effect of thoracic radiotherapy (RT) is radiation pneumonia (RP). A randomized comparison study was designed to investigate targeted percutaneous microwave ablation at pulmonary lesion combined with mediastinal RT with or without chemotherapy (ablation group) in comparison with RT (target volume includes pulmonary tumor and mediastinal node) with or without chemotherapy (RT group) for the treatment of locally advanced non-small cell lung cancers (NSCLCs). From 2009 to 2012, patients with stage IIIA or IIIB NSCLCs who refused to undergo surgery or were not suitable for surgery were enrolled. Patients were randomly assigned to the RT group (n = 47) or ablation group (n = 51). Primary outcomes were the incidence of RP and curative effectiveness (complete response, partial response, and stable disease); secondary outcome was the 2-year overall survival (OS). Fifteen patients (31.9%) in the RT and two (3.9%) in the ablation group experienced RP (P < 0.001). The ratio of effective cases was 85.1 versus 80.4% for mediastinal lymph node (P = 0.843) and 83.0 versus 100% for pulmonary tumors (P = 0.503), respectively, for the RT and ablation groups. Kaplan-Meier analysis demonstrated 2-year OS rate of NSCLC patients in ablation group was higher than RT group, but no statistical difference (log-rank test, P = 0.297). Percutaneous microwave ablation followed by RT for inoperable stage III NSCLCs may result in a lower rate of RP and better local control than radical RT treatments.

  20. Progression of Non-Small-Cell Lung Cancer During the Interval Before Stereotactic Body Radiotherapy

    SciTech Connect

    Murai, Taro; Shibamoto, Yuta; Baba, Fumiya; Hashizume, Chisa; Mori, Yoshimasa; Ayakawa, Shiho; Kawai, Tatsuya; Takemoto, Shinya; Sugie, Chikao; Ogino, Hiroyuki

    2012-01-01

    Purpose: To investigate the relationship between waiting time (WT) and disease progression in patients undergoing stereotactic body radiotherapy (SBRT) for lung adenocarcinoma (AD) or squamous cell carcinoma (SQ). Methods and Materials: 201 patients with Stage I AD or SQ undergoing SBRT between January 2004 and June 2010 were analyzed. The WT was defined as the interval between diagnostic computed tomography before referral and computed tomography for treatment planning or positioning before SBRT. Tumor size was measured on the slice of the longest tumor diameter, and tumor volume was calculated from the longest diameter and the diameter perpendicular to it. Changes in tumor volume and TNM stage progression were evaluated, and volume doubling time (VDT) was estimated. Results: The median WT was 42 days (range, 5-323 days). There was a correlation between WT and rate of increase in volume in both AD and SQ. The median VDTs of AD and SQ were 170 and 93 days, respectively. Thirty-six tumors (23%) did not show volume increase during WTs >25 days. In 41 patients waiting for {<=}4 weeks, no patient showed T stage progression, whereas in 25 of 120 (21%) patients waiting for >4 weeks, T stage progressed from T1 to T2 (p = 0.001). In 10 of 110 (9.1%) T1 ADs and 15 of 51 (29%) T1 SQs, T stage progressed (p = 0.002). N stage and M stage progressions were not observed. Conclusion: Generally, a WT of {<=}4 weeks seems to be acceptable. The WT seems to be more important in SQ than in AD.

  1. Stereotactic Body Radiotherapy Is Effective Salvage Therapy for Patients With Prior Radiation of Spinal Metastases

    SciTech Connect

    Sahgal, Arjun Ames, Christopher; Chou, Dean; Ma Lijun; Huang, Kim; Xu Wei; Chin, Cynthia; Weinberg, Vivan; Chuang, Cynthia; Weinstein, Phillip; Larson, David A.

    2009-07-01

    Purpose: To provide actuarial outcomes and dosimetric data for spinal/paraspinal metastases, with and without prior radiation, treated with stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 39 consecutive patients (60 metastases) were treated with SBRT between April 2003 and August 2006 and retrospectively reviewed. In all, 23 of 60 tumors had no previous radiation (unirradiated) and 37/60 tumors had previous irradiation (reirradiated). Of 37 reirradiated tumors, 31 were treated for 'salvage' given image-based tumor progression. Local failure was defined as progression by imaging and/or clinically. Results: At last follow-up, 19 patients were deceased. Median patient survival time measured was 21 months (95% CI = 8-27 months), and the 2-year survival probability was 45%. The median total dose prescribed was 24 Gy in three fractions prescribed to the 67% and 60% isodose for the unirradiated and reirradiated cohorts, respectively. The median tumor follow-up for the unirradiated and reirradiated group was 9 months (range, 1-26) and 7 months (range, 1-48) respectively. Eight of 60 tumors have progressed, and the 1- and 2-year progression-free probability (PFP) was 85% and 69%, respectively. For the salvage group the 1 year PFP was 96%. There was no significant difference in overall survival or PFP between the salvage reirradiated vs. all other tumors treated (p = 0.08 and p = 0.31, respectively). In six of eight failures the minimum distance from the tumor to the thecal sac was {<=}1 mm. Of 60 tumors treated, 39 have {>=}6 months follow-up and no radiation-induced myelopathy or radiculopathy has occurred. Conclusion: Spine SBRT has shown preliminary efficacy and safety in patients with image-based progression of previously irradiated metastases.

  2. Induction Gemcitabine and Stereotactic Body Radiotherapy for Locally Advanced Nonmetastatic Pancreas Cancer

    SciTech Connect

    Mahadevan, Anand; Miksad, Rebecca; Goldstein, Michael; Sullivan, Ryan; Bullock, Andrea; Buchbinder, Elizabeth; Pleskow, Douglas; Sawhney, Mandeep; Kent, Tara; Vollmer, Charles; Callery, Mark

    2011-11-15

    Purpose: Stereotactic body radiotherapy (SBRT) has been used successfully to treat patients with locally advanced pancreas cancer. However, many patients develop metastatic disease soon after diagnosis and may receive little benefit from such therapy. We therefore retrospectively analyzed a planned strategy of initial chemotherapy with restaging and then treatment for those patients with no evidence of metastatic progression with SBRT. Methods and Materials: Forty-seven patients received gemcitabine (1,000 mg/m{sup 2} per week for 3 weeks then 1 week off) until tolerance, at least six cycles, or progression. Patients without metastases after two cycles were treated with SBRT (tolerance-based dose of 24-36 Gy in 3 fractions) between the third and fourth cycles without interrupting the chemotherapy cycles. Results: Eight of the 47 patients (17%) were found to have metastatic disease after two cycles of gemcitabine; the remaining 39 patients received SBRT. The median follow-up for survivors was 21 months (range, 6-36 months). The median overall survival for all patients who received SBRT was 20 months, and the median progression-free survival was 15 months. The local control rate was 85% (33 of 39 patients); and 54% of patients (21 of 39) developed metastases. Late Grade III toxicities such as GI bleeding and obstruction were observed in 9% (3/39) of patients. Conclusion: For patients with locally advanced pancreas cancer, this strategy uses local therapy for those who are most likely to benefit from it and spares those patients with early metastatic progression from treatment. SBRT delivers such local therapy safely with minimal interruption to systemic chemotherapy, thereby potentially improving the outcome in these patients.

  3. Feasibility Study for Markerless Tracking of Lung Tumors in Stereotactic Body Radiotherapy

    SciTech Connect

    Richter, Anne; Wilbert, Juergen; Baier, Kurt; Flentje, Michael; Guckenberger, Matthias

    2010-10-01

    Purpose: To evaluate the feasibility and accuracy of a method for markerless tracking of lung tumors in electronic portal imaging device (EPID) movies and to analyze intra- and interfractional variations in tumor motion. Methods and Materials: EPID movies were acquired during stereotactic body radiotherapy (SBRT) given to 40 patients with 49 pulmonary targets and retrospectively analyzed. Tumor visibility and tracking accuracy were determined by three observers. Tumor motion of 30 targets was analyzed in detail via four-dimensional computed tomography (4DCT) and EPID in the superior-inferior direction for intra- and interfractional variations. Results: Tumor visibility was sufficient for markerless tracking in 47% of the EPID movies. Tumor size and visibility in the DRR were correlated with visibility in the EPID images. The difference between automatic and manual tracking was a maximum of 2 mm for 98.3% in the x direction and 89.4% in the y direction. Motion amplitudes in 4DCT images (range, 0.7-17.9 mm; median, 4.9 mm) were closely correlated with amplitudes in the EPID movies. Intrafractional and interfractional variability of tumor motion amplitude were of similar magnitude: 1 mm on average to a maximum of 4 mm. A change in moving average of more than {+-}1 mm, {+-}2 mm, and {+-}4 mm were observed in 47.1%, 17.1%, and 4.5% of treatment time for all trajectories, respectively. Mean tumor velocity was 3.4 mm/sec, to a maximum 61 mm/sec. Conclusions: Tracking of pulmonary tumors in EPID images without implanted markers was feasible in 47% of all treatment beams. 4DCT is representative of the evaluation of mean breathing motion on average, but larger deviations occurred in target motion between treatment planning and delivery effort a monitoring during delivery.

  4. Chest Wall Toxicity After Stereotactic Body Radiotherapy for Malignant Lesions of the Lung and Liver

    SciTech Connect

    Andolino, David L.; Forquer, Jeffrey A.; Henderson, Mark A.; Barriger, Robert B.; Shapiro, Ronald H.; Brabham, Jeffrey G.; Johnstone, Peter A.S.; Cardenes, Higinia R.; Fakiris, Achilles J.

    2011-07-01

    Purpose: To quantify the frequency of rib fracture and chest wall (CW) pain and identify the dose-volume parameters that predict CW toxicity after stereotactic body radiotherapy (SBRT). Methods and Materials: The records of patients treated with SBRT between 2000 and 2008 were reviewed, and toxicity was scored according to Common Terminology Criteria for Adverse Events v3.0 for pain and rib fracture. Dosimetric data for CW and rib were analyzed and related to the frequency of toxicity. The risks of CW toxicity were then further characterized according to the median effective concentration (EC{sub 50}) dose-response model. Results: A total of 347 lesions were treated with a median follow-up of 19 months. Frequency of Grade I and higher CW pain and/or fracture for CW vs. non-CW lesions was 21% vs. 4%, respectively (p < 0.0001). A dose of 50 Gy was the cutoff for maximum dose (Dmax) to CW and rib above which there was a significant increase in the frequency of any grade pain and fracture (p = 0.03 and p = 0.025, respectively). Volume of CW receiving 15 Gy - 40 Gy was highly predictive of toxicity (R{sup 2} > 0.9). According to the EC{sub 50} model, 5 cc and 15 cc of CW receiving 40 Gy predict a 10% and 30% risk of CW toxicity, respectively. Conclusion: Adequate tumor coverage remains the primary objective when treating lung or liver lesions with SBRT. To minimize toxicity when treating lesions in close proximity to the CW, Dmax of the CW and/or ribs should remain <50 Gy, and <5 cc of CW should receive {>=}40 Gy.

  5. Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer

    SciTech Connect

    Khan, Rao F. Villarreal-Barajas, Eduardo; Lau, Harold; Liu, Hong-Wei

    2014-04-01

    Stereotactic body radiotherapy (SBRT) is a curative regimen that uses hypofractionated radiation-absorbed dose to achieve a high degree of local control in early stage non–small cell lung cancer (NSCLC). In the presence of heterogeneities, the dose calculation for the lungs becomes challenging. We have evaluated the dosimetric effect of the recently introduced advanced dose-calculation algorithm, Acuros XB (AXB), for SBRT of NSCLC. A total of 97 patients with early-stage lung cancer who underwent SBRT at our cancer center during last 4 years were included. Initial clinical plans were created in Aria Eclipse version 8.9 or prior, using 6 to 10 fields with 6-MV beams, and dose was calculated using the anisotropic analytic algorithm (AAA) as implemented in Eclipse treatment planning system. The clinical plans were recalculated in Aria Eclipse 11.0.21 using both AAA and AXB algorithms. Both sets of plans were normalized to the same prescription point at the center of mass of the target. A secondary monitor unit (MU) calculation was performed using commercial program RadCalc for all of the fields. For the planning target volumes ranging from 19 to 375 cm{sup 3}, a comparison of MUs was performed for both set of algorithms on field and plan basis. In total, variation of MUs for 677 treatment fields was investigated in terms of equivalent depth and the equivalent square of the field. Overall, MUs required by AXB to deliver the prescribed dose are on an average 2% higher than AAA. Using a 2-tailed paired t-test, the MUs from the 2 algorithms were found to be significantly different (p < 0.001). The secondary independent MU calculator RadCalc underestimates the required MUs (on an average by 4% to 5%) in the lung relative to either of the 2 dose algorithms.

  6. Teflon cylindrical phantom for delivery quality assurance of stereotactic body radiotherapy (SBRT).

    PubMed

    Lack, Danielle W; Kakakhel, Ali; Starin, Ross; Snyder, Michael

    2014-01-06

    At our institution the standard delivery quality assurance (DQA) procedure for tomotherapy plans is accomplished with a water equivalent phantom, EDR2 film, and ion chamber point-dose measurements. Most plans deliver at most 5 Gy to the dose plane; however, recently a stereotactic body radiotherapy (SBRT) protocol has produced plans delivering upwards of 12 Gy to the film plane. EDR2 film saturates at a dose of ~ 7 Gy, requiring a modification of our DQA procedure for SBRT plans. To reduce the dose to the film plane and accommodate a possible move to SBRT using Varian RapidArc, a Teflon phantom has been constructed and tested. Our Teflon phantom is cylindrical in shape and of a similar design to the standard phantom. The phantom was MVCT scanned on the TomoTherapy system with images imported into the TomoTherapy and Varian Eclipse planning systems. Phantom images were smoothed to reduce artifacts for treatment planning purposes. Verification SBRT plans were delivered with film and point-dose benchmarked against the standard procedure. Verification tolerance criteria were 3% dose difference for chamber measurements and a gamma pass rate > 90% for film (criteria: 3 mm DTA, 3% dose difference, 10% threshold). The phantom sufficiently reduced dose to the film plane for DQA of SBRT plans. Both planning systems calculated accurate point doses in phantom, with the largest differences being 2.4% and 4.4% for TomoTherapy and Rapid Arc plans. Measured dose distributions correlated well with planning system calculations (γ < 1 for > 95%). These results were comparable to the standard phantom. The Teflon phantom appears to be a potential option for SBRT DQA. Preliminary data show that the planning systems are capable of calculating point doses in the Teflon, and the dose to the film plane is reduced sufficiently to allow for a direct measured DQA without the need for dose rescaling.

  7. Hypofractionated stereotactic body radiotherapy in low- and intermediate-risk prostate carcinoma

    PubMed Central

    Kim, Hun Jung; Phak, Jeong Hoon; Kim, Woo Chul

    2016-01-01

    Purpose Stereotactic body radiotherapy (SBRT) takes advantage of low α/β ratio of prostate cancer to deliver a large dose in few fractions. We examined clinical outcomes of SBRT using CyberKnife for the treatment of low- and intermediate-risk prostate cancer. Materials and Methods This study was based on a retrospective analysis of the 33 patients treated with SBRT using CyberKnife for localized prostate cancer (27.3% in low-risk and 72.7% in intermediate-risk). Total dose of 36.25 Gy in 5 fractions of 7.25 Gy were administered. The acute and late toxicities were recorded using the Radiation Therapy Oncology Group scale. Prostate-specific antigen (PSA) response was monitored. Results Thirty-three patients with a median 51 months (range, 6 to 71 months) follow-up were analyzed. There was no biochemical failure. Median PSA nadir was 0.27 ng/mL at median 33 months and PSA bounce occurred in 30.3% (n = 10) of patients at median at median 10.5 months after SBRT. No grade 3 acute toxicity was noted. The 18.2% of the patients had acute grade 2 genitourinary (GU) toxicities and 21.2% had acute grade 2 gastrointestinal (GI) toxicities. After follow-up of 2 months, most complications had returned to baseline. There was no grade 3 late GU and GI toxicity. Conclusion Our experience with SBRT using CyberKnife in low- and intermediate-risk prostate cancer demonstrates favorable efficacy and toxicity. Further studies with more patients and longer follow-up duration are required. PMID:27306777

  8. Prognostic Factors in Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Matsuo, Yukinori; Shibuya, Keiko; Nagata, Yasushi; Takayama, Kenji; Norihisa, Yoshiki; Mizowaki, Takashi; Narabayashi, Masaru; Sakanaka, Katsuyuki; Hiraoka, Masahiro

    2011-03-15

    Purpose: To investigate the factors that influence clinical outcomes after stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer (NSCLC). Methods and Materials: A total of 101 consecutive patients who underwent SBRT with 48 Gy in 4 fractions for histologically confirmed Stage I NSCLC were enrolled in this study. Factors including age, maximal tumor diameter, sex, performance status, operability, histology, and overall treatment time were evaluated with regard to local progression (LP), disease progression (DP), and overall survival (OS) using the Cox proportional hazards model. Prognostic models were built with recursive partitioning analysis. Results: Three-year OS was 58.6% with a median follow-up of 31.4 months. Cumulative incidence rates of LP and DP were 13.2% and 40.8% at 3 years, respectively. Multivariate analysis demonstrated that tumor diameter was a significant factor in all endpoints of LP, DP, and OS. Other significant factors were age in DP and sex in OS. Recursive partitioning analysis indicated a condition for good prognosis (Class I) as follows: female or T1a (tumor diameter {<=}20 mm). When the remaining male patients with T1b-2a (>20 mm) were defined as Class II, 3-year LP, DP, and OS were 6.8%, 23.6%, and 69.9% in recursive partitioning analysis Class I, respectively, whereas these values were 19.9%, 58.3%, and 47.1% in Class II. The differences between the classes were statistically significant. Conclusions: Tumor diameter and sex were the most significant factors in SBRT for NSCLC. T1a or female patients had good prognosis.

  9. Predictor of Severe Gastroduodenal Toxicity After Stereotactic Body Radiotherapy for Abdominopelvic Malignancies

    SciTech Connect

    Bae, Sun Hyun; Kim, Mi-Sook; Cho, Chul Koo; Kang, Jin-Kyu; Lee, Sang Yeob; Lee, Kyung-Nam; Lee, Dong Han; Han, Chul Ju; Yang, Ki Young; Kim, Sang Bum

    2012-11-15

    Purpose: To identify the predictors for the development of severe gastroduodenal toxicity (GDT) in patients treated with stereotactic body radiotherapy (SBRT) using 3 fractionations for abdominopelvic malignancies. Methods and Materials: From 2001 to 2011, 202 patients with abdominopelvic malignancies were treated with curative-intent SBRT. Among these patients, we retrospectively reviewed the clinical records of 40 patients with the eligibility criteria as follows: 3 fractionations, follow-up period {>=}1 year, absence of previous radiation therapy (RT) history or combination of external-beam RT and the presence of gastroduodenum (GD) that received a dose higher than 20% of prescribed dose. The median SBRT dose was 45 Gy (range, 33-60 Gy) with 3 fractions. We analyzed the clinical and dosimetric parameters, including multiple dose-volume histogram endpoints: V{sub 20} (volume of GD that received 20 Gy), V{sub 25}, V{sub 30}, V{sub 35}, and D{sub max} (the maximum point dose). The grade of GDT was defined by the National Cancer Institute Common Toxicity Criteria version 4.0, and GDT {>=}grade 3 was defined as severe GDT. Results: The median time to the development of severe GDT was 6 months (range, 3-12 months). Severe GDT was found in 6 patients (15%). D{sub max} was the best dosimetric predictor for severe GDT. D{sub max} of 35 Gy and 38 Gy were respectively associated with a 5% and 10% probability of the development of severe GDT. A history of ulcer before SBRT was the best clinical predictor on univariate analysis (P=.0001). Conclusions: We suggest that D{sub max} is a valuable predictor of severe GDT after SBRT using 3 fractionations for abdominopelvic malignancies. A history of ulcer before SBRT should be carefully considered as a clinical predictor, especially in patients who receive a high dose to GD.

  10. Stereotactic Body Radiotherapy for Localized Prostate Cancer: Interim Results of a Prospective Phase II Clinical Trial

    SciTech Connect

    King, Christopher R. Brooks, James D.; Gill, Harcharan; Pawlicki, Todd; Cotrutz, Cristian; Presti, Joseph C.

    2009-03-15

    Purpose: The radiobiology of prostate cancer favors a hypofractionated dose regimen. We report results of a prospective Phase II clinical trial of stereotactic body radiotherapy (SBRT) for localized prostate cancer. Methods and Materials: Forty-one low-risk prostate cancer patients with 6 months' minimum follow-up received 36.25 Gy in five fractions of 7.25 Gy with image-guided SBRT alone using the CyberKnife. The early (<3 months) and late (>6 months) urinary and rectal toxicities were assessed using validated quality of life questionnaires (International Prostate Symptom Score, Expanded Prostate Cancer Index Composite) and the Radiation Therapy Oncology Group (RTOG) toxicity criteria. Patterns of prostate-specific antigen (PSA) response are analyzed. Results: The median follow-up was 33 months. There were no RTOG Grade 4 acute or late rectal/urinary complications. There were 2 patients with RTOG Grade 3 late urinary toxicity and none with RTOG Grade 3 rectal complications. A reduced rate of severe rectal toxicities was observed with every-other-day vs. 5 consecutive days treatment regimen (0% vs. 38%, p = 0.0035). A benign PSA bounce (median, 0.4 ng/mL) was observed in 12 patients (29%) occurring at 18 months (median) after treatment. At last follow-up, no patient has had a PSA failure regardless of biochemical failure definition. Of 32 patients with 12 months minimum follow-up, 25 patients (78%) achieved a PSA nadir {<=}0.4 ng/mL. A PSA decline to progressively lower nadirs up to 3 years after treatment was observed. Conclusions: The early and late toxicity profile and PSA response for prostate SBRT are highly encouraging. Continued accrual and follow-up will be necessary to confirm durable biochemical control rates and low toxicity profiles.

  11. SU-E-T-290: Dosimetric Accuracy of Acuros XB and Analytical Anisotropic Algorithm in Stereotactic Ablative Radiotherapy of Small Lung Lesions

    SciTech Connect

    Yu, Amy S; Yang, Y; Bush, K; Fahimian, B; Hsu, A

    2015-06-15

    Purpose: The accuracy of dose calculation for lung stereotactic ablative radiotherapy (SABR) of small lesions critically depends on the proper modeling of the lateral scatter in heterogeneous media. In recent years, grid-based Boltzman solvers such as Acuros XB (AXB) have been introduced for enhanced modeling of radiation transport in heterogeneous media. The purpose of this study is to evaluate the dosimetric impact of dose calculation between AXB and convolution-superposition algorithms such as analytical anisotropic algorithm (AAA) for small lesion sizes and different beam energies. Methods: Five lung SABR VMAT cases with GTV ranged from 0.8cm to 2.5cm in diameter were studied. For each case, doses were calculated by AAA, AXB (V11031) and Monte Carlo simulation (MC) with the same plan parameters for 10MV and 6MV. The dose calculation accuracy were evaluated by comparing DVHs and dose distributions with MC as the benchmark. The accuracy of calculated dose was also validated by EBT3 film measurement with a field size of 3cmx3cm in a thorax phantom. Results: For 10MV and GTV less than 1cm, dose calculated by AXB agrees well with MC compared to AAA. Dose difference calculated with AXB and AAA could be up to 30%. For GTV greater than 2cm, calculation results of AXB and AAA agree within 5% in GTV. For 6MV, the difference between calculated doses by AXB and AAA is less 10% for GTV less than 1cm. Based on film measurements, lung dose was overestimated 10% and 20% by AAA for 6MV and 10MV. Conclusion: Lateral scatter and transport is modeled more accurately by AXB than AAA in heterogeneous media, especially for small field size and high energy beams. The accuracy depends on the assigned material in calculation. If grid-based Boltzman solvers or MC are not available for calculation, lower energy beams should be used for treatment.

  12. Pulmonary ablation: a primer.

    PubMed

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up.

  13. Prediction of Chest Wall Toxicity From Lung Stereotactic Body Radiotherapy (SBRT)

    SciTech Connect

    Stephans, Kevin L.; Djemil, Toufik; Tendulkar, Rahul D.; Robinson, Cliff G.; Reddy, Chandana A.; Videtic, Gregory M.M.

    2012-02-01

    Purpose: To determine patient, tumor, and treatment factors related to the development of late chest wall toxicity after lung stereotactic body radiotherapy (SBRT). Methods and Materials: We reviewed a registry of 134 patients treated with lung SBRT to 60 Gy in 3 fractions who had greater than 1 year of clinical follow-up and no history of multiple treatments to the same lobe (n = 48). Patients were treated as per Radiation Therapy Oncology Group Protocol 0236 without specific chest wall avoidance criteria. The chest wall was retrospectively contoured. Thirty-two lesions measured less than 3 cm, and sixteen measured 3 to 5 cm. The median planning target volume was 29 cm{sup 3}. Results: With a median follow-up of 18.8 months, 10 patients had late symptomatic chest wall toxicity (4 Grade 1 and 6 Grade 2) at a median of 8.8 months after SBRT. No patient characteristics (age, diabetes, hypertension, peripheral vascular disease, or body mass index) were predictive for toxicity, whereas there was a trend for continued smoking (p = 0.066; odds ratio [OR], 4.4). Greatest single tumor dimension (p = 0.047; OR, 2.63) and planning target volume (p = 0.040; OR, 1.04) were correlated with toxicity, whereas distance from tumor edge to chest wall and gross tumor volume did not reach statistical significance. Volumes of chest wall receiving 30 Gy (V30) through 70 Gy (V70) were all highly significant, although this correlation weakened for V65 and V70 and maximum chest wall point dose only trended to significance (p = 0.06). On multivariate analysis, tumor volume was no longer correlated with toxicity and only V30 through V60 remained statistically significant. Conclusions: Tumor size and chest wall dosimetry are correlated to late chest wall toxicity. Only chest wall V30 through V60 remained significant on multivariate analysis. Restricting V30 to 30 cm{sup 3} or less and V60 to 3 cm{sup 3} or less should result in a 10% to 15% risk of late chest wall toxicity or lower.

  14. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT.

  15. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Rao Min; Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  16. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients.

  17. Spine Stereotactic Body Radiotherapy Outcomes in Patients with Concurrent Brain Metastases

    PubMed Central

    Park, Henry S; Laurans, Maxwell S; Chiang, Veronica S; Yu, James B; Husain, Zain A

    2016-01-01

    Objectives: Stereotactic body radiotherapy (SBRT) is an emerging technique for maximizing tumor and pain control in selected patients with spinal metastases. Outcomes for those with concurrent brain metastases (CBM) have not been well-described previously. The goal of this study was to compare outcomes for patients with or without CBM treated with spine SBRT. Methods: Records of all patients treated with SBRT for spine metastases at our institution from January 2008 to January 2014 were reviewed. Chi-square analyses and the Mann-Whitney test were used to assess the association of CBM (defined as brain metastasis present prior to or at the time of spinal SBRT) with potential covariates. The log-rank test and Cox proportional hazards regression were used to evaluate the impact of CBM on overall survival and local control from the time of the first course of spine SBRT. Results: Seventy-eight patients and a total of 86 SBRT lesions were treated. Median patient age was 60 years (range: 38-84 years); 28.2% had radioresistant histologies. A single fraction was used in 91.0% of treatments. One-year local control was 89.4%, and one-year overall survival was 45.8%. A total of 19 patients (24.4%) had CBM. Among these CBM patients, 18 (94.7%) underwent intracranial radiosurgery and nine (47.4%) were diagnosed synchronously with their spine metastases. Local control was not significantly different between patients with or without CBM on univariable (median: 58 months vs. not reached, p = 0.53) or multivariable analyses (HR 0.52, 95% CI 0.06-4.33). Overall survival was also not significantly different between patients with or without CBM on univariable (median: 7 vs. 11 months, log-rank p = 0.12) or multivariable analyses (HR 1.62, 95% CI 0.87-3.03). Conclusions: Patients with CBM do not appear to have a statistically significant detriment in clinical outcomes, suggesting that CBM should not necessarily be considered a contraindication for spine SBRT. Although our

  18. A Dosimetric Model of Duodenal Toxicity After Stereotactic Body Radiotherapy for Pancreatic Cancer

    SciTech Connect

    Murphy, James D.; Christman-Skieller, Claudia; Kim, Jeff; Dieterich, Sonja; Chang, Daniel T.; Koong, Albert C.

    2010-12-01

    Introduction: Dose escalation for pancreas cancer is limited by the tolerance of adjacent normal tissues, especially with stereotactic body radiotherapy (SBRT). The duodenum is generally considered to be the organ at greatest risk. This study reports on the dosimetric determinants of duodenal toxicity with single-fraction SBRT. Methods and Materials: Seventy-three patients with locally advanced unresectable pancreatic adenocarcinoma received 25 Gy in a single fraction. Dose-volume histogram (DVH) endpoints evaluated include V{sub 5} (volume of duodenum that received 5 Gy), V{sub 10}, V{sub 15}, V{sub 20}, V{sub 25}, and D{sub max} (maximum dose to 1 cm{sup 3}). Normal tissue complication probability (NTCP) was evaluated with a Lyman model. Univariate and multivariate analyses were conducted with Kaplan-Meier and Cox regression models. Results: The median time to Grade 2-4 duodenal toxicity was 6.3 months (range, 1.6-11.8 months). The 6- and 12-month actuarial rates of toxicity were 11% and 29%, respectively. V{sub 10}-V{sub 25} and D{sub max} all correlated significantly with duodenal toxicity (p < 0.05). In particular, V{sub 15} {>=} 9.1 cm{sup 3} and V{sub 15} < 9.1 cm{sup 3} yielded duodenal toxicity rates of 52% and 11%, respectively (p = 0.002); V{sub 20} {>=} 3.3 cm{sup 3} and V{sub 20} < 3.3 cm{sup 3} gave toxicity rates of 52% and 11%, respectively (p = 0.002); and D{sub max} {>=} 23 Gy and D{sub max} < 23 Gy gave toxicity rates of 49% and 12%, respectively (p = 0.004). Lyman NTCP model optimization generated the coefficients m = 0.23, n = 0.12, and TD{sub 50} = 24.6 Gy. Only the Lyman NTCP model remained significant in multivariate analysis (p = 0.001). Conclusions: Multiple DVH endpoints and a Lyman NTCP model are strongly predictive of duodenal toxicity after SBRT for pancreatic cancer. These dose constraints will be valuable in future abdominal SBRT studies.

  19. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    SciTech Connect

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  20. Local control rates with five-fraction stereotactic body radiotherapy for oligometastatic cancer to the lung

    PubMed Central

    Chen, Yuhchyau; Hare, Mary Z.; Usuki, Kenneth Y.; Zhang, Hong; Lundquist, Thomas; Joyce, Neil; Schell, Michael C.; Milano, Michael T.

    2014-01-01

    Objective To report our institutional experience with five fractions of daily 8-12 Gy stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic cancer to the lung. Methods Thirty-four consecutive patients with oligometastatic cancers to the lung were treated with image-guided SBRT between 2008 and 2011. Patient age ranged from 38 to 81 years. There were 17 males and 17 females. Lung metastases were from the following primary cancer types: colon cancer (n=13 patients), head and neck cancer (n=6), breast cancer (n=4), melanoma (n=4), sarcoma (n=4) and renal cell carcinoma (n=3). The median prescription dose was 50 Gy in five fractions (range, 40-60 Gy) to the isocenter, with the 80% isodose line encompassing the planning target volume (PTV) [defined as gross tumor volume (GTV) + 7-11 mm volumetric expansion]. The follow-up interval ranged from 2.4-54 months, with a median of 16.7 months. Results The 1-, 2-, and 3-year patient local control (LC) rates for all patients were 93%, 88%, and 80% respectively. The 1-, 2-, and 3-year overall survival (OS) rates were 62%, 44%, and 23% respectively. The 1- and 2-year patient LC rates were 95% and 88% for tumor size 1-2 cm (n=25), and 86% for tumor size 2-3 cm (n=7). The majority (n=4) of local failures occurred within 12 months. No patient experienced local failure after 12 months except for one patient with colon cancer whose tumors progressed locally at 26 months. All five patients with local recurrences had colorectal cancer. Statistical analyses showed that age, gender, previous chemotherapy, previous surgery or radiation had no significant effect on LC rates. No patient was reported to have any symptomatic pneumonitis at any time point. Conclusions SBRT for oligometastatic disease to the lung using 8-12 Gy daily fractions over five treatments resulted in excellent 1- and 2-year LC rates. Most local failures occurred within the first 12 months, with five local failures associated with colorectal cancer

  1. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy

    SciTech Connect

    Mampuya, Wambaka Ange; Nakamura, Mitsuhiro; Matsuo, Yukinori; Ueki, Nami; Iizuka, Yusuke; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Fujimoto, Takahiro; Yano, Shinsuke

    2013-09-15

    Purpose: To assess the effect of abdominal compression on the interfraction variation in tumor position in lung stereotactic body radiotherapy (SBRT) using cone-beam computed tomography (CBCT) in a larger series of patients with large tumor motion amplitude.Methods: Thirty patients with lung tumor motion exceeding 8 mm who underwent SBRT were included in this study. After translational and rotational initial setup error was corrected based on bone anatomy, CBCT images were acquired for each fraction. The residual interfraction variation was defined as the difference between the centroid position of the visualized target in three dimensions derived from CBCT scans and those derived from averaged intensity projection images. The authors compared the magnitude of the interfraction variation in tumor position between patients treated with [n= 16 (76 fractions)] and without [n= 14 (76 fractions)] abdominal compression.Results: The mean ± standard deviation (SD) of the motion amplitude in the longitudinal direction before abdominal compression was 19.9 ± 7.3 (range, 10–40) mm and was significantly (p < 0.01) reduced to 12.4 ± 5.8 (range, 5–30) mm with compression. The greatest variance of the interfraction variation with abdominal compression was observed in the longitudinal direction, with a mean ± SD of 0.79 ± 3.05 mm, compared to −0.60 ± 2.10 mm without abdominal compression. The absolute values of the 95th percentile of the interfraction variation for one side in each direction were 3.97/6.21 mm (posterior/anterior), 4.16/3.76 mm (caudal/cranial), and 2.90/2.32 mm (right/left) without abdominal compression, and 2.14/5.03 mm (posterior/anterior), 3.93/9.23 mm (caudal/cranial), and 2.37/5.45 mm (right/left) with abdominal compression. An absolute interfraction variation greater than 5 mm was observed in six (9.2%) fractions without and 13 (17.1%) fractions with abdominal compression.Conclusions: Abdominal compression was effective for reducing the amplitude

  2. Oligometastases Treated With Stereotactic Body Radiotherapy: Long-Term Follow-Up of Prospective Study

    SciTech Connect

    Milano, Michael T.; Katz, Alan W.; Zhang Hong; Okunieff, Paul

    2012-07-01

    Purpose: To analyze the long-term survival and tumor control outcomes after stereotactic body radiotherapy (SBRT) for metastases limited in number and extent. Methods and Materials: We prospectively analyzed the long-term overall survival (OS) and cancer control outcomes of 121 patients with five or fewer clinically detectable metastases, from any primary site, metastatic to one to three organ sites, and treated with SBRT. Freedom from widespread distant metastasis (FFDM) was defined as metastatic disease not amenable to local therapy (i.e., resection or SBRT). Prognostic variables were assessed using log-rank and Cox regression analyses. Results: For breast cancer patients, the median follow-up was 4.5 years (7.1 years for 16 of 39 patients alive at the last follow-up visit). The 2-year OS, FFDM, and local control (LC) rate was 74%, 52%, and 87%, respectively. The 6-year OS, FFDM, and LC rate was 47%, 36%, and 87%, respectively. From the multivariate analyses, the variables of bone metastases (p = .057) and one vs. more than one metastasis (p = .055) were associated with a fourfold and threefold reduced hazard of death, respectively. None of the 17 bone lesions from breast cancer recurred after SBRT vs. 10 of 68 lesions from other organs that recurred (p = .095). For patients with nonbreast cancers, the median follow-up was 1.7 years (7.3 years for 7 of 82 patients alive at the last follow-up visit). The 2-year OS, FFDM, and LC rate was 39%, 28%, and 74%, respectively. The 6-year OS, FFDM, and LC rate was 9%, 13%, and 65%, respectively. For nonbreast cancers, a greater SBRT target volume was significantly adverse for OS (p = .012) and lesion LC (p < .0001). Patients whose metastatic lesions, before SBRT, demonstrated radiographic progression after systemic therapy experienced significantly worse OS compared with patients with stable or regressing disease. Conclusions: Select patients with limited metastases treated with SBRT are long-term survivors. Future

  3. Stereotactic Body Radiotherapy for Inoperable Liver Tumors: Results of a Single Institutional Experience

    PubMed Central

    Hijazi, Hussam; Campeau, Marie-Pierre; Roberge, David; Donath, David; Lapointe, Real; Vandenbroucke-Menu, Franck; Taussky, Daniel; Boudam, Karim; Chan, Gabriel; Bujold, Alexis

    2016-01-01

    Objectives Stereotactic body radiation therapy (SBRT) is an emerging treatment option for liver tumors unsuitable for ablation or surgery. We report our experience with SBRT in the treatment of liver tumors. Materials and methods Patients with primary or secondary liver cancer were identified in our local SBRT database. Patients were included irrespective of prior liver-directed therapies. The primary endpoint of our review was in-field local control (LC). Secondary endpoints were progression-free survival (PFS), overall survival (OS), and toxicity. Results From 2009 to 2015, a total of 71 liver lesions in 68 patients were treated with SBRT (three patients had two liver lesions treated). The median age was 71 years (27–89 years). Hepatocellular carcinoma (HCC) was the diagnosis in 23 patients (34%), with the grade of Child–Pugh A (52%), B (39%), or C (nine percent) cirrhosis. Six patients (nine percent) had intrahepatic cholangiocarcinoma (IHC). The remaining 39 patients (57%) had metastatic liver lesions. Colorectal adenocarcinoma was the most common primary tumor type (81%). The median size for HCC, IHC, and metastatic lesions was 5 cm (2–9 cm), 3.6 cm (2–4.9 cm), and 4 cm (1–8 cm), respectively. The median prescribed dose was 45 Gy (16–50 Gy). Median follow-up was 11.5 months (1–45 months). Actuarial one-year in-field LC for HCC and metastatic lesions was 85% and 64% respectively (p= 0.66). At one year, the actuarial rate of new liver lesions was 40% and 26%, respectively, (p=0.58) for HCC and metastases. Only six patients with IHC were treated with SBRT in this study – in these patients, one-year LC was 78% with new liver lesions in 53%. The SBRT treatments were well tolerated. The side effects included common criteria for adverse events (CTCAE) v4 grade 1 acute gastrointestinal toxicity in three patients, grade 3 nausea in one patient, and grade 3 acute dermatitis in another patient. Two patients had grade 5 toxicity. Radiation pneumonitis was

  4. Dosimetric comparison of a 6-MV flattening-filter and a flattening-filter-free beam for lung stereotactic ablative radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Kim, Jin-Young; Kang, Sang-Won; Suh, Tae-Suk

    2015-11-01

    The purpose of this study was to test the feasibility of clinical usage of a flattening-filter-free (FFF) beam for treatment with lung stereotactic ablative radiotherapy (SABR). Ten patients were treated with SABR and a 6-MV FFF beam for this study. All plans using volumetric modulated arc therapy (VMAT) were optimized in the Eclipse treatment planning system (TPS) by using the Acuros XB (AXB) dose calculation algorithm and were delivered by using a Varian TrueBeam ™ linear accelerator equipped with a high-definition (HD) multi-leaf collimator. The prescription dose used was 48 Gy in 4 fractions. In order to compare the plan using a conventional 6-MV flattening-filter (FF) beam, the SABR plan was recalculated under the condition of the same beam settings used in the plan employing the 6-MV FFF beam. All dose distributions were calculated by using Acuros XB (AXB, version 11) and a 2.5-mm isotropic dose grid. The cumulative dosevolume histograms (DVH) for the planning target volume (PTV) and all organs at risk (OARs) were analyzed. Technical parameters, such as total monitor units (MUs) and the delivery time, were also recorded and assessed. All plans for target volumes met the planning objectives for the PTV ( i.e., V95% > 95%) and the maximum dose ( i.e., Dmax < 110%) revealing adequate target coverage for the 6-MV FF and FFF beams. Differences in DVH for target volumes (PTV and clinical target volume (CTV)) and OARs on the lung SABR plans from the interchange of the treatment beams were small, but showed a marked reduction (52.97%) in the treatment delivery time. The SABR plan with a FFF beam required a larger number of MUs than the plan with the FF beam, and the mean difference in MUs was 4.65%. This study demonstrated that the use of the FFF beam for lung SABR plan provided better treatment efficiency relative to 6-MV FF beam. This strategy should be particularly beneficial for high dose conformity to the lung and decreased intra-fraction movements because of

  5. Residual {sup 18}F-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    SciTech Connect

    Bollineni, Vikram Rao; Widder, Joachim; Pruim, Jan; Langendijk, Johannes A.; Wiegman, Erwin M.

    2012-07-15

    Purpose: To investigate the prognostic value of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically inoperable patients with proven Stage I NSCLC or FDG-PET-positive primary lung tumors were analyzed retrospectively. SABR consisted of 60 Gy delivered in 3 to 8 fractions. Maximum standardized uptake value (SUV{sub max}) of the treated lesion was assessed 12 weeks after SABR, using FDG-PET. Patients were subsequently followed at regular intervals using computed tomography (CT) scans. Association between post-SABR SUV{sub max} and local control (LC), mediastinal failure, distant failure, overall survival (OS), and disease-specific survival (DSS) was examined. Results: Median follow-up time was 17 months (range, 3-40 months). Median lesion size was 25 mm (range, 9-70 mm). There were 6 local failures: 15 mediastinal failures, 15 distant failures, 13 disease-related deaths, and 16 deaths from intercurrent diseases. Glucose corrected post-SABR median SUV{sub max} was 3.0 (range, 0.55-14.50). Using SUV{sub max} 5.0 as a cutoff, the 2-year LC was 80% versus 97.7% for high versus low SUV{sub max}, yielding an adjusted subhazard ratio (SHR) for high post-SABR SUV{sub max} of 7.3 (95% confidence interval [CI], 1.4-38.5; p = 0.019). Two-year DSS rates were 74% versus 91%, respectively, for high and low SUV{sub max} values (SHR, 2.2; 95% CI, 0.8-6.3; p = 0.113). Two-year OS was 62% versus 81% (hazard ratio [HR], 1.6; 95% CI, 0.7-3.7; p = 0.268). Conclusions: Residual FDG uptake (SUV{sub max} {>=}5.0) 12 weeks after SABR signifies increased risk of local failure. A single FDG-PET scan at 12 weeks could be used to tailor further follow-up according to the risk of failure, especially in patients potentially eligible for salvage surgery.

  6. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery.

    PubMed

    Quan, Kimmen; Xu, Karen M; Lalonde, Ron; Horne, Zachary D; Bernard, Mark E; McCoy, Chuck; Clump, David A; Burton, Steven A; Heron, Dwight E

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80-86%). The median maximum dose was 57.1 Gy (range: 35.7-65.1 Gy). The mean combined PTV was 49.57 cm(3) (range: 14.90-87.38 cm(3)). For single-isocenter plans, the median CI was 1.15 (range: 0.97-1.53). The median HI was 1.19 (range: 1.16-1.28). The median GI was 4.60 (range: 4.16-7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7-62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1-9.3 Gy). The median lung V5 was 18.7% (range: 3.8-41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10

  7. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    SciTech Connect

    King, Christopher R.; Brooks, James D.; Gill, Harcharan; Presti, Joseph C.

    2012-02-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 {+-} 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%-102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  8. Is surgery indicated for elderly patients with early stage nonsmall cell lung cancer, in the era of stereotactic body radiotherapy?

    PubMed Central

    Nguyen, Nam P.; Godinez, Juan; Shen, Wei; Vinh-Hung, Vincent; Gorobets, Helena; Thariat, Juliette; Ampil, Fred; Vock, Jacqueline; Karlsson, Ulf; Chi, Alexander

    2016-01-01

    Abstract Background: The aim of this article is to assess the influence of comorbidities among elderly patients (at least 70 year old) undergoing surgery for early stage nonsmall cell lung cancer (NSCLC) and to explore the tolerability and efficacy of surgery in relation to stereotactic body radiotherapy (SBRT) in this patient population. Methods: A review of the literature on the prevalence of comorbidities among elderly patients with early stage NSCLC, and the impact of comorbidity factors on survival following surgery was conducted. Survival rates and the incidence of complications following SBRT for this patient population were also identified. Results: Comorbidities in elderly patients with early stage NSCLC may preclude surgery or lead to poor survival following surgery. However, chronological age alone should not be used as a deciding factor to deny curative treatment in elderly, but fit patients. Stereotactic body radiotherapy is well tolerated by elderly lung cancer patients and may result in survival rates similar to that following surgery. Conclusion: SBRT should be the treatment of choice for early stage NSCLC in elderly patients with multiple comorbidities that preclude surgery. The roles of surgery and SBRT for elderly, -fit patients with early stage NSCLC needs to be further defined in future prospective trials. PMID:27787380

  9. Dosimetric comparison of flattened and unflattened beams for stereotactic ablative radiotherapy of stage I non-small cell lung cancer

    SciTech Connect

    Hrbacek, Jan; Lang, Stephanie; Graydon, Shaun N.; Klöck, Stephan; Riesterer, Oliver

    2014-03-15

    Purpose: To compare contribution and accuracy of delivery for two flattening filter free (FFF) beams of the nominal energy 6 and 10 MV and a 6 MV flattened beam for early stage lung cancer. Methods: For each of 11 patients with stage I nonsmall cell lung cancer three volumetric modulated arc therapy plans were prepared utilizing a 6 MV flattened photon beam (X6FF) and two nonflattened beams of nominal energy 6 and 10 MV (X6FFF, X10FFF). Optimization constraints were set to produce dose distributions that meet the criteria of the RTOG-0915 protocol. The radiation schedule used for plan comparison in all patients was 50 Gy in five fractions. Dosimetric parameters of planning target volume (PTV) and organs-at-risk and delivery times were assessed and compared. All plans were subject to verification using Delta{sup 4} unit (Scandidos, Sweden) and absolutely calibrated gafchromic films in a thorax phantom. Results: All plans had a qualitatively comparable outcome. Obtained dose distributions were conformal (CI < 1.17) and exhibited a steep dose fall-off outside the PTV. The ratio of monitor units for FFF versus FF plans in the authors' study ranged from 0.95 to 1.21 and from 0.93 to 1.25 for X6FFF/X6FF and X10FFF/X6FF comparisons, respectively. The ratio systematically increased with increasing size of the PTV (up to +25% for 150 cm{sup 3} PTV). Yet the integral dose to healthy tissue did not follow this trend. Comparison of cumulative dose volume histograms for a patient's body showed that X6FFF plans exhibit improved conformity and reduced the volume of tissue that received more than 50% of the prescription dose. Parameters related to dose gradient showed statistically significant improvement. CI{sub 50%}, CI{sub 60%}, CI{sub 80%}, and CI{sub 100%} were on average reduced by 4.6% (p < 0.001), 4.6% (p = 0.002), 3.1% (p = 0.002), and 1.2% (p = 0.039), respectively. Gradient measure was on average reduced by 4.2% (p < 0.001). Due to dose reduction in the surrounding lung

  10. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    SciTech Connect

    Wakai, Nobuhide; Sumida, Iori; Otani, Yuki; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Hasegawa, Masatoshi

    2015-05-15

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (−3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient index (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (“V” shape). The optimal leaf margins for conformity index and modified GI were −1.1 ± 0.3 mm (mean ± 1 SD) and −0.2 ± 0.9 mm, respectively, for 7 MV FFF compared to −1.0 ± 0.4 and −0.3 ± 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were −0.9 ± 0.6, −1.1 ± 0.8, and −2.1 ± 1.2 mm, respectively, for 7 MV FFF compared

  11. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  12. Prostate-specific antigen kinetics after stereotactic body radiotherapy as monotherapy or boost after whole pelvic radiotherapy for localized prostate cancer

    PubMed Central

    Kim, Hun Jung; Phak, Jung Hoon; Kim, Woo Chul

    2015-01-01

    Purpose Stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. However, prostate-specific antigen (PSA) kinetics after SBRT has not been well characterized. The purpose of the current study is to assess the kinetics of PSA for low- and intermediate-risk prostate cancer patients treated with SBRT using Cyberknife as both monotherapy and boost after whole pelvic radiotherapy (WPRT) in the absence of androgen deprivation therapy. Methods A total of 61 patients with low- and intermediated-risk prostate cancer treated with SBRT as monotherapy (36.25 Gy in 5 fractions in 32 patients) and SBRT (21 Gy in 3 fractions in 29 patients) boost combined with WPRT (45 Gy in 25 fractions). Patients were excluded if they failed therapy by the Phoenix definition or had androgen deprivation therapy. PSA nadir and rate of change in PSA over time (slope) were calculated and compared. Results With a median follow-up of 52.4 months (range, 14–74 months), for SBRT monotherapy, the median PSA nadir was 0.31 ng/mL (range, 0.04–1.15 ng/mL) and slopes were –0.41 ng/mL/mo, –0.17 ng/mL/mo, –0.12 ng/mL/mo, and –0.09 ng/mL/mo, respectively, for durations of 1 year, 2 years, 3 years, and 4 years postradiotherapy. Similarly, for SBRT boost after WPRT, the median PSA nadir was 0.34 ng/mL (range, 0.04–1.44 ng/mL) and slopes were –0.53 ng/mL/mo, –0.25 ng/mL/mo, –0.14 ng/mL/mo, and –0.09 ng/mL/mo, respectively. The median nadir and slopes of SBRT monotherapy did not differ significantly from those of SBRT boost after WPRT. Benign PSA bounces were common in 30.4% of all cohorts, and the median time to PSA bounce was 12 months (range, 6–25 months). Conclusions In this report of low- and intermediate-risk prostate cancer patients, an initial period of rapid PSA decline was followed by a slow decline, which resulted in a lower PSA nadir. The PSA kinetics of SBRT monotherapy appears to be comparable to those achieved

  13. Dosimetric evaluation of four-dimensional dose distributions of CyberKnife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy.

    PubMed

    Chan, Mark K H; Kwong, Dora L W; Law, Gilbert M L; Tam, Eric; Tong, Anthony; Lee, Venus; Ng, Sherry C Y

    2013-07-08

    Advanced image-guided stereotatic body lung radiotherapy techniques using volumetric-modulated arc radiotherapy (VMAT) with four-dimensional cone-beam computed tomography (4D CBCT) and CyberKnife with real-time target tracking have been clinically implemented by different authors. However, dosimetric comparisons between these techniques are lacking. In this study, 4D CT scans of 14 patients were used to create VMAT and CyberKnife treatment plans using 4D dose calculations. The GTV and the organs at risk (OARs) were defined on the end-exhale images for CyberKnife planning and were then deformed to the midventilation images (MidV) for VMAT optimization. Direct 4D Monte Carlo dose optimizations were performed for CyberKnife (4D(CK)). Four-dimensional dose calculations were also applied to VMAT plans to generate the 4D dose distributions (4D(VMAT)) on the exhale images for direct comparisons with the 4D(CK) plans. 4D(CK) and 4D(VMAT) showed comparable target conformity (1.31 ± 0.13 vs. 1.39 ± 0.24, p = 0.05). GTV mean doses were significantly higher with 4D(CK). Statistical differences of dose volume metrics were not observed in the majority of OARs studied, except for esophagus, with 4D(VMAT) yielding marginally higher D1% than 4D(CK). The normal tissue volumes receiving 80%, 50%, and 30% of the prescription dose (V80%, V50%, and V30%) were higher with 4D(VMAT), whereas 4D(CK) yielded slightly higher V10% in posterior lesions than 4D(VMAT). VMAT resulted in much less monitor units and therefore greater delivery efficiency than CyberKnife. In general, it was possible to produce dosimetrically acceptable plans with both techniques. The selection of treatment modality should consider the dosimetric results as well as the patient's tolerance of the treatment process specific to the SBRT technique.

  14. The Effects of Outer Flow Conditions on the Emergence and Evolution of Geometrical Self Similarity of a Bluff Body during Ablation

    NASA Astrophysics Data System (ADS)

    Allard, Michael; White, Christopher M.

    2016-11-01

    The ablation process (i.e., erosion) of a bluff body, low-temperature ablator is investigated. Two experimental configurations in a heated open-circuit thermal boundary layer wind tunnel are considered: (a) the bluff body is supported in the free stream or (b) placed within the boundary layer growing on the bottom wall of the tunnel. These two configurations were chosen to investigate the effects of outer flow conditions (i.e. uniform in the free stream and varying with the boundary layer) on the emergence and evolution of geometrical self similarity during ablation. A time sequence of streamwise-transverse and streamwise-wall normal images were recorded. The images were analyzed to investigate the temporal evolution of the bluff body's projected area, perimeter, and curvature. The results were compared to similar studies where the erosion was caused from fluid shear force and chemical dissolution both of which scaled-similarly. The insights gained from this study can be used to progress towards physics-based models of bluff body ablation. This work is supported by the NSF (CBET-0967224).

  15. Characteristics of Coupled Nongray Radiating Gas Flows with Ablation Product Effects About Blunt Bodies During Planetary Entries. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1973-01-01

    A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.

  16. Integral dose and radiation-induced secondary malignancies: comparison between stereotactic body radiation therapy and three-dimensional conformal radiotherapy.

    PubMed

    D'Arienzo, Marco; Masciullo, Stefano G; de Sanctis, Vitaliana; Osti, Mattia F; Chiacchiararelli, Laura; Enrici, Riccardo M

    2012-11-19

    The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID) in stereotactic body radiation therapy (SBRT) with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT), estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10 Gy for tumor tissue and imposing the same biological effective dose (BED) on the target (BED = 76 Gy(10)). Total NTIDs for both techniques was calculated considering α/β = 3 Gy for healthy tissue. Excess absolute cancer risk (EAR) was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05). Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002), secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001). This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  17. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    SciTech Connect

    Halberg, F.E.; Fu, K.K.; Weaver, K.A.; Zackheim, H.S.; Epstein, E.H. Jr.; Wintroub, B.U.

    1989-08-01

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived.

  18. Phase 2 Multi-institutional Trial Evaluating Gemcitabine and Stereotactic Body Radiotherapy for Patients With Locally Advanced Unresectable Pancreatic Adenocarcinoma

    PubMed Central

    Herman, Joseph M; Chang, Daniel T; Goodman, Karyn A; Dholakia, Avani S; Raman, Siva P; Hacker-Prietz, Amy; Iacobuzio-Donahue, Christine A; Griffith, Mary E; Pawlik, Timothy M; Pai, Jonathan S; O'Reilly, Eileen; Fisher, George A; Wild, Aaron T; Rosati, Lauren M; Zheng, Lei; Wolfgang, Christopher L; Laheru, Daniel A; Columbo, Laurie A; Sugar, Elizabeth A; Koong, Albert C

    2015-01-01

    Background This phase 2 multi-institutional study was designed to determine whether gemcitabine (GEM) with fractionated stereotactic body radiotherapy (SBRT) results in acceptable late grade 2 to 4 gastrointestinal toxicity when compared with a prior trial of GEM with single-fraction SBRT in patients with locally advanced pancreatic cancer (LAPC). Methods A total of 49 patients with LAPC received up to 3 doses of GEM (1000 mg/m2) followed by a 1-week break and SBRT (33.0 gray [Gy] in 5 fractions). After SBRT, patients continued to receive GEM until disease progression or toxicity. Toxicity was assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0] and the Radiation Therapy Oncology Group radiation morbidity scoring criteria. Patients completed the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ-C30) and pancreatic cancer-specific QLQ-PAN26 module before SBRT and at 4 weeks and 4 months after SBRT. Results The median follow-up was 13.9 months (range, 3.9-45.2 months). The median age of the patients was 67 years and 84% had tumors of the pancreatic head. Rates of acute and late (primary endpoint) grade ≥2 gastritis, fistula, enteritis, or ulcer toxicities were 2% and 11%, respectively. QLQ-C30 global quality of life scores remained stable from baseline to after SBRT (67 at baseline, median change of 0 at both follow-ups; P>.05 for both). Patients reported a significant improvement in pancreatic pain (P = .001) 4 weeks after SBRT on the QLQ-PAN26 questionnaire. The median plasma carbohydrate antigen 19-9 (CA 19-9) level was reduced after SBRT (median time after SBRT, 4.2 weeks; 220 U/mL vs 62 U/mL [P<.001]). The median overall survival was 13.9 months (95% confidence interval, 10.2 months-16.7 months). Freedom from local disease progression at 1 year was 78%. Four patients (8%) underwent margin-negative and lymph node-negative surgical resections. Conclusions

  19. Long term survival with stereotactic ablative radiotherapy (SABR) versus thoracoscopic sublobar lung resection in elderly people: national population based study with propensity matched comparative analysis

    PubMed Central

    Paul, Subroto; Lee, Paul C; Mao, Jialin; Isaacs, Abby J

    2016-01-01

    Objectives To compare cancer specific survival after thoracoscopic sublobar lung resection and stereotactic ablative radiotherapy (SABR) for tumors ≤2 cm in size and thoracoscopic resection (sublobar resection or lobectomy) and SABR for tumors ≤5 cm in size. Design National population based retrospective cohort study with propensity matched comparative analysis. Setting Surveillance, Epidemiology, and End Results (SEER) registry linked with Medicare database in the United States. Participants Patients aged ≥66 with lung cancer undergoing SABR or thoracoscopic lobectomy or sublobar resection from 1 Oct 2007 to 31 June 2012 and followed up to 31 December 2013. Main outcome measures Cancer specific survival after SABR or thoracoscopic surgery for lung cancer. Results 690 (275 (39.9%) SABR and 415 (60.1%) thoracoscopic sublobar lung resection) and 2967 (714 (24.1%) SABR and 2253 (75.9%) thoracoscopic resection) patients were included in primary and secondary analyses. The average age of the entire cohort was 76. Follow-up of the entire cohort ranged from 0 to 6.25 years, with an average of three years. In the primary analysis of patients with tumors sized ≤2 cm, 37 (13.5%) undergoing SABR and 44 (10.6%) undergoing thoracoscopic sublobar resection died from lung cancer, respectively. The cancer specific survival diverged after one year, but in the matched analysis (201 matched patients in each group) there was no significant difference between the groups (SABR v sublobar lung resection mortality: hazard ratio 1.32, 95% confidence interval 0.77 to 2.26; P=0.32). Estimated cancer specific survival at three years after SABR and thoracoscopic sublobar lung resection was 82.6% and 86.4%, respectively. The secondary analysis (643 matched patients in each group) showed that thoracoscopic resection was associated with improved cancer specific survival over SABR in patients with tumors sized ≤5 cm (SABR v resection mortality: hazard ratio 2.10, 1.52 to 2.89; P<0

  20. Stereotactic Body Radiotherapy as Primary Therapy for Head and Neck Cancer in the Elderly or Patients with Poor Performance

    PubMed Central

    Amini, Arya; McDermott, Jessica D.; Gan, Gregory; Bhatia, Shilpa; Sumner, Whitney; Fisher, Christine M.; Jimeno, Antonio; Bowles, Daniel W.; Raben, David; Karam, Sana D.

    2014-01-01

    Objective: Stereotactic body radiotherapy (SBRT) is increasingly used to treat a variety of tumors, including head and neck squamous cell carcinoma (HNSCC) in the recurrent setting. While there are published data for re-irradiation using SBRT for HNSCC, there are limited data supporting its use as upfront treatment for locally advanced disease. Study Design/Methods: Here, we describe three patients who received SBRT as the primary treatment for their HNSCC along with a review of the current literature and discussion of future pathways. Results: The three cases discussed tolerated treatment well with manageable acute toxicities and had either a clinical or radiographic complete response to therapy. Conclusion: Head and neck squamous cell carcinoma presents a unique challenge in the elderly, where medical comorbidities make it difficult to tolerate conventional radiation, often given with a systemic sensitizer. For these individuals, providing a shortened course using SBRT may offer an effective alternative. PMID:25340041

  1. Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Liska, Miroslav; Kaiser, Josef; Krzyzanek, Vladislav; Beddows, David C.; Belenkevitch, Alexander; Morris, Gavin W.; Telle, Helmut H.

    1999-01-01

    Trace mineral analysis of the body is invaluable in biology, medicine and dentistry when considering the role of mineral nutrition and metabolism in the context of maintaining human health. The presence of key elements in the body, such as boron, calcium, chromium, copper, iron, silicon and zinc are known to be of vital importance, but are often found to be present in inadequate quantity. In sharp contrast, the accumulation of other elements, such as aluminum, cadmium, lead and mercury is less favorable, since frequently these metals are already toxic at extremely low concentration levels, interfering with essential chemical processing of vitamins and minerals. Here we report on the application of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy to the analysis of important minerals and toxic elements within the body. Samples from different parts of the body have been studied, including specimens of skin tissue, finger nails and teeth. It is particularly noteworthy that specific sample preparation was not needed for any of these laser spectroscopic measurements, but that specimens could be used as taken from the source.

  2. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    SciTech Connect

    Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-10-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  3. The Effects of Compliance with Nutritional Counselling on Body Composition Parameters in Head and Neck Cancer Patients under Radiotherapy.

    PubMed

    Hopanci Bicakli, D; Ozkaya Akagunduz, O; Meseri Dalak, R; Esassolak, M; Uslu, R; Uyar, M

    2017-01-01

    Background. Radiotherapy (RT) has been associated with increased risk of malnutrition in cancer patients, particularly in those with head and neck cancer (HNC). The aim of this prospective study was to evaluate the effects of compliance of patients with individual dietary counselling on body composition parameters in HNC patients under RT. Material and Methods. Sixty-nine consecutive patients (mean age: 61.0 ± 13.8) were prospectively followed. Bioelectrical impedance analysis (BIA) was performed to determine body composition parameters before, in the middle of, and at the end of RT. All patients received nutritional counselling and majority of them (94.6%) received oral nutritional supplement (ONS) during RT or chemoradiotherapy. If a patient consumed ≥75% of the recommended energy and protein intake via ONS and regular food, he/she was considered to be "compliant" (n = 18), while those who failed to meet this criteria were considered to be "noncompliant" (n = 30). Results. Body mass index, weight, fat percentage, fat mass, fat free mass, and muscle mass did not decrease significantly over time in compliant patients, but in noncompliant patients, all of these indices decreased significantly from baseline compared to the end of treatment (p < 0.001). Hand grip strength did not differ significantly between the two groups at baseline and over time in each group. When retrospectively evaluated, heavy mucositis was less commonly observed in compliant than noncompliant patients (11.1% versus 88.9%, resp.) (p < 0.009). Conclusion. We conclude that body composition parameters were better in head and neck cancer patients considered as compliant with nutritional counselling than noncompliant ones during RT period.

  4. The Effects of Compliance with Nutritional Counselling on Body Composition Parameters in Head and Neck Cancer Patients under Radiotherapy

    PubMed Central

    Ozkaya Akagunduz, O.; Meseri Dalak, R.; Esassolak, M.; Uyar, M.

    2017-01-01

    Background. Radiotherapy (RT) has been associated with increased risk of malnutrition in cancer patients, particularly in those with head and neck cancer (HNC). The aim of this prospective study was to evaluate the effects of compliance of patients with individual dietary counselling on body composition parameters in HNC patients under RT. Material and Methods. Sixty-nine consecutive patients (mean age: 61.0 ± 13.8) were prospectively followed. Bioelectrical impedance analysis (BIA) was performed to determine body composition parameters before, in the middle of, and at the end of RT. All patients received nutritional counselling and majority of them (94.6%) received oral nutritional supplement (ONS) during RT or chemoradiotherapy. If a patient consumed ≥75% of the recommended energy and protein intake via ONS and regular food, he/she was considered to be “compliant” (n = 18), while those who failed to meet this criteria were considered to be “noncompliant” (n = 30). Results. Body mass index, weight, fat percentage, fat mass, fat free mass, and muscle mass did not decrease significantly over time in compliant patients, but in noncompliant patients, all of these indices decreased significantly from baseline compared to the end of treatment (p < 0.001). Hand grip strength did not differ significantly between the two groups at baseline and over time in each group. When retrospectively evaluated, heavy mucositis was less commonly observed in compliant than noncompliant patients (11.1% versus 88.9%, resp.) (p < 0.009). Conclusion. We conclude that body composition parameters were better in head and neck cancer patients considered as compliant with nutritional counselling than noncompliant ones during RT period. PMID:28116152

  5. Phase unwrapping algorithms for use in a true real-time optical body sensor system for use during radiotherapy.

    PubMed

    Parkhurst, James; Price, Gareth; Sharrock, Phil; Moore, Christopher

    2011-12-10

    An evaluation of the suitability of eight existing phase unwrapping algorithms to be used in a real-time optical body surface sensor based on Fourier fringe profilometry is presented. The algorithms are assessed on both the robustness of the results they give and their speed of execution. The algorithms are evaluated using four sets of real human body surface data, each containing five-hundred frames, obtained from patients undergoing radiotherapy, where fringe discontinuity is significant. We also present modifications to an existing algorithm, noncontinuous quality-guided path algorithm (NCQUAL), in order to decrease its execution time by a factor of 4 to make it suitable for use in a real-time system. The results obtained from the modified algorithm are compared with those of the existing algorithms. Three suitable algorithms were identified: two-stage noncontinuous quality-guided path algorithm (TSNCQUAL)-the modified algorithm presented here-for online processing and Flynn's minimum discontinuity algorithm (FLYNN) and preconditioned conjugate gradient method (PCG) algorithms for enhanced accuracy in off-line processing.

  6. New Experiences of Treatment in Multiple Tumors with HIFU Ablation and Whole Body Hyperthermia

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akira; Gondo, Hideki; Iijima, Norio; Xia, Yuantian; Takeuchi, Takashi

    2007-05-01

    We have performed some 5000 whole body hyperthermia (WBH) treatments using far-infrared equipment (RHD 7500: Enthermics medical systems, USA) in 1000 cancer patients since 1991 at Luke Hospital & Clinic (Nakano, Japan). Hyperthermia is a natural treatment whereby patients are heated within the fever temperature range of 41-42 C. However, this therapy alone is poorly suited to advanced cancer patients, where regional tumor control is needed. The potential of HIFU therapy for theses cases deserves further investigation. We have treated 20 times in 12 advanced cancer patients, since importing a new HIFU device (Sonic CZ901: Mianyang some electronic Ltd: China) last December and are able to report some interesting results of combination treatment with HIFU and WBH. Our first experience was a 20-year old female pharyngeal cancer patient with lung and multiple liver metastases. Her lung tumor reduced following WBH (given weekly, 4 times in total) and her liver tumor clearly reduced following HIFU treatment. Our second experience of combinative treatment was in a 65-year old male suffering from a neck tumor with bone metastasis. He received WBH after HIFU treatment into 7th lib bone metastasis. After 10 days, his neck tumor grew with evidence of internal necrosis, and finally ruptured. CT images showed necrotic changes in the focus of the neck tumor and also lib bone metastasis. We believe that this new thermal combinative therapy shows great promise.

  7. Influence of increased target dose inhomogeneity on margins for breathing motion compensation in conformal stereotactic body radiotherapy

    PubMed Central

    Richter, Anne; Baier, Kurt; Meyer, Juergen; Wilbert, Juergen; Krieger, Thomas; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    Background Breathing motion should be considered for stereotactic body radiotherapy (SBRT) of lung tumors. Four-dimensional computer tomography (4D-CT) offers detailed information of tumor motion. The aim of this work is to evaluate the influence of inhomogeneous dose distributions in the presence of breathing induced target motion and to calculate margins for motion compensation. Methods Based on 4D-CT examinations, the probability density function of pulmonary tumors was generated for ten patients. The time-accumulated dose to the tumor was calculated using one-dimensional (1D) convolution simulations of a 'static' dose distribution and target probability density function (PDF). In analogy to stereotactic body radiotherapy (SBRT), different degrees of dose inhomogeneity were allowed in the target volume: minimum doses of 100% were prescribed to the edge of the target and maximum doses varied between 102% (P102) and 150% (P150). The dose loss due to breathing motion was quantified and margins were added until this loss was completely compensated. Results With the time-weighted mean tumor position as the isocentre, a close correlation with a quadratic relationship between the standard deviation of the PDF and the margin size was observed. Increased dose inhomogeneity in the target volume required smaller margins for motion compensation: margins of 2.5 mm, 2.4 mm and 1.3 mm were sufficient for compensation of 11.5 mm motion range and standard deviation of 3.9 mm in P105, P125 and P150, respectively. This effect of smaller margins for increased dose inhomogeneity was observed for all patients. Optimal sparing of the organ-at-risk surrounding the target was achieved for dose prescriptions P105 to P118. The internal target volume concept over-compensated breathing motion with higher than planned doses to the target and increased doses to the surrounding normal tissue. Conclusion Treatment planning with inhomogeneous dose distributions in the target volume required

  8. Synthetic CT for MRI-based liver stereotactic body radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Lianli; Feng, Mary; Cao, Yue; Balter, James M.

    2017-04-01

    A technique for generating MRI-derived synthetic CT volumes (MRCTs) is demonstrated in support of adaptive liver stereotactic body radiation therapy (SBRT). Under IRB approval, 16 subjects with hepatocellular carcinoma were scanned using a single MR pulse sequence (T1 Dixon). Air-containing voxels were identified by intensity thresholding on T1-weighted, water and fat images. The envelope of the anterior vertebral bodies was segmented from the fat image and fuzzy-C-means (FCM) was used to classify each non-air voxel as mid-density, lower-density, bone, or marrow in the abdomen, with only bone and marrow classified within the vertebral body envelope. MRCT volumes were created by integrating the product of the FCM class probability with its assigned class density for each voxel. MRCTs were deformably aligned with corresponding planning CTs and 2-ARC-SBRT-VMAT plans were optimized on MRCTs. Fluence was copied onto the CT density grids, dose recalculated, and compared. The liver, vertebral bodies, kidneys, spleen and cord had median Hounsfield unit differences of less than 60. Median target dose metrics were all within 0.1 Gy with maximum differences less than 0.5 Gy. OAR dose differences were similarly small (median: 0.03 Gy, std:0.26 Gy). Results demonstrate that MRCTs derived from a single abdominal imaging sequence are promising for use in SBRT dose calculation.

  9. Clinical Feasibility of Using an EPID in cine Mode for Image-Guided Verification of Stereotactic Body Radiotherapy

    SciTech Connect

    Berbeco, Ross I.

    2007-09-01

    Purpose: To introduce a novel method for monitoring tumor location during stereotactic body radiotherapy (SBRT) while the treatment beam is on by using a conventional electronic portal imaging device (EPID). Methods and Materials: In our clinic, selected patients were treated under a phase I institutional review board-approved SBRT protocol for limited hepatic metastases from solid tumors. Before treatment planning multiple gold fiducial markers were implanted on the periphery of the tumor. During treatment the EPID was used in cine mode to collect the exit radiation and produce a sequence of images for each field. An in-house program was developed for calculating the location of the fiducials and their relative distance to the planned locations. Results: Three case studies illustrate the utility of the technique. Patient A exhibited a systematic shift of 4 mm during one of the treatment beams. Patient B showed an inferior drift of the target of approximately 1 cm from the time of setup to the end of the fraction. Patient C had a poor setup on the first day of treatment that was quantified and accounted for on subsequent treatment days. Conclusions: Target localization throughout each treatment beam can be quickly assessed with the presented technique. Treatment monitoring with an EPID in cine mode is shown to be a clinically feasible and useful tool.

  10. The impact of abdominal compression on outcome in patients treated with stereotactic body radiotherapy for primary lung cancer

    PubMed Central

    Mampuya, Wambaka Ange; Matsuo, Yukinori; Ueki, Nami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Nakamura, Akira; Iizuka, Yusuke; Kishi, Takahiro; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-01-01

    The aim of this study was to evaluate the impact of abdominal compression (AC) on outcome in patients treated with stereotactic body radiotherapy (SBRT) for primary lung cancer. We retrospectively reviewed data for 47 patients with histologically proven non-small cell lung cancer and lung tumour motion ≥8 mm treated with SBRT. Setup error was corrected based on bony structure. The differences in overall survival (OS), local control (LC) and disease-free survival (DFS) were evaluated to compare patients treated with AC (n = 22) and without AC (n = 25). The median follow-up was 42.6 months (range, 1.4–94.6 months). The differences in the 3-year OS, LC and DFS rate between the two groups were not statistically significant (P = 0.909, 0.209 and 0.639, respectively). However, the largest difference was observed in the LC rate, which was 82.5% (95% CI, 54.9–94.0%) for patients treated without AC and 65.4% (95% CI, 40.2–82.0%) for those treated with AC. After stratifying the patients into prognostic groups based on sex and T-stage, the LC difference increased in the group with an unfavourable prognosis. The present study suggests that AC might be associated with a worse LC rate after SBRT using a bony-structure-based set-up. PMID:24801474

  11. Radiobiological modeling of two stereotactic body radiotherapy schedules in patients with stage I peripheral non-small cell lung cancer

    PubMed Central

    Huang, Bao-tian; Lin, Zhu; Lin, Pei-xian; Lu, Jia-yang; Chen, Chuang-zhen

    2016-01-01

    This study aims to compare the radiobiological response of two stereotactic body radiotherapy (SBRT) schedules for patients with stage I peripheral non-small cell lung cancer (NSCLC) using radiobiological modeling methods. Volumetric modulated arc therapy (VMAT)-based SBRT plans were designed using two dose schedules of 1 × 34 Gy (34 Gy in 1 fraction) and 4 × 12 Gy (48 Gy in 4 fractions) for 19 patients diagnosed with primary stage I NSCLC. Dose to the gross target volume (GTV), planning target volume (PTV), lung and chest wall (CW) were converted to biologically equivalent dose in 2 Gy fraction (EQD2) for comparison. Five different radiobiological models were employed to predict the tumor control probability (TCP) value. Three additional models were utilized to estimate the normal tissue complication probability (NTCP) value for the lung and the modified equivalent uniform dose (mEUD) value to the CW. Our result indicates that the 1 × 34 Gy dose schedule provided a higher EQD2 dose to the tumor, lung and CW. Radiobiological modeling revealed that the TCP value for the tumor, NTCP value for the lung and mEUD value for the CW were 7.4% (in absolute value), 7.2% (in absolute value) and 71.8% (in relative value) higher on average, respectively, using the 1 × 34 Gy dose schedule. PMID:27203739

  12. Treatment planning system and dose delivery accuracy in extracranial stereotactic radiotherapy using Elekta body frame

    NASA Astrophysics Data System (ADS)

    Dawod, Tamer; Bremer, Michael; Karstens, Johann H.; Werner, Martin

    2010-01-01

    The purpose of this study was to measure the photon beam transmission through the Elekta Stereotactic Body Frame (ESBF) and treatment couch, to determine the dose calculations accuracy of the MasterPlan Treatment Planning System (TPS) using Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms during the use of Elekta Stereotactic Body Frame (ESBF), and to demonstrate a simple calculation method to put this transmission into account during the treatment planning dose calculations. The dose was measured at the center of an in-house custom-built inhomogeneous PMMA thorax phantom with and without ‘the frame + treatment couch’. The phantom was CT-imaged inside the ESBF and planned with multiple 3D-CRT fields using PBA and CCA for photon beams of energies 6 MV and 10 MV. There were two treatment plans for dose calculations. In the first plan, the ‘frame + couch’ were included in the body contour and, therefore, included in the TPS dose calculations. In the second plan, the ‘frame + couch’ were not included in the body contour and, therefore, not included in the calculations. Transmission of the ‘frame + couch’ was determined by the ratio of the dose measurements with the ‘frame + couch’ to the measurements without them. To validate the accuracy of the calculation model, plans with and without the ‘frame + couch’ surrounding the phantoms were compared with their corresponding measurements. The transmission of the ‘frame + couch’ varies from 90.23-97.54% depending on the energy, field size, the angle of the beams and whether the beams also intercept them. The validation accuracy of the Pencil Beam (PBA) and Collapsed Cone (CCA) algorithms were within 5.33% and 4.04% respectively for the individual measurements for all gantry angles under this study. The results showed that both PBA and CCA algorithms can calculate the dose to the target within 4.25% and 1.95% of the average measured value. The attenuation caused by the ESBF and couch must be

  13. SU-F-BRF-12: Investigating Dosimetric Effects of Inter-Fraction Deformation in Lung Cancer Stereotactic Body Radiotherapy (SBRT)

    SciTech Connect

    Jia, J; Tian, Z; Gu, X; Yan, H; Jia, X; Jiang, S

    2014-06-15

    Purpose: We studied dosimetric effects of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT), in order to investigate the necessity of adaptive re-planning for lung SBRT treatments. Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated under cone-beam CT (CBCT) image guidance at each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effects of the inter-fraction deformation. Deformable registration was carried out between the treatment planning CT and the CBCT of each fraction to obtain deformed planning CT for more accurate dose calculations of the delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the delineated structures on the planning CT and those on the deformed planning CT. Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions and all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83%. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus. Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the needs for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues.

  14. SU-E-T-131: Dosimetric Impact and Evaluation of Different Heterogenity Algorithm in Volumetric Modulated Arc Therapy Plan for Stereotactic Ablative Radiotherapy Lung Treatment with the Flattening Filter Free Beam

    SciTech Connect

    Chung, J; Kim, J; Lee, J; Kim, Y

    2014-06-01

    Purpose: The present study aimed to investigate the dosimetric impacts of the anisotropic analytic algorithm (AAA) and the Acuros XB (AXB) plan for lung stereotactic ablative radiation therapy using flattening filter-free (FFF) beam. We retrospectively analyzed 10 patients. Methods: We retrospectively analyzed 10 patients. The dosimetric parameters for the target and organs at risk (OARs) from the treatment plans calculated with these dose calculation algorithms were compared. The technical parameters, such as the computation times and the total monitor units (MUs), were also evaluated. Results: A comparison of DVHs from AXB and AAA showed that the AXB plan produced a high maximum PTV dose by average 4.40% with a statistical significance but slightly lower mean PTV dose by average 5.20% compared to the AAA plans. The maximum dose to the lung was slightly higher in the AXB compared to the AAA. For both algorithms, the values of V5, V10 and V20 for ipsilateral lung were higher in the AXB plan more than those of AAA. However, these parameters for contralateral lung were comparable. The differences of maximum dose for the spinal cord and heart were also small. The computation time of AXB was found fast with the relative difference of 13.7% than those of AAA. The average of monitor units (MUs) for all patients was higher in AXB plans than in the AAA plans. These results indicated that the difference between AXB and AAA are large in heterogeneous region with low density. Conclusion: The AXB provided the advantages such as the accuracy of calculations and the reduction of the computation time in lung stereotactic ablative radiotherapy (SABR) with using FFF beam, especially for VMAT planning. In dose calculation with the media of different density, therefore, the careful attention should be taken regarding the impacts of different heterogeneity correction algorithms. The authors report no conflicts of interest.

  15. Predicting Chest Wall Pain From Lung Stereotactic Body Radiotherapy for Different Fractionation Schemes

    SciTech Connect

    Woody, Neil M.; Videtic, Gregory M.M.; Stephans, Kevin L.; Djemil, Toufik; Kim, Yongbok; Xia Ping

    2012-05-01

    Purpose: Recent studies with two fractionation schemes predicted that the volume of chest wall receiving >30 Gy (V30) correlated with chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. This study developed a predictive model of chest wall pain incorporating radiobiologic effects, using clinical data from four distinct SBRT fractionation schemes. Methods and Materials: 102 SBRT patients were treated with four different fractionations: 60 Gy in three fractions, 50 Gy in five fractions, 48 Gy in four fractions, and 50 Gy in 10 fractions. To account for radiobiologic effects, a modified equivalent uniform dose (mEUD) model calculated the dose to the chest wall with volume weighting. For comparison, V30 and maximum point dose were also reported. Using univariable logistic regression, the association of radiation dose and clinical variables with chest wall pain was assessed by uncertainty coefficient (U) and C statistic (C) of receiver operator curve. The significant associations from the univariable model were verified with a multivariable model. Results: 106 lesions in 102 patients with a mean age of 72 were included, with a mean of 25.5 (range, 12-55) months of follow-up. Twenty patients reported chest wall pain at a mean time of 8.1 (95% confidence interval, 6.3-9.8) months after treatment. The mEUD models, V30, and maximum point dose were significant predictors of chest wall pain (p < 0.0005). mEUD improved prediction of chest wall pain compared with V30 (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.11). The mEUD with moderate weighting (a = 5) better predicted chest wall pain than did mEUD without weighting (a = 1) (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.14). Body mass index (BMI) was significantly associated with chest wall pain (p = 0.008). On multivariable analysis, mEUD and BMI remained significant predictors of chest wall pain (p = 0.0003 and 0.03, respectively). Conclusion: mEUD with moderate weighting better predicted chest wall pain than

  16. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    SciTech Connect

    Maxim, P; Wheeler, M; Loo, B; Maguire, P

    2014-06-15

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformal arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach holds great

  17. Dosimetric comparison of stereotactic body radiotherapy for spinal metastasis in cyberknife and helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kay, Chul Seung; Son, Seok Hyun; Choi, Byung Ock; Jung, Ji-Young; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun; Kim, Myong Ho; Seo, Jae-Hyuk; Lee, Gi Woong

    2012-12-01

    This study seeks to evaluate the stereotactic body radiation therapy (SBRT) dosimetric benefit of cyberknife (CK) and helical tomotherapy (HT) for spinal tumor patients in regards to successful plan acceptance and lower dosage to critical structures. This study used dose volume histogram (DVH) compared the two systems quantitatively, by using several indices for the dosimetric comparisons, including the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV). We planned L3 (n = 2), L5 (n = 1), T12 (n = 1), C3 (n = 1), and T5 (n = 1) spinal tumors case with planning target volumes ranging from 3.55-17.95 cc. Prescription doses were 1600 ˜ 2000 cGy per single fraction. CK prescribed 80 ˜ 85% in PTV and HT 90 ˜ 95%, respectively. The dosimetric data were compared between the two treatment systems by calculating the CI, HI, and maximum doses to the OARs based on the treatment plans, generated for each site. Regarding the homogeneity of PTV, both plans gave satisfactory results, and no significant differences were observed. The partial volume tolerance dose (received dose of 10 Gy at a spinal cord volume 10%) to the spinal cord in 16 ˜ 18 Gy single fraction was satisfactory. We found that both planning systems satisfied the required PTV prescription, but better dose conformity and better dose homogeneity with a poorer dose gradient were achieved with HT then with CK.

  18. The impact of emphysema on dosimetric parameters for stereotactic body radiotherapy of the lung

    PubMed Central

    Ochiai, Satoru; Nomoto, Yoshihito; Yamashita, Yasufumi; Inoue, Tomoki; Murashima, Shuuichi; Hasegawa, Daisuke; Kurita, Yoshie; Watanabe, Yui; Toyomasu, Yutaka; Kawamura, Tomoko; Takada, Akinori; Noriko; Kobayashi, Shigeki; Sakuma, Hajime

    2016-01-01

    The purpose of this study was to evaluate the impact of emphysematous changes in lung on dosimetric parameters in stereotactic body radiation therapy (SBRT) for lung tumor. A total of 72 treatment plans were reviewed, and dosimetric factors [including homogeneity index (HI) and conformity index (CI)] were evaluated. Emphysematous changes in lung were observed in 43 patients (60%). Patients were divided into three groups according to the severity of emphysema: no emphysema (n = 29), mild emphysema (n = 22) and moderate to severe emphysema groups (n = 21). The HI (P < 0.001) and the CI (P = 0.029) were significantly different in accordance with the severity of emphysema in one-way analysis of variance (ANOVA). The HI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema (Tukey, P < 0.001) and mild emphysema groups (P = 0.002). The CI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema group (P = 0.044). In multiple linear regression analysis, the severity of emphysema (P < 0.001) and the mean material density of the lung within the PTV (P < 0.001) were significant factors for HI, and the mean density of the lung within the PTV (P = 0.005) was the only significant factor for CI. The mean density of the lung within the PTV was significantly different in accordance with the severity of emphysema (one-way ANOVA, P = 0.008) and the severity of emphysema (P < 0.001) was one of the significant factors for the density of the lung within the PTV in multiple linear regression analysis. Our results suggest that emphysematous changes in the lung significantly impact on several dosimetric parameters in SBRT, and they should be carefully evaluated before treatment planning. PMID:27380802

  19. Dosimetric verification in participating institutions in a stereotactic body radiotherapy trial for stage I non-small cell lung cancer: Japan clinical oncology group trial (JCOG0403)

    NASA Astrophysics Data System (ADS)

    Nishio, Teiji; Kunieda, Etsuo; Shirato, Hiroki; Ishikura, Satoshi; Onishi, Hiroshi; Tateoka, Kunihiko; Hiraoka, Masahiro; Narita, Yuichirou; Ikeda, Masataka; Goka, Tomonori

    2006-11-01

    A multicentre phase II trial of stereotactic body radiotherapy for T1N0M0 non-small cell lung cancer was initiated in Japan as the Japan Clinical Oncology Group trial (JCOG0403). Before starting the trial, a decision was made to evaluate the treatment machine and treatment planning in participating institutions to minimize the variations of the prescription dose between the institutions. We visited the 16 participating institutions and examined the absolute dose at the centre of a simulated spherical tumour of 3.0 cm diameter in the lung using the radiation treatment planning systems in each institution. A lung phantom for stereotactic body radiotherapy (SBRT) was developed and used for the treatment planning and film dosimetry. In the JCOG radiotherapy study group, the no model-based calculation algorithm or the model-based calculation algorithm with a dose kernel unscaled for heterogeneities were selected for use in the initial SBRT trials started in 2004, and the model-based calculation algorithm with a dose kernel scaled for heterogeneities was selected for the coming trial. The findings of this study suggest that the clinical results of lung SBRT trials should be carefully evaluated in comparison with the actual dose given to patients.

  20. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  1. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    SciTech Connect

    Monterroso, M; Dogan, N; Yang, Y

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  2. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique

    PubMed Central

    Kang, Sang Won; Kim, Jae Sung; Kim, In Ah; Eom, Keun Yong; Song, Changhoon; Lee, Jeong Woo; Kim, Jin Young

    2017-01-01

    Abstract Background The aim of this study was to determine the optimal strategy among various arc arrangements in prostate plans of stereotactic body radiotherapy with volumetric modulated arc therapy (SBRT-VMAT). Patients and methods To investigate how arc arrangements affect dosimetric and biological metrics, SBRT-VMAT plans for eighteen patients were generated with arrangements of single-full arc (1FA), single-partial arc (1PA), double-full arc (2FA), and double-partial arc (2PA). All plans were calculated by the Acuros XB calculation algorithm. Dosimetric and radiobiological metrics for target volumes and organs at risk (OARs) were evaluated from dosevolume histograms. Results All plans were highly conformal (CI<1.05, CN=0.91) and homogeneous (HI=0.09-0.12) for target volumes. For OARs, there was no difference in the bladder dose, while there was a significant difference in the rectum and both femoral head doses. Plans using 1PA and 2PA showed a strong reduction to the mean rectum dose compared to plans using 1FA and 2FA. Contrastively, the D2% and mean dose in both femoral heads were always lower in plans using 1FA and 2FA. The average tumor control probability and normal tissue complication probability were comparable in plans using all arc arrangements. Conclusions The use of 1PA had a more effective delivery time and produced equivalent target coverage with better rectal sparing, although all plans using four arc arrangements showed generally similar for dosimetric and biological metrics. However, the D2% and mean dose in femoral heads increased slightly and remained within the tolerance. Therefore, this study suggests that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT. PMID:28265240

  3. Stereotactic body radiotherapy for T3 and T4N0M0 non-small cell lung cancer.

    PubMed

    Eriguchi, Takahisa; Takeda, Atsuya; Sanuki, Naoko; Nishimura, Shuichi; Takagawa, Yoshiaki; Enomoto, Tatsuji; Saeki, Noriyuki; Yashiro, Kae; Mizuno, Tomikazu; Aoki, Yousuke; Oku, Yohei; Yokosuka, Tetsuya; Shigematsu, Naoyuki

    2016-06-01

    To evaluate the outcomes and feasibility of stereotactic body radiotherapy (SBRT) for cT3 and cT4N0M0 non-small cell lung cancer (NSCLC), 25 patients with localized primary NSCLC diagnosed as cT3 or cT4N0M0, given SBRT between May 2005 and July 2013, were analyzed. All patients had inoperable tumors. The major reasons for tumors being unresectable were insufficient respiratory function for curative resection, advanced age (>80 years old) or technically inoperable due to invasion into critical organs. The median patient age was 79 years (range; 60-86). The median follow-up duration was 25 months (range: 5-100 months). The 2-year overall survival rates for T3 and T4 were 57% and 69%, respectively. The 2-year local control rates for T3 and T4 were 91% and 68%, respectively. As for toxicities, Grade 0-1, Grade 2 and Grade 3 radiation pneumonitis occurred in 23, 1 and 1 patient, respectively. No other acute or symptomatic late toxicities were reported. Thirteen patients who had no local, mediastinal or intrapulmonary progression at one year after SBRT underwent pulmonary function testing. The median variation in pre-SBRT and post-SBRT forced expiratory volume in 1 s (FEV1) values was -0.1 (-0.8-0.8). This variation was not statistically significant (P = 0.56). Forced vital capacity (FVC), vital capacity (VC), %VC and %FEV1 also showed no significant differences. SBRT for cT3 and cT4N0M0 NSCLC was both effective and feasible. Considering the favorable survival and low morbidity rate, SBRT is a potential treatment option for cT3 and cT4N0M0 NSCLC.

  4. The Technique, Resources and Costs of Stereotactic Body Radiotherapy of Prostate Cancer: A Comparison of Dose Regimens and Delivery Systems.

    PubMed

    Sharieff, Waseem; Greenspoon, Jeffrey N; Dayes, Ian; Chow, Tom; Wright, James; Lukka, Himu

    2016-02-01

    Robotic system has been used for stereotactic body radiotherapy (SBRT) of prostate cancer. Arc-based and fixed-gantry systems are used for hypofractionated regimens (10-20 fractions) and the standard regimen (39 fractions); they may also be used to deliver SBRT. Studies are currently underway to compare efficacy and safety of these systems and regimens. Thus, we describe the technique and required resources for the provision of robotic SBRT in relation to the standard regimen and other systems to guide investment decisions. Using administrative data of resource volumes and unit prices, we computed the cost per patient, cost per cure and cost per quality adjusted life year (QALY) of four regimens (5, 12, 20 and 39 fractions) and three delivery systems (robotic, arc-based and fixed-gantry) from a payer's perspective. We performed sensitivity analyses to examine the effects of daily hours of operation and in-room treatment delivery times on cost per patient. In addition, we estimated the budget impact when a robotic system is preferred over an arc-based or fixed-gantry system. Costs of SBRT were $6333/patient (robotic), $4368/patient (arc-based) and $4443/patient (fixed-gantry). When daily hours of operation were varied, the cost of robotic SBRT varied from $9324/patient (2 hours daily) to $5250/patient (10 hours daily). This was comparable to the costs of 39 fraction standard regimen which were $5935/patient (arc-based) and $7992/ patient (fixed-gantry). In settings of moderate to high patient volume, robotic SBRT is cost effective compared to the standard regimen. If SBRT can be delivered with equivalent efficacy and safety, the arc-based system would be the most cost effective system.

  5. SU-E-J-52: Dosimetric Benefit of Adaptive Re-Planning in Lung Cancer Stereotactic Body Radiotherapy (SBRT)

    SciTech Connect

    Jia, J; Tian, Z; Gu, X; Yan, H; Jiang, S; Jia, X

    2014-06-01

    Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters, such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.

  6. Stereotactic Body Radiotherapy for Patients With Unresectable Primary Hepatocellular Carcinoma: Dose-Volumetric Parameters Predicting the Hepatic Complication

    SciTech Connect

    Son, Seok Hyun; Choi, Byung Ock; Ryu, Mi Ryeong; Kang, Young Nam; Jang, Ji Sun; Bae, Si Hyun; Yoon, Seung Kew; Choi, Ihl Bohng; Kang, Ki Mun; Jang, Hong Seok

    2010-11-15

    Purpose: To identify the parameters that predict hepatic toxicity and deterioration of hepatic function. Materials and Methods: A total of 47 patients with small unresectable primary hepatocellular carcinoma received hypofractionated stereotactic body radiotherapy (SBRT) using the CyberKnife. Of those, 36 patients received no other local treatments that could influence hepatic toxicity at least for 3 months after the completion of SBRT. The gross tumor volume (GTV) was 18.3 {+-} 15.9 cm{sup 3} (range, 3.0-81.3 cm{sup 3}), and the total dose administered was 30-39 Gy (median, 36 Gy). To assess the deterioration of hepatic function, we evaluated the presence or absence of the progression of Child-Pugh class (CP class). To identify the parameters of predicting the radiation-induced hepatic toxicity and deterioration of the hepatic function, several clinical and dose-volumetric parameters were evaluated. Results: Of 36 patients, 12 (33%) developed Grade 2 or higher hepatic toxicity and 4 (11%) developed progression of CP class. The multivariate analysis showed that the only significant parameter associated with the progression of CP class was the total liver volume receiving a dose less than 18 Gy (<18 Gy). Conclusions: The progression of CP class after SBRT limits other additional local treatments and also reflects the deterioration of hepatic function. Therefore, it would be important to note that the presence or absence of the progression of CP class is a dose-limiting factor. The total liver volume receiving <18 Gy should be greater than 800 cm{sup 3} to reduce the risk of the deterioration of hepatic function.

  7. Fluorodeoxyglucose Positron Emission Tomography Response and Normal Tissue Regeneration After Stereotactic Body Radiotherapy to Liver Metastases

    SciTech Connect

    Stinauer, Michelle A.; Diot, Quentin; Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    2012-08-01

    Purpose: To characterize changes in standardized uptake value (SUV) in positron emission tomography (PET) scans and determine the pace of normal tissue regeneration after stereotactic body radiation therapy (SBRT) for solid tumor liver metastases. Methods and Materials: We reviewed records of patients with liver metastases treated with SBRT to {>=}40 Gy in 3-5 fractions. Evaluable patients had pretreatment PET and {>=}1 post-treatment PET. Each PET/CT scan was fused to the planning computed tomography (CT) scan. The maximum SUV (SUV{sub max}) for each lesion and the total liver volume were measured on each PET/CT scan. Maximum SUV levels before and after SBRT were recorded. Results: Twenty-seven patients with 35 treated liver lesions were studied. The median follow-up was 15.7 months (range, 1.5-38.4 mo), with 5 PET scans per patient (range, 2-14). Exponential decay curve fitting (r=0.97) showed that SUV{sub max} declined to a plateau of 3.1 for controlled lesions at 5 months after SBRT. The estimated SUV{sub max} decay half-time was 2.0 months. The SUV{sub max} in controlled lesions fluctuated up to 4.2 during follow-up and later declined; this level is close to 2 standard deviations above the mean normal liver SUV{sub max} (4.01). A failure cutoff of SUV{sub max} {>=}6 is twice the calculated plateau SUV{sub max} of controlled lesions. Parenchymal liver volume decreased by 20% at 3-6 months and regenerated to a new baseline level approximately 10% below the pretreatment level at 12 months. Conclusions: Maximum SUV decreases over the first months after SBRT to plateau at 3.1, similar to the median SUV{sub max} of normal livers. Transient moderate increases in SUV{sub max} may be observed after SBRT. We propose a cutoff SUV{sub max} {>=}6, twice the baseline normal liver SUV{sub max}, to score local failure by PET criteria. Post-SBRT values between 4 and 6 would be suspicious for local tumor persistence or recurrence. The volume of normal liver reached nadir 3

  8. Salvage Stereotactic Body Radiotherapy (SBRT) Following In-Field Failure of Initial SBRT for Spinal Metastases

    SciTech Connect

    Thibault, Isabelle; Campbell, Mikki; Tseng, Chia-Lin; Atenafu, Eshetu G.; Letourneau, Daniel; Yu, Eugene; Cho, B.C. John; Lee, Young K.; Fehlings, Michael G.; Sahgal, Arjun

    2015-10-01

    Purpose: We report our experience in salvaging spinal metastases initially irradiated with stereotactic body radiation therapy (SBRT), who subsequently progressed with imaging-confirmed local tumor progression, and were re-irradiated with a salvage second SBRT course to the same level. Methods and Materials: From a prospective database, 56 metastatic spinal segments in 40 patients were identified as having been irradiated with a salvage second SBRT course to the same level. In addition, 24 of 56 (42.9%) segments had initially been irradiated with conventional external beam radiation therapy before the first course of SBRT. Local control (LC) was defined as no progression on magnetic resonance imaging at the treated segment, and calculated according to the competing risk model. Overall survival (OS) was evaluated for each patient treated by use of the Kaplan-Meier method. Results: The median salvage second SBRT total dose and number of fractions was 30 Gy in 4 fractions (range, 20-35 Gy in 2-5 fractions), and for the first course of SBRT was 24 Gy in 2 fractions (range, 20-35 Gy in 1-5 fractions). The median follow-up time after salvage second SBRT was 6.8 months (range, 0.9-39 months), the median OS was 10.0 months, and the 1-year OS rate was 48%. A longer time interval between the first and second SBRT courses predicted for better OS (P=.02). The crude LC was 77% (43/56), the 1-year LC rate was 81%, and the median time to local failure was 3.0 months (range, 2.7-16.7 months). Of the 13 local failures, 85% (11/13) and 46% (6/13) showed progression within the epidural space and paraspinal soft tissues, respectively. Absence of baseline paraspinal disease predicted for better LC (P<.01). No radiation-induced vertebral compression fractures or cases of myelopathy were observed. Conclusion: A second course of spine SBRT, most often with 30 Gy in 4 fractions, for spinal metastases that failed initial SBRT is a feasible and efficacious salvage treatment option.

  9. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    SciTech Connect

    Lee, J; Kim, H; Park, J; Kim, J; Kim, H; Ye, S

    2014-06-15

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of original contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal

  10. Novel application of stereotactic ablative radiotherapy using CyberKnife(®) for early-stage renal cell carcinoma in patients with pre-existing chronic kidney disease: Initial clinical experiences.

    PubMed

    Lo, Cheng-Hsiang; Huang, Wen-Yen; Chao, Hsing-Lung; Lin, Kuen-Tze; Jen, Yee-Min

    2014-07-01

    The treatment of renal cell carcinoma (RCC) in patients diagnosed with chronic kidney disease (CKD) requires particular care in order to preserve the remaining renal function. The present study aimed to investigate the potential of a novel nephron-sparing treatment, which is capable of targeting tumors embedded deep within tissues. The present study analyzed three patients, with pre-existing CKD and multiple comorbidities, who were successfully treated for stage I RCC using the CyberKnife(®) stereotactic ablative radiotherapy (SABR) system. The total prescribed dose was 40 Gy in five fractions administered over five consecutive days. Treatment efficiency was determined using computed tomography scans of the tumors and periodic measurements of the glomerular filtration rate over a period of 12-40 months. Local control, defined as a radiologically stable condition, was achieved in all patients. Lung metastasis was observed in one patient nine months after SABR; however, the side-effects were generally mild and self-limiting. One patient developed renal failure 26 months after SABR, while the severity of CKD was only marginally altered in the other two patients and renal failure did not occur. In conclusion, in the present study, SABR with CyberKnife(®) was observed to be well tolerated in the patients, with an acceptable acute toxicity effect. Therefore, it may represent a potential therapeutic option for patients with early-stage RCC who have previously been diagnosed with CKD, but for whom other nephron-sparing treatments are contraindicated.

  11. A Retrospective Comparison of Robotic Stereotactic Body Radiotherapy and Three-Dimensional Conformal Radiotherapy for the Reirradiation of Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Ozyigit, Gokhan; Cengiz, Mustafa; Yazici, Gozde; Yildiz, Ferah; Gurkaynak, Murat; Zorlu, Faruk; Yildiz, Demet; Hosal, Sefik; Gullu, Ibrahim; Akyol, Fadil

    2011-11-15

    Purpose: We assessed therapeutic outcomes of reirradiation with robotic stereotactic radiotherapy (SBRT) for locally recurrent nasopharyngeal carcinoma (LRNPC) patients and compared those results with three-dimensional conformal radiotherapy (CRT) with or without brachytherapy (BRT). Methods and Materials: Treatment outcomes were evaluated retrospectively in 51 LRNPC patients receiving either robotic SBRT (24 patients) or CRT with or without BRT (27 patients) in our department. CRT was delivered with a 6-MV linear accelerator, and a median total reirradiation dose of 57 Gy in 2 Gy/day was given. Robotic SBRT was delivered with CyberKnife (Accuray, Sunnyvale, CA). Patients in the SBRT arm received 30 Gy over 5 consecutive days. We calculated actuarial local control and cancer-specific survival rates for the comparison of treatment outcomes in SBRT and CRT arms. The Common Terminology Criteria for Adverse Events v3.0 was used for toxicity evaluation. Results: The median follow-up was 24 months for all patients. Two-year actuarial local control rates were 82% and 80% for SBRT and CRT arms, respectively (p = 0.6). Two-year cancer-specific survival rates were 64% and 47% for the SBRT and CRT arms, respectively (p = 0.4). Serious late toxicities (Grade 3 and above) were observed in 21% of patients in the SBRT arm, whereas 48% of patients had serious toxicity in the CRT arm (p = 0.04). Fatal complications occurred in three patients (12.5%) of the SBRT arm, and four patients (14.8%) of the CRT arm (p = 0.8). T stage at recurrence was the only independent predictor for local control and survival. Conclusion: Our robotic SBRT protocol seems to be feasible and less toxic in terms of late effects compared with CRT arm for the reirradiation of LRNPC patients.

  12. Long-Term Outcome After Static Intensity-Modulated Total Body Radiotherapy Using Compensators Stratified by Pediatric and Adult Cohorts

    SciTech Connect

    Schneider, Ralf A. Schultze, Juergen; Jensen, J. Martin; Hebbinghaus, Dieter; Galalae, Razvan M.

    2008-01-01

    Purpose: To report the long-term outcome after total body irradiation with intensity-modulating compensators and allogeneic/autologous transplantation, especially in terms of therapy-related toxicity in pediatric and adult cohorts. Methods and Materials: A total of 257 consecutive patients (40 children and 217 adults) have been treated since 1983 with TBI using static intensity-modulated radiotherapy for hematologic malignancies. The total dose of 12 Gy was applied in six fractions within 3 days before allogeneic (n = 174) or autologous (n = 83) transplantation. The median follow-up was 9.2 years. Results: The 5-year overall survival rate was 47.9% (49.8% for the adults and 37.5% for the children, p = 0.171). The 5-year tumor-related mortality rate was 23%, and the 5-year treatment-related mortality rate 29.2% (29.5% in the adults and 27.5% in the pediatric patients). Interstitial pneumonitis developed in 28 (10.9%) of 257 patients and in 12.5% of the pediatric cohort. The interstitial pneumonitis rate was 25% in pediatric patients treated with a 12-Gy lung dose compared with 4.2% for those treated to an 11-Gy lung dose. The overall survival rate stratified by lung dose was 26.7% for 12 Gy and 52.4% for 11 Gy (p = 0.001). The incidence of veno-occlusive disease and cataract was 5.8% and 6.6% in all patients and 12.5% and 15% in the pediatric patients, respectively (p < 0.05). Secondary malignancies were found in 4.3% of all patients, all in the adult cohort at transplantation. Conclusion: Static intensity-modulated total body irradiation with a total dose of 12 Gy before allogeneic/autologous transplantation is a successful treatment with good long-term outcome and acceptable therapy-related toxicities. Constraining the lung dose to 11 Gy substantially lowered the actuarial treatment-related mortality. This effect was especially striking in the pediatric patients.

  13. Stereotactic Body Radiotherapy for Medically Inoperable Lung Cancer: Prospective, Single-Center Study of 108 Consecutive Patients

    SciTech Connect

    Taremi, Mojgan; Hope, Andrew; Dahele, Max; Pearson, Shannon; Fung, Sharon; Purdie, Thomas; Brade, Anthony; Cho, John; Sun, Alexander; Bissonnette, Jean-Pierre; Bezjak, Andrea

    2012-02-01

    Purpose: To present the results of stereotactic body radiotherapy (SBRT) for medically inoperable patients with Stage I non-small-cell lung cancer (NSCLC) and contrast outcomes in patients with and without a pathologic diagnosis. Methods and Materials: Between December 2004 and October 2008, 108 patients (114 tumors) underwent treatment according to the prospective research ethics board-approved SBRT protocols at our cancer center. Of the 108 patients, 88 (81.5%) had undergone pretreatment whole-body [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. A pathologic diagnosis was unavailable for 33 (28.9%) of the 114 lesions. The SBRT schedules included 48 Gy in 4 fractions or 54-60 Gy in 3 fractions for peripheral lesions and 50-60 Gy in 8-10 fractions for central lesions. Toxicity and radiologic response were assessed at the 3-6-month follow-up visits using conventional criteria. Results: The mean tumor diameter was 2.4-cm (range, 0.9-5.7). The median follow-up was 19.1 months (range, 1-55.7). The estimated local control rate at 1 and 4 years was 92% (95% confidence interval [CI], 86-97%) and 89% (95% CI, 81-96%). The cause-specific survival rate at 1 and 4 years was 92% (95% CI, 87-98%) and 77% (95% CI, 64-89%), respectively. No statistically significant difference was found in the local, regional, and distant control between patients with and without pathologically confirmed NSCLC. The most common acute toxicity was Grade 1 or 2 fatigue (53 of 108 patients). No toxicities of Grade 4 or greater were identified. Conclusions: Lung SBRT for early-stage NSCLC resulted in excellent local control and cause-specific survival with minimal toxicity. The disease-specific outcomes were comparable for patients with and without a pathologic diagnosis. SBRT can be considered an option for selected patients with proven or presumed early-stage NSCLC.

  14. Intrafraction Variation of Mean Tumor Position During Image-Guided Hypofractionated Stereotactic Body Radiotherapy for Lung Cancer

    SciTech Connect

    Shah, Chirag; Grills, Inga S.; Kestin, Larry L.; McGrath, Samuel; Ye Hong; Martin, Shannon K.; Yan Di

    2012-04-01

    Purpose: Prolonged delivery times during daily cone-beam computed tomography (CBCT)-guided lung stereotactic body radiotherapy (SBRT) introduce concerns regarding intrafraction variation (IFV) of the mean target position (MTP). The purpose of this study was to evaluate the magnitude of the IFV-MTP and to assess target margins required to compensate for IFV and postonline CBCT correction residuals. Patient, treatment, and tumor characteristics were analyzed with respect to their impact on IFV-MTP. Methods and Materials: A total of 126 patients with 140 tumors underwent 659 fractions of lung SBRT. Dose prescribed was 48 or 60 Gy in 12 Gy fractions. Translational target position correction of the MTP was performed via onboard CBCT. IFV-MTP was measured as the difference in MTP between the postcorrection CBCT and the posttreatment CBCT excluding residual error. Results: IFV-MTP was 0.2 {+-} 1.8 mm, 0.1 {+-} 1.9 mm, and 0.01 {+-} 1.5 mm in the craniocaudal, anteroposterior, and mediolateral dimensions and the IFV-MTP vector was 2.3 {+-} 2.1 mm. Treatment time and excursion were found to be significant predictors of IFV-MTP. An IFV-MTP vector greater than 2 and 5 mm was seen in 40.8% and 7.2% of fractions, respectively. IFV-MTP greater than 2 mm was seen in heavier patients with larger excursions and longer treatment times. Significant differences in IFV-MTP were seen between immobilization devices. The stereotactic frame immobilization device was found to be significantly less likely to have an IFV-MTP vector greater than 2 mm compared with the alpha cradle, BodyFIX, and hybrid immobilization devices. Conclusions: Treatment time and respiratory excursion are significantly associated with IFV-MTP. Significant differences in IFV-MTP were found between immobilization devices. Target margins for IFV-MTP plus post-correction residuals are dependent on immobilization device with 5-mm uniform margins being acceptable for the frame immobilization device.

  15. Efficacy of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein tumor thrombosis/inferior vena cava tumor thrombosis: evaluation by comparison with conventional three-dimensional conformal radiotherapy

    PubMed Central

    Matsuo, Yoshiro; Yoshida, Kenji; Nishimura, Hideki; Ejima, Yasuo; Miyawaki, Daisuke; Uezono, Haruka; Ishihara, Takeaki; Mayahara, Hiroshi; Fukumoto, Takumi; Ku, Yonson; Yamaguchi, Masato; Sugimoto, Koji; Sasaki, Ryohei

    2016-01-01

    This study aimed to evaluate the efficacy of stereotactic body radiotherapy (SBRT) compared with three-dimensional conformal radiotherapy (3DCRT). Forty-three patients with portal vein tumor thrombosis (PVTT)/inferior vena cava tumor thrombosis (IVCTT) treated with SBRT (27 with CyberKnife (CK) and 16 with TrueBeam (TB)) from April 2013 to December 2014, and 54 treated with 3DCRT from June 2008 to March 2013 were evaluated. Dosimetric parameters, response to radiotherapy (RT) and survival outcomes were compared in total SBRT vs. 3DCRT, CK vs. 3DCRT and TB vs. 3DCRT, respectively. The median biologically effective dose 10 (BED10) values in total SBRT, CK, TB and 3DCRT were 73.4 Gy10, 75.0 Gy10, 60.5 Gy10 and 58.5 Gy10, respectively (P < 0.001 in total SBRT vs. 3DCRT, P < 0.001 in CK vs. 3DCRT, P = 0.004 in TB vs. 3DCRT). The tumor response rates were 67%, 70%, 62% and 46%, respectively (P = 0.04, P = 0.04, P = 0.25). The 1-year overall survival rates were 49.3%, 56.7%, 38.1% and 29.3%, respectively (P = 0.02, P = 0.02, P = 0.30), and the 1-year local progression rates were 20.4%, 21.9%, 18.8% and 43.6%, respectively (P = 0.01, P = 0.04, P = 0.10). The use of SBRT made it possible to achieve a higher BED10 compared with the use of 3DCRT. Improvements in local control and survival were achieved in the CK group and the total SBRT group. Our results suggest that SBRT may have the potential to be the standard RT technique for the treatment of PVTT/IVCTT. PMID:27053259

  16. Dose-Response for Stereotactic Body Radiotherapy in Early-Stage Non-Small-Cell Lung Cancer

    SciTech Connect

    Olsen, Jeffrey R.; Robinson, Clifford G.; El Naqa, Issam; Creach, Kimberly M.; Drzymala, Robert E.; Bloch, Charles; Parikh, Parag J.; Bradley, Jeffrey D.

    2011-11-15

    Purpose: To compare the efficacy of three lung stereotactic body radiotherapy (SBRT) regimens in a large institutional cohort. Methods: Between 2004 and 2009, 130 patients underwent definitive lung cancer SBRT to a single lesion at the Mallinckrodt Institute of Radiology. We delivered 18 Gy Multiplication-Sign 3 fractions for peripheral tumors (n = 111) and either 9 Gy Multiplication-Sign 5 fractions (n = 8) or 10 Gy Multiplication-Sign 5 fractions (n = 11) for tumors that were central or near critical structures. Univariate and multivariate analysis of prognostic factors was performed using the Cox proportional hazard model. Results: Median follow-up was 11, 16, and 13 months for the 9 Gy Multiplication-Sign 5, 10 Gy Multiplication-Sign 5, and 18 Gy Multiplication-Sign 3 groups, respectively. Local control statistics for Years 1 and 2 were, respectively, 75% and 50% for 9 Gy Multiplication-Sign 5, 100% and 100% for 10 Gy Multiplication-Sign 5, and 99% and 91% for 18 Gy Multiplication-Sign 3. Median overall survival was 14 months, not reached, and 34 months for the 9 Gy Multiplication-Sign 5, 10 Gy Multiplication-Sign 5, and 18 Gy Multiplication-Sign 3 treatments, respectively. No difference in local control or overall survival was found between the 10 Gy Multiplication-Sign 5 and 18 Gy Multiplication-Sign 3 groups on log-rank test, but both groups had improved local control and overall survival compared with 9 Gy Multiplication-Sign 5. Treatment with 9 Gy Multiplication-Sign 5 was the only independent prognostic factor for reduced local control on multivariate analysis, and increasing age, increasing tumor volume, and poor performance status predicted independently for reduced overall survival. Conclusion: Treatment regimens of 10 Gy Multiplication-Sign 5 and 18 Gy Multiplication-Sign 3 seem to be efficacious for lung cancer SBRT and provide superior local control and overall survival compared with 9 Gy Multiplication-Sign 5.

  17. Implementation of Feedback-Guided Voluntary Breath-Hold Gating for Cone Beam CT-Based Stereotactic Body Radiotherapy

    SciTech Connect

    Peng Yong; Vedam, Sastry; Chang, Joe Y.; Gao Song; Sadagopan, Ramaswamy; Bues, Martin; Balter, Peter

    2011-07-01

    Purpose: To analyze tumor position reproducibility of feedback-guided voluntary deep inspiration breath-hold (FGBH) gating for cone beam computed tomography (CBCT)-based stereotactic body radiotherapy (SBRT). Methods and materials: Thirteen early-stage lung cancer patients eligible for SBRT with tumor motion of >1cm were evaluated for FGBH-gated treatment. Multiple FGBH CTs were acquired at simulation, and single FGBH CBCTs were also acquired prior to each treatment. Simulation CTs and treatment CBCTs were analyzed to quantify reproducibility of tumor positions during FGBH. Benefits of FGBH gating compared to treatment during free breathing, as well treatment with gating at exhalation, were examined for lung sparing, motion margins, and reproducibility of gross tumor volume (GTV) position relative to nonmoving anatomy. Results: FGBH increased total lung volumes by 1.5 times compared to free breathing, resulting in a proportional drop in total lung volume receiving 10 Gy or more. Intra- and inter-FGBH reproducibility of GTV centroid positions at simulation were 1.0 {+-} 0.5 mm, 1.3 {+-} 1.0 mm, and 0.6 {+-} 0.4 mm in the anterior-posterior (AP), superior-inferior (SI), and left-right lateral (LR) directions, respectively, compared to more than 1 cm of tumor motion at free breathing. During treatment, inter-FGBH reproducibility of the GTV centroid with respect to bony anatomy was 1.2 {+-} 0.7 mm, 1.5 {+-} 0.8 mm, and 1.0 {+-} 0.4 mm in the AP, SI, and LR directions. In addition, the quality of CBCTs was improved due to elimination of motion artifacts, making this technique attractive for poorly visualized tumors, even with small motion. Conclusions: The extent of tumor motion at normal respiration does not influence the reproducibility of the tumor position under breath hold conditions. FGBH-gated SBRT with CBCT can improve the reproducibility of GTV centroids, reduce required margins, and minimize dose to normal tissues in the treatment of mobile tumors.

  18. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  19. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer.

    PubMed

    Liu, Huan; Ye, Jingjing; Kim, John J; Deng, Jun; Kaur, Monica S; Chen, Zhe Jay

    2015-01-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient׳s axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V100 to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D99 (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2cm from PTV (by 0 to 20.8cm(3)) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to deliver. The

  20. [Extracranial stereotactic radiotherapy for early-stage non-small cell lung cancer and oligometastases].

    PubMed

    Riesterer, Oliver

    2013-10-16

    Stereotactic body radiotherapy (SBRT) is a new radiation technique that combines improvements in radiotherapy planning, intensity modulation and image guidance. The use of SBRT enables radiotherapy to be delivered instead of in six weeks in only a few days and with ablative total dose. Prospective phase II studies in patients with inoperable early stage non-small cell lung cancer demonstrate that the use of SBRT results in local control rates of 85-95% with acceptable toxicity. SBRT is also increasingly used for treatment of metastases in the lung, liver, retroperitoneum and in bones. Because SBRT enables a locally curative dose to be delivered in a time efficient manner this technique also opens up new perspectives for the treatment of patients with oligometastases.

  1. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    SciTech Connect

    Lindsay, WD; Berlind, CG; Gee, JC; Simone, CB

    2015-06-15

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  2. Comparison of Effects Between Central and Peripheral Stage I Lung Cancer Using Image-Guided Stereotactic Body Radiotherapy via Helical Tomotherapy.

    PubMed

    He, Jian; Huang, Yan; Shi, Shiming; Hu, Yong; Zeng, Zhaochong

    2015-12-01

    Lung cancer is a common malignant tumor with high morbidity and mortality. Here we compared the effects and outcome between central and peripheral stage I lung cancer using image-guided stereotactic body radiotherapy. From June 2011 to July 2013, a total of 33 patients with stage I lung cancer were enrolled. A total of 50 Gy in 10 fractions or 60 Gy in 10 fractions was delivered in the central arm (n = 18), while 50 Gy in 5 fractions in the peripheral arm (n = 15). Statistical analyses were performed using logistic regression analysis and Kaplan-Meier method. The mean follow-up time was 38.1 months. Three-month, 1-, 2-, and 3-year overall response rates were 66.7%, 83.3%, 61.1%, and 72.2% and 66.7%, 80%, 80%, and 80% in the central and peripheral arms, respectively. Three-year local control rates (94.4% vs 93.3%, P = .854), regional control rates (94.4% vs 86.7%, P = .412), and distant control rates (64.2% vs 61.7%, P = .509) had no differences between the central and the peripheral arms. Grade 2 radiation pneumonitis was observed in 6 of 18 patients in the central arm and in 1 of 15 patients in the peripheral arm (P = .92). Grade 2 radiation esophagitis was 5.7% in the central arm, while none occurred in the peripheral arm (P = .008). Five (15.1%) of all patients felt slight fatigue during radiotherapy. Other major complications were not observed. In conclusion, helical image-guided stereotactic body radiotherapy for central stage I lung cancer is safe and effective compared to peripheral stage I lung cancer.

  3. Short report: interim safety results for a phase II trial measuring the integration of stereotactic ablative radiotherapy (SABR) plus surgery for early stage non-small cell lung cancer (MISSILE-NSCLC).

    PubMed

    Palma, David A; Nguyen, Timothy K; Kwan, Keith; Gaede, Stewart; Landis, Mark; Malthaner, Richard; Fortin, Dalilah; Louie, Alexander V; Frechette, Eric; Rodrigues, George B; Yaremko, Brian; Yu, Edward; Dar, A Rashid; Lee, Ting-Yim; Gratton, Al; Warner, Andrew; Ward, Aaron; Inculet, Richard

    2017-01-27

    A phase II trial was launched to evaluate if neoadjuvant stereotactic ablative radiotherapy (SABR) before surgery improves oncologic outcomes in patients with stage I non-small cell lung cancer (NSCLC). We report a mandated interim safety analysis for the first 10 patients who completed protocol treatment. Operable patients with biopsy-proven T1-2 N0 NSCLC were eligible. SABR was delivered using a risk-adapted fractionation (54Gy/3 fractions, 55/5 or 60/8). Surgical resection was planned 10 weeks later at a high-volume center (>200 lung cancer resections annually). Patients were imaged with dynamic positron emission tomography-computed tomography scans using (18)F-fludeoxyglucose ((18)F-FDG-PET CT) and dynamic contrast-enhanced CT before SABR and again before surgery. Toxicity was recorded using CTCAE version 4.0. Twelve patients were enrolled between 09/2014 and 09/2015. Two did not undergo surgery, due to patient or surgeon preference; neither patient has developed toxicity or recurrence. For the 10 patients completing both treatments, median age was 70 (range: 54-76), 60% had T1 disease, and 60% had adenocarcinoma. Median FEV1 was 73% predicted (range: 54-87%). Median time to surgery post-SABR was 10.1 weeks (range: 9.3-15.6 weeks). Surgery consisted of lobectomy (n = 8) or wedge resection (n = 2). Median follow-up post-SABR was 6.3 months. After combined treatment, the rate of acute grade 3-4 toxicity was 10%. There was no post-operative mortality at 90 days. The small sample size included herein precludes any definitive conclusions regarding overall toxicity rates until larger datasets are available. However, these data may inform others who are designing or conducting similar trials.

  4. Sci—Sat AM: Stereo — 08: Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam

    SciTech Connect

    Mestrovic, A; Fortin, D; Alexander, A

    2014-08-15

    Purpose: To determine the feasibility of using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam for Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer. Methods and Materials: Ten anonymized patient CT data sets were used in this planning study. For each patient CT data set, three sets of contours were generated: 1) low risk, 2) intermediate risk, and 3) high risk scenarios. For each scenario, a single-arc and a double-arc VMAT treatment plans were created. Plans were generated with the Varian Eclipse™ treatment planning system for a Varian TrueBeam™ linac equipped with Millenium 120 MLC. Plans were created using a 10x-FFF beam with a maximum dose rate of 2400 MU/min. Dose prescription was 36.25Gy/5 fractions with the planning objective of covering 99% of the Planning Target Volume with the 95% of the prescription dose. Normal tissue constraints were based on provincial prostate SABR planning guidelines, derived from national and international prostate SABR protocols. Plans were evaluated and compared in terms of: 1) dosimetric plan quality, and 2) treatment delivery efficiency. Results: Both single-arc and double-arc VMAT plans were able to meet the planning goals for low, intermediate and high risk scenarios. No significant dosimetric differences were observed between the plans. However, the treatment time was significantly lower for a single-arc VMAT plans. Conclusions: Prostate SABR treatments are feasible with 10x-FFF VMAT technique. A single-arc VMAT offers equivalent dosimetric plan quality and a superior treatment delivery efficiency, compared to a double-arc VMAT.

  5. Percutaneous thermal ablation of primary lung cancer.

    PubMed

    de Baere, T; Tselikas, L; Catena, V; Buy, X; Deschamps, F; Palussière, J

    2016-10-01

    Percutaneous ablation of small-size non-small-cell lung cancer (NSCLC) has demonstrated feasibility and safety in nonsurgical candidates. Radiofrequency ablation (RFA), the most commonly used technique, has an 80-90% reported rate of complete ablation, with the best results obtained in tumors less than 2-3cm in diameter. The highest one-, three-, and five-year overall survival rates reported in NSCLC following RFA are 97.7%, 72.9%, and 55.7% respectively. Tumor size, tumor stage, and underlying comorbidities are the main predictors of survival. Other ablation techniques such as microwave or cryoablation may help overcome the limitations of RFA in the future, particularly for large tumors or those close to large vessels. Stereotactic ablative radiotherapy (SABR) has its own complications and carries the risk of fiducial placement requiring multiple lung punctures. SABR has also demonstrated significant efficacy in treating small-size lung tumors and should be compared to percutaneous ablation.

  6. Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS

    NASA Technical Reports Server (NTRS)

    Norman, M.; McCulloch, M.; ONeill, H.; Brandon, A.

    2004-01-01

    Magnesium isotopes potentially offer new insights into a diverse range of processes including evaporation and condensation in the solar nebula, melting and metasomatism in planetary interiors, and hydrothermal alteration [1,2,3,4]. Volatility-related Mg isotopic variations of up to 10 per mil/amu relative to a terrestrial standard have been found in early nebular phases interpreted as evaporation residues [1], and relatively large variations (up to 3 per mil/amu) in the terrestrial mantle have been reported recently [4]. In order to investigate possible differences in the nebular history of material contributing to the terrestrial planets, and to search for evidence of a high-temperature origin of the Moon, we have measured the magnesium isotopic composition of primitive olivines from the Earth, Moon, Mars, and pallasite parent body using laser-ablation multicollector ICPMS.

  7. Catheter ablation.

    PubMed

    Fromer, M; Shenasa, M

    1991-02-01

    Catheter ablation is gaining increasing interest for the therapy of symptomatic, sustained arrhythmias of various origins. The scope of this review is to give an overview of the biophysical aspects and major characteristics of some of the most widely used energy sources in catheter ablation, e.g., the discharge of conventional defibrillators, modified defibrillators, laser light, and radiofrequency current application. Results from animal studies are considered to explain the basic mechanisms of catheter ablation. The recent achievements with the use of radiofrequency current to modify or ablate cardiac conduction properties are outlined in more detail.

  8. A miniaturized laser-ablation mass spectrometer for in-situ measurements of isotope composition on solar body surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.; Bieler, A.; Iakovleva, M.; Wurz, P.

    2012-04-01

    The in-situ analysis of extraterrestrial material onboard planetary rovers and landers is of considerable interest for future planetary space missions. Due to the low detection sensitivity of spectroscopic instruments, e.g. α-particle X-ray, γ-ray or neutron spectrometers, it is frequently possible to measure only major/minor elements in extraterrestrial materials. Nevertheless, the knowledge of minor/trace elements is of considerable interest to cosmochemistry. Chemistry puts constraints on the origin of solar system and its evolution enabling also a deeper inside to planetary transformation processes (e.g. volcanic surface alteration, space weathering). The isotopes play special role in analysis of the origin and transformation of planetary matter. They are robust tracers of the early events because their abundances are less disturbed as the elemental once. Nevertheless, if the isotope abundance ratios are fractionated, the underlying chemical and physical processes can be then encoded from the variations of abundance ratios. A detailed analysis of isotopic patterns of radiogenic elements can allow age dating of minerals and temporal evolution of planetary matter. High accuracy and sensitive measurements of isotopic pattern of bio-relevant elements, i.e., sulfur, found on planetary surfaces can be helpful for the identification of possible past and present extraterrestrial life in terms of biomarker identification. Our group has designed a self-optimizing miniaturized laser ablation time-of-flight mass spectrometer (LMS) for in situ planetary measurements (Wurz et al., 2012; Rohner et al., 2003). Initial studies utilizing IR laser radiation for ablation, atomization and ionization of solid materials indicated a high instrumental performance in terms of sensitivity and mass resolution (Tulej et al., 2011). Current studies are conducted with a UV radiation and a high spatial resolution is achieved by focussing the laser beam to 20µm spots onto the sample. The

  9. Outcomes of Proton Beam Radiotherapy for Large Non-Peripapillary Choroidal and Ciliary Body Melanoma at TRIUMF and the BC Cancer Agency

    PubMed Central

    Weber, Britta; Paton, Katherine; Ma, Roy; Pickles, Tom

    2015-01-01

    Background and Purpose To report outcomes and toxicity after proton beam radiotherapy for non-peripapillary choroidal and ciliary body melanoma considered unsuitable for other eye-sparing therapies. Materials and Methods: An existing database of 77 patients with non-peripapillary tumors treated at TRIUMF, Canada, including patient, tumor, and treatment characteristics, was updated with ocular complications and follow-up status from chart reviews. Results Most of the patients had large tumors: 61% were T3/T4 tumors (AJCC classification), while 48% were large by the Collaborative Ocular Melanoma Study classification. The median thickness was 7.1 mm, and the ciliary body was involved in 35%. After 5 and 10 years, the actuarial ocular tumor control rate was 85 and 85%, metastasis-free survival was 72 and 57%, overall survival was 77 and 63%, the enucleation rate was 22 and 22%, and complete blindness was found in 38 and 38%, respectively. On univariate analysis, patients with ciliary body involvement had significantly worse metastasis-free survival and overall survival rates compared to patients without ciliary body involvement (p < 0.001). Conclusions Proton therapy for large anteriorly located tumors resulted in acceptable ocular tumor control and survival rates. The risk of blindness and severe toxicity requiring enucleation was low, and a substantial proportion of patients maintained useful vision. PMID:27171272

  10. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    SciTech Connect

    Lonski, P; Kron, T; Franich, R; Keehan, S; Siva, S; Taylor, M

    2014-06-15

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. The variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU at 18 MV.

  11. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

    SciTech Connect

    Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.; Yang, Wensha; Benedict, Stanley H.; Sheng Ke; Schefter, Tracey E.; Kavanagh, Brian D.; Larner, James M.

    2010-03-01

    Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >=20, >=30, >=40, >=50, and >=60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R{sup 2} = 0.9552). A volume threshold of 30 cm{sup 3} was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm{sup 3} receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm{sup 3}, if possible, to reduce the risk of toxicity without compromising tumor coverage.

  12. Catheter Ablation

    MedlinePlus

    ... you during the procedure. Machines will measure your heart’s activity. All types of ablation require cardiac catheterization to place flexible tubes, or catheters, inside your heart to make the scars. Your doctor will clean ...

  13. Hypofractionated stereotactic body radiotherapy for primary and metastatic liver tumors using the novalis image-guided system: preliminary results regarding efficacy and toxicity.

    PubMed

    Iwata, Hiromitsu; Shibamoto, Yuta; Hashizume, Chisa; Mori, Yoshimasa; Kobayashi, Tatsuya; Hayashi, Naoki; Kosaki, Katsura; Ishikawa, Tetsuya; Kuzuya, Teiji; Utsunomiya, Setsuo

    2010-12-01

    www.tcrt.org The purpose of this study was to evaluate the efficacy and toxicity of stereotactic body radiotherapy (SBRT) for primary and metastatic liver tumors using the Novalis image-guided radiotherapy system. After preliminarily treating liver tumors using the Novalis system from July 2006, we started a protocol-based study in February 2008. Eighteen patients (6 with primary hepatocellular carcinoma and 12 with metastatic liver tumor) were treated with 55 or 50 Gy, depending upon their planned dose distribution and liver function, delivered in 10 fractions over 2 weeks. Four non-coplanar and three coplanar static beams were used. Patient age ranged from 54 to 84 years (median: 72 years). The Child-Pugh classification was Grade A in 17 patients and Grade B in 1. Tumor diameter ranged from 12 to 35 mm (median: 23 mm). Toxicities were evaluated according to the Common Terminology Criteria of Adverse Events version 4.0, and radiation-induced liver disease (RILD) was defined by Lawrence's criterion. The median follow-up period was 14.5 months. For all patients, the 1-year overall survival and local control rates were 94% and 86%, respectively. A Grade 1 liver enzyme change was observed in 5 patients, but no RILD or chronic liver dysfunction was observed. SBRT using the Novalis image-guided system is safe and effective for treating primary and metastatic liver tumors. Further investigation of SBRT for liver tumors is warranted. In view of the acceptable toxicity observed with this protocol, we have moved to a new protocol to shorten the overall treatment time and escalate the dose.

  14. Local image descriptor-based searching framework of usable similar cases in a radiation treatment planning database for stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Nonaka, Ayumi; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Soufi, Mazen; Magome, Taiki; Honda, Hiroshi; Hirata, Hideki

    2014-03-01

    Radiation treatment planning (RTP) of the stereotactic body radiotherapy (SBRT) was more complex compared with conventional radiotherapy because of using a number of beam directions. We reported that similar planning cases could be helpful for determination of beam directions for treatment planners, who have less experiences of SBRT. The aim of this study was to develop a framework of searching for usable similar cases to an unplanned case in a RTP database based on a local image descriptor. This proposed framework consists of two steps searching and rearrangement. In the first step, the RTP database was searched for 10 cases most similar to object cases based on the shape similarity of two-dimensional lung region at the isocenter plane. In the second step, the 5 most similar cases were selected by using geometric features related to the location, size and shape of the planning target volume, lung and spinal cord. In the third step, the selected 5 cases were rearranged by use of the Euclidean distance of a local image descriptor, which is a similarity index based on the magnitudes and orientations of image gradients within a region of interest around an isocenter. It was assumed that the local image descriptor represents the information around lung tumors related to treatment planning. The cases, which were selected as cases most similar to test cases by the proposed method, were more resemble in terms of the tumor location than those selected by a conventional method. For evaluation of the proposed method, we applied a similar-cases-based beam arrangement method developed in the previous study to the similar cases selected by the proposed method based on a linear registration. The proposed method has the potential to suggest the superior beam-arrangements from the treatment point of view.

  15. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  16. Dose Gradient Near Target-Normal Structure Interface for Nonisocentric CyberKnife and Isocentric Intensity-Modulated Body Radiotherapy for Prostate Cancer

    SciTech Connect

    Hossain, Sabbir; Xia Ping; Huang, Kim; Descovich, Martina; Chuang, Cynthia; Gottschalk, Alexander R.; Roach, Mack; Ma Lijun

    2010-09-01

    Purpose: The treatment planning quality between nonisocentric CyberKnife (CK) and isocentric intensity modulation treatment was studied for hypofractionated prostate body radiotherapy. In particular, the dose gradient across the target and the critical structures such as the rectum and bladder was characterized. Methods and Materials: In the present study, patients treated with CK underwent repeat planning for nine fixed-field intensity-modulated radiotherapy (IMRT) using identical contour sets and dose-volume constraints. To calculate the dose falloff, the clinical target volume contours were expanded 30 mm anteriorly and posteriorly and 50 mm uniformly in other directions for all patients in the CK and IMRT plans. Results: We found that all the plans satisfied the dose-volume constraints, with the CK plans showing significantly better conformity than the IMRT plans at a relative greater dose inhomogeneity. The rectal and bladder volumes receiving a low dose were also lower for CK than for IMRT. The average conformity index, the ratio of the prescription isodose volume and clinical target volume, was 1.18 {+-} 0.08 for the CK plans vs. 1.44 {+-} 0.11 for the IMRT plans. The average homogeneity index, the ratio of the maximal dose and the prescribed dose to the clinical target volume, was 1.45 {+-} 0.12 for the CK plans vs. 1.28 {+-} 0.06 for the IMRT plans. The average percentage of dose falloff was 2.9% {+-} 0.8%/mm for CK and 3.1% {+-} 1.0%/mm for IMRT in the anterior direction, 3.8% {+-} 1.6%/mm for CK and 3.2% {+-} 1.9%/mm for IMRT in the posterior direction, and 3.6% {+-} 0.4% for CK and 3.6% {+-} 0.4% for IMRT in all directions. Conclusion: Nonisocentric CK was as capable of producing equivalent fast dose falloff as high-number fixed-field IMRT delivery.

  17. Optical sensor feedback assistive technology to enable patients to play an active role in the management of their body dynamics during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Parkhurst, J. M.; Price, G. J.; Sharrock, P. J.; Stratford, J.; Moore, C. J.

    2013-04-01

    Patient motion during treatment is well understood as a prime factor limiting radiotherapy success, with the risks most pronounced in modern safety critical therapies promising the greatest benefit. In this paper we describe a real-time visual feedback device designed to help patients to actively manage their body position, pose and motion. In addition to technical device details, we present preliminary trial results showing that its use enables volunteers to successfully manage their respiratory motion. The device enables patients to view their live body surface measurements relative to a prior reference, operating on the concept that co-operative engagement with patients will both improve geometric conformance and remove their perception of isolation, in turn easing stress related motion. The device is driven by a real-time wide field optical sensor system developed at The Christie. Feedback is delivered through three intuitive visualization modes of hierarchically increasing display complexity. The device can be used with any suitable display technology; in the presented study we use both personal video glasses and a standard LCD projector. The performance characteristics of the system were measured, with the frame rate, throughput and latency of the feedback device being 22.4 fps, 47.0 Mbps, 109.8 ms, and 13.7 fps, 86.4 Mbps, 119.1 ms for single and three-channel modes respectively. The pilot study, using ten healthy volunteers over three sessions, shows that the use of visual feedback resulted in both a reduction in the participants' respiratory amplitude, and a decrease in their overall body motion variability.

  18. Image-guided ablative therapies for lung cancer.

    PubMed

    Sharma, Amita; Abtin, Fereidoun; Shepard, Jo-Anne O

    2012-09-01

    Lung cancer is the commonest cause of death in adults. Although the treatment of choice is surgical resection with lobectomy, many patients are nonsurgical candidates because of medical comorbidities. Patients may also have recurrent disease after resection or radiotherapy and some patients refuse surgical options. Image-guided ablation has been recently introduced as a safe, alternative treatment of localized disease in carefully selected patients. This article discusses the principles, technique, and follow-up of the 3 main ablative therapies currently used in the lung, radiofrequency ablation, microwave ablation, and percutaneous cryotherapy.

  19. Percutaneous ablation of malignant thoracic tumors.

    PubMed

    Ghaye, B

    2013-01-01

    Lung cancer is the leading cause of death related to cancer. Fifteen to thirty percent of patients with a localized lung cancer are actually inoperable as they present with poor general condition, limited cardiopulmonary function, or a too high surgical risk. Therefore, minimally invasive treatments are needed and percutaneous ablation seems an attractive option. Thermal ablation can be performed by delivering heat (radiofrequency, microwave, laser) or cold (cryotherapy) through a needle inserted into the tumor under CT guidance. The ideal lesion is less than 2 or 3 cm in diameter. Success of percutaneous thermal ablation appears to be close to those of surgery for localized lung cancer. Nevertheless studies are still needed to definitely assess the role of ablation compared to other emerging techniques, as stereotactic radiotherapy as well as potential synergy with other treatments.

  20. Stereotactic Body Radiotherapy for Recurrent Squamous Cell Carcinoma of the Head and Neck: Results of a Phase I Dose-Escalation Trial

    SciTech Connect

    Heron, Dwight E.; Ferris, Robert L.; Karamouzis, Michalis; Andrade, Regiane S.; Deeb, Erin L.; Burton, Steven; Gooding, William E.; Branstetter, Barton F.; Mountz, James M.; Johnson, Jonas T.; Argiris, Athanassios; Grandis, Jennifer R.; Lai, Stephen Y.

    2009-12-01

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) in previously irradiated patients with squamous cell carcinoma of the head and neck (SCCHN). Patients and Methods: In this Phase I dose-escalation clinical trial, 25 patients were treated in five dose tiers up to 44 Gy, administered in 5 fractions over a 2-week course. Response was assessed according to the Response Evaluation Criteria in Solid Tumors and [{sup 18}F]-fluorodeoxyglucose standardized uptake value change on positron emission tomography-computed tomography (PET-CT). Results: No Grade 3/4 or dose-limiting toxicities occurred. Four patients had Grade 1/2 acute toxicities. Four objective responses were observed, for a response rate of 17% (95% confidence interval 2%-33%). The maximum duration of response was 4 months. Twelve patients had stable disease. Median time to disease progression was 4 months, and median overall survival was 6 months. Self-reported quality of life was not significantly affected by treatment. Fluorodeoxyglucose PET was a more sensitive early-measure response to treatment than CT volume changes. Conclusion: Reirradiation up to 44 Gy using SBRT is well tolerated in the acute setting and warrants further evaluation in combination with conventional and targeted therapies.

  1. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease: special reference to survival and radiation-induced pneumonitis

    PubMed Central

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report—prolonged minimal RIP (pmRIP)—after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD −) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. PMID:25887042

  2. Comparison of Dosimetric Performance among Commercial Quality Assurance Systems for Verifying Pretreatment Plans of Stereotactic Body Radiotherapy Using Flattening-Filter-Free Beams

    PubMed Central

    2016-01-01

    The purpose of this study was to compare the performance of different commercial quality assurance (QA) systems for the pretreatment verification plan of stereotactic body radiotherapy (SBRT) with volumetric arc therapy (VMAT) technique using a flattening-filter-free beam. The verification for 20 pretreatment cancer patients (seven lung, six spine, and seven prostate cancers) were tested using three QA systems (EBT3 film, I’mRT MatriXX array, and MapCHECK). All the SBRT-VMAT plans were optimized in the Eclipse (version 11.0.34) treatment planning system (TPS) using the Acuros XB dose calculation algorithm and were delivered to the Varian TrueBeam® accelerator equipped with a high-definition multileaf collimator. Gamma agreement evaluation was analyzed with the criteria of 2% dose difference and 2 mm distance to agreement (2%/2 mm) or 3%/3 mm. The highest passing rate (99.1% for 3%/3 mm) was observed on the MapCHECK system while the lowest passing rate was obtained on the film. The pretreatment verification results depend on the QA systems, treatment sites, and delivery beam energies. However, the delivery QA results for all QA systems based on the TPS calculation showed a good agreement of more than 90% for both the criteria. It is concluded that the three 2D QA systems have sufficient potential for pretreatment verification of the SBRT-VMAT plan. PMID:27709851

  3. [Long-term survival following resection of primary rectal cancer metachronous metastases and salvage surgeries for relapsed lesions after stereotactic body radiotherapy for lung metastases - a case report].

    PubMed

    Yokosuka, Tetsuya; Nakajima, Yasushi; Kobayashi, Toshiko; Takeda, Atsuya; Yasuno, Masamichi

    2014-11-01

    A 66-year-old man underwent abdominoperineal resection for rectal cancer in 2003, followed by liver resection for a solitary liver metastasis in 2005. In 2006, the patient underwent abdominal para-aortic lymph node dissection, which was performed concurrently with partial resections of 3 metastases in the right lung. New metastatic lesions were subsequently diagnosed in S8 of the right lung and S1+2 of the left lung. The patient underwent stereotactic body radiotherapy (SBRT) for both lesions. However, the lesions relapsed and salvage surgeries were subsequently performed. These included a partial resection in 2009 for the lesion in the right lung and an upper division segmentectomy in 2010 for the lesion in the left lung. Currently, 11 years after resection of the primary rectal cancer, the patient is asymptomatic, without any signs of recurrence. In this report, we describe the use of SBRT for the treatment of colorectal cancer pulmonary metastases, and the use of salvage surgery for relapsed lesions.

  4. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease: special reference to survival and radiation-induced pneumonitis.

    PubMed

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-07-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report--prolonged minimal RIP (pmRIP)--after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD -) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific-survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD.

  5. Exploring appropriate offset values for Pencil Beam and Monte Carlo dose optimization in lung Stereotactic Body Radiotherapy encompassing the effects of respiration and tumor location

    NASA Astrophysics Data System (ADS)

    Evans, Grant

    Evaluation of dose optimization using the Pencil Beam (PB) and Monte Carlo (MC) algorithms may allow physicists to apply dosimetric offsets to account for inaccuracies of the PB algorithm for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). 20 cases of Non-Small Cell Lung Cancer (NSCLC) were selected. Treatment plans were created with Brainlab iPlanDose RTM 4.1.2. The D97 of the Planning Target Volume (PTV) was normalized to 50 Gy on the Average Intensity Projection (AIP) using the fast PB and compared with MC. This exact plan with the same beam Monitor Units (MUs) was recalculated over each respiratory phase. The results show that the PB algorithm has a 2.3-2.4% less overestimation at the maximum exhalation phase than the maximum inhalation phase when compared to MC. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 +/- 0.7%) versus central lesions (12.7+/-0.8%) (p< 0.01).

  6. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Arimura, H.; Egashira, Y.; Shioyama, Y.; Nakamura, K.; Yoshidome, S.; Anai, S.; Nomoto, S.; Honda, H.; Toyofuku, F.; Higashida, Y.; Onizuka, Y.; Terashima, H.

    2009-02-01

    The purpose of this study was to develop a computerized method for estimation of the location of a lung tumor in cine images on an electronic portal imaging device (EPID) without implanted markers during stereotactic body radiotherapy (SBRT). Each tumor region was segmented in the first EPID cine image, i.e., reference portal image, based on a multiple-gray level thresholding technique and a region growing technique, and then the image including the tumor region was cropped as a 'tumor template' image. The tumor location was determined as the position in which the tumor template image took the maximum cross-correlation value within each consecutive portal image, which was acquired in cine mode on the EPID in treatment. EPID images with 512 × 384 pixels (pixel size: 0.56 mm) were acquired at a sampling rate of 0.5 frame s-1 by using energies of 4, 6 or 10 MV on linear accelerators. We applied our proposed method to EPID cine images (226 frames) of 12 clinical cases (ages: 51-83, mean: 72) with a non-small cell lung cancer. As a result, the average location error between tumor points obtained by our method and the manual method was 1.47 ± 0.60 mm. This preliminary study suggests that our method based on the tumor template matching technique might be feasible for tracking the location of a lung tumor without implanted markers in SBRT.

  7. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  8. Percutaneous ablation of pancreatic cancer.

    PubMed

    D'Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-11-28

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review.

  9. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    SciTech Connect

    Pham, Daniel; Thompson, Ann; Kron, Tomas; Foroudi, Farshad; Kolsky, Michal Schneider; Devereux, Thomas; Lim, Andrew; Siva, Shankar

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  10. Evolution of Hypofractionated Accelerated Radiotherapy for Prostate Cancer – The Sunnybrook Experience

    PubMed Central

    Musunuru, Hima Bindu; Cheung, Patrick; Loblaw, Andrew

    2014-01-01

    Stereotactic ablative body radiotherapy (SABR) is a newer method of ultra hypo fractionated radiotherapy that uses combination of image-guided radiotherapy (IGRT) and intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT), to deliver high doses of radiation in a few fractions to a target, at the same time sparing the surrounding organs at risk (OAR). SABR is ideal for treating small volumes of disease and has been introduced in a number of disease sites including brain, lung, liver, spine, and prostate. Given the radiobiological advantages of treating prostate cancer with high doses per fraction, SABR is becoming a standard of care for low and intermediate-risk prostate cancer patients based upon the results from Sunnybrook and also the US-based prostate SABR consortium. This review examines the development of moderate and ultra hypo-fractionation schedules at the Odette Cancer centre, Sunnybrook Health Sciences. Moderate hypo-fractionation protocol was first developed in 2001 for intermediate-risk prostate cancer and from there on different treatment schedules including SABR evolved for all risk groups. PMID:25452934

  11. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    PubMed Central

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  12. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    SciTech Connect

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  13. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  14. Stereotactic Body Radiotherapy for Pulmonary Metastases From Soft-Tissue Sarcomas: Excellent Local Lesion Control and Improved Patient Survival

    SciTech Connect

    Dhakal, Sughosh; Corbin, Kimberly S.; Milano, Michael T.; Philip, Abraham; Sahasrabudhe, Deepak; Jones, Carolyn

    2012-02-01

    Purpose: Patients with pulmonary metastases (PM) from soft-tissue sarcomas (STS) have historically been treated with surgery and/or chemotherapy. Since 2001, we have treated PM with stereotactic body radiation therapy (SBRT). We postulated that SBRT for PM from STS would yield excellent local control (LC) and overall survival (OS). Methods and Materials: Fifty-two patients with PM from STS, diagnosed between 1990 and 2006 at University of Rochester, were retrospectively reviewed. Most patients received multimodality treatment comprising of surgery, chemotherapy, and/or radiation. SBRT used the Novalis ExacTrac patient positioning platform, vacuum bag immobilization, and relaxed end-expiratory breath hold techniques. Results: Leiomyosarcoma (23%), malignant fibrous histiocytoma (19%), and synovial sarcoma (15%) were the most common histologies. Forty-eight percent initially presented with PM, whereas 52% developed PM at a median of 0.7 (0.3-7.3) years after initial diagnosis. Median follow-up from diagnosis of PM was 0.9 (0.3-7.3) years. Fifteen patients underwent SBRT to 74 lesions. Median number of lesions treated was 4 (1-16) per patient and 3.5 (1-6) per session. Preferred dose and fractionation was 50 Gy in 5 Gy fractions. Three-year LC was 82%. No patients experienced Grade {>=}3 toxicity. Median OS was 2.1 (0.8-11.5) years for patients treated with SBRT, and 0.6 (0.1-7.8) years for those who never received SBRT (p = 0.002). Conclusions: SBRT provides excellent LC of PM and may extend OS. SBRT should be considered for all patients with PM from STS, particularly those who are not surgical candidates. Further investigation is warranted to establish criteria for the use of SBRT for STS patients with PM.

  15. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    SciTech Connect

    Wang Zhiheng Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-02-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm.

  16. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.

    PubMed

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-07-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45-60 Gy in 5-10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5-54.5 months). The median value of the average iodine density was 1.86 mg/cm(3) (range, 0.40-9.27 mg/cm(3)). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors.

  17. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    SciTech Connect

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A{sub 1}) was set in the range of 0.0-12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of {gamma} index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within {+-} 0.7%. From the dose area histograms on the film, the mean {+-} standard deviation of the dose covering 100% of the cross section of the target was 102.32 {+-} 1.20% (range, 100.59-103.49%). By contrast, the irradiated areas receiving more than 95% dose for A{sub 1} = 12 mm were 1.46 and 1.33 times larger than those for A{sub 1} = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  18. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    SciTech Connect

    Lin, Lilie L.; Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2012-06-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  19. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy

    PubMed Central

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45–60 Gy in 5–10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5–54.5 months). The median value of the average iodine density was 1.86 mg/cm3 (range, 0.40–9.27 mg/cm3). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors. PMID:26826198

  20. Comparison of pencil beam–based homogeneous vs inhomogeneous target dose planning for stereotactic body radiotherapy of peripheral lung tumors through Monte Carlo–based recalculation

    SciTech Connect

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2015-10-01

    This study was conducted to ascertain whether homogeneous target dose planning is suitable for stereotactic body radiotherapy (SBRT) of peripheral lung cancer under appropriate breath-holding. For 20 peripheral lung tumors, paired dynamic conformal arc plans were generated by only adjusting the leaf margin to the planning target volume (PTV) edge for fulfilling the conditions such that the prescription isodose surface (IDS) encompassing exactly 95% of the PTV (PTV D{sub 95}) corresponds to 95% and 80% IDS, normalized to 100% at the PTV isocenter under a pencil beam (PB) algorithm with radiologic path length correction. These plans were recalculated using the x-ray voxel Monte Carlo (XVMC) algorithm under otherwise identical conditions, and then compared. Lesions abutting the parietal pleura or not were defined as edge or island tumors, respectively, and the influences of the target volume and its location relative to the chest wall on the target dose were examined. The median (range) leaf margin required for the 95% and 80% plans was 3.9 mm (1.3 to 5.0) and −1.2 mm (−1.8 to 0.1), respectively. Notably, the latter was significantly correlated negatively with PTV. In the 80% plans, the PTV D{sub 95} was slightly higher under XVMC, whereas the PTV D{sub 98} was significantly lower, irrespective of the dose calculation algorithm used. Other PTV and all gross tumor volume doses were significantly higher, while the lung doses outside the PTV were slightly lower. The target doses increased as a function of PTV and were significantly lower for island tumors than for edge tumors. In conclusion, inhomogeneous target dose planning using smaller leaf margin for a larger tumor volume was deemed suitable in ensuring more sufficient target dose while slightly reducing lung dose. In addition, more inhomogeneous target dose planning using <80% IDS (e.g., 70%) for PTV covering would be preferable for island tumors.

  1. Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch: Intrafraction Motion Analysis Accounting for all Six Degrees of Freedom

    SciTech Connect

    Hyde, Derek; Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun; Ma, Lijun; Sahgal, Arjun

    2012-03-01

    Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion

  2. SU-E-T-620: Dosimetric Compliance Study for a New Prostate Protocol of Combined High Dose Rate Brachytherapy and Stereotactic Body Radiotherapy

    SciTech Connect

    Peng, C; Giaddui, T; Den, R; Harrison, A; Yu, Y

    2014-06-15

    Purpose: To investigate the adherence of treatment plans of prostate cancer patients with the dosimetric compliance criteria of the new in house phase I trial of high dose rate (HDR) brachytherapy combined with stereotactic body radiotherapy (SBRT) for intermediate risk prostate cancer patients. Methods: Ten prostate cancer patients were treated using this trial. They received one fraction of HDR to 15Gy, followed by external beam(EB) boost of 3.2Gy(Level 1, five patients) or 3.94Gy(level 2, five patients) per fraction for 10 or 7 fractions, respectively, both equivalent to EB treatments of 113.5Gy in 2Gy fractions. The EB plans were either IMRT or VMAT plans. DVH analysis was performed to verify the adherence of treatment plans to the dosimetric criteria of the trial. Results: For Level 1 patients, target coverage were adequate, with CTV V32Gy(%) of 99.0±1.0 (mean ± 1 standard deviation), and PTV V31Gy(%) of 99.6±0.3. PTV V32.9Gy(%) is 1.4±3.1 and PTVmax is 32.9±0.2Gy. Rectum, bladder and femoral heads sparing were well within protocol criteria. For Level 2 patients, CTV V27.6Gy(%) is 98.7±1.8; PTV V26.7Gy(%) is 99.0±1.4. PTV V28.4Gy(%) is 1.3±1.4, with three patients having minor deviation from protocol. Again critical structures were spared compliant to the protocol. The analysis of HDR plans show similar results, with adequate dose coverage to the prostate and sparing of critical structures including urethra and rectum. V100(%) and V90(%) of prostate are 96.0±1.1 and 98.9±0.5. Urethra D10(%) is 113.1±2.9. Rectum V80(cc) is 1.4±0.5. Hotspot in prostate is substantially higher than what the protocol specifies. But the criteria for hotspot are only guidelines, serving to lower the dose to urethra . Conclusion: This new high biological equivalent dose prostate trial has been carried out successfully for ten patients. Based on dosimetric analysis, all HDR and external plans were compliant to the protocol criteria, with only minor deviations.

  3. Once-Weekly, High-Dose Stereotactic Body Radiotherapy for Lung Cancer: 6-Year Analysis of 60 Early-Stage, 42 Locally Advanced, and 7 Metastatic Lung Cancers

    SciTech Connect

    Salazar, Omar M. Sandhu, Taljit S.; Lattin, Paul B.; Chang, Jung H.; Lee, Choon K.; Groshko, Gayle A.; Lattin, Cheryl J.

    2008-11-01

    Purpose: To explore once-weekly stereotactic body radiotherapy (SBRT) in nonoperable patients with localized, locally advanced, or metastatic lung cancer. Methods and Materials: A total of 102 primary (89 untreated plus 13 recurrent) and 7 metastatic tumors were studied. The median follow-up was 38 months, the average patient age was 75 years. Of the 109 tumors studied, 60 were Stage I (45 IA and 15 IB), 9 were Stage II, 30 were Stage III, 3 were Stage IV, and 7 were metastases. SBRT only was given in 73% (40 Gy in four fractions to the planning target volume to a total dose of 53 Gy to the isocenter for a biologically effective dose of 120 Gy{sub 10}). SBRT was given as a boost in 27% (22.5 Gy in three fractions once weekly for a dose of 32 Gy at the isocenter) after 45 Gy in 25 fractions to the primary plus the mediastinum. The total biologically effective dose was 120 Gy{sub 10}. Respiration gating was used in 46%. Results: The overall response rate was 75%; 33% had a complete response. The overall response rate was 89% for Stage IA patients (40% had a complete response). The local control rate was 82%; it was 100% and 93% for Stage IA and IB patients, respectively. The failure rate was 37%, with 17% within the planning target volume. No Grade 3-4 acute toxicities developed in any patient; 12% and 7% of patients developed Grade 1 and 2 toxicities, respectively. Late toxicity, all Grade 2, developed in 3% of patients. The 5-year cause-specific survival rate for Stage I was 70% and was 74% and 64% for Stage IA and IB patients, respectively. The 3-year Stage III cause-specific survival rate was 30%. The patients with metastatic lung cancer had a 57% response rate, a 27% complete response rate, an 86% local control rate, a median survival time of 19 months, and 23% 3-year survival rate. Conclusions: SBRT is noninvasive, convenient, fast, and economically attractive; it achieves results similar to surgery for early or metastatic lung cancer patients who are older

  4. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer

    PubMed Central

    Naccarato, Stefania; Stavrev, Pavel; Stavreva, Nadejda; Fersino, Sergio; Giaj Levra, Niccolò; Mazzola, Rosario; Mancosu, Pietro; Scorsetti, Marta; Alongi, Filippo

    2015-01-01

    Objective: In volumetric-modulated arc therapy (VMAT) prostate stereotactic body radiotherapy (SBRT), dose coverage of the planning target volume (PTV) becomes challenging when the sparing of rectum, bladder and urethra is strictly pursued. Our current 35-Gy-in-five-fraction plans only assure 33.2 Gy to ≥95% PTV (V33.2PTV ≥ 95%). Looking for an improved V33.2PTV, increased near-maximum target dose (D2%) and prostate–rectum spacer insertion were tested. Methods: For 11 patients, two VMAT plans, with D2% ≤ 37.5 Gy (Hom) or D2% ≤ 40.2 Gy (Het), on each of two CT studies, before or after spacer insertion, were computed. All plans assured V33.2PTV ≥95%, and <1 cm3 of rectum, bladder and urethra receiving ≥35 Gy. By hypothesis testing, several dose–volume metrics for target coverage and rectal sparing were compared across the four groups of plans. The impact of spacer insertion on the fractions of rectum receiving more than 18, 28 and 32 Gy (VXr) was further tested by linear correlation analysis. Results: By hypothesis testing, the increased D2% was associated with improvements in target coverage, whereas spacer insertion was associated with improvements in both target coverage and rectal VXr. By linear correlation analysis, spacer insertion was related to the reductions in rectal VXr for X ≥ 28 Gy. Conclusion: A slightly increased D2% or the use of spacer insertion was each able to improve V33.2PTV. Their combined use assured V33.2PTV ≥ 98% to all our patients. Spacer insertion was further causative for improvements in rectal sparing. Advances in knowledge: For VMAT plans in prostate SBRT, the distinct dosimetric usefulness of increased D2% and of the use of spacer insertion were validated in terms of target coverage and rectal sparing. PMID:26235142

  5. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    SciTech Connect

    Shiinoki, T; Hanazawa, H; Park, S; Takahashi, T; Shibuya, K; Kawamura, S; Uehara, T; Yuasa, Y; Koike, M

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co., JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.

  6. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    SciTech Connect

    Yan, Guanghua Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  7. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    SciTech Connect

    Magnelli, A; Xia, P

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, a large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.

  8. SU-E-J-179: Assessment of Tumor Volume Change and Movement During Stereotactic Body Radiotherapy (SBRT) for Lung Cancer: Is Adaptive Radiation Therapy (ART) Necessary?

    SciTech Connect

    Lee, C; Lee, C

    2015-06-15

    Purpose: Delineation of gross tumor volumes (GTVs) is important for stereotactic body radiotherapy (SBRT). However, tumor volume changes during treatment response. Here, we have investigated tumor volume changes and movement during SBRT for lung cancer, as a means of examining the need for adaptive radiation therapy (ART). Methods: Fifteen tumors in 15 patients with lung cancer were treated with SBRT (total dose: 60 Gy in 4 fractions). GTVs were obtained from cone-beam computed tomography scans (CBCT1–4) taken before each of the 4 fractions was administered. GTVs were delineated and measured by radiation oncologists using a treatment planning system. Variance in the tumor position was assessed between the planning CT and the CBCT images. To investigate the dosimetric effects of tumor volume changes, planning CT and CBCT4 treatment plans were compared using the conformity index (CI), homogeneity index (HI), and Paddick’s index (PCI). Results: The GTV on CBCT1 was employed as a baseline for comparisons. GTV had decreased by a mean of 20.4% (range: 0.7% to 47.2%) on CBCT4. Most patients had smaller GTVs on CBCT4 than on CBCT1. The interfractional shifts of the tumor position between the planning CT and CBCT1–4 were as follows: right-left, −0.4 to 1.3 mm; anterior-posterior, −0.8 to 0.5 mm; and superiorinferior, −0.9 to 1.1 mm. Indices for plans from the planning CT and CBCT4 were as follows: CI = 0.94±0.02 and 1.11±0.03; HI= 1.1±0.02 and 1.10±0.03; and PCI = 1.35±0.16 and 1.11±0.02, respectively. Conclusion: CI, HI, and PCI did not differ between the planning CT and CBCTs. However, daily CBCT revealed a significant decrease in the GTV during lung SBRT. Furthermore, there was an obvious interfractional shift in tumor position. Using ART could potentially lead to a reduced GTV margin and improved regional tumor control for lung cancer patients with significantly decreased GTV.

  9. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    SciTech Connect

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T; Kim, S; Park, S

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  10. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    PubMed

    Snyder, Karen Chin; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-08

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine

  11. SU-E-T-591: Optimizing the Flattening Filter Free Beam Selection in RapidArc-Based Stereotactic Body Radiotherapy for Stage I Lung Cancer

    SciTech Connect

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: To optimize the flattening filter free (FFF) beam energy selection in stereotactic body radiotherapy (SBRT) treatment for stage I lung cancer with different fraction schemes. Methods: Twelve patients suffering from stage I lung cancer were enrolled in this study. Plans were designed using 6XFFF and 10XFFF beams with the most widely used fraction schemes of 4*12 Gy, 3*18 Gy and 1*34 Gy, respectively. The plan quality was appraised in terms of planning target volume (PTV) coverage, conformity of the prescribed dose (CI100%), intermediate dose spillage (R50% and D2cm), organs at risk (OARs) sparing and beam-on time. Results: The 10XFFF beam predicted 1% higher maximum, mean dose to the PTV and 4–5% higher R50% compared with the 6XFFF beam in the three fraction schemes, whereas the CI100% and D2cm was similar. Most importantly, the 6XFFF beam exhibited 3–10% lower dose to all the OARs. However, the 10XFFF beam reduced the beam-on time by 31.9±7.2%, 38.7±2.8% and 43.6±4.0% compared with the 6XFFF beam in the 4*12 Gy, 3*18 Gy and 1*34 Gy schemes, respectively. Beam-on time was 2.2±0.2 vs 1.5±0.1, 3.3±0.9 vs 2.0±0.5 and 6.3±0.9 vs 3.5±0.4 minutes for the 6XFFF and 10XFFF one in the three fraction schemes. Conclusion: The 6XFFF beam obtains better OARs sparing in SBRT treatment for stage I lung cancer, but the 10XFFF one provides improved treatment efficiency. To balance the OARs sparing and intrafractional variation as a function of prolonged treatment time, the authors recommend to use the 6XFFF beam in the 4*12 Gy and 3*18 Gy schemes for better OARs sparing. However, for the 1*34 Gy scheme, the 10XFFF beam is recommended to achieve improved treatment efficiency.

  12. Pellet ablation and ablation model development

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs.

  13. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Badkul, Rajeev; Jiang, Hongyu; McClinton, Christopher; Lominska, Christopher; Kumar, Parvesh; Wang, Fen

    2016-05-08

    The purpose of the study was to evaluate Monte Carlo-generated dose distributions with the X-ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non-protocol dose-volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non-small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB-hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)-based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose-volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I-II NSCLC patients with peripherally located lung tumors, who underwent MC-based SBRT with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target vol-ume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100% ≥ 95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean = 46.1 ± 38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were

  14. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Badkul, Rajeev; Jiang, Hongyu; McClinton, Christopher; Lominska, Christopher; Kumar, Parvesh; Wang, Fen

    2016-05-01

    The purpose of the study was to evaluate Monte Carlo-generated dose distributions with the X-ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non-protocol dose-volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non-small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB-hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)-based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose-volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I-II NSCLC patients with peripherally located lung tumors, who underwent MC-based SBRT with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target volume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100%≥95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean=46.1±38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were

  15. Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-wei; Guo, Wei-hua; Qi, Ya-fei; Wang, Jian-zhen; Ma, Xiang-xing; Yu, De-xin

    2016-06-01

    Gold nanocages (GNCs) are a promising material that not only converts near infrared (NIR) light to heat for the ablation of tumors but also acts as a radiosensitizer. The combination of hyperthermia and radiotherapy has a synergistic effect that can lead to significant tumor cell necrosis. In the current study, we synthesized GNCs that offered the combined effects of hyperthermia and radiotherapy. This combination strategy resulted in increased tumor cell apoptosis and significant tumor tissue necrosis. We propose that GNCs can be used for clinical treatment and to potentially overcome resistance to radiotherapy by clearly increasing the antitumor effect.

  16. A Theoretical Study of Stagnation-Point Ablation

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    A simplified analysis is made of ablation cooling near the stagnation point of a two-dimensional or axisymmetric body which occurs as the body vaporizes directly from the solid state. The automatic shielding mechanism Is discussed and the important thermal properties required by a good ablation material are given. The results of the analysis are given in terms of dimensionless parameters.

  17. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    SciTech Connect

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-04-15

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered

  18. Stereotactic Body Radiotherapy for Clinically Localized Prostate Cancer: Toxicity and Biochemical Disease-Free Outcomes from a Multi-Institutional Patient Registry

    PubMed Central

    Sharma, Sanjeev; Shumway, Richard; Perry, David; Bydder, Sean; Simpson, C. Kelley; D'Ambrosio, David

    2015-01-01

    Objectives: To report on initial patient characteristics, treatment practices, toxicity, and early biochemical disease-free survival (bDFS) of localized prostate cancer treated with stereotactic body radiotherapy (SBRT) and enrolled in the RSSearch® Patient Registry. Methods: A retrospective analysis was conducted on patients with clinically localized prostate cancer enrolled in RSSearch® from June 2006 - January 2015. Patients were classified as low-risk (PSA ≤ 10 ng/ml, T1c-T2a, Gleason score ≤ 6), intermediate-risk (PSA 10.1 - 20 ng/ml, T2b-T2c, or Gleason 7), or high-risk (PSA > 20 ng/ml, T3 or Gleason ≥ 8). Toxicity was reported using Common Toxicity Criteria for Adverse Events, version 3. Biochemical failure was assessed using the Phoenix definition (nadir + 2 ng/ml). The Kaplan-Meier analysis was used to calculate bDFS and association of patient and tumor characteristics with the use of SBRT. Results: Four hundred thirty-seven patients (189 low, 215 intermediate, and 33 high-risk) at a median of 69 years (range: 48-88) received SBRT at 17 centers. Seventy-eight percent of patients received 36.25 Gy/5 fractions, 13% received 37 Gy/5 fractions, 6% received 35 Gy/5 fractions, 3% received 38 Gy/4 fractions, and 5% received a boost dose of 19.5-29 Gy following external beam radiation therapy. Median follow-up was 20 months (range: 1–64 months). Genitourinary (GU) and gastrointestinal (GI) toxicities were minimal, with no acute or late Grade 3+ GU or GI toxicity. Late Grade 1 and 2 urinary frequency was 25% and 8%. Late Grade 1 and 2 proctitis was 3% and 2%. Median PSA decreased from 5.8 ng/ml (range: 0.3-43) to 0.88, 0.4, and 0.3 ng/ml at one, two, and three years. Two-year bDFS for all patients was 96.1%. Two-year bDFS was 99.0%, 94.5%, and 89.8% for low, intermediate, and high-risk patients (p < 0.0001). Two-year bDFS was 99.2%, 93.2%, and 90.4% for Gleason ≤ 6, Gleason 7, and Gleason ≥ 8 (p < 0.0001). Two-year bDFS was 96.4%, 97

  19. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    PubMed

    Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-01

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans generated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0±1.6Gy compared to clinical plans, p=0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy±0.8Gy, p=0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2±0.4Gy, p=0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2±2.2Gy, p=0.01) and GI (0.2±0.4, p=0.01) for the nine-field plans relative to KBPs

  20. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  1. Radiofrequency Ablation of Liver Tumors

    MedlinePlus

    ... Site Index A-Z Radiofrequency Ablation (RFA) of Liver Tumors Radiofrequency ablation (RFA) is a treatment that ... of Liver Tumors? What is Radiofrequency Ablation of Liver Tumors? Radiofrequency ablation, sometimes referred to as RFA, ...

  2. Ablative skin resurfacing.

    PubMed

    Chwalek, Jennifer; Goldberg, David J

    2011-01-01

    Ablative skin resurfacing has remained the gold standard for treating photodamage and acne scars since the development of the first CO(2) lasers. CO(2) and Er:YAG lasers emit infrared light, which targets water resulting in tissue contraction and collagen formation. The first ablative laser systems created significant thermal damage resulting in unacceptably high rates of scarring and prolonged healing. Newer devices, such as high-energy pulsed lasers and fractional ablative lasers, are capable of achieving significant improvements with fewer side effects and shorter recovery times. While ablative resurfacing has become safer, careful patient selection is still important to avoid post-treatment scarring, dyspigmentation, and infections. Clinicians utilizing ablative devices need to be aware of possible side effects in order to maximize results and patient satisfaction. This chapter reviews the background of ablative lasers including the types of ablative lasers, mechanism of action, indications for ablative resurfacing, and possible side effects.

  3. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    PubMed Central

    de Moraes, Fabio Ynoe; Taunk, Neil Kanth; Laufer, Ilya; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; de Andrade Carvalho, Heloisa; Yamada, Yoshiya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and nonrandomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. PMID:26934240

  4. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  5. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  6. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  7. Thermal therapy, Part III: ablation techniques.

    PubMed

    Habash, Riadh W Y; Bansal, Rajeev; Krewski, Daniel; Alhafid, Hafid T

    2007-01-01

    Ablative treatments are gaining increasing attention as an alternative to standard surgical therapies, especially for patients with contraindication or those who refuse open surgery. Thermal ablation is used in clinical applications mainly for treating heart arrhythmias, benign prostate hyperplasia, and nonoperable liver tumors; there is also increasing application to other organ sites, including the kidney, lung, and brain. Potential benefits of thermal ablation include reduced morbidity and mortality in comparison with standard surgical resection and the ability to treat nonsurgical patients. The purpose of this review is to outline and discuss the engineering principles and biological responses by which thermal ablation techniques can provide elevation of temperature in organs within the human body. Because of the individual problems associated with each type of treatment, a wide range of ablation techniques have evolved including cryoablation as well as ultrasound, radiofrequency (RF), microwave, and laser ablation. Aspects of each ablation technique, including mechanisms of action, equipment required, selection of eligible patients, treatment techniques, and patient outcomes are presented, along with a discussion of limitations of the techniques and future research directions.

  8. Pulmonary radiofrequency ablation (Part 1): current state.

    PubMed

    Plasencia Martínez, J M

    2015-01-01

    The risks involved in surgical treatment and conventional radiotherapy in patients with early lung cancer or lung metastases often make these treatments difficult to justify. However, on the other hand, it is also unacceptable to allow these lesions to evolve freely because, left untreated, these neoplasms will usually lead to the death of the patient. In recent years, alternative local therapies have been developed, such as pulmonary radiofrequency ablation, which has proven to increase survival with a minimal risk of complications. There are common recommendations for these treatments, and although the specific indications for using one technique or another have yet to be established, there are clearly defined situations that will determine the outcome of the treatment. It is important to know these situations, because appropriate patient selection is essential for therapeutic success. This article aims to describe the characteristics and constraints of pulmonary radiofrequency ablation and to outline its role in thoracic oncology in light of the current evidence.

  9. Ablation of Ghrelin O-Acyltransferase Does Not Improve Glucose Intolerance or Body Adiposity in Mice on a Leptin-Deficient ob/ob Background

    PubMed Central

    Kirchner, Henriette; Heppner, Kristy M.; Holland, Jenna; Kabra, Dhiraj; Tschöp, Matthias H.; Pfluger, Paul T.

    2013-01-01

    Type 2 Diabetes is a global health burden and based on current estimates will become an even larger problem in the future. Developing new strategies to prevent and treat diabetes is a scientific challenge of high priority. The stomach hormone ghrelin has been associated with playing a role in the regulation of glucose homeostasis. However, its precise mechanism and impact on whole glucose metabolism remains to be elucidated. This study aims to clarify the role of the two ghrelin isoforms acyl- and desacyl ghrelin in regulating glucose homeostasis. Therefore ghrelin activating enzyme Ghrelin-O-acyltransferase (GOAT) was ablated in leptin-deficient ob/ob mice to study whether specific acyl ghrelin deficiency or desacyl ghrelin abundance modifies glucose tolerance on a massively obese background. As targeted deletion of acyl ghrelin does not improve glucose homeostasis in our GOAT-ob/ob mouse model we conclude that neither acyl ghrelin nor the increased ratio of desacyl/acyl ghrelin is crucial for controlling glucose homeostasis in the here presented model of massive obesity induced by leptin deficiency. PMID:23630616

  10. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  11. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    PubMed

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  12. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    PubMed Central

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  13. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  14. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  15. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  16. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  17. [Radiotherapy of bone metastases].

    PubMed

    Thureau, S; Vieillard, M-H; Supiot, S; Lagrange, J-L

    2016-09-01

    Radiotherapy plays a major role in palliative treatment of bone metastases. Recent developments of stereotactic radiotherapy and intensity modulated radiation therapy give the possibility to treat oligometastatic diseases. The objective of this paper is to report indications and treatment modalities of radiotherapy in these situations.

  18. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation.

  19. [Radiotherapy and targeted therapy/immunotherapy].

    PubMed

    Antoni, D; Bockel, S; Deutsch, E; Mornex, F

    2016-10-01

    Thanks to recent advances achieved in oncologic systemic and local ablative treatment, the treatments become more and more efficient in term of local control and overall survival. Thus, the targeted therapies, immunotherapy or stereotactic radiotherapy have modified the management of patients, especially in case of oligometastatic disease. Many questions are raised by these innovations, particularly the diagnosis and management of new side effects or that of the combination of these different treatments, depending on the type of primary tumor. Fundamental data are available, while clinical data are still limited. Ongoing trials should help to clarify the clinical management protocols. This manuscript is a review of the combination of radiotherapy and targeted therapy/immunotherapy.

  20. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  1. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  2. Locally ablative therapies for primary and metastatic liver cancer.

    PubMed

    Li, David; Kang, Josephine; Madoff, David C

    2014-08-01

    Locally ablative therapies have an increasing role in the effective multidisciplinary approach towards the treatment of both primary and metastatic liver tumors. In patients who are not considered surgical candidates and have low volume disease, these therapies have now become established into consensus practice guidelines. A large range of therapeutic options exist including percutaneous ethanol injection (PEI), radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation, percutaneous laser ablation (PLA), irreversible electroporation (IRE), stereotactic body radiation therapy (SBRT) and high intensity focused ultrasound (HIFU); each having benefits and drawbacks. The greatest body of evidence supporting clinical utility in the liver currently exists for RFA, with PEI having fallen out of favor. MWA, IRE, SBRT and HIFU are relatively nascent technologies, and outcomes data supporting their use is promising. Future directions of ablative therapies include tandem approaches to improve efficacy in the treatment of liver tumors.

  3. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  4. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  5. SU-E-T-547: A Method to Correlate Treatment Planning Issue with Clinical Analysis for Prostate Stereotactic Body Radiotherapy (SBRT)

    SciTech Connect

    Li, K; Jung, E; Newton, J; Cornell, D; Able, A

    2014-06-01

    Purpose: In this study, the algorithms and calculation setting effect and contribution weighing on prostate Volumetric Modulated Arc Therapy (VMAT) based SBRT were evaluated for clinical analysis. Methods: A low risk prostate patient under SBRT was selected for the treatment planning evaluation. The treatment target was divided into low dose prescription target volume (PTV) and high Dose PTV. Normal tissue constraints include urethra and femur head, and rectum was separated into anterior, lateral and posterior parts. By varying the constraint limit of treatment plan calculation setting and algorithms, the effect on dose coverage and normal tissue dose constraint parameter carried effective comparison for the nominal prescription and constraint. For each setting, their percentage differences to the nominal value were calculated with geometric mean and harmonic mean. Results: In the arbitrary prostate SBRT case, 14 variables were selected for this evaluation by using nominal prescription and constraint. Six VMAT planning settings were anisotropic analytic algorithm stereotactic beam with and without couch structure in grid size of 1mm and 2mm, non stereotactic beam, Acuros algorithm . Their geometry means of the variable sets for these plans were 112.3%, 111.9%, 112.09%, 111.75%, 111.28%, and 112.05%. And the corresponding harmonic means were 2.02%, 2.16%, 3.15%, 4.74%, 5.47% and 5.55%. Conclusions: In this study, the algorithm difference shows relatively larger harmonic mean between prostate SBRT VMAT plans. This study provides a methodology to find sensitive combined variables related to clinical analysis, and similar approach could be applied to the whole treatment procedure from simulation to treatment in radiotherapy for big clinical data analysis.

  6. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment.

    PubMed

    Bastianpillai, Christopher; Petrides, Neophytos; Shah, Taimur; Guillaumier, Stephanie; Ahmed, Hashim U; Arya, Manit

    2015-12-01

    Minimally invasive interventional therapies are evolving rapidly and their use for the treatment of solid tumours is becoming more extensive. The in situ destruction of solid tumours by such therapies is thought to release antigens that can prime an antitumour immune response. In this review, we offer an overview of the current evidence for immune response activation associated with the utilisation of the main thermal and non-thermal ablation therapies currently in use today. This is followed by an assessment of the hypothesised mechanisms behind this immune response priming and by a discussion of potential methods of harnessing this specific response, which may subsequently be applicable in the treatment of cancer patients. References were identified through searches of PubMed/MEDLINE and Cochrane databases to identify peer-reviewed original articles, meta-analyses and reviews. Papers were searched from 1850 until October 2014. Articles were also identified through searches of the authors' files. Only papers published in English were reviewed. Thermal and non-thermal therapies have the potential to stimulate antitumour immunity although the current body of evidence is based mostly on murine trials or small-scale phase 1 human trials. The evidence for this immune-modulatory response is currently the strongest in relation to cryotherapy and radiotherapy, although data is accumulating for related ablative treatments such as high-intensity focused ultrasound, radiofrequency ablation and irreversible electroporation. This effect may be greatly enhanced by combining these therapies with other immunostimulatory interventions. Evidence is emerging into the immunomodulatory effect associated with thermal and non-thermal ablative therapies used in cancer treatment in addition to the mechanism behind this effect and how it may be harnessed for therapeutic use. A potential exists for treatment approaches that combine ablation of the primary tumour with control and possible

  7. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  8. [Radiotherapy of hypopharynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Trémolières, P; Legouté, F; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    The intensity-modulated radiotherapy is the gold standard in the treatment of hypopharynx cancers. Early T1 and T2 tumours could be treated by exclusive radiotherapy or surgery. For tumours requiring total pharyngolaryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy are possible. For T4 tumours, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, curative dose is 70Gy and prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used for locally advanced cancers with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation is based on guidelines.

  9. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  10. Thermal ablation for hepatocellular carcinoma.

    PubMed

    Head, Hayden W; Dodd, Gerald D

    2004-11-01

    Thermal ablation, as a form of minimally invasive therapy for hepatocellular carcinoma (HCC), has become an important treatment modality. Because of the limitations of surgery, the techniques of thermal ablation have become standard therapies for HCC in some situations. This article reviews 4 thermal ablation techniques-radiofrequency (RF) ablation, microwave ablation, laser ablation, and cryoablation. Each of these techniques may have a role in treating HCC, and the mechanisms, equipment, patient selection, results, and complications of each are considered. Furthermore, combined therapies consisting of thermal ablation and adjuvant chemotherapy also show promise for enhancing these techniques. Important areas of research into thermal ablation remain, including improving the ability of ablation to treat larger tumors, determining the indications for each thermal ablation modality, optimizing image guidance, and obtaining good outcome data on the efficacy of these techniques.

  11. [Radiotherapy of oropharynx carcinoma].

    PubMed

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  12. Ablation of the locally advanced pancreatic cancer: An introduction and brief summary of techniques.

    PubMed

    Petrou, Athanasios; Moris, Demetrios; Paul Tabet, Patrick; David Wensley Richards, Brian; Kourounis, Georgios

    2016-01-01

    Pancreatic ductal adenocarcinoma is a lethal and late presenting malignancy with dismal survival rates. An estimated total of 330,000 people died from this malignancy in 2012. Although there have been improvements in diagnostic and treatment methods, the survival of late stage pancreatic cancer has not shown significant improvement in the past 4 decades. Multiple treatment approaches are available including chemotherapy, radiotherapy, and immunotherapy, but to this day surgical resection remains the only curative treatment option. Ablative techniques use various forms of energy to cause local tissue destruction through necrosis or apoptosis. They are relevant in pancreatic ductal adenocarcinoma as they are a treatment option in non-resectable tumors where their use ranges from symptom control to reducing tumor size for resection. In this narrative review we have grouped and outlined the various ablative methods, classifying them into thermal (Radiofrequency ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, Cryoablation), and non-thermal ablative methods (Irreversible Electroporation (NanoKnife®), Photodynamic Therapy). This is followed by a description and review of the available evidence on survival and complications for each of these ablative methods. According to the literature, thermal ablative methods appear to be more accessible but are implicated with more complications than non thermal ablative methods which show the most promise.

  13. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects.

  14. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  15. Endometrial Ablation for Menorrhagia

    PubMed Central

    Sanders, Barry H.

    1992-01-01

    Endometrial ablation is a relatively new treatment for patients with persistent menorrhagia. The procedure can be performed by either laser photocoagulation or electrocoagulation; both have a very low risk of complication. Generally, less than 24 hours of hospitalization is required and return to normal activities, including work, is almost immediate. Endometrial ablation is likely to become a mainstay of treatment for menorrhagia as the technology and training become more readily available. PMID:21229128

  16. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  17. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules.

  18. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong

    2017-02-01

    The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery

  19. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  20. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  1. Stereotactic Body Radiotherapy Versus Surgery for Medically Operable Stage I Non-Small-Cell Lung Cancer: A Markov Model-Based Decision Analysis

    SciTech Connect

    Louie, Alexander V.; Rodrigues, George; Palma, David A.; Cao, Jeffrey Q.; Yaremko, Brian P.; Malthaner, Richard; Mocanu, Joseph D.

    2011-11-15

    Purpose: To compare the quality-adjusted life expectancy and overall survival in patients with Stage I non-small-cell lung cancer (NSCLC) treated with either stereotactic body radiation therapy (SBRT) or surgery. Methods and Materials: We constructed a Markov model to describe health states after either SBRT or lobectomy for Stage I NSCLC for a 5-year time frame. We report various treatment strategy survival outcomes stratified by age, sex, and pack-year history of smoking, and compared these with an external outcome prediction tool (Adjuvant{exclamation_point} Online). Results: Overall survival, cancer-specific survival, and other causes of death as predicted by our model correlated closely with those predicted by the external prediction tool. Overall survival at 5 years as predicted by baseline analysis of our model is in favor of surgery, with a benefit ranging from 2.2% to 3.0% for all cohorts. Mean quality-adjusted life expectancy ranged from 3.28 to 3.78 years after surgery and from 3.35 to 3.87 years for SBRT. The utility threshold for preferring SBRT over surgery was 0.90. Outcomes were sensitive to quality of life, the proportion of local and regional recurrences treated with standard vs. palliative treatments, and the surgery- and SBRT-related mortalities. Conclusions: The role of SBRT in the medically operable patient is yet to be defined. Our model indicates that SBRT may offer comparable overall survival and quality-adjusted life expectancy as compared with surgical resection. Well-powered prospective studies comparing surgery vs. SBRT in early-stage lung cancer are warranted to further investigate the relative survival, quality of life, and cost characteristics of both treatment paradigms.

  2. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  3. Radiotherapy-induced hypopituitarism: a review.

    PubMed

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  4. High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an Image-Guided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model

    SciTech Connect

    Cho, Jaeho; Kodym, Reinhard; Seliounine, Serguei

    2010-07-01

    Purpose: To investigate the underlying biology associated with stereotactic body radiotherapy (SBRT), both in vivo models and image-guided, highly focal irradiation systems are necessary. Here, we describe such an irradiation system and use it to examine normal tissue toxicity in a small-animal model at lung volumes similar to those associated with human therapy. Methods and Materials: High-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal stereotactic irradiator. The irradiator has a collimation mechanism to produce focal radiation beams, an imaging subsystem consisting of a fluorescent screen coupled to a charge-coupled device camera, and a manual positioning stage. Histopathologic examination and micro-CT were used to evaluate the radiation response. Results: Focal obliteration of the alveoli by fibrous connective tissue, hyperplasia of the bronchiolar epithelium, and presence of a small number of inflammatory cells are the main reactions to low-volume/high-dose irradiation of the mouse lung. The tissue response suggested a radiation dose threshold for early phase fibrosis lying between 40 and 100 Gy. The irradiation system satisfied our requirements of high-dose-rate, small beam diameter, and precise localization and verification. Conclusions: We have established an experimental model and image-guided animal irradiation system for the study of high dose per fraction irradiations such as those used with SBRT at volumes analogous to those used in human beings. It will also allow the targeting of specific anatomical structures of the thorax or ultimately, orthotopic tumors of the lung.

  5. SU-E-T-179: Exploring Appropriate Offset Values for Pencil Beam and Monte Carlo Dose Optimization in Lung Stereotactic Body Radiotherapy Encompassing the Effects of Respiration and Tumor Location

    SciTech Connect

    Evans, G; Shang, C; Leventouri, T

    2014-06-01

    Purpose: Exploring appropriate offset values in dose optimization with pencil beam (PB) algorithm to minimize dosimetric differences with plans calculated with Monte Carlo (MC) for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). Methods: 20 cases of Non-Small Cell Lung Cancer, treated with gated full motion range SBRT were selected. According to the proximity of the Gross Tumor Volume (GTV) to the chest wall, two groups are defined: peripherally located when GTV merges with the chest wall for at least 50% of the lesion diameter, and centrally located when the GTV is surrounded by lung tissue. Treatment plans were created on 4D average intensity projection (AIP) CT set with Brainlab iPlanDose 4.1.2 planning system. The D97 of PTV was normalized to 50Gy using the fast PB and compared with MC. The optimized plan was then recomputed over each 4D respiratory phase, and compared with MC using the same plan MU's. Results: The mean difference in the PB and MC D97 of the ITV was 10.5% (±0.8%) of the prescription dose (50Gy). PB algorithm showed 2.3–2.4% less overestimation to the D97 of the ITV, when comparing to MC, in the maximum exhalation phase than in the maximal inhalation phase. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus for central lesions (12.7±0.8%) (p< 0.01). Conclusion: The dosimetric differences between PB and MC can be reasonably predicted depending on the location of lesion in the lung, and may be used as offset value in dose optimization with PB. Since the maximal exhalation phase demonstrates less dose discrepancy between the two algorithms than that in maximal inhalation phase, caution is suggested when the latter is included as a major phase portion in the respiration gated lung SBRT.

  6. Stereotactic Body Radiotherapy for Primary Lung Cancer at a Dose of 50 Gy Total in Five Fractions to the Periphery of the Planning Target Volume Calculated Using a Superposition Algorithm

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo Ohashi, Toshio; Oku, Yohei; Takeda, Toshiaki; Shigematsu, Naoyuki; Kubo, Atsushi

    2009-02-01

    Purpose: To retrospectively analyze the clinical outcomes of stereotactic body radiotherapy (SBRT) for patients with Stages 1A and 1B non-small-cell lung cancer. Methods and Materials: We reviewed the records of patients with non-small-cell lung cancer treated with curative intent between Dec 2001 and May 2007. All patients had histopathologically or cytologically confirmed disease, increased levels of tumor markers, and/or positive findings on fluorodeoxyglucose positron emission tomography. Staging studies identified their disease as Stage 1A or 1B. Performance status was 2 or less according to World Health Organization guidelines in all cases. The prescribed dose of 50 Gy total in five fractions, calculated by using a superposition algorithm, was defined for the periphery of the planning target volume. Results: One hundred twenty-one patients underwent SBRT during the study period, and 63 were eligible for this analysis. Thirty-eight patients had Stage 1A (T1N0M0) and 25 had Stage 1B (T2N0M0). Forty-nine patients were not appropriate candidates for surgery because of chronic pulmonary disease. Median follow-up of these 49 patients was 31 months (range, 10-72 months). The 3-year local control, disease-free, and overall survival rates in patients with Stages 1A and 1B were 93% and 96% (p = 0.86), 76% and 77% (p = 0.83), and 90% and 63% (p = 0.09), respectively. No acute toxicity was observed. Grade 2 or higher radiation pneumonitis was experienced by 3 patients, and 1 of them had fatal bacterial pneumonia. Conclusions: The SBRT at 50 Gy total in five fractions to the periphery of the planning target volume calculated by using a superposition algorithm is feasible. High local control rates were achieved for both T2 and T1 tumors.

  7. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy.

  8. Stereotactic body radiation therapy for metastasis to the adrenal glands.

    PubMed

    Shiue, Kevin; Song, Andrew; Teh, Bin S; Ellis, Rodney J; Yao, Min; Mayr, Nina A; Huang, Zhibin; Sohn, Jason; Machtay, Mitchell; Lo, Simon S

    2012-12-01

    Many primary cancers can metastasize to the adrenal glands. Adrenalectomy via an open or laparoscopic approach is the current definitive treatment, but not all patients are eligible or wish to undergo surgery. There are only limited studies on the use of conventional radiation therapy for palliation of symptoms from adrenal metastasis. However, the advent of stereotactic body radiation therapy (SBRT) - also named stereotactic ablative radiotherapy for primary lung cancer, metastases to the lung, and metastases to the liver - have prompted some investigators to consider the use of SBRT for metastases to the adrenal glands. This review focuses on the emerging data on SBRT of metastasis to the adrenal glands, while also providing a brief discussion of the overall management of adrenal metastasis.

  9. SU-C-BRA-01: 18F-NaF PET/CT-Directed Dose Escalation in Stereotactic Body Radiotherapy for Spine Oligometastases From Prostate Cancer

    SciTech Connect

    Wu, L; Zhang, W; Li, M; Peng, X; Xie, L; Lin, Z; Kwee, S; Wang, H; Kuang, Y

    2015-06-15

    Purpose: To investigate the technical feasibility of SBRT dose painting using {sup 18}F-NaF positron emission tomography (PET) scans guidance in patients with spine oligometastases from prostate cancer. Methods: As a proof of concept, six patients with 14 spine oligometastatic lesions from prostate cancer who had {sup 18}F-NaF PET/CT scan prior to treatment were retrospectively included. GTV{sub reg} was delineated according to the regular tumor boundary shown on PET and/or CT images; and GTV{sub MATV} was contoured based on a net metabolically active tumor volume (MATV) defined by 60% of the SUV{sub max} values on {sup 18}F-NaF PET images. The PTVs (PTV{sub reg} and PTV{sub MATV}) were defined as respective GTVs (plus involved entire vertebral body for PTV{sub reg}) with a 3-mm isotropic expansion margin. Three 1-fraction SBRT plans using VMAT technique along with 10 MV FFF beams (Plan{sub 24Gy}, Plan{sub 24–27Gy}, and Plan{sub 24–30Gy}) were generated for each patient. All plans included a dose of 24 Gy prescribed to PTV{sub reg}. The Plan{sub 24–27Gy} and Plan{sub 24–30Gy} also included a simultaneous boost dose of 27 Gy or 30 Gy prescribed to the PTV{sub MATV}, respectively. The feasibility of 18F-NaF PET-guided SBRT dose escalation was evaluated by its ability to achieve the prescription dose objectives while adhering to organ-at-risk (OAR) dose constraints. The normal tissue complication probabilities (NTCP) calculated by radiological models were also compared between the plans. Results: In all 33 SBRT plans generated, the planning objectives and dose constraints were met without exception. Plan{sub 24–27Gy} and Plan{sub 24–30Gy} had a significantly higher dose in PTV{sub MATV} than Plan{sub 24Gy} (p < 0.05), respectively, while maintaining a similar OAR sparing profile and NTCP values. Conclusion: Using VMAT with FFF beams to incorporate a simultaneous {sup 18}F-NaF PET-guided radiation boost dose up to 30 Gy into a SBRT plan is technically

  10. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  11. A propensity-matched analysis of surgery and stereotactic body radiotherapy for early stage non-small cell lung cancer in the elderly

    PubMed Central

    Wang, Peng; Zhang, Dong; Guo, Xue-Guang; Li, Xiao-Mei; Du, Le-Hui; Sun, Bao-Jun; Fang, Xiang-Qun; Guo, Ying-Hua; Guo, Jun; An, Li; Qu, Ge-Ping; Liu, Chang-Ting

    2016-01-01

    Abstract Elderly patients with early stage non-small cell lung cancer (NSCLC) who undergo surgical resection are at a high risk of treatment-related complications. Stereotactic body radiation therapy (SBRT) is considered an alternative treatment option with a favorable safety profile. Given that prospective comparative data on SBRT and surgical treatments are limited, we compared the 2 treatments for early stage NSCLC in the elderly. We retrospectively collected information from the database at our geriatric institution on patients with clinical stage IA/B NSCLC who were treated with surgery or SBRT. The patients were matched using a propensity score based on gender, age, T stage, tumor location, pulmonary function (forced expiratory volume in 1 second [FEV1]% and FEV1), Charlson comorbidity score, and World Health Organization performance score. We compared locoregional control rate, recurrence-free survival (RFS), overall survival (OS), and cancer-specific survival (CSS) between the 2 treatment cohorts before and after propensity score matching. A total of 106 patients underwent surgery, and 74 received SBRT. Surgical patients were significantly younger (72.6 ± 7.9 vs 82.6 ± 4.1 years, P = 0.000), with a significantly higher rate of adenocarcinoma (P = 0.000), better Eastern Cooperative Oncology Group performance scores (P = 0.039), and better pulmonary function test results (P = 0.034 for predicted FEV1 and P = 0.032 for FEV1). In an unmatched comparison, there were significant differences in locoregional control (P = 0.0012) and RFS (P < 0.001). The 5-year OS was 69% in patients who underwent surgery and 44.6% in patients who underwent SBRT (P = 0.0007). The 5-year CSS was 73.9% in the surgery group and 57.5% in the SBRT group (P = 0.0029). Thirty-five inoperable or marginally operable surgical patients and 35 patients who underwent SBRT were matched to their outcomes in a blinded manner (1:1 ratio, caliper

  12. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  13. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  14. Molecular dynamics investigation of mechanisms of femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Changrui

    Laser micro-machining has been widely applied for material processing in many industries. A phenomenon called "laser ablation" is usually involved in the laser micro-machining process. Laser ablation is the process of material removal after the irradiation of a laser beam onto the material. It is commonly characterized by small temporal and spatial scales, extremely high material temperature and pressure, and strong non-equilibrium thermodynamic state. In this work, molecular dynamics (MD) simulation is conducted to study the femtosecond laser ablation of metals (nickel and copper) and dielectrics (fused silica, or glass). The laser heating and the ablation processes are numerically modeled, and the computation is accelerated by parallel processing technique. Both the pair-wise Morse potential and the many-body EAM (Embedded-Atom Method) potential are employed for metals. In the simulation of fused silica, the BKS (van Beest, Kramer and van Santen) potential is used, and the generation of free electrons, the energy transport from laser beam to free electrons and energy coupling between electrons and the lattice are considered. The main goal of this work is to illustrate the detailed processes of femtosecond laser ablation and to study its mechanisms. From the MD results, it is found that the mechanism of femtosecond laser ablation is strongly dependent on the laser fluences. For metals, low fluence laser ablation is mainly through phase explosion (homogeneous gas bubble nucleation), while spinodal decomposition is responsible for high fluence ablation. Ablation mechanism is determined by whether or not the material (liquid) temperature exceeds the critical temperature. For fused silica, the generation and existence of free electrons are found to affect ablation significantly, especially at low fluence, where Coulomb explosion is found to play an important role in material separation.

  15. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  16. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.

  17. Catheter ablation in patients with persistent atrial fibrillation

    PubMed Central

    Kirchhof, Paulus; Calkins, Hugh

    2017-01-01

    Catheter ablation is increasingly offered to patients who suffer from symptoms due to atrial fibrillation (AF), based on a growing body of evidence illustrating its efficacy compared with antiarrhythmic drug therapy. Approximately one-third of AF ablation procedures are currently performed in patients with persistent or long-standing persistent AF. Here, we review the available information to guide catheter ablation in these more chronic forms of AF. We identify the following principles: Our clinical ability to discriminate paroxysmal and persistent AF is limited. Pulmonary vein isolation is a reasonable and effective first approach for catheter ablation of persistent AF. Other ablation strategies are being developed and need to be properly evaluated in controlled, multicentre trials. Treatment of concomitant conditions promoting recurrent AF by life style interventions and medical therapy should be a routine adjunct to catheter ablation of persistent AF. Early rhythm control therapy has a biological rationale and trials evaluating its value are underway. There is a clear need to generate more evidence for the best approach to ablation of persistent AF beyond pulmonary vein isolation in the form of adequately powered controlled multi-centre trials. PMID:27389907

  18. Stereotactic Radiosurgery and Stereotactic Body Radiotherapy (SBRT)

    MedlinePlus

    ... due to the development of highly advanced radiation technologies that permit maximum dose delivery within the target ... local control. SRS and SBRT rely on several technologies: three-dimensional imaging and localization techniques that determine ...

  19. Stereotactic Radiosurgery and Stereotactic Body Radiotherapy (SBRT)

    MedlinePlus

    ... is observed called pseudoprogression. top of page What equipment is used? There are three basic kinds of ... involved in this procedure and who operates the equipment? The treatment team is comprised of a number ...

  20. Treatment of bone tumours by radiofrequency thermal ablation.

    PubMed

    Santiago, Fernando Ruiz; Del Mar Castellano García, María; Montes, Jose Luis Martínez; García, Manuel Ruiz; Fernández, Juan Miguel Tristán

    2009-03-01

    Radiofrequency thermal ablation (RFTA) is considered the treatment of choice for osteoid osteomas, in which it has long been safely used. Other benign conditions (chondroblastoma, osteoblastoma, giant cell tumour, etc.) can also be treated by this technique, which is less invasive than traditional surgical procedures. RFTA ablation is also an option for the palliation of localized, painful osteolytic metastatic and myeloma lesions. The reduction in pain improves the quality of life of patients with cancer, who often have multiple morbidities and a limited life expectancy. In some cases, these patients are treated with RFTA because conventional therapies (surgery, radiotherapy, chemotherapy, etc.) have been exhausted. In other cases, it is combined with conventional therapies or other percutaneous treatments, e.g., cementoplasty, offering faster pain relief and bone strengthening. A multidisciplinary approach to the management of these patients is recommended to select the optimal treatment, including orthopaedic surgeons, neurosurgeons, medical and radiation oncologists and interventional radiologists.

  1. Percutaneous ablation of adrenal tumors.

    PubMed

    Venkatesan, Aradhana M; Locklin, Julia; Dupuy, Damian E; Wood, Bradford J

    2010-06-01

    Adrenal tumors comprise a broad spectrum of benign and malignant neoplasms and include functional adrenal adenomas, pheochromocytomas, primary adrenocortical carcinoma, and adrenal metastases. Percutaneous ablative approaches that have been described and used in the treatment of adrenal tumors include percutaneous radiofrequency ablation, cryoablation, microwave ablation, and chemical ablation. Local tumor ablation in the adrenal gland presents unique challenges, secondary to the adrenal gland's unique anatomic and physiological features. The results of clinical series employing percutaneous ablative techniques in the treatment of adrenal tumors are reviewed in this article. Clinical and technical considerations unique to ablation in the adrenal gland are presented, including approaches commonly used in our practices, and risks and potential complications are discussed.

  2. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    SciTech Connect

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U.; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A.; Kupelian, Patrick; Steinberg, Michael L.; Lee, Percy

    2016-04-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculated as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving

  3. Maximum Standardized Uptake Value From Staging FDG-PET/CT Does not Predict Treatment Outcome for Early-Stage Non-Small-Cell Lung Cancer Treated With Stereotactic Body Radiotherapy

    SciTech Connect

    Burdick, Michael J.; Stephans, Kevin L.; Reddy, Chandana A.; Djemil, Toufik; Srinivas, Shyam M.; Videtic, Gregory M.M.

    2010-11-15

    Purpose: To perform a retrospective review to determine whether maximum standardized uptake values (SUV{sub max}) from staging 2-deoxy-2- [{sup 18}F] fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) studies are associated with outcomes for early-stage non-small-cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). Methods and Materials: Seventy-two medically inoperable patients were treated between October 17, 2003 and August 17, 2007 with SBRT for T1-2N0M0 NSCLC. SBRT was administered as 60 Gy in 3 fractions, 50 Gy in 5 fractions, or 50 Gy in 10 fractions using abdominal compression and image-guided SBRT. Cox proportional hazards regression was performed to determine whether PET SUV{sub max} and other variables influenced outcomes: mediastinal failure (MF), distant metastases (DM), and overall survival (OS). Results: Biopsy was feasible in 49 patients (68.1%). Forty-nine patients had T1N0 disease, and 23 had T2N0 disease. Median SUV{sub max} was 6.55 (range, 1.5-21). Median follow-up was 16.9 months (range, 0.1-37.9 months). There were 3 local failures, 8 MF, 19 DM, and 30 deaths. Two-year local control, MF, DM, and OS rates were 94.0%, 10.4%, 30.1%, and 61.3%, respectively. In univariate analysis, PET/CT SUV{sub max}, defined either as a continuous or dichotomous variable, did not predict for MF, DM, or OS. On multivariable analysis, the only predictors for overall survival were T1 stage (hazard ratio = 0.331 [95% confidence interval, 0.156-0.701], p = 0.0039) and smoking pack-year history (hazard ratio = 1.015 [95% confidence interval, 1.004-1.026], p = 0.0084). Conclusions: Pretreatment PET SUV{sub max} did not predict for MF, DM, or OS in patients treated with SBRT for early-stage NSCLC.

  4. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non–small cell lung cancer treated with stereotactic body radiotherapy

    PubMed Central

    Aoki, Masahiko; Akimoto, Hiroyoshi; Sato, Mariko; Hirose, Katsumi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Seino, Hiroko; Kakehata, Shinya; Tsushima, Fumiyasu; Fujita, Hiromasa; Fujita, Tamaki; Fujioka, Ichitaro; Tanaka, Mitsuki; Miura, Hiroyuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    This study aimed to investigate the correlation between the average iodine density (AID) detected by dual-energy computed tomography (DE-CT) and the maximum standardized uptake value (SUVmax) yielded by [18F] fluorodeoxyglucose positron emission tomography (18F-FDG PET) for non–small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). Seventy-four patients with medically inoperable NSCLC who underwent both DE-CT and 18F-FDG PET/CT before SBRT (50‒60 Gy in 5‒6 fractions) were followed up after a median interval of 24.5 months. Kaplan–Meier analysis was used to determine associations between local control (LC) and variables, including AID, SUVmax, tumor size, histology, and prescribed dose. The median AID and SUVmax were 18.64 (range, 1.18–45.31) (100 µg/cm3) and 3.2 (range, 0.7–17.6), respectively. No correlation was observed between AID and SUVmax. Two-year LC rates were 96.2% vs 75.0% (P = 0.039) and 72.0% vs 96.2% (P = 0.002) for patients classified according to high vs low AID or SUVmax, respectively. Two-year LC rates for patients with adenocarcinoma vs squamous cell carcinoma vs unknown cancer were 96.4% vs 67.1% vs 92.9% (P = 0.008), respectively. Multivariate analysis identified SUVmax as a significant predictor of LC. The 2-year LC rate was only 48.5% in the subgroup of lower AID and higher SUVmax vs >90% (range, 94.4–100%) in other subgroups (P = 0.000). Despite the short follow-up period, a reduction in AID and subsequent increase in SUVmax correlated significantly with local failure in SBRT-treated NSCLC patients. Further studies involving larger populations and longer follow-up periods are needed to confirm these results. PMID:27296251

  5. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further

  6. Computed Tomography-Based Anatomic Assessment Overestimates Local Tumor Recurrence in Patients With Mass-like Consolidation After Stereotactic Body Radiotherapy for Early-Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Dunlap, Neal E.; Yang Wensha; McIntosh, Alyson; Sheng, Ke; Benedict, Stanley H.; Read, Paul W.; Larner, James M.

    2012-12-01

    Purpose: To investigate pulmonary radiologic changes after lung stereotactic body radiotherapy (SBRT), to distinguish between mass-like fibrosis and tumor recurrence. Methods and Materials: Eighty consecutive patients treated with 3- to 5-fraction SBRT for early-stage peripheral non-small cell lung cancer with a minimum follow-up of 12 months were reviewed. The mean biologic equivalent dose received was 150 Gy (range, 78-180 Gy). Patients were followed with serial CT imaging every 3 months. The CT appearance of consolidation was defined as diffuse or mass-like. Progressive disease on CT was defined according to Response Evaluation Criteria in Solid Tumors 1.1. Positron emission tomography (PET) CT was used as an adjunct test. Tumor recurrence was defined as a standardized uptake value equal to or greater than the pretreatment value. Biopsy was used to further assess consolidation in select patients. Results: Median follow-up was 24 months (range, 12.0-36.0 months). Abnormal mass-like consolidation was identified in 44 patients (55%), whereas diffuse consolidation was identified in 12 patients (15%), at a median time from end of treatment of 10.3 months and 11.5 months, respectively. Tumor recurrence was found in 35 of 44 patients with mass-like consolidation using CT alone. Combined with PET, 10 of the 44 patients had tumor recurrence. Tumor size (hazard ratio 1.12, P=.05) and time to consolidation (hazard ratio 0.622, P=.03) were predictors for tumor recurrence. Three consecutive increases in volume and increasing volume at 12 months after treatment in mass-like consolidation were highly specific for tumor recurrence (100% and 80%, respectively). Patients with diffuse consolidation were more likely to develop grade {>=}2 pneumonitis (odds ratio 26.5, P=.02) than those with mass-like consolidation (odds ratio 0.42, P=.07). Conclusion: Incorporating the kinetics of mass-like consolidation and PET to the current criteria for evaluating posttreatment response will

  7. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods.

    PubMed

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro; Matsuo, Yukinori; Ueki, Nami; Nakamura, Akira; Iizuka, Yusuke; Mampuya, Wambaka Ange; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D95, D90, D50, and D2 of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation algorithm or the dose

  8. Ablation of skeletal metastases: current status.

    PubMed

    Kurup, A Nicholas; Callstrom, Matthew R

    2010-08-01

    Image-guided percutaneous ablation of bone metastases is an effective, minimally invasive alternative to conventional therapies in the palliation of pain from metastatic disease. Ablative technologies applied in the treatment of skeletal metastases include radiofrequency ablation, cryoablation, microwave ablation, laser ablation, ethanol ablation, and, most recently, focused ultrasound. These ablative methods may be performed in combination with percutaneous cementoplasty to provide support and stabilization for metastases in weight-bearing bones at risk for pathologic fracture.

  9. MRI-guided laser ablation of neuroendocrine tumor hepatic metastases

    PubMed Central

    Perälä, Jukka; Klemola, Rauli; Kallio, Raija; Li, Chengli; Vihriälä, Ilkka; Salmela, Pasi I; Tervonen, Osmo

    2014-01-01

    Background Neuroendocrine tumors (NET) represent a therapeutically challenging and heterogeneous group of malignancies occurring throughout the body, but mainly in the gastrointestinal system. Purpose To describe magnetic resonance imaging (MRI)-guided laser ablation of NET liver metastases and assess its role within the current treatment options and methods. Material and Methods Two patients with NET tumor hepatic metastases were treated with MRI-guided interstitial laser ablation (LITT). Three tumors were treated. Clinical follow-up time was 10 years. Results Both patients were successfully treated. There were no local recurrences at the ablation site during the follow-up. Both patients had survived at 10-year follow-up. One patient is disease-free. Conclusion MRI-guided laser ablation can be used to treat NET tumor liver metastases but combination therapy and a rigorous follow-up schedule are recommended. PMID:24778794

  10. Clinical experiences with microwave thermal ablation of lung malignancies.

    PubMed

    Sidoff, Luby; Dupuy, Damian E

    2017-02-01

    Approximately 30% of early stage lung cancer patients are not surgical candidates due to medical co-morbidities, poor cardiopulmonary function and advanced age. These patients are traditionally offered chemotherapy and radiation, which have shown relatively modest improvements in mortality. For over a decade, percutaneous image-guided ablation has emerged as a safe, cost-effective, minimally invasive treatment alternative for patients who would otherwise not qualify for surgery. Although radiofrequency ablation (RFA) is currently the most extensively studied and widely utilised technique in the treatment of lung malignancies, there is a growing body of evidence that microwave ablation (MWA) has several unique benefits over RFA and cryoablation in the lung. This article reviews our institution's clinical experiences in the treatment of lung malignancies with MWA including patient selection, procedural technique, imaging follow-up, treatment outcomes and comparison of ablation techniques.

  11. Targeting Radiotherapy to Cancer by Gene Transfer

    PubMed Central

    2003-01-01

    Targeted radionuclide therapy is an alternative method of radiation treatment which uses a tumor-seeking agent carrying a radioactive atom to deposits of tumor, wherever in the body they may be located. Recent experimental data signifies promise for the amalgamation of gene transfer with radionuclide targeting. This review encompasses aspects of the integration of gene manipulation and targeted radiotherapy, highlighting the possibilities of gene transfer to assist the targeting of cancer with low molecular weight radiopharmaceuticals. PMID:12721515

  12. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines.

  13. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  14. [Radiotherapy for retroperitoneal sarcomas].

    PubMed

    Sargos, P; Stoeckle, E; Henriques de Figueiredo, B; Antoine, M; Delannes, M; Mervoyer, A; Kantor, G

    2016-10-01

    The management of retroperitoneal sarcoma can be very challenging, and the quality of initial treatment strategy appears to be a crucial prognostic factor. En bloc surgery is currently the standard of care for these rare tumours and perioperative treatments such as chemotherapy or radiotherapy have not been validated yet. However, local-regional relapse constitutes the most common disease course. While adjuvant radiotherapy is less and less common due to gastrointestinal toxicities, preoperative radiation therapy offers numerous advantages and is being evaluated as part of a national multicentre phase II study (TOMOREP trial) and is the subject of a European randomized phase III study (STRASS trial). The objective of this article is to present data on preoperative irradiation in terms of dose, volumes and optimal radiotherapy techniques for the treatment of this rare disease.

  15. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  16. Catheter Ablation for Ventricular Arrhythmias

    PubMed Central

    Nof, Eyal; Stevenson, William G; John, Roy M

    2013-01-01

    Catheter ablation has emerged as an important and effective treatment option for many recurrent ventricular arrhythmias. The approach to ablation and the risks and outcomes are largely determined by the nature of the severity and type of underlying heart disease. In patients with structural heart disease, catheter ablation can effectively reduce ventricular tachycardia (VT) episodes and implantable cardioverter defibrillator (ICD) shocks. For VT and symptomatic premature ventricular beats that occur in the absence of structural heart disease, catheter ablation is often effective as the sole therapy. Advances in catheter technology, imaging and mapping techniques have improved success rates for ablation. This review discusses current approaches to mapping and ablation for ventricular arrhythmias. PMID:26835040

  17. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation

    PubMed Central

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S.

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  18. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  19. Radiofrequency Ablation for Liver Cancer.

    PubMed

    Jacobs, Amy

    2015-01-01

    Interventional ablative technologies aided by imaging techniques such as ultrasonography, computed tomography, and magnetic resonance imaging have been crucial in managing patients with primary liver cancer and liver metastases over the past 20 years. Several ablative technologies have been used to treat liver cancer; however, radiofrequency ablation (RFA) has emerged as the most common ablative therapy for hepatic lesions, both in the United States and globally. RFA is the treatment of choice for patients who cannot have surgical resection of the liver. This article focuses on the role of imaging in RFA treatment of primary and metastatic hepatic lesions.

  20. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  1. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  2. Matricectomy and nail ablation.

    PubMed

    Baran, Robert; Haneke, Eckart

    2002-11-01

    Matricectomy refers to the complete extirpation of the nail matrix, resulting in permanent nail loss. Usually however, matricectomy is only partial, restricted to one or both lateral horns of the matrix. Nail ablation is the definitive removal of the entire nail organ. The most important common denominator in the successful matricectomy is the total removal or destruction of the matrix tissue. Matricectomy may be indicated for the management of onychauxis, onychogryphosis, congenital nail dystrophies, and chronic painful nail, such as recalcitrant ingrown toenail or split within the medial or lateral one-third of the nail.

  3. [Radiotherapy of breast cancer].

    PubMed

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  4. MRI micturating urethrography for improved urethral delineation in prostate radiotherapy planning: a case study

    NASA Astrophysics Data System (ADS)

    Rai, Robba; Sidhom, Mark; Lim, Karen; Ohanessian, Lucy; Liney, Gary P.

    2017-04-01

    Stereotactic ablative body radiotherapy is used in prostate cancer to deliver a high dose of radiation to the tumour over a small number of treatments. This involves the simulation of the patient using both CT and MRI. Current practice is to insert an indwelling catheter (IDC) during CT to assist with visualisation of the urethra and subsequently minimise dose to this highly critical structure. However, this procedure is invasive and has an associated risk of infection. This is a case study, which demonstrates our initial experience of using a real-time non-invasive MRI technique to replace the use of IDC for prostate cancer patients. The patient was scanned on a dedicated 3T MRI and was instructed to micturate in their own time whereupon a sagittal T2 weighted HASTE sequence was acquired every 5 s. This was subsequently followed by T2 weighted axial imaging at the level of mid prostate to provide improved urethral definition. Acquired images showed bladder voidance in real-time and an increase in signal intensity in the proximal urethra post voiding allowing for delineation of the urethra. The dimension and shape of the proximal urethra was well visualised and accumulation time of urine in the urethra was sufficient to enable optimum timing of the scanning technique. We have presented for the first time a micturating urethography technique using MRI, which has allowed us to visualise the urethra without contrast and with minimal invasiveness to the patient.

  5. Numerical design of RF ablation applicator for hepatic cancer treatment

    NASA Astrophysics Data System (ADS)

    Rakhmadi, Aditya; Basari

    2017-02-01

    Currently, cancer has become one of health problems that is difficult to be overcomed. This disease is not only difficult to be cured, but also to be detected and may cause death. For this reason, RF ablation treatment method is proposed to cure cancer. RF ablation therapy is a method in which an applicator is inserted into the body to kill cancer cells by heating the cells. The cancer cells are exposed to the temperature more than 60°C in short duration (few second to few minutes) so thus cell destruction occurs locally. For the sake of the successful treatment, a minimally invasive method is selected in order for perfect local temperature distribution in cancer cells can be achieved. In this paper, a coax-fed dipole-type applicator with interstitial irradiation technique is proposed aimed at RF ablation into hepatic cells. Numerical simulation is performed to obtain a suitable geometric dimension at operating frequency around 2.45 GHz, in order to localize the ablation area. The proposed applicator is inserted into a simple phantom representing an adult human body model in which normal and cancerous liver cells. The simulated results show that the proposed applicator is able to operate at center frequency of 2.355 GHz with blood droplet-type ablation zone and the temperature around the cancer cell by 60°C can be achieved.

  6. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-02

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

  7. [Radiotherapy as primary treatment for chemodectoma?].

    PubMed

    Verniers, D; Van Limbergen, E; Leysen, J; Ostyn, F; Segers, A

    1990-01-01

    Chemodectomas are slowly growing tumours originating in the chemoreceptor bodies. The diagnosis is based on typical clinical symptoms and radiological investigation. CT scanning with contrast enhancement permits to establish diagnosis in most cases and gives a correct idea of tumour size, tumour extension, displacement of arteries and bone destruction. Small tympanic chemodectomas are successfully managed by surgery, without causing additional cranial nerve palsies. Surgery of larger lesions is frequently followed by a high percentage of local recurrence (greater than 50%) and important morbidity (neurologic sequelae). Our present series confirms that these tumours can successfully be treated by radiotherapy. Persisting local control rates can be obtained in more than 90% of cases with moderate doses (45-50 Gy in 5 weeks) of carefully planned radiotherapy.

  8. Perianal Paget disease treated definitively with radiotherapy.

    PubMed

    Mann, J; Lavaf, A; Tejwani, A; Ross, P; Ashamalla, H

    2012-12-01

    Extramammary Paget disease (empd) is a relatively rare cutaneous disorder described as an apocrine gland tumour occurring in both a benign and a malignant form with metastatic potential. The areas of the body affected are the vulva, perianal region, penis, scrotum, perineum, and axilla, all of which contain apocrine glands. When empd affects the perianal region, it is called perianal Paget disease (ppd). All forms of empd, including ppd, are typically treated by wide surgical excision. Perianal Paget disease usually occurs later in life in patients who are often poor surgical candidates, but the available literature is scarce regarding other treatment modalities, including definitive radiotherapy. We contend that ppd can be safely and effectively treated with radiotherapy, and here, we present the case of a 75-year-old woman with ppd who was successfully so treated. A brief review of the literature concerning the diagnosis, natural history, and treatment of ppd is also included.

  9. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review.

  10. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  11. [Radiotherapy for Graves' ophthalmopathy].

    PubMed

    Kuhnt, T; Müller, A C; Janich, M; Gerlach, R; Hädecke, J; Duncker, G I W; Dunst, J

    2004-11-01

    Graves' ophthalmopathy (GO) is the most frequent extrathyroidal manifestation of Graves' disease, an autoimmune disorder of the thyroid, whereas the precise pathogenesis still remains unclear. In Hashimoto's thyroiditis the occurrence of proptosis is an extremely rare event. The therapy for middle and severe courses of GO shows in partly disappointing results, although several therapy modalities are possible (glucocorticoid therapy, radiotherapy, antithyroid drug treatment, surgery). All these therapies lead in only 40 - 70 % to an improvement of the pathogenic symptoms. An intensive interdisciplinary cooperation is necessary to satisfy the requirements for the treatment of Graves' ophthalmopathy. As a consequence of the very different results of the few of clinical studies that were accomplished with reference to this topic, treatment by radiotherapy in the management of the disease is presently controversially discussed. In the German-speaking countries the radiotherapy is, however, firmly established as a therapy option in the treatment of the moderate disease classes (class 2-5 according to NO SPECS), especially if diplopia is present. This article describes the sequences, dosages and fractionation schemes as well as the risks and side effects of the radiotherapy. Altogether, radiotherapy is assessed as an effective and sure method. The administration of glucocorticoids can take place before the beginning of or during the radiotherapy. For the success of treatment the correct selection of patients who may possibly profit from a radiotherapy is absolutely essential. By realising that GO proceeds normally over a period of 2-5 years, which is followed by a period of fibrotic alteration, the application of the radiotherapy in the early, active phase is indispensable. A precise explanation for the effects of radiotherapy in treatment of the GO does not exist at present. The determination of the most effective irradiation doses was made from retrospectively evaluated

  12. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  13. Nutritional consequences of the radiotherapy of head and neck cancer

    SciTech Connect

    Chencharick, J.D.; Mossman, K.L.

    1983-03-01

    Nutrition-related complications of radiotherapy were evaluated in 74 head and neck cancer patients. Subjective changes of mouth dryness, taste, dysphagia, appetite, and food preferences were determined by questionnaire before and at weekly intervals during curative radiotherapy. Changes in body weight during therapy were also recorded. In addition, 24-hour dietary histories were taken from eight patients at the beginning and end of treatment. Results of the study indicate that patients were subjectively aware of nutritional problems prior to therapy and that therapy exacerbated these problems. As many as 25% of the patients experienced oral complications such as taste loss and/or dry mouth prior to initiation of radiotherapy. By the end of radiotherapy, over 80% of the patients were aware of oral and nutritional problems. Patients had an average weight loss of 5 kg prior to therapy; this loss of weight did not change during therapy. Diet histories of eight patients indicate significant caloric deficiencies early and late in radiotherapy. The oral and nutritional problems experienced by patients, even prior to therapy, support the idea that nutritional evaluation and maintenance are important not only during therapy, but prior to radiotherapy as well. Nutritional evaluation should be made a routine, integral part of therapy for every cancer patient.

  14. Development of moldable carbonaceous materials for ablative rocket nozzles.

    NASA Technical Reports Server (NTRS)

    Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.

    1972-01-01

    Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.

  15. Radiotherapy for bone pain.

    PubMed Central

    Needham, P R; Mithal, N P; Hoskin, P J

    1994-01-01

    Painful bone metastases are a common problem for cancer patients. Although current evidence supports the use of a single fraction of radiotherapy as the treatment of choice, many radiotherapists, for a variety of reasons, continue to use fractionated regimens. Over one six month period 105 patients received external beam irradiation for painful bone metastases at the Royal London Hospital (RLH). Thirty-one per cent of the patients were aged 70 or over. The treatment of 97 of these patients was assessed. They had a total of 280 sites treated over the course of their disease. Fifty-nine per cent of sites treated received a fractionated course of radiotherapy. Site significantly influenced fractionation. Overall response rates of 82% were achieved. Fractionation did not appear to influence this. Ten patients received large field irradiation. Fifteen patients had five or more sites irradiated, of whom only one received hemibody irradiation. PMID:7523672

  16. Melanoma: Last call for radiotherapy.

    PubMed

    Espenel, Sophie; Vallard, Alexis; Rancoule, Chloé; Garcia, Max-Adrien; Guy, Jean-Baptiste; Chargari, Cyrus; Deutsch, Eric; Magné, Nicolas

    2017-02-01

    Melanoma is traditionally considered to be a radioresistant tumor. However, radiotherapy and immunotherapy latest developments might upset this radiobiological dogma. Stereotactic radiotherapy allows high dose per fraction delivery, with high dose rate. More DNA lethal damages, less sublethal damages reparation, endothelial cell apoptosis, and finally clonogenic cell dysfunction are produced, resulting in improved local control. Radiotherapy can also enhance immune responses, inducing neoantigens formation, tumor antigen presentation, and cytokines release. A synergic effect of radiotherapy with immunotherapy is expected, and might lead to abscopal effects. If hadrontherapy biological properties seem able to suppress hypoxia-induced radioresistance and increase biological efficacy, ballistic advantages over photon radiations might also improve radiotherapy outcomes on usually poor prognosis locations. The present review addresses biological and clinical effects of high fraction dose, bystander effect, abscopal effect, and hadrontherapy features in melanoma. Clinical trials results are warranted to establish indications of innovative radiotherapy in melanoma.

  17. Accident prevention in radiotherapy

    PubMed Central

    Holmberg, O

    2007-01-01

    In order to prevent accidents in radiotherapy, it is important to learn from accidents that have occurred previously. Lessons learned from a number of accidents are summarised and underlying patterns are looked for in this paper. Accidents can be prevented by applying several safety layers of preventive actions. Categories of these preventive actions are discussed together with specific actions belonging to each category of safety layer. PMID:21614274

  18. [Radiotherapy of bladder cancer].

    PubMed

    Riou, O; Chauvet, B; Lagrange, J-L; Martin, P; Llacer Moscardo, C; Charissoux, M; Lauche, O; Aillères, N; Fenoglietto, P; Azria, D

    2016-09-01

    Surgery (radical cystectomy) is the standard treatment of muscle-invasive bladder cancer. Radiochemotherapy has risen as an alternative treatment option to surgery as part as organ-sparing combined modality treatment or for patients unfit for surgery. Radiochemotherapy achieves 5-year bladder intact survival of 40 to 65% and 5-year overall survival of 40 to 50% with excellent quality of life. This article introduces the French recommendations for radiotherapy of bladder cancer: indications, exams, technique, dosimetry, delivery and image guidance.

  19. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  20. Radiotherapy DICOM packet sniffing.

    PubMed

    Ackerly, T; Gesoand, M; Smith, R

    2008-09-01

    The Digital Imaging and Communications in Medicine (DICOM) standard is meant to allow communication of medical images between equipment provided by different vendors, but when two applications do not interact correctly in a multi-vendor environment it is often first necessary to demonstrate non-compliance of either the sender or the receiver before a resolution to the problem can be progressed. Sometimes the only way to do this is to monitor the network communication between the two applications to find out which one is not complying with the DICOM standard. Packet sniffing is a technique of network traffic analysis by passive observation of all information transiting a point on the network, regardless of the specified sender or receiver. DICOM packet sniffing traps and interprets the network communication between two DICOM applications to determine which is non compliant. This is illustrated with reference to three examples, a radiotherapy planning system unable to receive CT data from a particular CT scanner, a radiotherapy simulator unable to print correctly on a DICOM printer, and a PACS unable to respond when queried about what images it has in its archive by a radiotherapy treatment planning system. Additionally in this work it has been proven that it is feasible to extract DICOM images from the intercepted network data. This process can be applied to determine the cause of a DICOM image being rendered differently by the sender and the receiver.

  1. Imaging in radiotherapy.

    PubMed

    Van den Berge, D L; De Ridder, M; Storme, G A

    2000-10-01

    Radiotherapy, more then any other treatment modality, relies heavily and often exclusively on medical imaging to determine the extent of disease and the spatial relation between target region and neighbouring healthy tissues. Radically new approaches to radiation delivery are inspired on CT scanning and treat patients in a slice-by-slice fashion using intensity modulated megavoltage fan beams. For quality assurance of complex 3-D dose distributions, MR based 3-D verificative dosimetry on irradiated phantoms has been described. As treatment delivery becomes increasingly refined, the need for accurate target definition increases as well and sophisticated imaging tools like image fusion and 3-D reconstruction are routinely used for treatment planning. While in the past patients were positioned on the treatment machines based exclusively on surface topography and the well-known skin marks, such approach is no longer sufficient for high-accuracy radiotherapy and special imaging tools like on-line portal imaging are used to verify and correct target positioning. Much of these applications rely on digital image processing, transmission and storage, and the development of standards, like DICOM and PACS have greatly contributed to these applications. Digital imaging plays an increasing role in many areas in radiotherapy and has been fundamental in new developments that have demonstrated impact on patient care.

  2. [Radiotherapy for primary lung carcinoma].

    PubMed

    Giraud, P; Lacornerie, T; Mornex, F

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy, for primary lung carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed.

  3. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  4. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  5. [Radiotherapy of soft tissue sarcomas of the extremities and superficial trunk].

    PubMed

    Ágoston, Péter; Kliton, Jorgo; Mátrai, Zoltán; Polgár, Csaba

    2014-03-01

    Soft tissue sarcomas represent a histopathologically and clinically heterogeneous group of tumors that make up around 1% of malignancies, in which soft tissue sarcomas of the extremities and superficial trunk (STSET) are treated with more or less the same strategy. Over the past 30 years, there has been a migration away from amputation and radical ablative surgical procedures for localized STSET toward more conservative, function-preserving surgery combined with radiotherapy +/- chemotherapy. The latter complex treatment ensures equal local control to radical surgery. This multidisciplinary management includes organ sparing surgery as the main procedure but also radiotherapy of different types applied before, during or after the surgery, chemotherapy depending of the stadium of the tumor and plastic, reconstructive surgery, and last but not least rehabilitation of the patient after treatment. In this publication we overview the practical guidelines for the treatment of STSET based on the available literature from the last decades. Indication and timing of radiotherapy of STSET as well as available external beam and brachytherapy techniques are summarized. The prescribed radiation dose, the role of alternative fractionations, the combination of radiotherapy and systemic chemotherapy, hyperthermia or limb perfusion regards to STSET are also discussed. Practical considerations of radiotherapy, the target volumes and the role of newer radiotherapy technology in STSET treatment are overviewed.

  6. Magnetic and robotic navigation for catheter ablation: "joystick ablation".

    PubMed

    Ernst, Sabine

    2008-10-01

    Catheter ablation has become the treatment of choice to cure various arrhythmias in the last decades. The newest advancement of this general concept is made on the navigation ability using remote-controlled ablation catheters. This review summarizes the concept of the two currently available systems, followed by a critical review of the published clinical reports for each system, respectively. Despite the limited amount of data, an attempt to compare the two systems is made.

  7. Current readings: Percutaneous ablation for pulmonary metastatic disease.

    PubMed

    Quirk, Matthew T; Pomykala, Kelsey L; Suh, Robert D

    2014-01-01

    Percutaneous image-guided ablation is a technique for maintaining local control of metastatic lung lesions that may, in selected patients, confer a survival benefit over no treatment or systemic therapy alone. Although the currently accepted treatment for oligometastatic pulmonary disease is surgical resection, the existing body of literature, including the recent investigations reviewed within this article, supports a role for percutaneous ablation as an important and relatively safe therapeutic option for nonsurgical and in carefully selected surgical patients, conferring survival benefits competitive with surgical metastasectomy. Continued clinical investigations are needed to further understand the nuances of thermal technologies and applications to treat lung primary and secondary pulmonary malignancy, directly compare available therapeutic options and further define the role of percutaneous image-guided ablation in the treatment of pulmonary metastatic disease.

  8. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  9. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  10. Particle radiotherapy for prostate cancer.

    PubMed

    Shioyama, Yoshiyuki; Tsuji, Hiroshi; Suefuji, Hiroaki; Sinoto, Makoto; Matsunobu, Akira; Toyama, Shingo; Nakamura, Katsumasa; Kudo, Sho

    2015-01-01

    Recent advances in external beam radiotherapy have allowed us to deliver higher doses to the tumors while decreasing doses to the surrounding tissues. Dose escalation using high-precision radiotherapy has improved the treatment outcomes of prostate cancer. Intensity-modulated radiation therapy has been widely used throughout the world as the most advanced form of photon radiotherapy. In contrast, particle radiotherapy has also been under development, and has been used as an effective and non-invasive radiation modality for prostate and other cancers. Among the particles used in such treatments, protons and carbon ions have the physical advantage that the dose can be focused on the tumor with only minimal exposure of the surrounding normal tissues. Furthermore, carbon ions also have radiobiological advantages that include higher killing effects on intrinsic radio-resistant tumors, hypoxic tumor cells and tumor cells in the G0 or S phase. However, the degree of clinical benefit derived from these theoretical advantages in the treatment of prostate cancer has not been adequately determined. The present article reviews the available literature on the use of particle radiotherapy for prostate cancer as well as the literature on the physical and radiobiological properties of this treatment, and discusses the role and the relative merits of particle radiotherapy compared with current photon-based radiotherapy, with a focus on proton beam therapy and carbon ion radiotherapy.

  11. Bystander effects and radiotherapy.

    PubMed

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  12. Radiotherapy in the UK

    SciTech Connect

    Ramsay, S.

    1993-10-09

    What is wrong with radiation treatment in the UK Is it bad practice or merely bad publicity Between 1982 and 1991, 1,000 patients receiving isocentric radiation therapy at the North Staffordshire Royal Infirmary received a substantial underdose of radiation; the clinical report on this incident was published last week. The operator had been using a correction factor for tumor-to-skin distance, unaware that this factor had already been applied by the computer system. Although the report pointed out that it is not surprising that the clinicians were not alerted to the undertreatment, is also noted that there were no resources at the hospital to audit the outcome of radiotherapy.

  13. [Radiotherapy during pregnancy].

    PubMed

    Mazeron, R; Barillot, I; Mornex, F; Giraud, P

    2016-09-01

    The diagnostic of cancer during pregnancy is a rare and delicate situation. As the developments of the embryo and the human fetus are extremely sensitive to ionizing radiations, the treatment of these tumors should be discussed. The studies - preclinical and clinical - based mostly on exposure accidents show that subdiaphragmatic treatments are possible during pregnancy. When radiotherapy is used, phantom estimations of the dose to the fetus, confirmed by in vivo measurements are required. Irradiation and imaging techniques should be arranged to decrease as much as possible the dose delivered to the fetus and hold below the threshold of 0.1Gy.

  14. The use of dual vacuum stabilization device to reduce kidney motion for stereotactic radiotherapy planning.

    PubMed

    Pham, Daniel; Kron, Tomas; Styles, Colin; Whitaker, May; Bressel, Mathias; Foroudi, Farshad; Schneider, Michal; Devereux, Thomas; Dang, Kim; Siva, Shankar

    2015-04-01

    Abdominal stereotactic ablative body radiotherapy is aided by motion management strategies to ensure accurate dose delivery as targets such as the kidney are easily influenced by breathing motion. Commercial devices such as compression plates and dual vacuum technology have been demonstrated to reduce the motion of lung and liver tumors. The aim of this study was to evaluate the effectiveness of a dual vacuum system in reducing kidney motion as well to investigate any relationship between abdominal wall motions with kidney motion. Ten healthy volunteers were set up with and without vacuum compression (Elekta BodyFIX(TM)) to simulate free and dampened breathing. Ultrasound imaging was used to visualize kidney motion at the same time an abdominal surface marker was monitored using infrared imaging (Varian, Real Time Position Management). The resulting kidney and abdominal motion tracks were imported into motion analysis (Physmo(TM)) and custom built software (Matlab) to calculate amplitude of motion independent of shifting baselines. Thirty-four kidney datasets were available for analysis, with six datasets unable to be retrieved. With vacuum compression six out of nine participants showed a mean reduction of kidney motion ranging between 1.6 and 8 mm (p < 0.050). One participant showed an increase in motion of 8.2 mm (p < 0.001) with vacuum compression. Two participants showed no significant change (<1 mm) in kidney motion. No relationship was observed for abdominal wall motion and motion changes in the left kidney (r = 0.345, p = 0.402) or right kidney (r = 0.527, p = 0.145). Vacuum compression reduced kidney motion in the majority of participants; however larger breathing motion can also result from its use. No pattern emerged regarding which patients may benefit from vacuum immobilization as abdominal wall motion was not found to be an adequate surrogate for kidney motion.

  15. Tissue healing response following hyperthermic vapor ablation in the porcine longissimus muscle

    NASA Astrophysics Data System (ADS)

    Grantham, John T.; Grisez, Brian T.; Famoso, Justin; Hoey, Michael; Dixon, Chris; Coad, James E.

    2015-03-01

    As the use of hyperthermic ablation technologies has increased, so too has the need to understand their effects on tissue and their healing responses. This study was designed to characterize tissue injury and healing following hyperthermic vapor ablation in the in vivo porcine longissimus muscle model. The individual ablations were performed using the NxThera Vapor Delivery System (NxThera Inc., Minneapolis, MN). To assess the vapor ablation's evolution, the swine were euthanized post-treatment on Day 0, Day 3, Day 7, Day 14, Day 28, Day 45 and Day 90. Triphenyltetrazolium chloride viability staining (TTC staining) was used to macroscopically assess the extent of each vapor ablation within the tissue. The ablation associated healing responses were then histologically evaluated for acute inflammation, chronic inflammation, foreign body reaction and fibrosis. Two zones of tissue injury were initially identified in the ablations: 1) a central zone of complete coagulative necrosis and 2) an outer "transition zone" of viable and non-viable cells. The ablations initially increased in size from Day 0 to Day 7 and then progressively decreased in size though Day 45. The initial Day 3 healing changes originated in the transition zone with minimal acute and chronic inflammation. As time progressed, granulation tissue began to form by Day 7 and peaked around Day 14. Collagen formation, deposition and remodeling began in the adjacent healthy tissue by Day 28, replaced the ablation site by Day 45 and reorganized by Day 90. In conclusion, this vapor ablation technology provided a non-desiccating form of hyperthermic ablation that resulted in coagulative necrosis without a central thermally/heat-fixed tissue component, followed a classical wound healing pathway, and healed with minimal associated inflammation.

  16. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  17. Radiotherapy physics research in the UK: challenges and proposed solutions.

    PubMed

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-10-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.

  18. Radiotherapy physics research in the UK: challenges and proposed solutions

    PubMed Central

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-01-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research. PMID:22972972

  19. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  20. Fertility impairment in radiotherapy

    PubMed Central

    Kuźba-Kryszak, Tamara; Nowikiewicz, Tomasz; Żyromska, Agnieszka

    2016-01-01

    Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient's sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning. PMID:27647982

  1. [Hodgkin's lymphoma and radiotherapy].

    PubMed

    Datsenko, P V; Panshin, G A

    2015-01-01

    After a median observation time of 4,5 years, 440 patients with Hodgkin's lymphoma stage I-IV to the Ann Arbor classification were treated with radiotherapy (2200 lymph areas) and ABVD (n=204) or BEACOPP (n=117) or CEA/ABVD (lomustine, etoposide, adriamycine, bleomycine, vinblastine and dacarbacine; n=119) regimens in 1995-2012. Correct allocation of groups with "CR or PR ≥80%" and "PR: 0-79%", after first-line chemotherapy, is extremely important for following RT planning. Adaptation of patients with Hodgkin's lymphoma can take place only after successful treatment, the probability of relapse and fear of repeated courses strongly interfere with this process, especially in the first years after its closure. Duration of remission period, especially in young people, is no less important than the criteria for overall survival. It is impossible to build recommendations for treatment for Hodgkin's lymphoma, based only on long-term survival rates. Importance of radiotherapy in reducing the number of relapses is undeniable, so the idea that the development of the role of chemotherapy in the treatment of the ray method Hodgkin's lymphoma gradually becomes secondary is in serious doubt. Our findings suggest the importance of both maintaining a high disease-free survival and reducing long-term complications in designing treatments of Hodgkin's lymphoma.

  2. [Stereotactic radiosurgery and radiotherapy for brain metastases].

    PubMed

    Tanguy, Ronan; Métellus, Philippe; Mornex, Françoise; Mazeron, Jean-Jacques

    2013-01-01

    Brain metastases management is still controversial even though many trials are trying to define the respective roles of neurosurgery, whole-brain radiotherapy, single-dose stereotactic radiotherapy and fractionated stereotactic radiotherapy. In this article, we review data from trials that examine the role of radiosurgery and fractionated stereotactic radiotherapy in the management of brain metastases.

  3. Radiofrequency thermal ablation in painful myeloma of the clavicle.

    PubMed

    Gharaei, Helen; Imani, Farnad; Vakily, Masoud

    2014-01-01

    A 57-year-old male patient had myeloma. He had severe pain in the left clavicle that did not respond to radiotherapy; therefore, it was treated with radiofrequency thermal ablation (RFTA). Under fluoroscopic guidance, two RF needles at a distance of 1.5 cm from each other were inserted into the mass and conventional radiofrequency (90℃ and 60 seconds) at two different depths (1 cm apart) was applied. Then, 2 ml of 0.5% ropivacaine along with triamcinolone 40 mg was injected in each needle. The visual analogue pain score (VAS from 0 to 10) was decreased from 8 to 0. In the next 3 months of follow-up, the patient was very satisfied with the procedure and the mass gradually became smaller. There were no complications. This study shows that RFTA could be a useful method for pain management in painful osteolytic myeloma lesions in the clavicle.

  4. Radiofrequency Thermal Ablation in Painful Myeloma of the Clavicle

    PubMed Central

    Imani, Farnad; Vakily, Masoud

    2014-01-01

    A 57-year-old male patient had myeloma. He had severe pain in the left clavicle that did not respond to radiotherapy; therefore, it was treated with radiofrequency thermal ablation (RFTA). Under fluoroscopic guidance, two RF needles at a distance of 1.5 cm from each other were inserted into the mass and conventional radiofrequency (90℃ and 60 seconds) at two different depths (1 cm apart) was applied. Then, 2 ml of 0.5% ropivacaine along with triamcinolone 40 mg was injected in each needle. The visual analogue pain score (VAS from 0 to 10) was decreased from 8 to 0. In the next 3 months of follow-up, the patient was very satisfied with the procedure and the mass gradually became smaller. There were no complications. This study shows that RFTA could be a useful method for pain management in painful osteolytic myeloma lesions in the clavicle. PMID:24478905

  5. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  6. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  7. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  8. Thermal ablation of lung tumors.

    PubMed

    McTaggart, Ryan A; Dupuy, Damian E

    2007-06-01

    Thermal ablation can be applied to treat any thoracic malignancy: primary lung cancers, recurrent primary lung cancers, metastatic disease, chest wall masses, and painful, bony metastases. Since the first reported use of thermal ablation for lung cancer in 2000 there has been an explosive use of the procedure, and by 2010 the number of procedures to treat thoracic malignancy is expected to exceed 150,000 per year. Presently, thermal ablation is best used for patients with early-stage lung cancers in patients who are not surgical candidates, patients with small and favorably located pulmonary metastases, and patients in whom palliation of tumor-related symptoms is the goal. Radiofrequency ablation, microwave ablation, and cryoablation are novel treatment modalities for lung cancer and can safely accomplish tumor destruction and even complete eradication of tumor in patients who are not candidates for surgical resection. In this article, we discuss technical considerations for each modality and the periprocedure and postprocedure management of patients with this disease.

  9. Radiotherapy in Phyllodes Tumour

    PubMed Central

    Sasidharan, Balukrishna; Manipadam, Marie Therese; Paul, M J; Backianathan, Selvamani

    2017-01-01

    Introduction Phyllodes Tumour (PT) of the breast is a relatively rare breast neoplasm (<1%) with diverse range of pathology and biological behaviour. Aim To describe the clinical course of PT and to define the role of Radiotherapy (RT) in PT of the breast. Materials and Methods Retrospective analysis of hospital data of patients with PT presented from 2005 to 2014 was done. Descriptive statistics was used to analyze the results. Simple description of data was done in this study. Age and duration of symptoms were expressed in median and range. Percentages, tables and general discussions were used to understand the meaning of the data analyzed. Results Out of the 98 patients, 92 were eligible for analysis. The median age of presentation was 43 years. A total of 64/92 patients were premenopausal. There was no side predilection for this tumour but 57/92 patients presented as an upper outer quadrant lump. Fifty percent of the patients presented as giant (10 cm) PT. The median duration of symptoms was 12 months (range: 1-168 months). A 60% of patients had Benign (B), 23% had Borderline (BL) and 17% had malignant (M) tumours. The surgical treatment for benign histology included Lumpectomy (L) for 15%, Wide Local Excision (WLE) for 48%, and Simple Mastectomy (SM) for 37%. All BL and M tumours were treated with WLE or SM. There was no recurrence in B and BL group when the margin was ≥1 cm. All non-metastatic M tumours received adjuvant RT irrespective of their margin status. Total 3/16 patients with M developed local recurrence. Total 6/16 M patients had distant metastases (lung or bone). Our median duration of follow up was 20 months (range: 1-120 months). Conclusion Surgical resection with adequate margins (>1 cm) gave excellent local control in B and BL tumours. For patients with BL PT, local radiotherapy is useful, if margins are close or positive even after the best surgical resection. There is a trend towards improved local control with adjuvant radiotherapy for

  10. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  11. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability.

  12. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  13. Image-guided ablation of adrenal lesions.

    PubMed

    Yamakado, Koichiro

    2014-06-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure.

  14. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  15. Radiotherapy on hidradenocarcinoma

    PubMed Central

    Lalya, Issam; Hadadi, Khalid; Tazi, El Mehdi; Lalya, Ilham; Bazine, Amine; Andaloussy, Khalid; Elmarjany, Mohamed; Sifat, Hassan; Hassouni, Khalid; Kebdani, Tayeb; Mansouri, Hamid; Benjaafar, Noureddine; Elgueddari, Brahim Khalil

    2011-01-01

    Context: Clear cell Hidradenocarcinoma is a rare carcinoma arising from sweat glands. It is an aggressive tumor that most metastasizes to regional lymph nodes and distant viscera; surgery with safe margins is the mainstay of treatment. Case Report: We report a case of 68-year-old woman who presented with an invasive clear cell hidradenocarcinoma situated in the left parotid area which recurred 5 months after surgery, this recurrence was managed successfully by high-dose irradiation of the tumor bed (66 Gy) and regional lymphatic chains (50 Gy), after a follow-up of more than 15 months, the patient is in good local control without significant toxicity. Conclusion: Post operative radiotherapy allows better local control and should be mandatory when histological features predictive of recurrence are present: positive margins, histology poorly differentiated, perineural invasion, vascular and lymphatic invasion, lymph node involvement, and extracapsular spread. PMID:22540063

  16. [Radiotherapy for nasopharyngeal carcinoma].

    PubMed

    Maingon, P; Blanchard, P; Bidault, F; Calmels, L

    2016-09-01

    Nasapharyngeal carcinoma is a rare disease. Oftenly, the diagnostic is made for advanced disease. Localized tumors, T1 or T2 NO observed a good prognosis and are locally controlled in more than 90 % of the cases by radiotherapy alone. The standard treatment of locally advanced disease is combined chemoradiation. A special vigilance of fast decrease of the volume of the pathological lymph nodes, sometimes associated to loss of weight might indicate an adaptive dosimetric revision. The treatment of recurrent disease is of great importance. Surgical indications are limited but should be discussed in multidisciplinary tumor board when possible. Surgical nodal sampling has to be proposed for nodal recurrence as well as reirradiation, which could be indicated according to the technical issues.

  17. Pion radiotherapy at LAMPF

    SciTech Connect

    Bush, S.E.; Smith, A.R.; Zink, S.

    1982-12-01

    Clinical investigations of pi meson radiotherapy were conducted by the Cancer Research and Treatment Center of the University of New Mexico and the Los Alamos National Laboratory from 1974 until 1982. Two hundred and thirty patients have been treated for a variety of locally advanced primary and metastatic neoplasms. One hundred and ninety-six patients have been followed for a minimum of 18 months. Crude survival data range from 11% for unresectable pancreatic carcinoma to 82% for Stages C and D1 adenocarcinoma of the prostate. Acute tolerance of normal tissues is approximately 4500 pion rad in 36 fractions over 7 weeks. Severe chronic reactions have appeared with increasing frequency after doses in excess of 4000 pion rad.

  18. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  19. Surgical Ablation of Atrial Fibrillation.

    PubMed

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  20. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  1. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  2. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  3. Xeroderma pigmentosum and medulloblastoma: chromosomal damage to lymphocytes during radiotherapy

    SciTech Connect

    Gianneli, F.; Avery, J.; Polani, P.E.; Terrell, C.; Giammusso, V.

    1981-10-01

    The effects of radiotherapy on a patient with xeroderma pigmentosum (XP) of complementation group C and medulloblastoma are reported. His lymphocytes showed no x-ray-induced chromatid damage, but unstable chromosomal aberrations increased throughout the course of radiotherapy as observed also in two other children (patients 2 and 3) with a similar tumor. Such damage was more dependent on spinal than cranial irradiation, lowest in the XP patient and highest in patient 3. Interindividual differences seemed largely due to the relative volume of body irradiated, but the damage in patient 3 remained relatively high even after accounting for such a factor. A maximum of 36, 68, and 77% of lymphocytes had aberrations in the XP and patients 2 and 3, respectively, but chromosomal damage did not show a Poisson distribution and indicated admixture of irradiated and nonirradiated cells. The relative frequency of the irradiated cells was estimated and seemed proportional to the ratios of the average irradiated field to the total body area. The XP patient showed no preferential loss of highly damaged cells and seemed not to suffer excessive chromosomal damage; he had a normal clinical response to and a favorable outcome of radiotherapy. These findings reduce anxiety on the use of radiotherapy in XP patients or at least in those of group C.

  4. Evaluation of a Thermoprotective Gel for Hydrodissection During Percutaneous Microwave Ablation: In Vivo Results

    SciTech Connect

    Moreland, Anna J. Lubner, Meghan G. Ziemlewicz, Timothy J. Kitchin, Douglas R. Hinshaw, J. Louis Johnson, Alexander D. Lee, Fred T. Brace, Christopher L.

    2015-06-15

    PurposeTo evaluate whether thermoreversible poloxamer 407 15.4 % in water (P407) can protect non-target tissues adjacent to microwave (MW) ablation zones in a porcine model.Materials and MethodsMW ablation antennas were placed percutaneously into peripheral liver, spleen, or kidney (target tissues) under US and CT guidance in five swine such that the expected ablation zones would extend into adjacent diaphragm, body wall, or bowel (non-target tissues). For experimental ablations, P407 (a hydrogel that transitions from liquid at room temperature to semi-solid at body temperature) was injected into the potential space between target and non-target tissues, and the presence of a gel barrier was verified on CT. No barrier was used for controls. MW ablation was performed at 65 W for 5 min. Thermal damage to target and non-target tissues was evaluated at dissection.ResultsAntennas were placed 7 ± 3 mm from the organ surface for both control and gel-protected ablations (p = 0.95). The volume of gel deployed was 49 ± 27 mL, resulting in a barrier thickness of 0.8 ± 0.5 cm. Ablations extended into non-target tissues in 12/14 control ablations (mean surface area = 3.8 cm{sup 2}) but only 4/14 gel-protected ablations (mean surface area = 0.2 cm{sup 2}; p = 0.0005). The gel barrier remained stable at the injection site throughout power delivery.ConclusionWhen used as a hydrodissection material, P407 protected non-targeted tissues and was successfully maintained at the injection site for the duration of power application. Continued investigations to aid clinical translation appear warranted.

  5. Rapid Recovery of Visual Function Associated with Blue Cone Ablation in Zebrafish

    PubMed Central

    Hagerman, Gordon F.; Noel, Nicole C. L.; Cao, Sylvia Y.; DuVal, Michèle G.; Oel, A. Phillip; Allison, W. Ted

    2016-01-01

    Hurdles in the treatment of retinal degeneration include managing the functional rewiring of surviving photoreceptors and integration of any newly added cells into the remaining second-order retinal neurons. Zebrafish are the premier genetic model for such questions, and we present two new transgenic lines allowing us to contrast vision loss and recovery following conditional ablation of specific cone types: UV or blue cones. The ablation of each cone type proved to be thorough (killing 80% of cells in each intended cone class), specific, and cell-autonomous. We assessed the loss and recovery of vision in larvae via the optomotor behavioural response (OMR). This visually mediated behaviour decreased to about 5% or 20% of control levels following ablation of UV or blue cones, respectively (P<0.05). We further assessed ocular photoreception by measuring the effects of UV light on body pigmentation, and observed that photoreceptor deficits and recovery occurred (p<0.01) with a timeline coincident to the OMR results. This corroborated and extended previous conclusions that UV cones are required photoreceptors for modulating body pigmentation, addressing assumptions that were unavoidable in previous experiments. Functional vision recovery following UV cone ablation was robust, as measured by both assays, returning to control levels within four days. In contrast, robust functional recovery following blue cone ablation was unexpectedly rapid, returning to normal levels within 24 hours after ablation. Ablation of cones led to increased proliferation in the retina, though the rapid recovery of vision following blue cone ablation was demonstrated to not be mediated by blue cone regeneration. Thus rapid visual recovery occurs following ablation of some, but not all, cone subtypes, suggesting an opportunity to contrast and dissect the sources and mechanisms of outer retinal recovery during cone photoreceptor death and regeneration. PMID:27893779

  6. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  7. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  8. A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Shieh, Chun-Chien; Caillet, Vincent; Dunbar, Michelle; Keall, Paul J.; Booth, Jeremy T.; Hardcastle, Nicholas; Haddad, Carol; Eade, Thomas; Feain, Ilana

    2017-04-01

    The ability to monitor tumor motion without implanted markers can potentially enable broad access to more accurate and precise lung radiotherapy. A major challenge is that kilovoltage (kV) imaging based methods are rarely able to continuously track the tumor due to the inferior tumor visibility on 2D kV images. Another challenge is the estimation of 3D tumor position based on only 2D imaging information. The aim of this work is to address both challenges by proposing a Bayesian approach for markerless tumor tracking for the first time. The proposed approach adopts the framework of the extended Kalman filter, which combines a prediction and measurement steps to make the optimal tumor position update. For each imaging frame, the tumor position is first predicted by a respiratory-correlated model. The 2D tumor position on the kV image is then measured by template matching. Finally, the prediction and 2D measurement are combined based on the 3D distribution of tumor positions in the past 10 s and the estimated uncertainty of template matching. To investigate the clinical feasibility of the proposed method, a total of 13 lung cancer patient datasets were used for retrospective validation, including 11 cone-beam CT scan pairs and two stereotactic ablative body radiotherapy cases. The ground truths for tumor motion were generated from the the 3D trajectories of implanted markers or beacons. The mean, standard deviation, and 95th percentile of the 3D tracking error were found to range from 1.6–2.9 mm, 0.6–1.5 mm, and 2.6–5.8 mm, respectively. Markerless tumor tracking always resulted in smaller errors compared to the standard of care. The improvement was the most pronounced in the superior–inferior (SI) direction, with up to 9.5 mm reduction in the 95th-percentile SI error for patients with  >10 mm 5th-to-95th percentile SI tumor motion. The percentage of errors with 3D magnitude  <5 mm was 96.5% for markerless tumor tracking and 84.1% for the

  9. Bone Health and Pelvic Radiotherapy.

    PubMed

    Higham, C E; Faithfull, S

    2015-11-01

    Survivors who have received pelvic radiotherapy make up many of the long-term cancer population, with therapies for gynaecological, bowel, bladder and prostate malignancies. Individuals who receive radiotherapy to the pelvis as part of their cancer treatment are at risk of insufficiency fractures. Symptoms of insufficiency fractures include pelvic and back pain and immobility, which can affect substantially quality of life. This constellation of symptoms can occur within 2 months of radiotherapy up to 63 months post-treatment, with a median incidence of 6-20 months. As a condition it is under reported and evidence is poor as to the contributing risk factors, causation and best management to improve the patient's bone health and mobility. As radiotherapy advances, chronic symptoms, such as insufficiency fractures, as a consequence of treatment need to be better understood and reviewed. This overview explores the current evidence for the effect of radiotherapy on bone health and insufficiency fractures and identifies what we know and where gaps in our knowledge lie. The overview concludes with the need to take seriously complaints of pelvic pain from patients after pelvic radiotherapy and to investigate and manage these symptoms more effectively. There is a clear need for definitive research in this field to provide the evidence-based guidance much needed in practice.

  10. Healing responses following cryothermic and hyperthermic tissue ablation

    NASA Astrophysics Data System (ADS)

    Godwin, Braden L.; Coad, James E.

    2009-02-01

    Minimally invasive, thermally ablative, interventional technologies have been changing the practice of medicine since before the turn of the 20th century. More recently, cryothermic and hyperthermic therapies have expanded in terms of their spectrum of thermal generators, modes for controlling and monitoring the treatment zone and both benign and malignant medical applications. The final tissue, and hence clinical outcome, of a thermal ablation is determined by the summation of direct primary (thermal) and secondary (apoptosis, ischemia, free radical, inflammation, wound healing, etc.) injury followed by possible cellular regeneration and scar formation. The initial thermal lesion can be broadly divided into two major zones of cellular death: 1) the complete ablation zone closer to the thermal source and 2) the peripheral transition zone with a decreasing gradient of cell death. While not applicable to cryotherapy, hyperthermic complete ablation zones are subdivided into two zones: 1) thermal or heat fixation and 2) coagulative necrosis. It is important to clearly differentiate these tissue zones because of their substantially different healing responses. Therefore, the development of clinically successful thermal therapies requires an understanding of tissue healing responses. The healing responses can be affected by a number of additional factors such as the tissue's anatomy, organ specific healing differences, blood supply, protein vs. lipid content, and other factors. Thus, effective biomedical instrument development requires both an understanding of thermal cell injury/death and the body's subsequent healing responses. This paper provides a general overview of the healing pathways that follow thermal tissue treatment.

  11. Perspectives in Medical Applications of Monte Carlo Simulation Software for Clinical Practice in Radiotherapy Treatments

    NASA Astrophysics Data System (ADS)

    Boschini, Matteo; Giani, Simone; Ivanchenko, Vladimir; Rancoita, Pier-Giorgio

    2006-04-01

    We discuss the physics requirements to accurately model radiation dosimetry in the human body as performed for oncological radiotherapy treatment. Recent advancements in computing hardware and software simulation technology allow precise dose calculation in real-life imaging output, with speed suitable for clinical needs. An experimental programme, based on physics published literature, is proposed to demonstrate the actual possibility to improve the precision of radiotherapy treatment planning.

  12. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  13. Recombinant TSH Stimulated Remnant Ablation Therapy in Thyroid Cancer: The Success Rate Depends on the Definition of Ablation Success—An Observational Study

    PubMed Central

    van der Horst-Schrivers, Anouk N. A.; Sluiter, Wim J.; Muller Kobold, Anneke C.; Wolffenbuttel, Bruce H. R.; Plukker, John T. M.; Bisschop, Peter H.; de Klerk, John M.; Al Younis, Imad; Lips, Paul; Smit, Jan W.; Brouwers, Adrienne H.; Links, Thera P.

    2015-01-01

    Introduction Patients with differentiated thyroid cancer (DTC) are treated with (near)-total thyroidectomy followed by remnant ablation. Optimal radioiodine-131 (131I) uptake is achieved by withholding thyroid hormone (THW), pretreatment with recombinant human Thyrotropin Stimulating Hormone (rhTSH) is an alternative. Six randomized trials have been published comparing THW and rhTSH, however comparison is difficult because an uniform definition of ablation success is lacking. Using a strict definition, we performed an observational study aiming to determine the efficacy of rhTSH as preparation for remnant ablation. Patients and Methods Adult DTC patients with, tumor stage T1b to T3, Nx, N0 and N1, M0 were included in a prospective multicenter observational study with a fully sequential design, using a stopping rule. All patients received remnant ablation with 131I using rhTSH. Ablation success was defined as no visible uptake in the original thyroid bed on a rhTSH stimulated 150 MBq 131I whole body scan (WBS) 9 months after remnant ablation, or no visible uptake in the original thyroid bed on a post therapeutic WBS when a second high dose was necessary. Results After interim analysis of the first 8 patients, the failure rate was estimated to be 69% (90% confidence interval (CI) 20-86%) and the inclusion of new patients had to be stopped. Final analysis resulted in an ablation success in 11 out of 17 patients (65%, 95% CI 38-86%). Conclusion According to this study, the efficacy of rhTSH in the preparation of 131I ablation therapy is inferior, when using a strict definition of ablation success. The current lack of agreement as to the definition of successful remnant ablation, makes comparison between different ablation strategies difficult. Our results point to the need for an international consensus on the definition of ablation success, not only in routine patient’s care but also for scientific reasons. Trial Registration Dutch Trial Registration NTR2395 PMID

  14. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  15. Percutaneous ablation of benign bone tumors.

    PubMed

    Welch, Brian T; Welch, Timothy J

    2011-09-01

    Percutaneous image-guided ablation has become a standard of practice and one of the primary modalities for treatment of benign bone tumors. Ablation is most commonly used to treat osteoid osteomas but may also be used in the treatment of chondroblastomas, osteoblastomas, and giant cell tumors. Percutaneous image-guided ablation of benign bone tumors carries a high success rate (>90% in case series) and results in decreased morbidity, mortality, and expense compared with traditional surgical methods. The ablation technique most often applied to benign bone lesions is radiofrequency ablation. Because the ablation technique has been extensively applied to osteoid osteomas and because of the uncommon nature of other benign bone tumors, we will primarily focus this discussion on the percutaneous ablation of osteoid osteomas.

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  17. Clinical evaluation of X-ray voxel Monte Carlo versus pencil beam-based dose calculation in stereotactic body radiotherapy of lung cancer under normal and deep inspiration breath hold.

    PubMed

    Landoni, V; Borzì, G R; Strolin, S; Bruzzaniti, V; Soriani, A; D'Alessio, D; Ambesi, F; Di Grazia, A M; Strigari, L

    2015-06-01

    The purpose of this study is to evaluate the differences between dose distributions calculated with the pencil beam (PB) and X-ray voxel Monte Carlo (MC) algorithms for patients with lung cancer using intensity-modulated radiotherapy (IMRT) or HybridArc techniques. The 2 algorithms were compared in terms of dose-volume histograms, under normal and deep inspiration breath hold, and in terms of the tumor control probability (TCP). The dependence of the differences in tumor volume and location was investigated. Dosimetric validation was performed using Gafchromic EBT3 (International Specialty Products, ISP, Wayne, NJ). Forty-five Computed Tomography (CT) data sets were used for this study; 40 Gy at 8 Gy/fraction was prescribed with 5 noncoplanar 6-MV IMRT beams or 3 to 4 dynamic conformal arcs with 3 to 5 IMRT beams distributed per arc. The plans were first calculated with PB and then recalculated with MC. The difference between the mean tumor doses was approximately 10% ± 4%; these differences were even larger under deep inspiration breath hold. Differences between the mean tumor dose correlated with tumor volume and path length of the beams. The TCP values changed from 99.87% ± 0.24% to 96.78% ± 4.81% for both PB- and MC-calculated plans (P = .009). When a fraction of hypoxic cells was considered, the mean TCP values changed from 76.01% ± 5.83% to 34.78% ± 18.06% for the differently calculated plans (P < .0001). When the plans were renormalized to the same mean dose at the tumor, the mean TCP for oxic cells was 99.05% ± 1.59% and for hypoxic cells was 60.20% ± 9.53%. This study confirms that the MC algorithm adequately accounts for inhomogeneities. The inclusion of the MC in the process of IMRT optimization could represent a further step in the complex problem of determining the optimal treatment plan.

  18. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  19. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  20. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  1. [Postoperative radiotherapy of prostate cancer].

    PubMed

    Guérif, S; Latorzeff, I; Lagrange, J-L; Hennequin, C; Supiot, S; Garcia, A; François, P; Soulié, M; Richaud, P; Salomon, L

    2014-10-01

    Between 10 and 40% of patients who have undergone a radical prostatectomy may have a biologic recurrence. Local or distant failure represents the possible patterns of relapse. Patients at high-risk for local relapse have extraprostatic disease, positive surgical margins or seminal vesicles infiltration or high Gleason score at pathology. Three phase-III randomized clinical trials have shown that, for these patients, adjuvant irradiation reduces the risk of tumoral progression without higher toxicity. Salvage radiotherapy for late relapse allows a disease control in 60-70% of the cases. Several research in order to improve the therapeutic ratio of the radiotherapy after prostatectomy are evaluate in the French Groupe d'Étude des Tumeurs Urogénitales (Gétug) and of the French association of urology (Afu). The Gétug-Afu 17 trial will provide answers to the question of the optimal moment for postoperative radiotherapy for pT3-4 R1 pN0 Nx patients, with the objective of comparing an immediate treatment to a differed early treatment initiated at biological recurrence. The Gétug-Afu 22 questions the place of a short hormonetherapy combined with image-guided, intensity-modulated radiotherapy (IMRT) in adjuvant situation for a detectable prostate specific antigen (PSA). The implementation of a multicenter quality control within the Gétug-Afu in order to harmonize a modern postoperative radiotherapy will allow the development of a dose escalation IMRT after surgery.

  2. Comparison of the Effectiveness of Ablative and Non-Ablative Fractional Laser Treatments for Early Stage Thyroidectomy Scars

    PubMed Central

    Jang, Jin-Uk; Kim, Soo-Young; Kim, Woo-Kyung; Park, Seung-Ha; Lee, Byung-Il; Kim, Deok-Woo

    2016-01-01

    Background Open thyroidectomy is conventionally performed at the anterior side of neck, which is a body part with a comparatively great degree of open exposure; due to this, postoperative scarring may cause distress in patients. We aimed to compare the effects of ablative and nonablative fractional laser treatments on thyroidectomy scars. We examined medical records in a retrospective manner and analyzed scars based on their digital images by using the modified Manchester Scar Scale (mMSS). Methods Between February 2012 and May 2013, 55 patients with thyroidectomy scars were treated with ablative (34 patients) or nonablative (21 patients) fractional laser. Each patient underwent 4 laser treatment sessions in 3–4 week intervals, 1–2 months postoperatively. Scar improvement was assessed using patient images and the mMSS scale. Results The mean decrease in scar score was 3.91 and 3.47 in the ablative and nonablative groups, respectively; the reduction between 2 groups did not exhibit any significant difference (P=0.16). We used the scale once again to individually evaluate scar attributes. The nonablative group accounted for a considerably higher color score value (P=0.03); the ablative group accounted for a considerably higher contour score value (P<0.01). Patient satisfaction was high and no complications occurred. Conclusions Both types of fractional laser treatments can be used successfully for thyroidectomy scar treatment with minimal complications; however, results indicate that higher effectiveness may be obtained from the use of ablative and nonablative lasers for hypertrophic scars and early erythematous scars, respectively. Therefore, the appropriate laser for scar treatment should be selected according to its specific characteristics. PMID:27896191

  3. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  4. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  5. Laser-ablation-assisted microparticle acceleration for drug delivery

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Takayama, K.; Ohki, T.; Gopalan, J.

    2005-10-01

    Localized drug delivery with minimal tissue damage is desired in some of the clinical procedures such as gene therapy, treatment of cancer cells, treatment of thrombosis, etc. We present an effective method for delivering drug-coated microparticles using laser ablation on a thin metal foil containing particles. A thin metal foil, with a deposition of a layer of microparticles is subjected to laser ablation on its backface such that a shock wave propagates through the foil. Due to shock wave loading, the surface of the foil containing microparticles is accelerated to very high speeds, ejecting the deposited particles at hypersonic speeds. The ejected particles have sufficient momentum to penetrate soft body tissues, and the penetration depth observed is sufficient for most of the pharmacological treatments. We have tried delivering 1μm tungsten particles into gelatin models that represent soft tissues, and liver tissues of an experimental rat. Sufficient penetration depths have been observed in these experiments with minimum target damage.

  6. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance.

    PubMed

    Choi, Won Hoon; Cho, Jaeho

    2016-02-01

    Radiotherapy, which is one of three major cancer treatment methods in modern medicine, has continued to develop for a long period, more than a century. The development of radiotherapy means allowing the administration of higher doses to tumors to improve tumor control rates while minimizing the radiation doses absorbed by surrounding normal tissues through which radiation passes for administration to tumors, thereby reducing or removing the incidence of side effects. Such development of radiotherapy was accomplished by the development of clinical radiation oncology, the development of computers and machine engineering, the introduction of cutting-edge imaging technology, a deepened understanding of biological studies on the effects of radiation on human bodies, and the development of quality assurance (QA) programs in medical physics. The development of radiotherapy over the last two decades has been quite dazzling. Due to continuous improvements in cancer treatment, the average five-year survival rate of cancer patients has been close to 70%. The increases in cancer patients' complete cure rates and survival periods are making patients' quality of life during or after treatment a vitally important issue. Radiotherapy is implemented in approximately 1/3 to 2/3s of all cancer patients; and has improved the quality of life of cancer patients in the present age. Over the last century, as a noninvasive treatment, radiotherapy has unceasingly enhanced complete tumor cure rates and the side effects of radiotherapy have been gradually decreasing, resulting in a tremendous improvement in the quality of life of cancer patients.

  7. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance

    PubMed Central

    Choi, Won Hoon

    2016-01-01

    Radiotherapy, which is one of three major cancer treatment methods in modern medicine, has continued to develop for a long period, more than a century. The development of radiotherapy means allowing the administration of higher doses to tumors to improve tumor control rates while minimizing the radiation doses absorbed by surrounding normal tissues through which radiation passes for administration to tumors, thereby reducing or removing the incidence of side effects. Such development of radiotherapy was accomplished by the development of clinical radiation oncology, the development of computers and machine engineering, the introduction of cutting-edge imaging technology, a deepened understanding of biological studies on the effects of radiation on human bodies, and the development of quality assurance (QA) programs in medical physics. The development of radiotherapy over the last two decades has been quite dazzling. Due to continuous improvements in cancer treatment, the average five-year survival rate of cancer patients has been close to 70%. The increases in cancer patients’ complete cure rates and survival periods are making patients’ quality of life during or after treatment a vitally important issue. Radiotherapy is implemented in approximately 1/3 to 2/3s of all cancer patients; and has improved the quality of life of cancer patients in the present age. Over the last century, as a noninvasive treatment, radiotherapy has unceasingly enhanced complete tumor cure rates and the side effects of radiotherapy have been gradually decreasing, resulting in a tremendous improvement in the quality of life of cancer patients. PMID:26908993

  8. Evaluation of a Novel Thermal Accelerant for Augmentation of Microwave Energy during Image-guided Tumor Ablation

    PubMed Central

    Park, William Keun Chan; Maxwell, Aaron Wilhelm Palmer; Frank, Victoria Elizabeth; Primmer, Michael Patrick; Collins, Scott Andrew; Baird, Grayson Luderman; Dupuy, Damian Edward

    2017-01-01

    The primary challenge in thermal ablation of liver tumors (e.g. hepatocellular carcinoma and hepatic colorectal cancer) is the relatively high recurrence rate (~30%) for which incomplete ablation at the periphery of the tumor is the most common reason. In an attempt to overcome this, we have developed a novel thermal accelerant (TA) agent capable of augmenting microwave energy from a distance normally unattainable by a single microwave ablation antenna. This cesium-based block co-polymer compound transforms from a liquid to a gel at body temperature and is intrinsically visible by computed tomography. Using an agarose phantom model, herein we demonstrate that both the rate and magnitude of temperature increase during microwave ablation were significantly greater in the presence of TA when compared with controls. These results suggest robust augmentation of microwave energy, and may translate into larger ablation zone volumes within biologic tissues. Further work using in vivo techniques is necessary to confirm these findings. PMID:28382173

  9. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  10. Laser Ablation for Medical Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  11. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  12. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study

    NASA Astrophysics Data System (ADS)

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-01

    Stereotactic Body Radiotherapy schedules. Overall, the preliminary results support ongoing work in developing multifunctional radiotherapy biomaterials for in situ delivery of immunoadjuvants such as anti-CD40 to leverage the abscopal effect, while minimizing systemic toxicities. The potential of extending such an approach to other cancer types is discussed.

  13. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven.

  14. Inflammatory Skin Conditions Associated With Radiotherapy.

    PubMed

    Hernández Aragüés, I; Pulido Pérez, A; Suárez Fernández, R

    2017-04-01

    Radiotherapy for cancer is used increasingly. Because skin cells undergo rapid turnover, the ionizing radiation of radiotherapy has collateral effects that are often expressed in inflammatory reactions. Some of these reactions-radiodermatitis and recall phenomenon, for example-are very familiar to dermatologists. Other, less common radiotherapy-associated skin conditions are often underdiagnosed but must also be recognized.

  15. Radiotherapy supports protective tumor-specific immunity

    PubMed Central

    Gupta, Anurag; Sharma, Anu; von Boehmer, Lotta; Surace, Laura; Knuth, Alexander; van den Broek, Maries

    2012-01-01

    Radiotherapy is an important therapeutic option for the treatment of cancer. Growing evidence indicates that, besides inducing an irreversible DNA damage, radiotherapy promotes tumor-specific immune response, which significantly contribute to therapeutic efficacy. We postulate that radiotherapy activates tumor-associated dendritic cells, thus changing the tolerogenic tumor environment into an immunogenic one. PMID:23264910

  16. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2014-06-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.

  17. Second Malignant Neoplasms Following Radiotherapy

    PubMed Central

    Kumar, Sanath

    2012-01-01

    More than half of all cancer patients receive radiotherapy as a part of their treatment. With the increasing number of long-term cancer survivors, there is a growing concern about the risk of radiation induced second malignant neoplasm [SMN]. This risk appears to be highest for survivors of childhood cancers. The exact mechanism and dose-response relationship for radiation induced malignancy is not well understood, however, there have been growing efforts to develop strategies for the prevention and mitigation of radiation induced cancers. This review article focuses on the incidence, etiology, and risk factors for SMN in various organs after radiotherapy. PMID:23249860

  18. Microwave Ablation Compared to Radiofrequency Ablation for Hepatic Lesions: A Meta-Analysis.

    PubMed

    Huo, Ya Ruth; Eslick, Guy D

    2015-08-01

    To evaluate the efficacy and safety of microwave (MW) ablation compared with radiofrequency (RF) ablation for hepatic lesions by using meta-analytic techniques. Overall, 16 studies involving 2,062 patients were included. MW ablation was found to have significantly better 6-year overall survival than RF ablation (odds ratio, 1.64, 95% confidence interval, 1.15-2.35), but this was based on a few articles (n = 3 of 16). MW ablation and RF ablation had similar 1-5-year overall survival, disease-free survival, local recurrence rate, and adverse events. Based on similar safety and efficacy outcomes, either MW ablation or RF ablation may be used for effective local hepatic therapy.

  19. Tumor Thermal Ablation Enhancement by Micromaterials.

    PubMed

    Zhao, Fan; Su, Hongying; Han, Xiangjun; Bao, Han; Qi, Ji

    2016-01-07

    Thermal ablation is a minimally invasive therapeutic technique that has shown remarkable potential in treating un resectable tumors. However, clinical applications have stalled, due to safety ambiguities, slow heat induction, lengthy ablation times, and post-therapeutic monitoring issues. To further improve treatment efficacy, an assortment of micro materials (eg, nano particulates of gold, silica, or iron oxide and single-walled carbon nanotubes) are under study as thermal ablative adjuncts.In recent years, the micro material domain has become especially interesting.In vivo and in vitro animal studies have validated the use of microspheres as embolic agents in liver tumors, in advance of radiofrequency ablation. Microcapsules and micro bubbles serving as ultrasound contrast and ablation sensibilizers are strong prospects for clinical applications. This review was conducted to explore benefits of the three aforementioned micro scale technologies, in conjunction with tumor thermal ablation.

  20. Image-guided ablation for hepatocellular carcinoma.

    PubMed

    Lencioni, Riccardo; Crocetti, Laura

    2013-01-01

    Image-guided ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma (HCC) when surgical options-including resection and transplantation-are precluded. The term image-guided tumor ablation is defined as the direct application of chemical substances or sources of energy to a focal tumor in an attempt to achieve eradication or substantial tumor destruction. Over the past 25 years, several methods for local tumor destruction have been developed and clinically tested. Radiofrequency ablation (RFA) has shown superior anticancer effect and greater survival benefit with respect to the seminal percutaneous technique, ethanol injection, in meta-analyses of randomized controlled trials, and is currently established as the standard ablative modality. Nevertheless, novel thermal and nonthermal techniques for tumor ablation-including microwave ablation and irreversible electroporation-seem to have potential to improve the efficacy of RFA and are currently undergoing clinical investigation.

  1. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification.

  2. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  3. Plasma-mediated ablation of biofilm contamination

    NASA Astrophysics Data System (ADS)

    Guo, Zhixiong; Wang, Xiaoliang; Huang, Huan

    2010-12-01

    Ultra-short pulsed laser removal of thin biofilm contamination on different substrates has been conducted via the use of plasma-mediated ablation. The biofilms were formed using sheep whole blood. The ablation was generated using a 1.2 ps ultra-short pulsed laser with wavelength centered at 1552 nm. The blood contamination was transformed into plasma and collected with a vacuum system. The single line ablation features have been measured. The ablation thresholds of blood contamination and bare substrates were determined. It is found that the ablation threshold of the blood contamination is lower than those of the beneath substrates including the glass slide, PDMS, and human dermal tissues. The ablation effects of different laser parameters (pulse overlap rate and pulse energy) were studied and ablation efficiency was measured. Proper ablation parameters were found to efficiently remove contamination with maximum efficiency and without damage to the substrate surface for the current laser system. Complete removal of blood contaminant from the glass substrate surface and freeze-dried dermis tissue surface was demonstrated by the USP laser ablation with repeated area scanning. No obvious thermal damage was found in the decontaminated glass and tissue samples.

  4. Percutaneous ablation of hepatocellular carcinoma: current status.

    PubMed

    McWilliams, Justin P; Yamamoto, Shota; Raman, Steven S; Loh, Christopher T; Lee, Edward W; Liu, David M; Kee, Stephen T

    2010-08-01

    Hepatocellular carcinoma (HCC) is an increasingly common disease with dismal long-term survival. Percutaneous ablation has gained popularity as a minimally invasive, potentially curative therapy for HCC in nonoperative candidates. The seminal technique of percutaneous ethanol injection has been largely supplanted by newer modalities, including radiofrequency ablation, microwave ablation, cryoablation, and high-intensity focused ultrasound ablation. A review of these modalities, including technical success, survival rates, and complications, will be presented, as well as considerations for treatment planning and follow-up.

  5. Ablation of liver metastases: current status.

    PubMed

    Flanders, Vincent L; Gervais, Debra A

    2010-08-01

    Local ablative therapy for the treatment of metastatic disease to the liver has been evaluated most extensively in colorectal cancer with 5-year survival rates up to 55% after RF ablation. Recent findings suggest selected patients with other malignant processes may benefit as well, but conclusive evidence is limited. This article reviews the available literature regarding the use of radiofrequency ablation, microwave ablation, and cryoablation in the treatment of metastatic disease to the liver. The published results of each of these modalities in the treatment of metastatic disease to the liver are promising, and outcomes continue to be evaluated.

  6. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  7. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  8. Left atrium segmentation for atrial fibrillation ablation

    NASA Astrophysics Data System (ADS)

    Karim, R.; Mohiaddin, R.; Rueckert, D.

    2008-03-01

    Segmentation of the left atrium is vital for pre-operative assessment of its anatomy in radio-frequency catheter ablation (RFCA) surgery. RFCA is commonly used for treating atrial fibrillation. In this paper we present an semi-automatic approach for segmenting the left atrium and the pulmonary veins from MR angiography (MRA) data sets. We also present an automatic approach for further subdividing the segmented atrium into the atrium body and the pulmonary veins. The segmentation algorithm is based on the notion that in MRA the atrium becomes connected to surrounding structures via partial volume affected voxels and narrow vessels, the atrium can be separated if these regions are characterized and identified. The blood pool, obtained by subtracting the pre- and post-contrast scans, is first segmented using a region-growing approach. The segmented blood pool is then subdivided into disjoint subdivisions based on its Euclidean distance transform. These subdivisions are then merged automatically starting from a seed point and stopping at points where the atrium leaks into a neighbouring structure. The resulting merged subdivisions produce the segmented atrium. Measuring the size of the pulmonary vein ostium is vital for selecting the optimal Lasso catheter diameter. We present a second technique for automatically identifying the atrium body from segmented left atrium images. The separating surface between the atrium body and the pulmonary veins gives the ostia locations and can play an important role in measuring their diameters. The technique relies on evolving interfaces modelled using level sets. Results have been presented on 20 patient MRA datasets.

  9. Aerothermodynamic Analysis of Stardust Sample Return Capsule with Coupled Radiation and Ablation. Revised

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.

    2000-01-01

    An aerothermodynamic analysis of the forebody aeroshell of the Stardust Sample Return Capsule is carried out by using the axisymmetric viscous shock-layer equations with and without fully coupled radiation and ablation. Formulation of the viscous shock-layer equations with shoulder radius as the length scale and implementation of the Vigneron pressure condition allow resolution of the flowfield over the shoulder. With a predominantly supersonic outflow over the shoulder, a globally iterated solution or viscous shock-layer equations can be obtained. The stagnation-point results are obtained along a specified trajectory, whereas detailed calculations along the body are provided at the peak-heating point. The equilibrium calculations with ablation injection are the focus of the present study because of the lack of a general chemical nonequilibrium analysis that accounts for both surface and flowfield effect. The equilibrium calculations also provide a simple way to conserve surface (and flowfield) elemental composition for the current small ablation injection rates, where the surface elemental composition is a mixture of freestream and ablator elements. Therefore, the coupled laminar and turbulent flow solutions with radiation and ablation are obtained by using the equilibrium flow chemistry, whereas a nonequilibrium chemistry model is used for solutions without ablation and turbulence. Various computed results are compared with those obtained by the other researchers.

  10. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.

  11. Radiotherapy dose enhancement using BNCT in conventional LINACs high-energy treatment: Simulation and experiment

    PubMed Central

    Alikaniotis, Katia; Borla, Oscar; Monti, Valeria; Vivaldo, Gianna; Zanini, Alba; Giannini, Gianrossano

    2016-01-01

    Aim To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness. Background Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient. Materials and methods Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment. Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body. Results Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1. The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment. Conclusions The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer. PMID:26933394

  12. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  13. Attenuated cold defense responses in orexin neuron-ablated rats

    PubMed Central

    Mohammed, Mazher; Yanagisawa, Masashi; Blessing, William; Ootsuka, Youichirou

    2016-01-01

    ABSTRACT Recent reports of the use of transgenic mice targeting orexin neurons show that the ablation of orexin neurons in the hypothalamus causes hypothermia during cold exposure. This suggests the importance of orexin neurons for cold-induced autonomic and physiological defense responses, including brown adipose tissue (BAT) thermogenesis and vasoconstriction in thermoregulatory cutaneous vascular bed. The present study investigated whether the ablation of orexin neurons attenuated cold-elicited BAT thermogenesis and cutaneous vasoconstriction. The study took advantage of our established conscious rat experimental model of direct measurement of BAT and body temperature and tail cutaneous blood flow. The study used transgenic orexin neurons-ablated (ORX-AB) rats and wild type (WT) rats. BAT temperature and tail artery blood flow with pre-implanted probes were measured, as well as behavioral locomotor activity under conscious free-moving condition. Gradually, the ambient temperature was decreased to below 5°C. ORX-AB rats showed an attenuated cold-induced BAT thermogenesis and behavioral activity, and delayed tail vasoconstriction. An ambient temperature that initiated BAT thermogenesis and established full cutaneous vasoconstriction was 14.1 ± 1.9 °C, which was significantly lower than 20.5 ± 1.9 °C, the corresponding value in WT rats (n = 10, P < 0.01). The results from this study suggest that the integrity of orexin-synthesising neurons in thermoregulatory networks is important for full expression of the cold defense responses. PMID:28349086

  14. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.

    PubMed

    Malhotra, Neeru; Marwaha, Anupma; Kumar, Ajay

    2016-01-01

    Microwave ablation is rapidly being rediscovered and developed for treating many cancers of liver, lung, kidney and bone, as well as arrhythmias and other medical conditions. The microwaves ablate tissue by heating it to cytotoxic temperatures. The microwave antenna design suffers the challenges of effective coupling and penetration into body tissues, uncontrolled power deposition due to applicator construction limitations affecting uniform heating of target region, and narrowband operation leading to mismatch for many patients and detrimental heating. To meet out the requirements of wideband operation and localized lesion reconfigurable linearly tapered slot interstitial wideband antenna has been proposed for working in the 1.38 GHz to 4.31 GHz frequency band. The performance of the antenna is evaluated by using FEM-based HFSS software. The slot height and taper height are reconfigured for parametric analysis achieving maximum impedance matching and spherical ablation zone without requiring any additional adjustable structures. The tapering of the slot in coaxial antenna generates current distribution at the edges of the slot for maximizing specific absorption rate.

  15. Preoperative radiofrequency ablation in painful osteolytic long bone metastases.

    PubMed

    Di Francesco, Alexander; Flamini, Stefano; Zugaro, Luigi; Zoccali, Carmine

    2012-08-01

    This study aimed to determine whether Radiofrequency Ablation (RFA) followed by prophylactic internal fixation produces better palliation in terms of pain and reduces the need for blood transfusion more than radiotherapy and surgical stabilization (RT-SS). Patients with solitary long bone metastases and a pain score of 5 or more on the VAS scale were selected. Fifteen patients were treated with RFA and surgical stabilization (RFA-SS) and were compared with a matched group (15 subjects) treated by radiotherapy and surgical stabilization (RT-SS). A complete response in terms of pain relief at 12 weeks was documented in 20% (3/15) and 533% (8/15) of the subjects treated by RT-SS or RFA-SS, respectively (p = 0.027). The overall response rate at 12 weeks was 93.3% (14 patients) in the group treated by RFA-SS and 59.9% (9 patients) in the group treated by RT-SS (p = 0.048). Although recurrent pain was documented more frequently after RT-SS (26.6%) than after RFA-SS (6.7%) the difference did not reach statistical significance. The morbidity related to RT-SS did not significantly differ when the treatment was associated with RFA. We observed a reduction in blood transfusion, as 3 patients in the RT-SS group required a blood transfusion, versus none in the RFA-SS group. Our results suggest that RFA-SS is safe and is more effective than RT-SS; furthermore, RFA may become an option for patients with metastases of the long bones to prevent tumour dissemination and reduce intraoperative blood loss. The findings described here should serve as a framework around which to design future clinical trials.

  16. Laser Navigation for Radiofrequency Ablation

    SciTech Connect

    Varro, Zoltan; Locklin, Julia K. Wood, Bradford J.

    2004-09-15

    A 45-year-old male with renal cell carcinoma secondary to von-Hippel Lindau (VHL) disease presented for radiofrequency ablation (RFA) of kidney tumors. Due to his prior history of several partial nephrectomies and limited renal reserve, RFA was chosen because of its relatively nephron-sparing nature. A laser guidance device was used to help guide probe placement in an attempt to reduce procedure time and improve targeting accuracy. The device was successful at guiding needle placement, as both tumors were located with a single pass. Follow-up CT scan confirmed accurate needle placement, showing an area of coagulation necrosis covering the previously seen tumor.

  17. Ventilatory Responsiveness of Goats with Ablated Carotid Bodies,

    DTIC Science & Technology

    1982-06-03

    and a non- rebreathing valve into a circuit made up of wide-bore tubing and a CO2 absorber, with a T-piece connector leadingI2 to a bag-in-box...Words: CO2 production, CSF, CO2 rebreathing , cyanide, awake goats. L’ J .A __ 20. AsTh ACT (raetu sm reverse L N n .mllasy mad fdeWlby block number...hypercapniaafterCBx, the goats responded to hyperoxic CO2 rebreathing with a similar increase in ventilation before and after CBx. We conclude that the

  18. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  19. Local Ablation for Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Lin, Shi-Ming

    2013-01-01

    Hepatocellular carcinoma (HCC) is the second commonest cancer in Taiwan. The national surveillance program can detect HCC in its early stages, and various curative modalities (including surgical resection, orthotopic liver transplantation, and local ablation) are employed for the treatment of small HCC. Local ablation therapies are currently advocated for early-stage HCC that is unresectable because of co-morbidities, the need to preserve liver function, or refusal of resection. Among the various local ablation therapies, the most commonly used modalities include percutaneous ethanol injection and radiofrequency ablation (RFA); percutaneous acetic acid injection and microwave ablation are used less often. RFA is more commonly employed than other local ablative modalities in Taiwan because the technique is highly effective, minimally invasive, and requires fewer sessions. RFA is therefore advocated in Taiwan as the first-line curative therapy for unresectable HCC or even for resectable HCC. However, current RFA procedures are less effective against tumors that are in high-risk or difficult-to-ablate locations, are poorly visualized on ultrasonography (US), or are large. Recent advancements in RFA in Taiwan can resolve these issues by the creation of artificial ascites or pleural effusion, application of real-time virtual US assistance, use of combination therapy before RFA, or use of switching RF controllers with multiple electrodes. This review article provides updates on the clinical outcomes and advances in local ablative modalities (mostly RFA) for HCC in Taiwan. PMID:24159599

  20. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  1. Effective temperatures of polymer laser ablation

    NASA Astrophysics Data System (ADS)

    Furzikov, Nickolay P.

    1991-09-01

    Effective temperatures of laser ablation of certain polymers are extracted from experimental dependences of ablation depths on laser fluences. Dependence of these temperatures on laser pulse durations is established. Comparison with the known thermodestruction data shows that the effective temperature corresponds to transient thermodestruction proceeding by the statistically most probable way.

  2. Ablative therapies for small renal tumours.

    PubMed

    Castro, Arturo; Jenkins, Lawrence C; Salas, Nelson; Lorber, Gideon; Leveillee, Raymond J

    2013-05-01

    Improvements in imaging technology have resulted in an increase in detection of small renal masses (SRMs). Minimally invasive ablation modalities, including cryoablation, radiofrequencey ablation, microwave ablation and irreversible electroporation, are currently being used to treat SRMs in select groups of patients. Cryoablation and radiofrequency ablation have been extensively studied. Presently, cryoablation is gaining popularity because the resulting ice ball can be visualized easily using ultrasonography. Tumour size and location are strong predictors of outcome of radiofrequency ablation. One of the main benefits of microwave ablation is that microwaves can propagate through all types of tissue, including desiccated and charred tissue, as well as water vapour, which might be formed during the ablation. Irreversible electroporation has been shown in animal studies to affect only the cell membrane of undesirable target tissues and to spare adjacent structures; however, clinical studies that depict the efficacy and safety of this treatment modality in humans are still sparse. As more experience is gained in the future, ablation modalities might be utilized in all patients with tumours <4 cm in diameter, rather than just as an alternative treatment for high-risk surgical patients.

  3. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  4. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  5. Lung cancer ablation: technologies and techniques.

    PubMed

    Alexander, Erica S; Dupuy, Damian E

    2013-06-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies.

  6. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  7. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  8. Tumor Ablation with Irreversible Electroporation

    PubMed Central

    Al-Sakere, Bassim; André, Franck; Bernat, Claire; Connault, Elisabeth; Opolon, Paule; Davalos, Rafael V.; Rubinsky, Boris; Mir, Lluis M.

    2007-01-01

    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 µs at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation. PMID:17989772

  9. Simple model for ablative stabilization

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    1992-11-01

    We present a simple analytic model for ablative stablization of the Rayleigh-Taylor instability. In this model the effect of ablation is to move the peak of the perturbations to the location of peak pressure. This mechanism enhances the density-gradient stabilization, which is effective at short wavelengths, and it also enhances the stabilization of long-wavelength perturbations due to finite shell thickness. We consider the following density profile: exponential blowoff plasma with a density gradient β, followed by a constant-density shell of thickness δt. For perturbations of arbitrary wave number k, we present an explicit expression for the growth rate γ as a function of k, β, and δt. We find that ``thick'' shells defined by β δt>=1 have γ2>=0 for any k, while ``thin'' shells defined by β δt<1 can have γ2<0 for small k, reflecting stability by proximity to the back side of the shell. We also present lasnex simulations that are in good agreement with our analytic formulas.

  10. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  11. VERO® radiotherapy for low burden cancer: 789 patients with 957 lesions

    PubMed Central

    Orecchia, R; Surgo, A; Muto, M; Ferrari, A; Piperno, G; Gerardi, MA; Comi, S; Garibaldi, C; Ciardo, D; Bazani, A; Golino, F; Pansini, F; Fodor, C; Romanelli, P; Maestri, D; Scroffi, V; Mazza, S; Jereczek-Fossa, BA

    2016-01-01

    Purpose The aim of this retrospective study is to evaluate patient profile, feasibility, and acute toxicity of RadioTherapy (RT) delivered by VERO® in the first 20 months of clinical activity. Methods Inclusion criteria: 1) adult patients; 2) limited volume cancer (M0 or oligometastatic); 3) small extracranial lesions; 4) treatment between April 2012 and December 2013 and 5) written informed consent. Two techniques were employed: intensity modulated radiotherapy (IMRT) and stereotactic body radiotherapy (SBRT). Toxicity was evaluated using Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer (RTOG/EORTC) criteria. Results Between April 2012 and December 2013, 789 consecutive patients (957 lesions) were treated. In 84% of them one lesion was treated and in 16% more than one lesion were treated synchronously/metachronously; first radiotherapy course in 85%, re-irradiation in 13%, and boost in 2% of cases. The treated region included pelvis 46%, thorax 38%, upper abdomen 15%, and neck 1%. Radiotherapy schedules included <5 and >5 fractions in 75% and 25% respectively. All patients completed the planned treatment and an acceptable acute toxicity was observed. Conclusions RT delivered by VERO® was administrated predominantly to thoracic and pelvic lesions (lung and urologic tumours) using hypofractionation. It is a feasible approach for limited burden cancer offering short and well accepted treatment with favourable acute toxicity profile. Further investigation including dose escalation and other available VERO® functionalities such as real-time dynamic tumour tracking is warranted in order to fully evaluate this innovative radiotherapy system. PMID:27729942

  12. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  13. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    SciTech Connect

    Liu, Ran E-mail: liuran@tsinghua.edu.cn; Liu, Jing E-mail: liuran@tsinghua.edu.cn; Wang, Jia

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  14. [Stereotactic radiotherapy for pelvic tumors].

    PubMed

    Mazeron, R; Fumagalli, I

    2014-01-01

    Extracranial stereotactic radiotherapy is booming. The development and spread of dedicated accelerators coupled with efficient methods of repositioning can now allow treatments of mobile lesions with moderate size, with high doses per fraction. Intuitively, except for the prostate, pelvic tumours, often requiring irradiation of regional lymph node drainage, lend little to this type of treatment. However, in some difficult circumstances, such as boost or re-radiation, stereotactic irradiation condition is promising and clinical experiences have already been reported.

  15. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later dat