Science.gov

Sample records for ablative fractional co2

  1. A split-face comparison of ablative fractional lasers (CO(2) and Er:YAG) in Asian patients; postprocedure erythema, pain and patient's satisfaction.

    PubMed

    Jung, Kyung Eun; Jung, Kum Hee; Park, Young Min; Lee, Jun Young; Kim, Tae Yoon; Kim, Hyung Ok; Kim, Hei Sung

    2013-04-01

    Fractional photothermolysis has become popular in the recent years and is currently widely used for the treatment of scars and for photo-rejuvenation purposes. The fractional photothermolysis is to thermally alter a 'fraction' of the skin, leaving intervening areas of normal skin untouched, which rapidly repopulate the altered columns of tissue. Fractional photothermolysis is subdivided into non-ablative and ablative fractional resurfacing. Ablative fractional resurfacing uses fractional CO(2) or Er:YAG lasers to create deeper columns of thermal damage.Few studies have compared fractional CO(2) and Er:YAG lasers on scars and cutaneous photodamages by a split trial. In this pilot study, we have compared the effects, down time, postprocedure erythema, pain of CO(2) and Er:YAG fractional lasers using analysis of clinical photographs, dermoscopic findings and patient's rate of satisfaction. PMID:23464882

  2. Topical corticosteroids minimise the risk of postinflammatory hyper-pigmentation after ablative fractional CO2 laser resurfacing in Asians.

    PubMed

    Cheyasak, Nutjira; Manuskiatti, Woraphong; Maneeprasopchoke, Pitchaya; Wanitphakdeedecha, Rungsima

    2015-02-01

    Postinflammatory hyperpigmentation (PIH) is the most common adverse effect of laser treatment in dark-skinned individuals. Little is known whether PIH can be prevented or minimised. The objective of this study was to investigate the effect of short-term application of topical corticosteroids on the incidence of PIH after ablative fractional resurfacing in Asians. Forty subjects with skin phototype IV and atrophic acne scars were treated with a fractional CO2 laser on both sides of the face. Post-operatively, clobetasol propionate 0.05% ointment was applied to one randomly selected side of the face for the first 2 days, followed by an application of petrolatum jelly for the rest of the week (petrolatum was applied to the other side for 7 days). Assessments on the clinical outcome, the wound healing process and the occurrence of PIH were obtained once weekly for the first month and at 2 and 3 months post-treatment. The side of the face treated with petrolatum alone had significantly (p < 0.001) higher incidence of PIH (75%) after laser irradiation than the side of the face treated with topical corticosteroids and petrolatum (40%). The PIH occurring on the petrolatum-treated sides had significantly higher intensity (p < 0.001) and was spread over a significantly larger area (p < 0.001), compared with the corticosteroid- and petrolatum-treated sides. In conclusion, a short-term application of topical corticosteroids postoperatively is associated with a decreased risk of PIH after ablative fractional resurfacing. PMID:24854088

  3. CO2 Laser Absorption in Ablation Plasmas

    SciTech Connect

    Eckel, Hans-Albert; Tegel, Jochen; Schall, Wolfgang O.

    2006-05-02

    The impulse formation by laser ablation is limited by the premature absorption of the incident laser radiation in the initially produced cloud of ablation products. The power fraction of a CO2 laser pulse transmitted through a small hole in a POM sample for pulse energies of 35 to 150 J focused on a spot of 2 cm2 has been compared with the incident power. The plasma formation in vacuum and in air of 3500 Pa and the spread of the shock wave with velocities of 1.6 to 2.4 km/s in the low pressure air was observed by Schlieren photography. A sharp edged dark zone with a maximum extension of 10 to 12 mm away from the target surface develops within 5 {mu}s independently of the pressure and is assumed to be a plasma. In order to find out, if this is also the zone where the majority of the incident laser radiation is absorbed, a CO2 probe laser beam was directed through the expansion cloud parallel to and at various distances from the sample surface. The time behavior of the absorption signal of the probe beam has been measured and an absorption wave could be observed.

  4. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  5. Fractional CO2 laser treatment for a skin graft.

    PubMed

    Stephan, Farid E; Habre, Maya B; Helou, Josiane F; Tohme, Roland G; Tomb, Roland R

    2016-01-01

    Skin grafts are widely used in reconstructive and plastic surgery, leaving an inevitable scar appearance on the body, affecting the quality of life of the patients. Fractional ablative lasers have become a leading procedure for the treatment of acne and burn scars. We report a case of a skin graft showing excellent improvement in overall appearance after three sessions of fractional CO2 laser. The undamaged tissue left between the microthermal treatment zones is responsible of collagen formation and reepithelialization. Remodeling and collagen formation are observed even 6 months after a fractional CO2 laser session. PMID:26052811

  6. Hailey-Hailey disease improved by fractional CO2 laser.

    PubMed

    Campuzano-García, Andres Eduardo; Torres-Alvarez, Bertha; Hernández-Blanco, Diana; Castanedo-Cázares, Juan Pablo

    2015-01-01

    Hailey-Hailey disease (HHD), also known as benign familial pemphigus, is an autosomal dominant skin condition that affects the adhesion of epidermal keratinocytes. Although the initial manifestation of flaccid vesicles on erythematous or normal skin in flexure sites frequently goes unnoticed, large, macerated, exudative plaques of superficial erosions with crusting are observed at the time of diagnosis. There is no specific treatment for HHD, and most cases are symptomatically supported. However, infrared laser ablation has been somewhat helpful. We present a case successfully treated with fractional CO2 laser showing a long-term favourable outcome and no adverse effects. Thus, this modality could be an alternative to full ablation for this condition. PMID:25602185

  7. Laser systems for ablative fractional resurfacing.

    PubMed

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    Ablative fractional resurfacing (AFR) creates microscopic vertical ablated channels that are surrounded by a thin layer of coagulated tissue, constituting the microscopic treatment zones (MTZs). AFR induces epidermal and dermal remodeling, which raises new possibilities for the treatment of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed. PMID:21158542

  8. Pulsed CO2 laser ablation of graphite and polymers

    NASA Astrophysics Data System (ADS)

    Wong, K. H.; Tou, T. Y.; Low, K. S.

    1998-02-01

    Spectroscopic analysis of the emission plumes of graphite, polyimide, polyethylene terepthalate, and polymethylmethacrylate that have been ablated by using a pulsed CO2 laser operating at 10.6 μm shows the presence of CN and C2, species not previously reported for CO2 laser ablation. The gross dynamics of the luminous plume, which was studied by using a streak camera, compares favorably with predictions from the snowplow model, which also accurately forecasts the time history of the plume expansion for a wide range of background gas pressures and laser fluences. Framing shadowgraphy reveals the onset of laser-supported detonation waves at approximately 50 mbar Ar, thus somewhat limiting the validity of this model.

  9. Oxygen isotope fractionation in stratospheric CO2

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.

    1991-01-01

    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  10. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  11. Nontuberculous Mycobacterial Infection after Fractionated CO2 Laser Resurfacing

    PubMed Central

    Culton, Donna A.; Miller, Becky A.; Miller, Melissa B.; MacKuen, Courteney; Groben, Pamela; White, Becky; Cox, Gary M.; Stout, Jason E.

    2013-01-01

    Nontuberculous mycobacteria are increasingly associated with cutaneous infections after cosmetic procedures. Fractionated CO2 resurfacing, a widely used technique for photorejuvenation, has been associated with a more favorable side effect profile than alternative procedures. We describe 2 cases of nontuberculous mycobacterial infection after treatment with a fractionated CO2 laser at a private clinic. Densely distributed erythematous papules and pustules developed within the treated area within 2 weeks of the laser procedure. Diagnosis was confirmed by histologic analysis and culture. Both infections responded to a 4-month course of a multidrug regimen. An environmental investigation of the clinic was performed, but no source of infection was found. The case isolates differed from each other and from isolates obtained from the clinic, suggesting that the infection was acquired by postprocedure exposure. Papules and pustules after fractionated CO2 resurfacing should raise the suspicion of nontuberculous mycobacterial infection. PMID:23628077

  12. Analytical model for CO(2) laser ablation of fused quartz.

    PubMed

    Nowak, Krzysztof M; Baker, Howard J; Hall, Denis R

    2015-10-10

    This paper reports the development of an analytical model, with supporting experimental data, which quite accurately describes the key features of CO2 laser ablation of fused silica glass. The quantitative model of nonexplosive, evaporative material removal is shown to match the experimental data very well, to the extent that it can be used as a tool for ablative measurements of absorption coefficient and vaporization energy. The experimental results indicated that a minimum of 12  MJ kg-1 is required to fully vaporize fused quartz initially held at room temperature, which is in good agreement with the prediction of the model supplied with input data available in the literature. An optimal window for the machining of fused quartz was revealed in terms of pulse duration 20-80 μs and CO2 laser wavelength optimized for maximum absorption coefficient. Material removal rates of 0.33 μm per J cm-2 allow for a high-precision depth control with modest laser stability. The model may also be used as a parameter selection guide for CO2 laser ablation of fused silica or other materials of similar thermophysical properties. PMID:26479800

  13. New aspects of CO2 laser ablation in skin photosurgery

    NASA Astrophysics Data System (ADS)

    Nedelcu, Ioan; Nedelcu, Dana M.; Dumitras, Dan C.; Dutu, Constantin A.

    1994-12-01

    This paper presents the latest developments in CO2, ancillary equipment, and advanced surgical techniques used in treating a variety of different dermatologic disorders. To improve our knowledge on the laser treatment of several cutaneous lesions, we have performed a study on 871 cases, of which 690 are benign skin tumors and 181 are malignant skin tumors. Based on this large number of cases, information on post-operative course, recovery time, the quality of scars and aesthetic results, recurrences and hemostasis of blood vessels is given. This study presents indications for performing laser surgery and describes how to avoid complications and limit the potential risks associated with lasers.

  14. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    NASA Astrophysics Data System (ADS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Sasaki, Takehiko; Terashima, Kazuo

    2011-06-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm2; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3-hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO2 is proposed as a practical method for synthesizing diamondoids.

  15. Nickel Nanoparticles Production using Pulsed Laser Ablation under Pressurized CO2

    NASA Astrophysics Data System (ADS)

    Mardis, Mardiansyah; Takada, Noriharu; Machmudah, Siti; Diono, Wahyu; Kanda, Hideki; Sasaki, Koichi; Goto, Motonobu

    2014-10-01

    We used nickel (Ni) plate as a target and irradiated pulse laser ablation with a fundamental wavelength of 1064 nm under pressurized CO2. The Ni plate was ablated at various pressure (5-15 MPa), temperature (15-80°), and irradiation time (3-30 min). The method successfully generated Ni nanoparticles in various shape and size. Generated Ni nanoparticles collected on a Si wafer and the ablated Ni plate were analyzed by Field Emission Scanning Electron Microscope (FE-SEM). With changing pressure and temperature, the structures of Ni nanoparticles also changed. The shape of generated particles is sphere-like structure with diameter around 10--100 nm. Also it was observed that a network structure of smaller particles was fabricated. The mechanism of nanoparticles fabrication could be explained as follows. Ablated nickel plate melted during the ablation process and larger particles formed, then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the large particles. This morphology of particles was also observed for gold and silver nanoparticles with same condition. Further, the optical emission intensity from ablation plasma and the volume of the ablated crater were also examined under pressurized CO2.

  16. Fabrication of gold and silver nanoparticles with pulsed laser ablation under pressurized CO2

    NASA Astrophysics Data System (ADS)

    Machmudah, Siti; Wahyudiono; Takada, Noriharu; Kanda, Hideki; Sasaki, Koichi; Goto, Motonobu

    2013-12-01

    Pulsed laser ablation (PLA) has become a promising method for the synthesis of nanoclusters for photonics, electronics and medicine. In this work PLA in pressurized CO2 has been applied for fabrication of gold and silver nanoparticles. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures (0.1-20 MPa), temperatures (40-80 °C) of CO2 medium and ablation times (1500-9000 s). On the basis of the experimental result, it follows that structures of gold (Au) and silver (Ag) nanoparticles were significantly affected by the changes in CO2 density. The structures of gold and silver nanoparticles also changed with an increase of ablation time. From a field-emission scanning electron microscopy (FE-SEM) image of the fabricated gold nano-structured particles on silicon wafer, it was seen that a network structure of smaller gold particles was fabricated. A similar morphology of particles fabricated from silver plate was observed. Silver particles contain nanoparticles with large-varied diameter ranging from 5 nm to 1.2 μm. The mechanism of nanoparticles fabrication could be observed as follows. Bigger gold/silver particles melted during the ablation process and then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the molten particles.

  17. Silver nanoparticles generated by pulsed laser ablation in supercritical CO2 medium

    NASA Astrophysics Data System (ADS)

    Machmudah, Siti; Sato, Takayuki; Wahyudiono; Sasaki, Mitsuru; Goto, Motonobu

    2012-03-01

    Pulsed laser ablation (PLA) has been widely employed in industrial and biological applications and in other fields. The environmental conditions in which PLA is conducted are important parameters that affect both the solid particle cloud and the deposition produced by the plume. In this work, the generation of nanoparticles (NPs) has been developed by performing PLA of silver (Ag) plates in a supercritical CO2 medium. Ag NPs were successfully generated by allowing the selective generation of clusters. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures and temperatures of CO2 medium. On the basis of the experimental result, both surface of the irradiated Ag plate and structure of Ag NPs were significantly affected by the changes in supercritical CO2 pressure and temperature. With increasing irradiation pressure, plume deposited in the surrounding crater created by the ablation was clearly observed. In Field Emission Scanning Electron Microscopy (FE-SEM) the image of the generated Ag NPs on the silicon wafer and the morphology of Ag particles were basically a sphere-like structure. Ag particles contain NPs with large-varied diameter ranging from 5 nm to 1.2 μm. The bigger Ag NPs melted during the ablation process and then ejected smaller spherical Ag NPs, which formed nanoclusters attached on the molten Ag NPs. The smaller Ag NPs were also formed around the bigger Ag NPs. Based on the results, this new method can also be used to obtain advanced nano-structured materials.

  18. Eyelid milia en plaque: a treatment challenge with a new CO2 fractional laser.

    PubMed

    Tenna, Stefania; Filoni, Angela; Pagliarello, Calogero; Paradisi, Mauro; Persichetti, Paolo

    2014-01-01

    Milia en plaque (MEP) is an uncommon finding characterized by numerous tiny milia within an erythematous area. Despite its benign and asymptomatic nature, MEP raises cosmetic concerns; moreover, the available treatment modalities for MEP are limited. In view of the few cases described in the literature, no consensus has been reached, with respect to the optimal treatment for MEP, and the choice of therapy should be individualized. We report a case of eyelid milia en plaque successfully treated with a new CO2 fractional laser that is able to ensure superficial ablation of the epidermis remodeling tissue in-depth, with minimal thermal damage and extremely rapid recovery time. The results obtained after only two treatments were good, no scarring or dyschromic changes have been registered. At 1 year, just few recurrent milia were present. PMID:24703259

  19. CO2 laser cutting and ablative etching for the fabrication of paper-based devices

    NASA Astrophysics Data System (ADS)

    Spicar-Mihalic, P.; Toley, B.; Houghtaling, J.; Liang, T.; Yager, P.; Fu, E.

    2013-06-01

    We describe a method for fabricating paper-based microfluidic devices using a commercially available CO2 laser system. The method is versatile and allows for controlled through-cutting and ablative etching of nitrocellulose substrates. In addition, the laser system can cut a variety of components that are useful in the fabrication of paper-based devices, including cellulose wicking pads, glass fiber source pads and Mylar-based substrates for the device housing.

  20. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.

    2015-01-01

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.

  1. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser in Treatment of Actinic Keratosis

    PubMed Central

    Jang, Yong Hyun; Lee, Dong Jun; Shin, Jaeyoung; Kang, Hee Young; Lee, Eun-So

    2013-01-01

    Background Recently, photodynamic therapy (PDT) has been shown to be an effective first-line treatment for actinic keratosis (AK). However, a major limitation of PDT is the long incubation time required to allow penetration of the photosensitizer. Objective The aim of this study was to assess if pretreatment with an ablative carbon dioxide (CO2) fractional laser can reduce the incubation time of the photosensitizer. Methods Initially, 29 patients with a total of 34 AK lesions were treated with an ablative CO2 fractional laser at Ajou University Hospital between January and December 2010. Immediately after the laser treatment, topical 20% 5-aminolevulinic acid or methyl-aminolevulinate was applied to the AK lesions and incubated for 70 to 90 minutes. Then, the treated areas were illuminated with a red light source. Improvement was clinically or histologically assessed eight weeks after the treatment. Results In spite of the short incubation time, 24 lesions (70.6%) showed a complete response (CR) within three sessions of PDT (10 lesions a clinical CR and 14 lesions a clinical/histological CR). There were no significant side effects associated with the combination of ablative CO2 fractional laser and PDT. Conclusion Ablative CO2 fractional laser may be considered an additional treatment option for reducing the incubation time of the photosensitizer in PDT. PMID:24371387

  2. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  3. Fraction of natural area as main predictor of net CO2 emissions from cities

    NASA Astrophysics Data System (ADS)

    Nordbo, Annika; Järvi, Leena; Haapanala, Sami; Wood, Curtis R.; Vesala, Timo

    2012-10-01

    Cities account for most anthropogenic greenhouse-gas emissions, CO2 being most important. We evaluate the net urban contribution to CO2 emissions by performing a meta-analysis of all available 14 annual CO2 budget studies. The studies are based on direct flux measurements using the eddy-covariance technique which excludes all strong point sources. We show that the fraction of natural area is the strongest predictor of urban CO2 budgets, and this fraction can be used as a robust proxy for net urban CO2 emissions. Up-scaling, based on that proxy and satellite mapping of the fraction of natural area, identifies urban hotspots of CO2 emissions; and extraction of 56 individual cities corroborates their inventory-based estimates. Furthermore, cities are estimated as carbon-neutral when the natural fraction is about 80%. This fresh view on the importance of cities in climate change treats cities as urban ecosystems: incorporating natural areas like vegetation.

  4. Carbon isotope fractionation between calcite, graphite and CO2: an experimental study

    NASA Astrophysics Data System (ADS)

    Scheele, Norbert; Hoefs, Jochen

    1992-10-01

    The partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure. Attainment of carbon isotope equilibrium in CO2-calcite runs was proven by achieving the same fractionation from isotopically opposite directions. The resultant CO2-calcite fractionation curve for carbon differs from Bottinga's calculation by 1.2‰ and confirms recent experiments of Chacko et al. and Mattey et al. In CO2-graphite experiments equilibrium fractions were extrapolated by applying the partial-exchange technique of Northrop and Clayton and by optimizing the contribution of surface reaction in graphite. CO2-graphite fractionations at temperatures up to 800 °C are in fair agreement with Bottinga's calculation, but yield a surprisingly high fractionation of ≈5‰ at upper mantle temperatures. The combination of CO2-calcite (carbon) and CO2-graphite fractionation results in a new experimentally determined calcite-grapite fractionation curve, expressed by the equation: 410_2004_Article_BF00310954_TeX2GIFE1.gif begin{gathered} 10^3 {text{ ln }}α _{{text{cc - gr}}} = 7.99 × 10^6 /T^2 - 9.58 × 10^3 / + 5.76 \\ {text{ (873 - 1473 Kelvin)}} \\ Applying the experimentally determined fractionation curve on graphite-bearing metacarbonates yields metamorphic temperatures distinctly higher than those obtained by Valley and O'Neil.

  5. Laser cleaning of ablation debris from CO 2-laser-etched vias in polyimide

    NASA Astrophysics Data System (ADS)

    Coupland, Kristen; Herman, Peter R.; Gu, Bo

    1998-05-01

    CO 2-laser-drilled vias in polyimide-based flex circuits generate substantial surface debris, requiring new approaches to reduce or eliminate the debris and therefore do away with wet chemical or plasma cleaning steps. A dry laser cleaning process based on a wavelength-tunable CO 2 laser is shown for the first time to effectively remove the ablation debris. Other techniques based on gas flow, pressure control, or ultraviolet lasers, were found ineffective due to the presence of both massive (>10 μm) fibrous debris and submicron (<500 nm) soot. The debris-removal process is driven by disparate mechanisms. The soot is ejected in only ˜5 laser pulses by rapid thermal expansion of the laser-heated polyimide substrate. The removal of fibrous debris develops over many more pulses and involves Fresnel diffraction, surface-rippling phenomena, and multipulse ablation of the debris fragments. The fastest debris cleaning time of 2.5 s per via was provided by the 9R12 laser line at 20 Hz and 0.6 J/cm 2 fluence.

  6. Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography.

    PubMed

    Yang, Chih-Hsun; Tsai, Meng-Tsan; Shen, Su-Chin; Ng, Chau Yee; Jung, Shih-Ming

    2014-11-01

    Fractional resurfacing creates hundreds of microscopic wounds in the skin without injuring surrounding tissue. This technique allows rapid wound healing owing to small injury regions, and has been proven as an effective method for repairing photodamaged skin. Recently, ablative fractional laser (AFL) treatment has been demonstrated to facilitate topical drug delivery into skin. However, induced fractional photothermolysis depends on several parameters, such as incident angle, exposure energy, and spot size of the fractional laser. In this study, we used fractional CO2 laser to induce microscopic ablation array on the nail for facilitating drug delivery through the nail. To ensure proper energy delivery without damaging tissue structures beneath the nail plate, optical coherence tomography (OCT) was implemented for quantitative evaluation of induced microscopic ablation zone (MAZ). Moreover, to further study the feasibility of drug delivery, normal saline was dripped on the exposure area of fingernail and the speckle variance in OCT signal was used to observe water diffusion through the ablative channels into the nail plate. In conclusion, this study establishes OCT as an effective tool for the investigation of fractional photothermolysis and water/drug delivery through microscopic ablation channels after nail fractional laser treatment. PMID:25426321

  7. Feasibility of ablative fractional laser-assisted drug delivery with optical coherence tomography

    PubMed Central

    Yang, Chih-Hsun; Tsai, Meng-Tsan; Shen, Su-Chin; Ng, Chau Yee; Jung, Shih-Ming

    2014-01-01

    Fractional resurfacing creates hundreds of microscopic wounds in the skin without injuring surrounding tissue. This technique allows rapid wound healing owing to small injury regions, and has been proven as an effective method for repairing photodamaged skin. Recently, ablative fractional laser (AFL) treatment has been demonstrated to facilitate topical drug delivery into skin. However, induced fractional photothermolysis depends on several parameters, such as incident angle, exposure energy, and spot size of the fractional laser. In this study, we used fractional CO2 laser to induce microscopic ablation array on the nail for facilitating drug delivery through the nail. To ensure proper energy delivery without damaging tissue structures beneath the nail plate, optical coherence tomography (OCT) was implemented for quantitative evaluation of induced microscopic ablation zone (MAZ). Moreover, to further study the feasibility of drug delivery, normal saline was dripped on the exposure area of fingernail and the speckle variance in OCT signal was used to observe water diffusion through the ablative channels into the nail plate. In conclusion, this study establishes OCT as an effective tool for the investigation of fractional photothermolysis and water/drug delivery through microscopic ablation channels after nail fractional laser treatment. PMID:25426321

  8. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  9. Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Zakariyah, S. S.; Sheikh, N. A.

    2015-12-01

    High interconnection density associated with current electronics products poses certain challenges in designing circuit boards. Methods, including laser-assisted microvia drilling and surface mount technologies for example, are being used to minimize the impacts of the problems. However, the bottleneck is significantly pronounced at bit data rates above 10 Gbit/s where losses, especially those due to crosstalk, become high. One solution is optical interconnections (OI) based on polymer waveguides. Laser ablation of the optical waveguides is viewed as a very compatible technique with ultraviolet laser sources, such as excimer and UV Nd:YAG lasers, being used due to their photochemical nature and minimal thermal effect when they interact with optical materials. In this paper, the authors demonstrate the application of grey relational analysis to determine the optimized processing parameters concerning fabrication of multimode optical polymer waveguides by using infra-red 10.6 μm CO2 laser micromachining to etch acrylate-based photopolymer (Truemode™). CO2 laser micromachining offers a low cost and high speed fabrication route needed for high volume productions as the wavelength of CO2 lasers can couple well with a variety of polymer substrates. Based on the highest grey relational grade, the optimized processing parameters are determined at laser power of 3 W and scanning speed of 100 mm/s.

  10. CO2 TEA Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Recently, it has been shown that the relative abundance of isotopes in enriched materials can be determined via laser-induced breakdown spectroscopy (LIBS) in a technique known as laser-ablation molecular isotopic spectroscopy (LAMIS). The original LAMIS work has focused on single-pulse (SP) LIBS for the excitation. However, dual-pulse (DP) LIBS reduces shot-to-shot variation and can lower detection limits of an element by about an order of magnitude or more. It also has the potential to improve the accuracy of the determination of the relative abundances of isotopes in LAMIS by minimizing the signal-to-noise ratio. In this work, a DP-LIBS technique for improving LAMIS relative-abundance information from a sample is presented. The new technique, called (TEA) Transverse-Excited breakdown in Atmosphere Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS), uses a carbon dioxide (CO2) laser to increase the breakdown emission from LIBS in the LAMIS method. This technique is demonstrated on a collection of relative abundance isotopes of boron- 10 and boron-11 in varying concentrations in boric acid. Least-squares fitting to theoretical models are used to deduce plasma parameters and understand reproducibility of results. DTRA.

  11. 13CO2 recovery fraction in expired air of septic patients under mechanical ventilation.

    PubMed

    Auxiliadora-Martins, M; Martins, M A; Coletto, F A; Martins-Filho, O A; Marchini, J S; Basile-Filho, A

    2008-07-01

    The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 micromol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 +/- 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 +/- 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 +/- 0.06%, which is less than that reported in the literature (0.82 +/- 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air. PMID:18719737

  12. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser for Treating Bowen Disease

    PubMed Central

    Kim, Sue Kyung; Park, Ji-Youn; Song, Hyo Sang; Kim, You-Sun

    2013-01-01

    Background Topical photodynamic therapy (PDT) has been increasingly used to treat malignant skin tumors including the Bowen disease. However, patients could be displeased with the long incubation time required for conventional PDT. Objective We evaluated the efficacy and safety of PDT with a short incubation time of ablative CO2 fractional laser pretreatment for treating Bowen disease. Methods Ten patients were included. Just before applying the topical photosensitizer, all lesions were treated with ablative CO2 fractional laser, following the application of methyl aminolevulinate and irradiation with red light (Aktilite CL 128). Histological confirmation, rebiopsy, and clinical assessments were performed. Adverse events were also recorded. Results Five of the ten (50%) lesions showed a complete response (CR) within three PDT sessions. After four treatment sessions, all lesions except one penile shaft lesion (90%) achieved clinical and histological CR or clinical CR only. The average number of treatments to CR was 3.70±1.70. The treatments showed favorable cosmetic outcomes and no serious adverse events. Conclusion The results suggest that pretreatment with an ablative fractional CO2 laser before PDT has similar treatment efficacy and requires a shorter photosensitizer incubation time compared with the conventional PDT method. PMID:24003277

  13. Fractional CO2 Laser Versus Intense Pulsed Light in Treating Striae Distensae

    PubMed Central

    El Taieb, Moustafa Adam; Ibrahim, Ahmed Khair

    2016-01-01

    Context: Striae distensae are linear atrophic dermal scars covered with flat atrophic epidermis. They may cause disfigurement, especially in females. Many factors may cause striae distensae such as steroids, obesity, and pregnancy. Although there is no standard treatment for striae; many topical applications, peeling, and light and laser systems have been tried. Aims: To evaluate and compare the efficacy of fractional CO2 laser with intense pulse light in treating striae distensae. Subjects and Methods: Forty patients with striae distensae were recruited. Twenty of them were treated by fractional CO2 laser and 20 were treated with intense pulse light. Length and width of the largest striae were measured pre- and post-treatment. Patient satisfaction was also evaluated and graded. Patients were photographed after each treatment session and photos were examined by a blinded physician who had no knowledge about the cases. Results: Both groups showed significant improvement after treatments (P < 0.05). Patients treated with fractional CO2 laser showed significant improvement after the fifth session compared with those treated with ten sessions of intense pulsed light (P < 0.05) in all parameters except in the length of striae (P > 0.05). Conclusions: The current study has provided supportive evidence to the effectiveness of both fractional CO2 laser and intense pulse light as treatments for striae distensae. Fractional CO2 laser was found to be more effective in the treatment of striae distensae compared with intense pulse light. PMID:27057017

  14. Model-data comparison of MCI field campaign atmospheric CO2 mole fractions

    NASA Astrophysics Data System (ADS)

    Díaz Isaac, Liza I.; Lauvaux, Thomas; Davis, Kenneth J.; Miles, Natasha L.; Richardson, Scott J.; Jacobson, Andrew R.; Andrews, Arlyn E.

    2014-09-01

    Atmospheric transport model errors are a major contributor to uncertainty in CO2 inverse flux estimates. Our study compares CO2 mole fraction observations from the North American Carbon Program Mid-Continental Intensive (MCI) field campaign and modeled mole fractions from two atmospheric transport models: the global Transport Model 5 from NOAA's CarbonTracker system and the mesoscale Weather Research and Forecasting model. Both models are coupled to identical CO2 fluxes and lateral boundary conditions from CarbonTracker (CT2009 release). Statistical analyses were performed for two periods of 2007 using observed daily daytime average mole fractions of CO2 to test the ability of these models to reproduce the observations and to infer possible causes of the discrepancies. TM5-CT2009 overestimates midsummer planetary boundary layer CO2 for sites in the U.S. corn belt by 10 ppm. Weather Research and Forecasting (WRF)-CT2009 estimates diverge from the observations with similar magnitudes, but the signs of the differences vary from site to site. The modeled mole fractions are highly correlated with the observed seasonal cycle (r ≥ 0.7) but less correlated in the growing season, where weather-related changes in CO2 dominate the observed variability. Spatial correlations in residuals from TM5-CT2009 are higher than WRF-CT2009 perhaps due to TM5's coarse horizontal resolution and shallow vertical mixing. Vertical mixing appears to have influenced CO2 residuals from both models. TM5-CT2009 has relatively weak vertical mixing near the surface limiting the connection between local CO2 surface fluxes and boundary layer. WRF-CT2009 has stronger vertical mixing that may increase the connections between local surface fluxes and the boundary layer.

  15. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration.

    PubMed

    Nyambura, Muriithi Grace; Mugera, Gitari Wilson; Felicia, Petrik Leslie; Gathura, Ndungu Patrick

    2011-03-01

    Coal combustion by-products such as fly ash (FA), brine and CO(2) from coal fired power plants have the potential to impact negatively on the environment. FA and brine can contaminate the soil, surface and ground water through leaching of toxic elements present in their matrices while CO(2) has been identified as a green house gas that contributes significantly towards the global warming effect. Reaction of CO(2) with FA/brine slurry can potentially provide a viable route for CO(2) sequestration via formation of mineral carbonates. Fractionated FA has varying amounts of CaO which not only increases the brine pH but can also be converted into an environmentally benign calcite. Carbonation efficiency of fractionated and brine impacted FA was investigated in this study. Controlled carbonation reactions were carried out in a reactor set-up to evaluate the effect of fractionation on the carbonation efficiency of FA. Chemical and mineralogical characteristics of fresh and carbonated ash were evaluated using XRF, SEM, and XRD. Brine effluents were characterized using ICP-MS and IC. A factorial experimental approach was employed in testing the variables. The 20-150 μm size fraction was observed to have the highest CO(2) sequestration potential of 71.84 kg of CO(2) per ton of FA while the >150 μm particles had the lowest potential of 36.47 kg of CO(2) per ton of FA. Carbonation using brine resulted in higher degree of calcite formation compared to the ultra-pure water carbonated residues. PMID:20970918

  16. Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1976-01-01

    The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.

  17. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    USGS Publications Warehouse

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  18. Comparative study of CO2- and Er:YAG laser ablation of multiple cutaneous neurofibromas in von Recklinghausen's disease.

    PubMed

    Kriechbaumer, Lukas K; Susani, Martin; Kircher, Susanne G; Distelmaier, Klaus; Happak, Wolfgang

    2014-05-01

    With a prevalence of 1 in 3,000 births, neurofibromatosis type 1 (NF1) is one of the most common genetic disorders and is characterized by an uninhibited expansion of neural tissue. Occasionally, severe deformities occur, but frequently considerable cosmetic disfigurement is caused by the development of hundreds of benign cutaneous neurofibromas. The objective of this study was to evaluate the erbium:yttrium-aluminium-garnet (Er:YAG) laser as a therapeutic option for the removal of multiple cutaneous neurofibromas. In this prospective, comparative, in vivo study, 15,580 neurofibromas (44 operations on 21 patients) were removed via electrosurgery, CO2- or Er:YAG laser ablation. In 12 adjacent test areas, we compared the zone of thermal necrosis, the postoperative pain, the time to reepithelialization, the duration of postoperative erythema and the cosmetic outcome of these surgical methods. When compared to electrosurgery and CO2 laser ablation, the Er:YAG laser ablation outperformed the other methods of tumor removal. Rapid healing by second intention as well as the minimal discomfort and scar formation following Er:YAG laser ablation were noted. After 36 months of follow-up, permanent dyspigmentation was rare and hypertrophic scarring was not observed. Er:YAG laser vaporization of multiple cutaneous neurofibromas is a simple and rapid procedure that results in significantly better cosmetic results than CO2 laser treatment or electrosurgery. PMID:24189926

  19. [Catheter ablation of persistent atrial fibrillation : pulmonary vein isolation, ablation of fractionated electrograms, stepwise approach or rotor ablation?].

    PubMed

    Scherr, D

    2015-02-01

    Catheter ablation is an established treatment option for patients with atrial fibrillation (AF). In paroxysmal AF ablation, pulmonary vein isolation alone is a well-defined procedural endpoint, leading to success rates of up to 80% with multiple procedures over 5 years of follow-up. The success rate in persistent AF ablation is significantly more limited. This is partly due to the rudimentary understanding of the substrate maintaining persistent AF. Three main pathophysiological concepts for this arrhythmia exist: the multiple wavelet hypothesis, the concept of focal triggers, mainly located in the pulmonary veins and the rotor hypothesis. However, the targets and endpoints of persistent AF ablation are ill-defined and there is no consensus on the optimal ablation strategy in these patients. Based on these concepts, several ablation approaches for persistent AF have emerged: pulmonary vein isolation, the stepwise approach (i.e. pulmonary vein isolation, ablation of fractionated electrograms and linear ablation), magnetic resonance imaging (MRI) and rotor-based approaches. Currently, persistent AF ablation is a second-line therapy option to restore and maintain sinus rhythm. Several factors, such as the presence of structural heart disease, duration of persistent AF and dilatation and possibly also the degree of fibrosis of the left atrium should influence the decision to perform persistent AF ablation. PMID:25687615

  20. Analysis of the short-pulsed CO2 laser ablation process for optimizing the processing performance for cutting bony tissue

    NASA Astrophysics Data System (ADS)

    Mehrwald, Markus; Burgner, Jessica; Platzek, Christoph; Feldmann, Claus; Raczkowsky, Jörg; Wörn, Heinz

    2010-02-01

    Recently we established an experimental setup for robot-assisted laser bone ablation using short-pulsed CO2 laser. Due to the comparable low processing speed of laser bone ablation the application in surgical interventions is not yet feasible. In order to optimize this ablation process, we conducted a series of experiments to derive parameters for a discrete process model. After applying single and multiple laser pulses with varying intensity onto bone, the resulting craters were measured using a confocal microscope in 3D. The resulting ablation volumes were evaluated by applying Gaussian function fitting. We then derived a logarithmic function for the depth prediction of laser ablation on bone. In order to increase the ablation performance we conducted experiments using alternate fluids replacing the water spray: pure glycerin, glycerin/water mixture, acids and bases. Because of the higher boiling point of glycerin compared to water we had expected deeper craters through the resulting higher temperatures. Experimental results showed that glycerin or a glycerin/water mix do not have any effect on the depth of the ablation craters. Additionally applying the acid or base on to the ablation site does only show minor benefits compared to water. Furthermore we preheated the chemicals with a low energy pulse prior to the ablation pulse, which also showed no effect. However, applying a longer soaking time of the chemicals induced nearly a doubling of the ablation depth in some cases. Furthermore with this longer soaking time, carbonization at the crater margins does not occur as is observed when using conventionally water spray.

  1. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Liao, M. W.; Lin, S. L.

    2010-04-01

    Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

  2. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  3. Pulsed laser ablation plasmas generated in CO2 under high-pressure conditions up to supercritical fluid

    NASA Astrophysics Data System (ADS)

    Kato, Toru; Stauss, Sven; Kato, Satoshi; Urabe, Keiichiro; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2012-11-01

    Pulsed laser ablation of solids in supercritical media has a large potential for nanomaterials fabrication. We investigated plasmas generated by pulsed laser ablation of Ni targets in CO2 at pressures ranging from 0.1 to 16 MPa at 304.5 K. Plasma species were characterized by optical emission spectroscopy, and the evolution of cavitation bubbles and shockwaves were observed by time-resolved shadowgraph imaging. Ni and O atomic emissions decreased with increasing gas pressure; however, near the critical point the intensities reached local maxima, probably due to the enhancement of the plasma excitation and effective quenching resulting from the large density fluctuation.

  4. 13C fractionation of dinoflagellates - a new proxy for past CO2 levels?

    NASA Astrophysics Data System (ADS)

    Hoins, M.; Van de Waal, D. B.; Eberlein, T.; Reichart, G.; Sluijs, A.; Rost, B.

    2012-12-01

    Reliable reconstructions of atmospheric CO2 levels prior to ~1 million years ago are required to quantify climate sensitivity as well as ocean acidification in response to past carbon cycle perturbations. Despite recent progress, however, uncertainties in reconstructed values especially from the Paleogene and older, are still very large. We aim to develop a new proxy for CO2 concentrations based on the carbon isotopic fractionation of autotrophic marine dinoflagellates. Dinoflagellates feature RubisCO (type II) with the lowest CO2 affinity of all eukaryote phytoplankton, which makes this group inherently sensitive to changes in carbonate chemistry. Along with growth and carbon production also the 13C versus 12C incorporation, i.e., the 13C fractionation (ɛp), will likely be affected. Hence, the carbon isotopic composition of dinoflagellates may ultimately reflect the prevailing atmospheric CO2 concentrations. Crucially, microfossils of dinoflagellates, i.e. organic dinoflagellate cysts, have been recovered from ocean sediments as old as the Triassic (i.e. ~215 Ma BP). We performed dilute batch experiments with four dinoflagellate species: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at various CO2 concentrations representing the Last Glacial Maximum (180 ppm), present day (380 ppm), and future projections (and estimates for distant past levels; 950 ppm and 1400 ppm). Consistent with expectations, ɛp increased with CO2 concentration in all four species (with a slope of up to 0.19 ‰ μM-1), while growth and carbon production (μc) had little effect. ɛp in relation to CO2 varied between species and strains, but the relation of ɛp to μc/CO2 was more consistent. First results of underlying processes affecting ɛp, including carbon acquisition and leakage, will be discussed. Considering that the cysts of P. reticulatum (Operculodinium centrocarpum) and G. spinifera (Spiniferites sp.) are

  5. YSGG 2790-nm superficial ablative and fractional ablative laser treatment.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    The 2790-nm wavelength YSGG laser was introduced for aesthetic purposes under the trade name Pearl by Cutera in 2007. In clinical use, the Pearl superficial resurfacing laser has proved effective and well tolerated for the correction of superficial brown epidermal dyschromia and superficial fine lines and scars, and the Pearl Fractional laser produces excellent improvement in both dyschromia and improvement of deeper lines and moderately deep acne scarring. The two laser treatments can be combined in a single treatment session on different parts of the face or on the entire face, depending on patient needs and priorities. PMID:21763987

  6. The Use of CO2 Fractional Photothermolysis for the Treatment of Burn Scars.

    PubMed

    Levi, Benjamin; Ibrahim, Amir; Mathews, Katie; Wojcik, Brandon; Gomez, Jason; Fagan, Shawn; Austen, William Gerald; Goverman, Jeremy

    2016-01-01

    A recent advancement in the treatment of burn scars has been the use of the carbon dioxide (CO2) laser to perform fractional photothermolysis. In this analysis, we describe our results and patient-reported outcomes with the use of fractional CO2 laser for the treatment of burn-related scarring. We performed a retrospective study of all patients who underwent CO2 laser procedures for treatment of symptomatic burn scars and skin grafts at one accredited regional burn center. Burn injury and laser treatment demographics, as well as complications, are reported. A questionnaire was administered to all patients and included patient-reported outcome measures aimed at understanding the patient experience and their subjective response to treatment. A total of 387 CO2 laser procedures were performed on 131 patients for the treatment of symptomatic burn scars and skin grafts between October 1, 2011, and May 1, 2014 (average, 2.95 procedures/patient; range, 1-11). Average time between injury and first laser was 597.35 days (range, 60-13,475). Average time between laser treatments (when multiple) was 117.73 days (range, 22-514). There were no infections requiring treatment with oral antibiotics. Overall patient satisfaction with laser therapy was 96.7%. Patients reported reductions in neuropathic pain, tightness (contracture), and pruritus (54.0, 50.6, and 49.0%, respectively). Fractional photothermolysis utilizing the CO2 laser is a safe and effective modality for the treatment of symptomatic burn scars, donor sites, and skin grafts. Patient satisfaction with this procedure is high, and complications are low. Significant improvements in scar appearance, pliability, tightness, neuropathic pain, and pruritus were commonly reported. PMID:26536539

  7. Late Ordovician land plant spore 13C fractionation records atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Nelson, D. M.; Pearson, A.; Wellman, C.

    2008-12-01

    Molecular systematics and spore wall ultrastructure studies indicate that late Ordovician diad and triad fossil spores were likely produced by plants most closely related to liverworts. Here, we report the first δ13C estimates of Ordovician fossil land plant spores, which were obtained using a spooling wire micro-combustion device interfaced with an isotope-ratio mass spectrometer (Sessions et al., 2005, Analytical Chemistry, 77, 6519). The spores all originate from Saudi Arabia on the west of Gondwana and date to before (Cardadoc, ca. 460 Ma), during (443Ma) and after (Llandovery, ca. 440Ma) the Hirnantian glaciation. We use these numbers along with marine carbonate δ13C records to estimate atmospheric CO2 by implementing a theoretical model that captures the strong CO2-dependency of 13C fractionation in non-vascular land plants (Fletcher et al., 2008, Nature Geoscience, 1, 43). Although provisional at this stage, reconstructed CO2 changes are consistent with the Kump et al. (2008) (Paleo. Paleo. Paleo. 152, 173) 'weathering hypothesis' whereby pre-Hirnantian cooling is caused by relatively low CO2 (ca. 700ppm) related to enhanced weathering of young basaltic rocks during the early phase of the Taconic uplift, with background values subsequently rising to around double this value by the earliest Silurian. Further analyses will better constrain atmospheric CO2 change during the late Ordovician climatic perturbation and address controversial hypotheses concerning the causes and timing of the Earth system transition into an icehouse state.

  8. Carbon Isotope Fractionation of 11 Acetogenic Strains Grown on H2 and CO2

    PubMed Central

    Dreisbach, Lisa K.; Conrad, Ralf

    2013-01-01

    Acetogenic bacteria are able to grow autotrophically on hydrogen and carbon dioxide by using the acetyl coenzyme A (acetyl-CoA) pathway. Acetate is the end product of this reaction. In contrast to the fermentative route of acetate production, which shows almost no fractionation of carbon isotopes, the acetyl-CoA pathway has been reported to exhibit a preference for light carbon. In Acetobacterium woodii the isotope fractionation factor (ε) for 13C and 12C has previously been reported to be ε = −58.6‰. To investigate whether such a strong fractionation is a general feature of acetogenic bacteria, we measured the stable carbon isotope fractionation factor of 10 acetogenic strains grown on H2 and CO2. The average fractionation factor was εTIC = −57.2‰ for utilization of total inorganic carbon and εacetate = −54.6‰ for the production of acetate. The strongest fractionation was found for Sporomusa sphaeroides (εTIC = −68.3‰), the lowest fractionation for Morella thermoacetica (εTIC = −38.2‰). To investigate the reproducibility of our measurements, we determined the fractionation factor of 21 biological replicates of Thermoanaerobacter kivui. In general, our study confirmed the strong fractionation of stable carbon during chemolithotrophic acetate formation in acetogenic bacteria. However, the specific characteristics of the bacterial strain, as well as the cultural conditions, may have a moderate influence on the overall fractionation. PMID:23275504

  9. Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2.

    PubMed

    Blaser, Martin B; Dreisbach, Lisa K; Conrad, Ralf

    2013-03-01

    Acetogenic bacteria are able to grow autotrophically on hydrogen and carbon dioxide by using the acetyl coenzyme A (acetyl-CoA) pathway. Acetate is the end product of this reaction. In contrast to the fermentative route of acetate production, which shows almost no fractionation of carbon isotopes, the acetyl-CoA pathway has been reported to exhibit a preference for light carbon. In Acetobacterium woodii the isotope fractionation factor (ε) for (13)C and (12)C has previously been reported to be ε = -58.6‰. To investigate whether such a strong fractionation is a general feature of acetogenic bacteria, we measured the stable carbon isotope fractionation factor of 10 acetogenic strains grown on H(2) and CO(2). The average fractionation factor was ε(TIC) = -57.2‰ for utilization of total inorganic carbon and ε(acetate) = -54.6‰ for the production of acetate. The strongest fractionation was found for Sporomusa sphaeroides (ε(TIC) = -68.3‰), the lowest fractionation for Morella thermoacetica (ε(TIC) = -38.2‰). To investigate the reproducibility of our measurements, we determined the fractionation factor of 21 biological replicates of Thermoanaerobacter kivui. In general, our study confirmed the strong fractionation of stable carbon during chemolithotrophic acetate formation in acetogenic bacteria. However, the specific characteristics of the bacterial strain, as well as the cultural conditions, may have a moderate influence on the overall fractionation. PMID:23275504

  10. Observation of in vivo morphologic changes after carbon dioxide ablative fractional laser in a mouse model using noninvasive imaging modalities and comparison with histologic examination.

    PubMed

    Yoo, Kwang Ho; Kwon, Tae Rin; Kim, So Young; Song, Yi Seop; Cheon, Young Sook; Kim, Yu Mi; Yeo, In Kwon; Ko, Eun Jung; Li, Kapsok; Kim, Myeung Nam; Kim, Beom Joon

    2014-01-01

    Ablative fractional carbon dioxide (CO2) lasers have been widely used for several types of cosmetic dermatosis. A number of previous studies have evaluated this technique in animals or human beings by observing morphologic changes using an invasive modality such as skin biopsy. In this study, we assessed in vivo skin changes after CO2 ablative fractional laser treatment in a mouse model using noninvasive imaging modalities (Folliscope(®) and Visioscan 98(®)), and each results was compared with data from histologic examination. An ablative fractional CO2 laser was applied with different pulse energy between 7 to 35 mJ/microspot. As results of above methods, we also confirmed that the CO2 ablative fractional laser generated injuries with increasing width and depth with increasing pulse energy. Although numerous papers have described application of this laser in vivo skin specimens, our study evaluated the feasibility of using relative noninvasive imaging modalities for assessing the outcome of laser ablation. Based on our data, we suggest that these technologies may be useful alternative modalities for assessing laser ablation that are easier to perform and less invasive than skin biopsy. PMID:25041574

  11. Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Barlow, J. M.; Palmer, P. I.; Bruhwiler, L. M.; Tans, P.

    2015-12-01

    Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. Here we present a study of changes in the observed high northern latitude CO2 seasonal cycle. We report new estimates for changes in the phase and amplitude of the seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10-25 %, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW), during 1973-2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -0.14 ± 0.14 and -0.25 ± 0.08 days yr-1 respectively and a corresponding net uptake period of -0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34 % yr-1 (p < 0.01) and 0.42 ± 0.34 % yr-1 (p < 0.05) for rates of peak uptake and release respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon when integrated throughout the year, but the increase in the seasonal amplitude of CO2 together with an invariant net carbon uptake period provides evidence that high northern latitude ecosystems are progressively taking up more

  12. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.

    PubMed

    Yap, Yiing C; Guijt, Rosanne M; Dickson, Tracey C; King, Anna E; Breadmore, Michael C

    2013-11-01

    With the introduction of hobby laser engravers/cutters, the use of CO2 laser micromachining on poly(methyl methacrylate) (PMMA) has the potential for flexible, low cost, rapid prototyping of microfluidic devices. Unfortunately, the feature size created by most entry-level CO2 laser micromachining systems is too large to become a functional tool in analytical microfluidics. In this paper, we report a novel method to reduce the feature size of microchannels and the bulges formed at the rim of the channel during CO2 laser micromachining by passing the laser beam through a stainless steel pinhole. Without the pinhole, the channel width was typically 300 μm wide. However, when 50 or 35 μm diameter pinholes were used, channel widths of 60 and 25 μm, respectively, could be obtained. The height of the bulge deposited directly next to the channel was reduced to less than 0.8 μm with the pinhole during ablation. Separations of fluorescent dyes on devices ablated with and without the pinhole were compared. On devices fabricated with the pinhole, the number of theoretical plates/m was 2.2-fold higher compared to devices fabricated without the pinhole, and efficiencies comparable to embossed PMMA and laser ablated glass chips were obtained. A mass-produced commercial hobby laser (retailing at ∼$2500), when equipped with a $500 pinhole, represents a rapid and low-cost approach to the rapid fabrication of rigid plastic microchips including the narrow microchannels required for microchip electrophoresis. PMID:24063252

  13. Efficacy of fractional CO2 laser in treatment of atrophic scar of cutaneous leishmaniasis.

    PubMed

    Banihashemi, Mahnaz; Nahidi, Yalda; Maleki, Masoud; Esmaily, Habibollah; Moghimi, Hamid Reza

    2016-05-01

    Cutaneous leishmaniasis is an endemic disease in Iran. Unfortunately, it can lead to unsightly atrophic scars with limited treatment options. Fractional CO2 laser is accepted for treatment of atrophic acne scars and recently has been used to treat cutaneous leishmaniasis, so we planned to use fractional CO2 laser on leishmaniasis scar. We conducted this study on 60 leishmaniasis scars on the face of 40 patients. The lesions were treated by a fractional CO2 laser with beam size of 120 μm, with energy of 50-90 mJ, and 50-100 spots/cm(2) density with two passes in three monthly sessions. Evaluation was done in the first and second months after the first treatment and 3 and 6 months after the last treatment. Digital photography was performed at each visit. Assessment of improvement rate by patient and physician was rated separately as follows: no improvement (0 %), mild (<25 %), moderate (25-50 %), good (51-75 %), and excellent (76-100 %). Based on patients' opinion, in the first and second follow-up, 48.3 and 90 % of them reported moderate to excellent healing, respectively (p < 0.001). In 3 and 6 months follow-up after the end of the experiment, most of the patients (88.3 and 95 %, respectively) reported moderate to excellent healing of scars. Based on two observers' opinion, healing in the first follow-up in most of the patients (65 %) was mild to moderate and 33 % were reported as having no healing. In the second follow-up, only 5 % of the patients were reported with no healing and 60 % were reported as having moderate healing (p < 0.001). In 3 and 6 months follow-up, most of the patients (95 and 96.6 %) were reported as having moderate to excellent healing (p = <0.001). Our results underlined the high efficacy of fractional CO2 laser for leishmaniasis scar. No significant adverse effects were noted. PMID:26984344

  14. Fractional CO2 Laser Resurfacing as Monotherapy in the Treatment of Atrophic Facial Acne Scars

    PubMed Central

    Majid, Imran; Imran, Saher

    2014-01-01

    Background: While laser resurfacing remains the most effective treatment option for atrophic acne scars, the high incidence of post-treatment adverse effects limits its use. Fractional laser photothermolysis attempts to overcome these limitations of laser resurfacing by creating microscopic zones of injury to the dermis with skip areas in between. Aim: The aim of the present study is to assess the efficacy and safety of fractional CO2 laser resurfacing in atrophic facial acne scars. Materials and Methods: Sixty patients with moderate to severe atrophic facial acne scars were treated with 3-4 sessions of fractional CO2 laser resurfacing at 6-week intervals. The therapeutic response to treatment was assessed at each follow up visit and then finally 6 months after the last laser session using a quartile grading scale. Response to treatment was labelled as ‘excellent’ if there was >50% improvement in scar appearance and texture of skin on the grading scale while 25-50% response and <25% improvement were labelled as ‘good’ and ‘poor’ response, respectively. The overall satisfaction of the patients and any adverse reactions to the treatment were also noted. Results: Most of the patients showed a combination of different morphological types of acne scars. At the time of final assessment 6 months after the last laser session, an excellent response was observed in 26 patients (43.3%) while 15 (25%) and 19 patients (31.7%) demonstrated a good and poor response respectively. Rolling and superficial boxcar scars responded the best while pitted scars responded the least to fractional laser monotherapy. The commonest reported adverse effect was transient erythema and crusting lasting for an average of 3-4 and 4-6 days, respectively while three patients developed post-inflammatory pigmentation lasting for 8-12 weeks. Conclusions: Fractional laser resurfacing as monotherapy is effective in treating acne scars especially rolling and superficial boxcar scars with minimal

  15. Time-Resolved Force and Schlieren Visualization Study of TEA CO2 Laser Ablation of Water Droplets

    NASA Astrophysics Data System (ADS)

    Li, Xiuqian; Hong, Yanji; Wen, Ming; Ye, Jifei; Cui, Cunyan

    2011-11-01

    Time-resolved force sensing technique was applied to the study of propulsive characteristics of water droplets for multi-pulse TEA (transversely excited at atmospheric pressure) CO2 laser propulsion. Laser-driven blast waves and associated flow dynamics in the impulse generation processes of ablation of water droplets were studied by Schlieren visualization. Experimental results showed that coupling coefficient and specific impulse decreased as the interval between laser pulses and pulse numbers was increased. The maximum speed of the blast wave in the opposite and same direction of laser propagation was respectively 10 km/s and 7 km/s.

  16. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Brooks, B.-G. J.; Desai, A. R.; Stephens, B. B.; Bowling, D. R.; Burns, S. P.; Watt, A. S.; Heck, S. L.; Sweeney, C.

    2012-02-01

    There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  17. Dentin ablation-rate measurements in endodontics witj HF and CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Makropoulou, Mersini I.; Serafetinides, Alexander A.; Khabbaz, Marouan; Sykaras, Sotirios; Tsikrikas, G. N.

    1996-01-01

    Recent studies focused on the ability of the laser light to enlarge the root canal during the endodontic therapy. The aim of this research is the experimental and theoretical study of the ablation rate of two infrared laser wavelengths on dentin. Thirty freshly extracted human teeth were longitudinally sectioned at thicknesses ranged from 0.5 to 2 mm, and irradiated on the root canal dentin. The measured ablation rates in dentinal wall of the root canal showed that the HF laser at 2.9 micrometer can more effectively penetrate into the tissue, whereas the carbon dioxide laser at 10.6 micrometer leads to high thermal damage of the ablation crater surroundings.

  18. Morphology and chemical composition analysis on multi-pulsed CO2 laser ablation of HgCdTe crystals

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Guo, Jin; Shao, Jun-feng; Wang, Ting-feng

    2013-09-01

    In order to study deeply damage mechanism of HgCdTe crystal irradiated by multi-pulsed CO2 laser and obtain the characteristics of surface morphological and chemical composition changes. Firstly, Irradiation effect experiment is conducted on the Hg0.826Cd0.174Te crystal by pulsed CO2 laser, which has a pulse width of 200ns and repetition frequency ranges from 1 Hz to 100 kHz. Then morphological and chemical composition changes of Hg0.826Cd0.174Te crystal is measured by field emission scanning electron microscope (FESEM) and damage threshold is obtained by morphology method. Finally, the impact of laser power density on morphological and chemical composition changes is analyzed. The research results show that: damage threshold of Hg0.826Cd0.174Te crystal which is irradiated by multi-pulsed CO2 laser is 950 W/cm2. The crystal surface melting phenomenon is very obvious, the obvious crack which is caused by thermal stress is not found in the surface, and a large number of bulges and pits are taken shape in the laser ablation zone. Chemical composition changes of the crystal are obvious, and a lot of O element is found in the laser ablation zone. With the increase of laser irradiation power, the content of Hg element decrease rapidly, the content of Cd, Te and O element raise by degrees, and chemical composition changes of the crystal are more and more obvious. When the irradiation power density is 1.8kW/cm2, the surface becomes smooth in the ablation zone due to the impact of laser impulse force, and the content of the chemical compositions is that Hg accounts for 0.23%, Cd accounts for 21.38%, Te accounts for 26.27%, and O accounts for 52.12%. The conclusions of the study have a reference value for the Hg0.826Cd0.174Tecrystal in the application of making infrared detector and pulsed CO2 laser in the aspect of laser processing.

  19. Pulpal Effects of Enamel Ablation With a Microsecond Pulsed λ=9.3-μm CO2 Laser

    PubMed Central

    Staninec, Michal; Darling, Cynthia L.; Goodis, Harold E.; Pierre, Daniel; Cox, Darren P.; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K.; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2011-01-01

    Background and Objectives In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with a pulse duration in the range of 10–20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Study Design/Materials and Methods Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 μm operating at 25 or 50 Hz using a incident fluence of 20 J/cm2 for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Results Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3±4°C without water cooling versus 1.7±6

  20. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    USGS Publications Warehouse

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, D.A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22

  1. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    NASA Astrophysics Data System (ADS)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  2. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Horita, Juske

    2014-03-01

    An experimental study was conducted to determine oxygen and carbon isotope fractionation factors in the system dolomite-water-CO2 at 80-350 and 100-250 °C, respectively, by means of direct precipitation (80 °C) and dolomitization of CaCO3 (100-350 °C). The products are protodolomite with slight Ca-excess (80-100 °C) and well-ordered stoichiometric dolomite (150-350 °C). Several experimental artifacts (inheritance, premature reactions, and kinetic effects) were tested, although attainment of isotope equilibrium cannot be proven. 18O/16O fractionation factors of (proto)dolomite-water at 80-350 °C can be readily expressed with 1σ error: 103lnα=3.140(±0.022)·{106}/{T2}-3.14(±0.11). Our experimental study, which is generally consistent with a majority of experimental and theoretical studies in the literature, provides for the first time an accurate equation over a wide range of temperature. In combination of the calcite-water equation (O’Neil et al., 1969; Friedman and O’Neil, 1977), 18O/16O fractionation factors of (proto)dolomite-calcite at 80-350 °C can also be expressed with 1σ error: 103lnα=0.351(±0.028)·{106}/{T2}-0.25(±0.13). Dolomite is slightly (0.7-2.6‰) enriched in 18O relative to calcite in this temperature range. Given the very good linearity with a 1/T2 term, the above two equations may be extrapolated beyond the temperature range. Our experimental results of 13C/12C fractionation between CO2 and dolomite at 100-250 °C also show a linear function with a 1/T2 term with a cross-over temperature of 200 °C, which differs from results of theoretical calculations.

  3. Study of the regional CO2 mole fractions filtering approach at a WMO/GAW regional station in China

    NASA Astrophysics Data System (ADS)

    Fang, S. X.; Tans, P. P.; Steinbacher, M.; Zhou, L. X.; Luan, T.

    2015-07-01

    The identification of atmospheric CO2 observation data which is minimally influenced by very local emissions/removals is essential for the estimation of trend analysis, regional sources and sinks, and for modeling of long-range transport of CO2. In this study, four approaches are used to filter the atmospheric CO2 observation records from 2009 to 2011 at one World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) regional station (Lin'an, LAN) in China. The methods are based on the atmospheric black carbon concentration (BC), on a statistical approach (REBS), on CH4 as auxiliary tracer (AUX) and on meteorological parameters (MET). All approaches do suitably well to capture the seasonal CO2 cycle at LAN. Differences are observed in the average regional mole fractions with annual values in the REBS method at least 1.7 ± 0.2 ppm higher than the other methods. The BC method may underestimate the regional CO2 mole fractions during winter-spring period and should be treated with caution. The REBS method is a purely statistical method and it may also introduce errors on the regional CO2 mole fractions evaluations, as the filtered trend may be deviated by the "noisy" raw data series. Although there are correlations between CH4 and CO2 mole fractions at LAN, the different source/sink regimes may introduce bias on the regional CO2 estimation in the AUX method, typically in summer. Overall, the MET method seems to be the most favorable because it mainly focuses on the influence of potential local sources and sinks and considers diurnal variations, local topography, and meteorological conditions. Using the MET method, the annual growth rate of regional CO2 at LAN is determined to be 3.1 ± 0.01 ppm yr-1 (standard error) from 2009 to 2013.

  4. Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China

    NASA Astrophysics Data System (ADS)

    Fang, S. X.; Tans, P. P.; Steinbacher, M.; Zhou, L. X.; Luan, T.

    2015-12-01

    The identification of atmospheric CO2 observation data which are minimally influenced by very local emissions/removals is essential for trend analysis, for the estimation of regional sources and sinks, and for the modeling of long-range transport of CO2. In this study, four approaches are used to filter the atmospheric CO2 observation records from 2009 to 2011 at one World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) regional station (Lin'an, LAN) in China. The methods are based on the concentration of atmospheric black carbon (BC), on a statistical approach (robust extraction of baseline signal, REBS), on CH4 as an auxiliary tracer (AUX), and on meteorological parameters (MET). All approaches do suitably well to capture the seasonal CO2 cycle at LAN. Differences are observed in the average regional mole fractions with annual values in the REBS method at least 1.7 ± 0.2 ppm higher than the other methods. The BC method may underestimate the regional CO2 mole fractions during the winter-spring period and should be treated with caution. The REBS method is a purely statistical method and it may also introduce errors on the regional CO2 mole fraction evaluations, as the filtered trend may be influenced by the "noisy" raw data series. Although there are correlations between CH4 and CO2 mole fractions at LAN, the different source/sink regimes may introduce bias on the regional CO2 estimation in the AUX method, typically in summer. Overall, the MET method seems to be the most favorable because it mainly focuses on the influence of potential local sources and sinks, and considers diurnal variations and meteorological conditions. Using the MET method, the annual growth rate of regional CO2 at LAN is determined to be 3.1 ± 0.01 ppm yr-1 (standard error) from 2009 to 2011.

  5. Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO2 concentration, pH, temperature, and species

    NASA Astrophysics Data System (ADS)

    Hinga, Kenneth R.; Arthur, Michael A.; Pilson, Michael E. Q.; Whitaker, Dania

    1994-03-01

    Closed cultures of marine phytoplankton were established under variable conditions of CO2 concentration, temperature, growth rate (by light limitation), and pH (but with nearly identical [CO2aq]) in order to assess the relative influence of these variables on the extent of carbon isotope fractionation relative to dissolved inorganic carbon sources. Culture biomass was not allowed to increase beyond levels that would significantly affect the dissolved carbon system in the closed cultures. In experiments with Skeletonema costatum and Emiliania huxleyi, increasing CO2 concentrations led to increased carbon isotope discrimination (resulting in organic matter progressively depleted in δ13C, i.e., a greater, more negative ɛp). ɛp values for E. huxleyi were 8-10‰ less than for S. costatum under identical conditions. For the S. costatum cultures, there was nearly a 20 ‰ range in [CO2aq]-dependent ɛp. The effect was nonlinear with a leveling off at high [CO2aq]. Over a pH range of 7.5-8.3 but at a constant [CO2aq] there was a variation in carbon isotope fractionation by S. costatum of about 9 ‰ with a minimum at pH 7.8-7.9. There was a temperature effect of ˜8‰ on fractionation even after equilibrium temperature dependency of δ13C of CO2aq was taken into account. No growth rate effect was found for S. costatum over a modest range of growth rates. Culture experiments used to determine the carbon isotope fractionation by phytoplankton species must be conducted under well-defined conditions of temperature, pH, and CO2 concentrations. Hindcasts of ancient atmospheric pCO2 from measurements of δ13C of organic carbon in marine sediments will require careful calibration because of the variety of possible factors that influence δ13Corg.

  6. Interaction of gases with ablative composites. I - Ar, CO2, and N2

    NASA Technical Reports Server (NTRS)

    King, C. A.; Wightman, J. P.

    1974-01-01

    The sorption of argon, carbon dioxide, and nitrogen on two heat shield composites (SLA-561 and SLA-561V) and on the SLA components was measured over the pressure range of 0.001 to 760 torr and in the temperature range of 30 to 50 C. The sorption of the gases by both the composites and the components varied directly with pressure. The sorption of CO2 by the phenolic spheres and the silicone elastomer and of Ar by the silicone elastomer varied inversely with temperature. The mechanism involved in the gas sorption was primarily absorption.

  7. Synthesis of silicon-based nanoparticles by 10.6 μm nanosecond CO2 laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Popovic, D. M.; Chai, J. S.; Zekic, A. A.; Trtica, M.; Momcilovic, M.; Maletic, S.

    2013-02-01

    Silicon-based nanoparticles were produced by irradiating a single-crystal silicon target with 10.6 μm nanosecond transverse excited atmospheric (TEA) pulsed CO2 laser in de-ionized water. The effects of the laser pulse energies and repetition rate were studied. To reveal the role of thermal effects, a low laser repetition rate has been applied, excluding the interaction of the laser beam with the previously generated cavitation bubble. The analysis of the influence of the laser pulse energies and the laser repetition rate showed that the increase of the laser pulse energies leads to an increase of the nanoparticle size. An explanation of such results was proposed and the importance of the role of the target surface temperature in the ablation process is discussed.

  8. Next generation Er:YAG fractional ablative laser

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  9. Quantifying uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Schubert, Brian A.

    2016-01-01

    Knowledge of the past concentrations of atmospheric CO2 level (pCO2) is critical to understanding climate sensitivity to changing pCO2. Towards this, a new proxy for pCO2 has been developed based on changes in carbon isotope fractionation (Δ13C) in C3 land plants. The accuracy of this approach has been validated against ice-core pCO2 records, suggesting the potential to apply this proxy to other geological periods; however, no thorough uncertainty assessment of the proxy has been conducted. Here, we first analyze the uncertainty in the model-curve fit through the experimental data using a bootstrap approach. Then, errors of the five input parameters for the proxy are evaluated using sensitivity analysis; these include the carbon isotope composition of atmospheric CO2 (δ13CCO2) and that of the plant material (δ13Corg) for two time periods, a reference time (t = 0) and the time period of interest (t), and the value of pCO2 at time t = 0. We then propagated the errors on the reconstructed pCO2 using a Monte Carlo random sampling approach that combined the uncertainties of the curve fitting and the five inputs for a scenario in which the reference time was the Holocene with a target period for the reconstructed pCO2 during the Cenozoic. We find that the error in the reconstructed pCO2(t) increases with increasing pCO2(t), yet remains <122% (positive error) and <40% (negative error) for pCO2(t) < 1000 ppmv. The error assessment suggests that it can be used with confidence for much of the Cenozoic and perhaps the majority of the last 400 million years, which is characterized by pCO2 levels generally less than 1000 ppmv. Towards this, an application of this uncertainty analysis is presented for the Paleogene (52-63 Ma) using published data. The resulting pCO2(t) levels calculated using this method average 470 +288/-147 ppmv (1σ, n = 75), and overlap with previous pCO2(t) estimates determined for this time period using stomata, liverwort, and paleosol proxies. The

  10. Interaction of graphite and ablative materials with CO2-laser, carbon-arc, and xenon-arc radiation. M.S. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1975-01-01

    The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.

  11. Ablation velocity and thermal damage of myocardial tissue using a CO2 laser for transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Beek, Johan F.; van Leeuwen, Ton G. J. M.; Beek, W. J.

    1999-02-01

    Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar

  12. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, Gesa A.; Kosten, Sarian; Wallin, Marcus B.; Tranvik, Lars J.; Jeppesen, Erik; Roland, Fabio

    2015-12-01

    Annual CO2 emissions from lakes and other inland waters into the atmosphere are estimated to almost entirely compensate the total annual carbon uptake by oceans. CO2 supersaturation in lakes, which results in CO2 emissions, is frequently attributed to CO2 produced within the lake. However, lateral inorganic carbon flux through watersheds can also be sizeable. Here we calculated lake surface water CO2 concentrations and emissions using lake pH, alkalinity and temperature from a compilation of data from 5,118 boreal lakes. Autumn surface water CO2 concentrations and CO2 emissions from the 5,118 lakes co-varied with lake internal autumn CO2 production. However, using a mass balance approach we found that CO2 emission in the majority of lakes was sustained by inorganic carbon loading from the catchment rather than by internal CO2 production. Small lakes with high dissolved organic carbon and phosphorus concentrations, shorter retention times and longer ice-free seasons had the highest CO2 concentrations. CO2 emissions from these small lakes was twice that of comparable lakes in colder regions, and similar to emissions from subtropical and tropical lakes. We conclude that changes in land use and climate that increase dissolved inorganic carbon may cause emission levels from boreal lakes to approach those of lakes in warmer regions.

  13. Ablation of dermal and mucosal lesions with a new CO2 laser application system

    NASA Astrophysics Data System (ADS)

    Jovanovic, Sergije; Sedlmaier, Benedikt W.; Fuehrer, Ariane

    1997-05-01

    Laser treatment of skin changes has become common practice in recent years. The high absorption of the wavelength of the carbon-dioxide laser (10600 nm) is responsible for its low penetration depth in biological tissue. Shortening the exposure time minimizes thermic side effects such as carbonization and coagulation. This effect can be achieved with the SilkTouchTM scanner 767, since the focused laser beam is moved over a defined area by rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles, rhinophyma and benign neoplasms like verruca vulgaris. Cosmetically favorable reepithelialization of the lasered surfaces results within a very short period of time. Benign mucosal changes of the upper aerodigestive tract can also be treated. Ablation is less traumatic for papillomas, fibromas, hyperplasias in the area of Waldeyer's tonsillar ring and certain laryngotracheal pathologies. Clinical examples demonstrate the advantages of this new mode of application.

  14. Fractional Carbon Dioxide Laser Resurfacing

    PubMed Central

    Ramsdell, William M.

    2012-01-01

    Currently available ablative fractional CO2 lasers provide excellent results and diminish down time with fewer complications than previous generation CO2 lasers. Mechanisms of action, treatment parameters, as well as pre- and postoperative care will be discussed. PMID:23904820

  15. Influence of liquid medium with different absorption and its layer thickness on bovine bone tibia ablation induced by CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, Xuwei; Chen, Chuanguo; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Liquid-assisted laser ablation has been investigated in laser surface cleaning, laser osteotomy, and dental tissue ablation. However, the actual mechanism of liquid-assisted ablation is not clear yet. The purpose of this study was to investigate the influence of liquid medium with different absorption and the liquid thickness on laser ablation efficiency. A pulsed CO2 laser was employed to ablate bovine bone tibia under liquid layer which varied from 0.6 mm to 2 mm. The applied pulse power level was set at 5 w and each crater was produced with six laser pulses. The results showed that the ablation cross-section area produced with various levels of pure water thickness (0.6, 0.8, 1 and 2 mm)were lower than under ink, and the ablation depth gradually decreased as the water layer becoming thicker. The biggest cross-section area in liquid thickness of ink was 0.8mm, but as the layer thicker than 0.8 mm the ablation depth decreased suddenly. There was thermal damage seen on samples in all of the groups, but less in pure water.

  16. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    NASA Technical Reports Server (NTRS)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  17. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal

  18. Application of Carbon Isotope Fractionation during the Reduction Process from CO 2 to CH 4

    NASA Astrophysics Data System (ADS)

    Li, Jin; Hu, Guoyi; Zhang, Ying; Yang, Guifang; Cui, Huiying; Cao, Hongming; Hu, Xülong

    The CO 2 reduced to CH 4 pathway is important for the generation of biogas in the geological history. The Quaternary biogenic gas fields in Qaidam Basin of China belong to the CO 2/H 2 reduction biogenic gas. According to the theory of H 2/CO 2 reduction, we have carried out the biosimulation experiments with different occurrences and different initial carbon isotope values of carbon sources. The experimental results indicate that there is a positive correlation between the δ 13C methane values and the δ 13C values of the substrate in products; In response to the existence of excessive substrate, the occurrence of substrate has its effect on the δ 13C methane values. The δ 13C methane values from free CO 2 reduced to CH 4 is relatively lower than those coming from HCO 3- and CO 32- ions. By applying to the Quaternary biogenic gas filed in the east of Qaidam Basin, the source and occurrences of the main substrate CO 2 are discussed, and these have import reference significance for evaluating the biogas resources and searching for favorable exploration areas.

  19. Oxygen isotope fractionation during spin-forbidden photolysis of CO2: Relevance to the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.; Stark, G.; Pack, A.; de Oliveira, N.; Nahon, L.

    2015-12-01

    The oxygen isotope composition of the Martian atmosphere is of interest for comparison with recent MSL SAM results, and to understand the origin of oxygen isotope anomalies (i.e., mass-independent fractionation or MIF) in secondary minerals in SNC meteorites. Our focus here is on spin-forbidden photolysis of CO2, CO2 + hv (>167 nm) → CO(X1S) + O(3P). The spin-forbidden photolysis of CO2 is unusual in the Martian atmosphere because of its high reaction rate from the upper atmosphere (80 km) all the way to the ground. This range of altitudes spans 4 orders of magnitude in atmospheric pressure, and occurs because of the gradual decrease in the CO2 cross sections from 167 to ~200 nm. Previous laboratory photolysis experiments on CO2 in the spin-allowed and spin-forbidden regions have yielded a remarkably large MIF signature (17O excess ~ 100 permil) in O2 product for photolysis at 185 nm. Recent theoretical cross sections for CO2 isotopologues argue for a much smaller MIF signature from spin-forbidden photolysis. Here, we report the results of photolysis experiments on CO2 at the Soleil synchrotron DESIRS beamline. High purity, natural isotope abundance CO2 was placed in a 20 cm photocell with MgF2 windows. Experiments were performed at 3 wavelengths (7% FWHM): 160 nm (spin-allowed), and at 175 nm and 185 nm (spin-forbidden). After VUV exposure, aliquots of the photolyzed CO2 were sent to the Department of Isotope Geology at the University of Goettingen for O isotope analysis. The isotope results show that the spin-allowed photolysis yields normal, mass-dependent fractionation in agreement with earlier work. Photolysis at 175 nm, which is mostly spin-forbidden, yields a small positive (or zero) MIF signature. Photolysis at 185 nm, which is entirely spin-forbidden, yields O2 with a negative MIF signature (D17O ~ -8 to -10 permil). The results at 185 nm disagree in magnitude and sign with the very large positive MIF signature previously reported, and provides support

  20. O3, CO2 and chemical fractionation in ponderosa pine saplings

    EPA Science Inventory

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  1. Ablative Fractional Laser Resurfacing: A Promising Adjunct to Surgical Reconstruction.

    PubMed

    Griffin, David; Brelsford, Megan; O'Reilly, Eamon; Stroup, Sean P; Shumaker, Peter

    2016-06-01

    Ablative fractional laser resurfacing (AFLR) is emerging as a safe and effective treatment option for the mitigation of cosmetic and functional deficits resulting from traumatic scars and scar contractures. Military centers of excellence engaged in the multidisciplinary rehabilitation of wounded warriors have been instrumental in the widening acceptance of the technique in both the military and civilian realms. Despite the end of large-scale combat operations, AFLR remains a promising complement to surgical reconstruction and a novel option in challenging clinical situations that defy resolution with traditional methods. Herein, we present the case of a man in his 50s who underwent extensive genital and perineal debridement related to Fournier's gangrene. Despite successful reconstruction including extensive skin grafting, the patient suffered from intractable discomfort related to developing scar contractures that responded rapidly to a course of AFLR. This case serves to highlight the potential benefits of AFLR for postoperative wound management, and the importance of a multidisciplinary approach for the care of complex injuries. PMID:27244076

  2. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal

    USGS Publications Warehouse

    Strapoc, D.; Schimmelmann, A.; Mastalerz, Maria

    2006-01-01

    Canister desorption of coal gas from freshly sampled coal is commonly used for exploratory assessment of the coalbed methane (CBM) potential of a basin or prospect, as well as for the sampling of gas for isotopic determination of the gas origin. Compositional and ??13C isotopic time-series of desorbing CBM and carbon dioxide (CO2) over 3-4 months demonstrate considerable compositional and isotopic shifts over time. Non-stationary chemical and isotopic characteristics are due to differences in diffusivity and adsorbance behavior of gas molecules and must be taken into account when attempting to reproducibly sample coal gases. Off-line gas processing on a vacuum line and on-line GC/MS analyses were performed on coal gas samples from the Springfield and Seelyville Coal Members of the Pennsylvanian age that were cored in the SE Illinois Basin in SW Indiana, USA. The coals cover a narrow range of maturity from 0.54% to 0.64% vitrinite reflectance. Methane initially desorbed faster than CO2, resulting in a 50% increase of the CO 2 content in bulk desorbing gas on the 50th day relative to the first day of desorption. After 50 days of desorption, about 90% of all coal gas was desorbed. Over the same time period, ??13C values of incrementally sampled coal gas increased by 2??? and 9???, for CH 4 and CO2, respectively, testifying to the greater retention of 13CH4 and 13CO2 relative to 12CH4 and 12CO2. An isotopic mass balance of the individual, sequentially desorbed and sampled gas amounts yielded weighted mean ??13CCH4 and ??13CCO2 values for characterizing the cumulatively desorbed gas. The overall mean ??13C values were equivalent to ??13C values of gases that desorbed at a time when half of the potentially available gas had been desorbed from coal, corresponding in this study to a time between day 5 and day 12 of canister desorption at 15-18??C. The total expected gas volume and the ???50% midpoint can thus be approximated for a desorbing coal gas sample, based on a

  3. CO2 laser ablation of external genital lesions with a SwiftLase flashscanner: treatment of extramammary Paget's disease of the vulva, penile condylomata, and other lesions

    NASA Astrophysics Data System (ADS)

    Sacknoff, Eric J.; Schweitzer, Jay; Slatkine, Michael; Mead, Douglass S.

    1995-05-01

    The ability to vaporize extremely thin layers of epithelial tissue without any char and with minimal thermal necrosis is extremely advantageous in the treatment of superficial lesions of the external genitalia. We present a novel CO2 laser `SwiftLase' flashscan technology capable of providing char free ablation of 3 mm diameter lesions with only 150 micron residual thermal necrosis depth at power level as low as 10 watts. These power levels are achievable with a small transportable CO2 laser. The SwiftLaser is a miniature opto- mechanical scanner which homogeneously covers a 3 mm diameter surface with a 0.1 mm spot size focused beam within 0.1 seconds. The instantaneous beam's dwelling time is 1 millisecond. The instantaneous power density level at the focal point is higher than the threshold for char free ablation, thus providing a large char free ablation crater. Since depth of each ablated layer is 0.1 mm, the depth of treatment can be precisely controlled. The SwiftLaser technology has extensively and successfully been used in the last two years for the treatment of HPV in female lower tracts (Vulvectomy). The same technique may be performed with extramammary Paget's disease of the vulva, penile condylomata, and other epithelial disorders of the external genitalia without damage to surrounding healthy tissue. Technique and clinical results will be discussed.

  4. Inverting 13CO2 for Terrestrial Carbon Fractionation in North America

    NASA Astrophysics Data System (ADS)

    Alden, C. B.; White, J. W.; Miller, J. B.

    2011-12-01

    The stable isotope of Carbon, 13C, has been used globally to partition ocean from terrestrial CO2 fluxes, and regionally as an indicator of C3 plant discrimination and the relative abundances of C3 and C4 vegetation. In North America, the spatial and temporal density of atmospheric observations enables, for the first time, inversions of land surface fluxes of CO2 and the δ13C signature of those fluxes (multiplied together: isofluxes). We optimize North American isofluxes in a traditional Bayesian Inversion, and divide by CO2 fluxes optimized in an offline inversion. We are left with estimates of the isotopic signature of photosynthesis and related error. We generate influence functions (i.e. influence of surface fluxes on measurements made "downwind") with FLEXPART, driven by National Centers for Environmental Prediction Global Forecast System meteorology. Prior isofluxes (CarbonTracker 2010 posterior net ecosystem exchange multiplied by biosphere δ13C from SiB) are of 3-hour, 1x1 degree resolution. Unoptimized fire and fossil fuel emissions are also from the CarbonTracker system, and background CO2 and δ13C values are taken from NOAA/ESRL marine boundary layer and aircraft data. We invert for isofluxes using quasi-daily observations from tall towers in Park Falls, Wisconsin (WLEF), Argyle, Maine (AMT), and Moody, Texas (WKT). At these sites the air is thought to be influenced predominately by corn production, C3 vegetation, and savannah vegetation, respectively. By investigating areas with varying degrees of C3 and C4 vegetation influences, and by examining multiple years of data from each site, in conjunction with crop yield and climate data, we propose to disentangle the competing influences of agriculture, drought, and other climatic stressors on spatial and temporal variability in atmospheric δ13C.

  5. Pilot-scale fractionation of whey proteins with supercritical CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...

  6. Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity

    NASA Astrophysics Data System (ADS)

    Anguelova, M. D.

    2016-05-01

    The utility of a satellite-based whitecap database for estimates of surface sea spray production and bubble-mediated gas transfer on a global scale is presented. Existing formulations of sea spray production and bubble-mediated CO2 transfer velocity involve whitecap fraction parametrization as a function of wind speed at 10 m reference height W(U 10) based on photographic measurements of whitecaps. Microwave radiometric measurements of whitecaps from satellites provide whitecap fraction data over the world oceans for all seasons. Parametrizations W(U 10) based on such radiometric data are thus applicable for a wide range of conditions and can account for influences secondary to the primary forcing factor, the wind speed. Radiometric satellite-based W(U 10) relationship was used as input to: (i) the Coupled Ocean-Atmosphere Response Experiment Gas transfer (COAREG) algorithm to obtain CO2 transfer velocity and total CO2 flux; and (ii) the sea spray source function (SSSF) recommended by Andreas in 2002 to obtain fluxes of sea spray number and mass. The outputs of COAREG and SSSF obtained with satellite-based W(U 10) are compared with respective outputs obtained with the nominal W(U 10) relationship based on photographic data. Good comparisons of the gas and sea spray fluxes with direct measurements and previous estimates imply that the satellite- based whitecap database can be useful to obtain surface fluxes of particles and gases in regions and conditions difficult to access and sample in situ. Satellite and in situ estimates of surface sea spray production and bubble-mediated gas transfer thus complement each other: accurate in situ observations can constrain radiometric whitecap fraction and mass flux estimates, while satellite observations can provide global coverage of whitecap fraction and mass flux estimates.

  7. Successful treatment of traumatic scars with combined nonablative fractional laser and pinpoint technique of standard CO2 laser.

    PubMed

    Ibrahim, Shady M; Elsaie, Mohamed L; Kamel, Mohamed Ismail; Mohammed, Essam-Eldin

    2016-01-01

    To evaluate the use of a pinpoint irradiation technique followed by nonablative fractional technique in treatment of traumatic scars. Thirteen patients with traumatic sacrs were treated with pinpoint technique of CO2 laser using traditional headpiece activating laser at a frequency (50 Hz) to deliver pulsed mode with power of 1 W using the focusing technique followed by 3-5 passes of the nonablative 1540 nm fractional Er:glass laser. An independent physician evaluator assessed the treatment outcomes using Vancouver scar scale (VSS) and 5-point grading scale (grade 0, no improvement; grade 1, 1-25%; grade 2, 26-50%; grade 3, 51-75%; grade 4, 76-100% improvement). After the final treatment, average percentage changes of VSS were 41.5%. Improvement was evident in terms of vascularity, pigmentation, and height, while insignificant in terms of Pliability. Based on physician's global assessment, mean grade of 2.5 was achieved. Patient's subjective satisfaction scores paralleled the physician's objective evaluation. Pinpoint irradiation technique by CO2 laser followed by nonablative fractional laser is a safe and effective modality in treatment of scars. PMID:26581805

  8. Efficacy and Safety of Fractional CO2 Laser Resurfacing in Non-hypertrophic Traumatic and Burn Scars

    PubMed Central

    Majid, Imran; Imran, Saher

    2015-01-01

    Background: Fractional photothermolysis is one of the most effective treatment options used to resurface scars of different aetiologies. Aim: To assess the efficacy and safety of fractional CO2 laser resurfacing treatment in the management of non-hypertrophic traumatic and burn scars. Materials and Methods: Twenty-five patients affected by non-hypertrophic traumatic and burn scars were treated with four sessions of fractional CO2 laser resurfacing treatment at 6-weekly intervals. Patients were photographed at each visit and finally, 3 months after the end of treatment schedule. Response to treatment was assessed clinically as well as by comparing the initial photograph of the patient with the one taken at the last follow-up visit 3-months after the final treatment session. Changes in skin texture, surface irregularity and pigmentation were assessed on a quartile grading scale and scored individually from 0 to 4. A mean of the three individual scores was calculated and the response was labelled as ‘excellent’ if the mean score achieved was >2. A score of 1-2 was labeled as good response while a score below 1 was labeled as ‘poor’ response. The subjective satisfaction of each patient with the treatment offered was also assessed at the last follow-up visit. Results: The commonest site of scarring treated was the face followed by hands. Response to treatment was rated as excellent in 60% (15/25) patients while 24% (6/25) and 16% (4/25) patients were labeled as good and poor responders, respectively. Skin texture showed better response than other variables with average score of 2.44. Linear post-traumatic scars were seen to respond less than other morphological types. Majority of the patients (19 out of 25) were highly satisfied with the treatment offered. No long-term adverse effects were noted in any patient. Conclusions: Fractional photothermolysis with a fractional CO2 laser gives excellent results in patients with post-burn scars with minimal adverse

  9. The association of fractional CO2 laser 10.600nm and photodynamic therapy in the treatment of onychomycosis*

    PubMed Central

    de Oliveira, Guilherme Bueno; Antonio, João Roberto; Antonio, Carlos Roberto; Tomé, Fernanda Alves

    2015-01-01

    BACKGROUND Onychomycosis is a fungal infection of the nails caused in most cases by dermatophytes Trichophyton rubrum and Trichophyton mentagrophytes. Despite numerous available antifungal drugs for therapy of this infection, the cure rate is low, with high rates of relapse after treatment and side effects. OBJECTIVES To present a new option for the treatment of onychomycosis, in search of a more effective and rapid method than conventional ones. METHODS Patients underwent two sessions of CO2 fractional laser 10.600nm associated with photodynamic therapy. Mycological and digital photography were performed before and after the treatment. RESULTS McNemar test with continuity correction and degrees of freedom = 1: for clinical cure rate, 13.06, with p=0.00005; for mycological cure, 17.05, with p=0.00005; 72% felt fully satisfied with the procedure. CONCLUSIONS The use of fractional CO2 laser 10.600nm associated with photodynamic therapy can be effective in the treatment of onychomycosis, decreasing the risk of systemic lesions that may be triggered with prolonged use of oral antifungals. PMID:26375214

  10. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids

    SciTech Connect

    Chistopher Roberts

    2007-08-31

    The overall objective of this project was to facilitate efficient fractionation and separation of polydisperse metal nanoparticle populations into distinct monodisperse fractions using the tunable solvent properties of gas expanded liquids. Specifically, the dispersibility of ligand-stabilized nanoparticles in an organic solution was controlled by altering the ligand-solvent interaction (solvation) by the addition of carbon dioxide (CO{sub 2}) gas as an antisolvent (thereby tailoring the bulk solvent strength) in a custom high pressure apparatus developed in our lab. This was accomplished by adjusting the CO{sub 2} pressure over the liquid dispersion, resulting in a simple means of tuning the nanoparticle precipitation by size. Overall, this work utilized the highly tunable solvent properties of organic/CO{sub 2} solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (ranging from 1 to 20 nm in size) into monodisperse fractions ({+-}1nm). Specifically, three primary tasks were performed to meet the overall objective. Task 1 involved the investigation of the effects of various operating parameters (such as temperature, pressure, ligand length and ligand type) on the efficiency of separation and fractionation of Ag nanoparticles. In addition, a thermodynamic interaction energy model was developed to predict the dispersibility of different sized nanoparticles in the gas expanded liquids at various conditions. Task 2 involved the extension of the experimental procedures identified in task 1 to the separation of other metal particles used in catalysis such as Au as well as other materials such as semiconductor particles (e.g. CdSe). Task 3 involved using the optimal conditions identified in tasks 1 and 2 to scale up the process to handle sample sizes of greater than 1 g. An experimental system was designed to allow nanoparticles of increasingly smaller sizes to be precipitated sequentially in a vertical series of high pressure vessels by

  11. Treatment efficacy for pain complaints in women with endometriosis of the lesser pelvis after laparoscopic electroablation vs. CO2 laser ablation.

    PubMed

    Posadzka, Ewa; Jach, Robert; Pityński, Kazimierz; Jablonski, Marcin Jacek

    2015-01-01

    Endometriosis is a chronic disease affecting mainly women of the reproductive age. Its most common manifestations include impaired fecundity, pelvic pain, and dyschezia. Laparoscopic removal of endometriotic foci remains to be the gold standard for the treatment of endometriosis. More effective techniques of endoscopic approach-among others, laser application-are continually being developed. The aim of the study was to evaluate the efficacy of laparoscopic treatment with the use of CO2 laser ablation vs. electroablation with regard to pain complaints in the affected patients. The study included 48 women (aged 22-42) with varying degrees of endometriosis of the lesser pelvis. The Numeric Rating Scale (NRS) was used to evaluate pain intensity before the surgery in all patients, followed by either laser ablation or electroablation of the endometriotic foci. The results of the laparoscopic treatment were monitored after 3 and 6 months postoperatively. p value of 0.05 was considered to be statistically significant. Patients from both groups reported less intensive pain before/during menstruation (dysmenorrhea) 6 months postoperatively, with more distinct tendency in the electroablation group (p = 0.004) as compared to the laser ablation group (p = 0.025). Despite the initial improvement reported at the 3-month checkup (p = 0.008), 6 months postoperatively, a statistically significant increase in pain intensity was noted in both groups (p = 0.016 and p = 0.032 for CO2 laser ablation and electroablation, respectively). Both surgical methods seem to be effective only in the treatment of endometriosis-related dysmenorrhea, whereas the intensity of other pain complaints (dyspareunia, dysuria, dyschezia, pelvic pain syndrome (PPS)) has remained on the same level. PMID:25053520

  12. Fractional capacity electrolyzer development for CO2 and H2O electrolysis

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.

    1980-01-01

    The electrolyzer module was designed to produce 0.24 kg/d (0.53 lb/d) of breathable oxygen from the electrolysis of metabolic carbon dioxide and water vapor. The fractional capacity electrolyzer module is constructed from three electrochemical tube cells and contains only three critical seals. The module design illustrated an 84 percent reduction in the total number of seals for a one person capacity oxygen generating system based on the solid electrolyte carbon dioxide and water vapor electrolysis concept. The electrolyzer module was successfully endurance tested for 71 days.

  13. The Efficacy and Safety of Fractional CO2 Laser Combined with Topical Type A Botulinum Toxin for Facial Rejuvenation: A Randomized Controlled Split-Face Study

    PubMed Central

    Zhu, Jie; Ji, Xi; Li, Min; Chen, Xiao-e; Liu, Juan; Zhang, Jia-an; Luo, Dan; Zhou, Bing-rong

    2016-01-01

    Objective. We evaluated synergistic efficacy and safety of combined topical application of Botulinum Toxin Type A (BTX-A) with fractional CO2 laser for facial rejuvenation. Methods. Twenty female subjects were included for this split-face comparative study. One side of each subject's cheek was treated with fractional CO2 plus saline solution, and the other side was treated with fractional CO2 laser plus topical application of BTX-A. Patients received one session of treatment and evaluations were done at baseline, one, four, and twelve weeks after treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), and the erythema and melanin index. Results. BTX-A combined with fractional CO2 laser sides showed higher physician's global assessment score, subject satisfaction score, roughness, skin hydration, and skin elasticity compared to that of fractional CO2 plus saline solution side at 12 weeks after treatment. TEWL and erythema and melanin index showed no significant differences between two sides at baseline, one, four, and twelve weeks after treatment. Conclusion. Topical application of BTX-A could enhance the rejuvenation effect of fractional CO2 laser. PMID:26998485

  14. BRYOCARB: A process-based model of thallose liverwort carbon isotope fractionation in response to CO 2, O 2, light and temperature

    NASA Astrophysics Data System (ADS)

    Fletcher, Benjamin J.; Brentnall, Stuart J.; Quick, W. Paul; Beerling, David J.

    2006-12-01

    Evidence from laboratory experiments indicates that fractionation against the heavy stable isotope of carbon (Δ 13C) by bryophytes (liverworts and mosses) is strongly dependent on atmospheric CO 2. This physiological response may therefore provide the basis for developing a new terrestrial CO 2 proxy [Fletcher, B.J., Beerling, D.J., Brentnall, S.J., Royer, D.L., 2005. Fossil bryophytes as recorders of ancient CO 2 levels: experimental evidence and a Cretaceous case study. Global Biogeochem. Cycles19, GB3012]. Here, we establish a theoretical basis for the proxy by developing an extended model of bryophyte carbon isotope fractionation (BRYOCARB) that integrates the biochemical theory of photosynthetic CO 2 assimilation with controls on CO 2 supply by diffusion from the atmosphere. The BRYOCARB model is evaluated against measurements of the response of liverwort photosynthesis and Δ 13C to variations in atmospheric O 2, temperature and irradiance at different CO 2 concentrations. We show that the bryophyte proxy is at least as sensitive to variations in atmosphere CO 2 as the two other leading carbon isotope-based approaches to estimating palaeo-CO 2 levels ( δ13C of phytoplankton and of paleosols). Mathematical inversion of BRYOCARB provides a mechanistic means of estimating atmospheric CO 2 levels from fossil bryophyte carbon that can explicitly account for the effects of past differences in O 2 and climate.

  15. The fractionation of Fe and Cu between brine and CO2 at up to 130 °C and 8.4 MPa, with implications for metal mobilization in CO2 storage reservoirs

    NASA Astrophysics Data System (ADS)

    Rempel, Kirsten U.; Liebscher, Axel; Schettler, Georg; Heinrich, Wilhelm

    2010-05-01

    In order to better understand the long-term effects of CO2 storage in saline aquifers, there has been increasing interest in the mobilization of metals in brine-CO2 systems, in the context of both permanent mineral trapping and the potential spreading of contaminants. Owing to the fact that the brine is a stronger solvent than CO2for polar metal complexes, previous studies have focused primarily on brine-reservoir rock interactions (e.g., Gunter et al., 1997; Wigand et al., 2008), and the role of CO2 as a separate solvent has yet to be considered. While CO2 may not be a strong solvent, even ppm-level metal concentrations represent a considerable amount of mobilization in reservoirs that are host to millions of tonnes of CO2, so a quantitative evaluation of this process is desirable. To this end, we have conducted an experimental investigation of vapour-liquid equilibria in the systems FeCl3-NaCl-CO2-H2O and CuCl2-NaCl-CO2-H2O at 60-130° C and 6.5-8.5 MPa. The experiments were carried out in a large-volume autoclave loaded with a solution containing 20 wt% NaCl and either 100 ppm Fe or 1000 ppm Cu, as well as pressurized CO2. Paired samples of brine and CO2 were extracted from separate capillary lines at successive pressure-temperature intervals, and analyzed for Fe and Cu using ICP-AES. The CO2 samples were found to contain concentrations of 0.5 to 2.0 ppm Fe and 0.5 to 6.7 ppm Cu, which generally displayed a positive correlation with fluid density. Given the relatively small degree of metal fractionation into the CO2 as compared to the brine, the concentrations in the brines remained constant at 100 ppm Fe and 1000 ppm Cu. From these data, it can be seen that the Fe and Cu concentrations in the CO2 are approximately 1% and 0.1% of those in the brine, respectively. Considering the metal concentrations typical to brines that have reacted with CO2 and sandstone (20-200 ppm Fe, 1 ppm Cu; e.g., Gunter et al., 1997; Wigand et al., 2008), these results suggest that a

  16. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  17. Precipitation of smithsonite under controlled pCO2 between 25 and 60° C - Fractionation of oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Füger, Anja; Mavromatis, Vasileios; Leis, Albrecht; Dietzel, Martin

    2016-04-01

    Owing to the large fractionation (i.e. Δ18Osolid‑diss. ˜30) between carbonate minerals and aqueous fluids with respect to their 18O/16O composition, the oxygen isotope composition of carbonates has been a fundamental tool for the estimation of mineral formation temperature by the geoscience community. Indeed the last 6 decades, a wide number of experimental studies investigated the temperature relation of Δ18Osolid‑diss. between divalent metal carbonates and aqueous fluids. To date however no experimental data exist for the temperature dependence of Δ18Osolid‑diss. between smithsonite (ZnCO3) and fluid. This lack of data likely stems from a kinetic barrier effect, that of the dehydration of aqueous Zn2+ and the formation of hydrozincite (Zn5(CO3)2(OH)6). Smithsonite is a secondary zinc mineral that is one of the components of zinc ore bodies. It is formed through oxidation of primary zinc ores by the reaction with a carbonate source or by precipitation of zinc salt solutions with a CO2-saturated and bicarbonate-rich solution. In this study we hydrothermally synthesized smithsonite at the temperature range between 25 and 60 ° C and report the temperature dependence of oxygen isotope distribution between smithsonite and aqueous fluid. In order to avoid the formation of hydrozincite our experiments were conducted in titanium batch reactors using Teflon-inlets where the CO2 pressure was adjusted to 10 bars. The low pH conditions provoked by the elevated pCO2 applied, lead to the dissolution of hydrozincite, which is initially formed by mixing of Na2HCO3 (0.1 M) and Zn(NO3)2.4 H2O (0.02 M) solutions, to yield - under the prevailing conditions - the thermodynamically stable mineral smithsonite.

  18. Microstructural and molecular considerations in the treatment of scars with ablative fractional lasers.

    PubMed

    Giordano, Cerrene N; Ozog, David

    2015-03-01

    Fractional ablative lasers have recently proven to be an effective modality for improving the clinical appearance and minimizing the morbidity associated with restrictivetype scars. Their tolerable safety profile on nonfacial sites and darker Fitzpatrick skin types provides an advantage over its fully ablative counterpart in treating facial rhytides, photodamaged skin, and acne scars. However, despite its increasing usage in clinical practice, the mechanism behind the observed clinical benefit remains complex and has yet to be fully elucidated. This paper reviews the work on the histological mechanism of action of ablative fractional lasers, and the molecular changes that occur posttreatment on restrictive scars, with an emphasis on mature burn and postsurgical scars. As the majority of research has been on the carbon dioxide laser, a natural focus on this wavelength is presented. PMID:25922951

  19. Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest

    NASA Astrophysics Data System (ADS)

    Miles, Natasha L.; Richardson, Scott J.; Davis, Kenneth J.; Lauvaux, Thomas; Andrews, Arlyn E.; West, Tristram O.; Bandaru, Varaprasad; Crosson, Eric R.

    2012-03-01

    This study presents observations of atmospheric boundary layer CO2mole fraction from a nine-tower regional network deployed during the North American Carbon Program's Mid-Continent Intensive (MCI) during 2007-2009. The MCI region is largely agricultural, with well-documented carbon exchange available via agricultural inventories. By combining vegetation maps and tower footprints, we show the fractional influence of corn, soy, grass, and forest biomes varies widely across the MCI. Differences in the magnitude of CO2 flux from each of these biomes lead to large spatial gradients in the monthly averaged CO2mole fraction observed in the MCI. In other words, the monthly averaged gradients are tied to regional patterns in net ecosystem exchange (NEE). The daily scale gradients are more weakly connected to regional NEE, instead being governed by local weather and large-scale weather patterns. With this network of tower-based mole fraction measurements, we detect climate-driven interannual changes in crop growth that are confirmed by satellite and inventory methods. These observations show that regional-scale CO2 mole fraction networks yield large, coherent signals governed largely by regional sources and sinks of CO2.

  20. Bacterial infections following non-ablative fractional laser treatment: a case series and discussion.

    PubMed

    Xu, Lisa Y; Kilmer, Suzanne L; Ross, E Victor; Avram, Mathew M

    2015-02-01

    Non-ablative fractional laser procedures have become increasingly popular since their introduction in 2004. The fractional 1,927 nm thulium laser is a non-ablative device that penetrates up to 300 μm in the skin and the 1,550 nm erbium:glass laser penetrates up to 1,400 μm. These procedures are considered minimally invasive with a high safety profile; therefore, infectious complications are exceedingly rare. However, we report five recent cases of bacterial infection with both gram-positive and gram-negative organisms following treatment with the fractional 1550/1927 nm laser approximately 1 day to 1 week post-procedure. One patient had a rapidly progressing pustular eruption with symptoms of sepsis. These patients were seen immediately, cultures were obtained and empiric antibiotic therapy was initiated. They recovered without long-term complications. Rapid-onset bacterial infections following non-ablative laser resurfacing with the 1550/1927 nm laser have not been previously reported in the literature. The infections can progress quickly and lead to serious sequelae, including systemic illness and severe scarring, if not identified and appropriately treated. We present these cases to highlight the importance of close surveillance and when appropriate, rapid intervention, following non-ablative fractional procedures, especially when patients present with atypical symptoms and signs. PMID:25586939

  1. Noninvasive delivery of siRNA and plasmid DNA into skin by fractional ablation: erbium:YAG laser versus CO₂ laser.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Chen, Wei-Yu; Aljuffali, Ibrahim A; Suen, Shih-Yun; Fang, Jia-You

    2014-04-01

    The present study was conducted to evaluate the impacts of fractional erbium (Er):YAG and CO2 lasers on skin permeation of small interfering (si)RNA and plasmid (p)DNA vectors. In vitro skin delivery was determined with a Franz diffusion cell. In vivo absorption was investigated by observing fluorescence and confocal microscopic imaging. Fractional laser-mediated ablation of the skin resulted in significant enhancement of dextran and siRNA penetration. Respective fluxes of dextran (10 kDa) and siRNA, which had similar molecular size, with Er:YAG laser irradiation at 5 J/cm(2) were 56- and 11-fold superior to that of intact skin. The respective permeation extents of dextran and siRNA by the CO2 laser at 4 mJ/400 spots were 42- and 12-fold greater than that of untreated skin. Fluorescence and confocal images showed increased fluorescence intensities and penetration depths of siRNA and pDNA delivery. According to an examination of the follicular permeant amount and fluorescence microscopy, hair follicles were important deposition areas for fractional laser-assisted delivery, with the Er:YAG modality revealing higher follicular siRNA selectivity than the CO2 modality. This is the first report of siRNA and pDNA penetrating the skin with a sufficient amount and depth with the assistance of fractional lasers. PMID:23962771

  2. Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation

    NASA Astrophysics Data System (ADS)

    Yuge, Ryota; Toyama, Kiyohiko; Ichihashi, Toshinari; Ohkawa, Tetsuya; Aoki, Yasushi; Manako, Takashi

    2012-07-01

    Multi-walled carbon nanotubes (MWNTs) were synthesized by irradiating of a CO2 laser in continuous wave mode onto a boron-containing graphite target at room temperature. The pressure of Ar atmosphere was controlled in 50, 150, 400, or 760 Torr. The diameter of obtained MWNTs was in the range of 5-40 nm. The quantity and degree of graphitization of synthesized MWNTs increased with the Ar gas pressure. A large quantity of MWNTs with fine crystalline structure has been synthesized preferentially at the condition of 760 Torr. The MWNTs with the fine crystalinity indicated highly oxidative stability in O2. We also found that a large area field emission device with MWNT cathodes indicated good β value of 3.6 × 104 cm-1, and sufficient reliability for long term operations over 150 h, suggesting promising application to field emission devices.

  3. Dynamics of pulsed laser ablation plasmas in high-density CO2 near the critical point investigated by time-resolved shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Kato, Toru; Himeno, Shohei; Kato, Satoshi; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2013-09-01

    Pulsed laser ablation (PLA) plasmas generated in high-density gases and liquids are promising for the synthesis of nanomaterials. However, the characteristics of such plasmas are still not well understood. In order to improve the understandings of PLA plasmas in high-density fluids including gases, liquids, and supercritical fluids (SCFs), we have investigated the dynamics of PLA plasmas in high-density carbon dioxide (CO2) . We report on experimental results of time-resolved shadowgraph imaging, from the generation of plasma plume to the extinction of cavitation bubbles. Shadowgraph images revealed that the PLA plasma dynamics showed two distinct behaviors. These are divided by gas-liquid coexistence curve and the so-called Widom line, which separates gas-like and liquid-like SCF domains. Furthermore, cavitation bubble observed in liquid CO2 near the critical point showed peculiar characteristics, the formation of an inner bubble and an outer shell structure, which so far has never been reported. The experiments indicate that thermophysical properties of PLA plasmas can be tuned by controlling solvent temperature and pressure around the critical point, which may be useful for materials processing. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21110002) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  4. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers.

    PubMed

    Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O

    2016-06-24

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing. PMID:27171728

  5. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  6. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  7. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years

    NASA Technical Reports Server (NTRS)

    Jasper, J. P.; Hayes, J. M.; Mix, A. C.; Prahl, F. G.

    1994-01-01

    Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C [is equivalent to epsilon(p)] in a central equatorial Pacific sediment core that spans the last approximately 255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic composition of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon(p), derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 [is equivalent to c(e)] based on a new, site-specific calibration of the relationship between epsilon(p) and c(e). The calibration was based on reassessment of existing epsilon(p) versus c(e) data, which support a physiologically based model in which epsilon(p) is inversely related to c(e). Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index U(K/37). Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon(p) and 1/c(e). These are discussed in detail and it is concluded that the observed record of epsilon(p) most probably reflects significant variations in delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from approximately 110 microatmospheres during glacial intervals (ocean > atmosphere) to approximately 60 microatmospheres during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial

  8. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids.

    PubMed

    Ashraf-Khorassani, Mehdi; Taylor, Larry Thomas

    2004-05-01

    Pure supercritical CO(2) was used to remove >95% of the oil from the grape seeds. Subcritical CO(2) modified with methanol was used for the extraction of monomeric polyphenols, whereas pure methanol was used for the extraction of polyphenolic dimers/trimers and procyanidins from grape seed. At optimum conditions, 40% methanol-modified CO(2) removed >79% of catechin and epicatechin from the grape seed. This extract was light yellow in color, and no higher molecular weight procyanidins were detected. Extraction of the same sample after removal of the oils and polyphenols, but now under enhanced solvent extraction conditions using methanol as a solvent, provided a dark red solution shown via electrospray ionization HPLC-MS to contain a relatively high concentration of procyanidins. The uniqueness of the study is attested to by the use of CO(2)-based fluids and the employment of a single instrumental extraction system. PMID:15113138

  9. Shadowgraph Imaging and Numerical Simulation of Cavitation Bubbles Formed in Pulsed Laser Ablation Plasmas in the Vicinity of the Critical Point of CO2

    NASA Astrophysics Data System (ADS)

    Muneoka, Hitoshi; Himeno, Shohei; Urabe, Keiichiro; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2015-09-01

    The characteristic behavior of cavitation bubbles formed in pulsed laser ablation plasmas in supercritical CO2 were investigated by shadowgraph imaging and numerical simulations. The time evolution of the cavitation bubbles could be divided into three phases near the critical point: Expansion, Double layer formation, and Contraction. The distribution of the refractive index was estimated from the variation of the direction of the refracted light in the shockwave in the expansion phase. It was suggested that the cause of the reduction of the transmitted light in the outer shell in the double-layer phase was not due to refraction, and the contributions of nanoparticles and clusters generated in supercritical fluids were implied. The characteristics in time evolution of the bubble size in the contraction phase, in particular almost constant position of the interface in a relatively long time, was proposed to be due to zero surface tension by numerical simulations. The results suggest that the properties and fluid structure peculiar to SCF affect the structure of cavitation bubbles.

  10. Magnetic and structural anisotropies in laser ablated epitaxial thin films of full-Heusler alloy Co2MnSi on SrTiO3

    NASA Astrophysics Data System (ADS)

    Pandey, Himanshu; Rout, P. K.; Budhani, R. C.

    2013-03-01

    We present the thickness dependent magnetic properties of laser ablated epitaxial Co2MnSi (CMS)Heusler alloy thin films grown on (001) oriented SrTiO3 substrate. In order to study the intrinsic magnetic anisotropy, a highly ordered single crystal thin film of Heusler alloys is necessary. This provides a unique opportunity to determine the behavior of magnetization reversal, and affect important properties such as the coercive field and remanence. The two important sources of the magnetic anisotropy are the magnetic dipolar interaction and the spin-orbit interaction. The strain in films due to the lattice mismatch with the substrate affects the shape anisotropy while spin-orbit coupling changes magneto-crystalline anisotropy. We have observed an in-plane biaxial compressive strain in the films which relaxes with increasing film thickness. Although the hysteresis loops show an in-plane easy axis for all films, the single-domain phase diagram reveals a gradual transition from in-plane to out-of-plane transition of magnetization as the film thickness is decreased. The magnetization starts to cant as film thickness start to decrease and we found a canting angle of ~ 31.8° with respect to the film plane for our thinnest 5 nm CMS films. We acknowledge support from DIT, DST, CSIR and IIT Kanpur.

  11. CO2-dependent fractional crystallization of alkaline silicate magmas and unmixing of carbonatites within the intrusive complexes of Brava Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Weidendorfer, D.; Schmidt, M. W.; Mattsson, H. B.

    2014-12-01

    Intrusive carbonatites often occur in intimate association with SiO2-undersaturated rocks such as melilitites, nephelinites, syenites and phonolites. The occurrence of carbonatites on five of the 10 main islands of the Cape Verde hotspot argues for a CO2-enriched mantle source. Whether alkali-poor carbonatites on the Cape Verdes directly represent small mantle melt fractions or form by extreme fractionation and/or liquid immiscibility from a CO2-rich silicate magma remains a matter of debate. This study focuses on the pyroxenites, nephelinites, ijolites, syenites, phonolites and carbonatites of the intrusive unit of Brava Island. This relative complete series allows for the deduction of a CO2-dependent fractionation pathway from the most primitive basanitic dikes towards phonolitic compositions through an ijolitic series. Major and trace element whole rock and mineral composition trends can be reproduced by fractionating a sequence of olivine, augite, perovskite, biotite, apatite, sodalite and FeTi-oxides, present as phenocrysts in the rocks corresponding to their fractionation interval. To reproduce the observed chemistry of the alkaline silicate rocks a total fractionation of ~87% is required. The melts evolve towards the carbonatite-silicate miscibility gap, an initial CO2 of 0.5 wt% would be sufficient to maintain CO2-saturation in the more evolved compositions. The modelled carbonatite compositions, conjugate to nepheline-syenites to phonolites, correspond well to the observed ones except for an alkali-enrichment with respect to the natural samples. The alkali-depleted nature of the small carbonatite intrusions and dikes on Brava is likely a consequence of fluid-release to the surrounding wall-rocks during crystallization, where fenitization can be observed. The trace element chemistry of primary carbonates and also cpx within both, the carbonatites and the associated silicate rocks, substantiates our fractionation model. Furthermore, carbonatite and silicate

  12. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds

    USGS Publications Warehouse

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricellaand Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.

  13. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  14. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds.

    PubMed

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-04-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed-upper and lower-limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 10(3) to 6 × 10(6) genes liter(-1) over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  15. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    PubMed

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  16. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species

    PubMed Central

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L.

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  17. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  18. [Atmospheric CO2 data filtering method and characteristics of the molar fractions at the Longfengshan WMO/GAW regional station in China].

    PubMed

    Luan, Tian; Zhou, Ling-Xi; Fang, Shuang-Xi; Yao, Bo; Wang, Hong-Yang; Liu, Zhao

    2014-08-01

    Based on the in-situ observation results of atmospheric CO2 molar fractions at two levels (10 m and 80 m above the ground) at Longfengshan (LFS) regional background station in Heilongjiang Province during January 2009 to December 2011, this study mainly focused on the results from 10 m above the ground level (a. g. l.). The results indicated that the observed data from 10 m were strongly affected by the local sources/sinks. The differences between the 10 m and 80 m results were relatively small during the daytime (08:00-17:00) with values smaller than (0.5 +/- 0.5) x 10(-6). In spring, summer and winter, higher CO2 molar fractions were observed when surface winds came from the E-ESE-SE-SSE sectors, while, in winter, surface winds from the N-NNW-NW-WNW sectors obviously enhanced the observed values. Generally, lower CO2 values were accompanied with higher wind speed in the four seasons. This phenomenon was most obvious in winter. Based on the analysis of the observed diurnal cycles and the local meteorological conditions, the observed data from 10 m were filtered into background/non-background events. About 30.7% valid hourly data were filtered as regional background representative. The background CO2 variation displayed a peak in winter and a valley in summer with a seasonal peak to peak amplitude of (36.3 +/- 1.4) x 10(-6), which was higher than the values at similar latitude from Marine Boundary Layer (MBL) References and WMO/GAW stations. The yearly CO2 increasing rate at LFS was roughly estimated to be 2.4 x 10(-6) a(-1). PMID:25338353

  19. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    PubMed

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. PMID:24953725

  20. Mapping intercellular CO2 mole fraction (Ci) in rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance Of ci estimated from leaf gas exchange

    PubMed

    Meyer; Genty

    1998-03-01

    Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 mol mol-1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low. PMID:9501127

  1. Case report: rapidly healing epidermolysis bullosa wound after ablative fractional resurfacing.

    PubMed

    Krakowski, Andrew C; Ghasri, Pedram

    2015-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating genodermatosis characterized by generalized skin fragility, severe blistering, and wounding that heals with mutilating scarring. Patients are in constant need of effective wound therapies as they often succumb to aggressive metastatic squamous cell carcinomas or to sepsis that may develop from their chronic wounds. Herein, we demonstrate accelerated wound healing with use of a fractionated CO2 laser protocol in a 22-year-old man with RDEB. His 9-month-old, non-healing wound decreased from 7 cm in diameter to 2 cm in diameter (a 92% reduction in wound surface area) within 4 weeks of a single laser treatment, and he had near-complete re-epithelialization within 4 weeks of his second laser treatment without blistering or other adverse effects. This novel intervention of using fractionated CO2 for photo-microdebridement could help revolutionize wound care for patients who have RDEB and whose chronic wounds serve as one of their greatest sources of morbidity and mortality. Dissemination to a pediatric audience is critical so that laser protocols might be more thoroughly investigated and incorporated into wound management strategies for this uniquely vulnerable population. PMID:25535263

  2. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. PMID:24488638

  3. A novel 1565 nm non-ablative fractional device for stretch marks: A preliminary report

    PubMed Central

    Tretti Clementoni, Matteo; Lavagno, Rosalia

    2015-01-01

    Abstract Background: Striae Distensae (SD) is a very common dermatologic condition. We evaluated the effectiveness and safety of a novel non-ablative fractional 1565 nm laser (ResurFX) on the appearance of SD. Materials and methods: Twelve Caucasian subjects with various stages of SD received three non-ablative laser treatments. Each treatment consisted of two different laser settings, in order to achieve a demarcated dense impact together with a diffused deep impact. Three months after the last treatment, SD improvement was assessed by blinded and non-blinded reviewers using clinical images and 3D image analyses. Results: Good clinical improvement (between 51% and 75%) was observed in all patients. Most patients showed improvement of > 50% in the volume of depressions and in lesion color (91.7% and 83.3% of patients, respectively). The average pain during treatment was generally defined as tolerable and the average downtime was 4 days. Transient erythema and severe edema were noted immediately after the procedure, but long-lasting or severe adverse effects were not observed. All patients noted a good improvement and were satisfied with the treatment and the results. Conclusions: The treatment with the 1565 nm ResurFX laser resulted in improved pigmentation, volume, and textural appearance of SD. PMID:25633176

  4. An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO2 in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Vázquez-Rodríguez, M.; Padin, X. A.; Ríos, A. F.; Bellerby, R. G. J.; Pérez, F. F.

    2009-04-01

    An upgrade of classical methods to calculate the anthropogenic carbon (Cant) signal based on estimates of the preformed dissolved inorganic carbon (CTCO2 disequilibrium (ΔCdis) included in the formulation. The change of ΔCdis with time has shown to have non-negligible biases on Cant estimates, producing a 4 μmol kg

  5. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  6. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.

    PubMed

    Högberg, Peter; Nordgren, Anders; Högberg, Mona N; Ottosson-Löfvenius, Mikaell; Bhupinderpal-Singh; Olsson, Per; Linder, Sune

    2005-01-01

    Soil-surface CO2 efflux ('soil respiration') accounts for roughly two-thirds of forest ecosystem respiration, and can be divided into heterotrophic and autotrophic components. Conventionally, the latter is defined as respiration by plant roots. In Boreal forests, however, fine roots of trees are invariably covered by ectomycorrhizal fungi, which by definition are heterotrophs, but like the roots, receive sugars derived from photosynthesis. There is also a significant leaching of labile carbon compounds from the ectomycorrhizal roots. It is, therefore, more meaningful in the context of carbon balance studies to include mycorrhizal fungi and other mycorrhizosphere organisms, dependent on the direct flux of labile carbon from photosynthesis, in the autotrophic component. Hence, heterotrophic activity becomes reserved for the decomposition of more complex organic molecules in litter and other forms of soil organic matter. In reality, the complex situation is perhaps best described as a continuum from strict autotrophy to strict heterotrophy. As a result of this, and associated methodological problems, estimates of the contribution of autotrophic respiration to total soil respiration have been highly variable. Based on recent stand-scale tree girdling experiments we have estimated that autotrophic respiration in boreal forest accounts for up to 50-65% of soil respiration during the snow-free part of the year. Girdling experiments and studies of the delta(13)C of the soil CO2 efflux show that there is a lag of a few days between the carbon uptake by photosynthesis and the release by autotrophic soil respiration of the assimilated carbon. In contrast, estimates of 'bomb 14C' and other approaches have suggested that it takes years to decades between carbon uptake via photosynthesis and the bulk of soil heterotrophic activity. Temperature is normally used as a driver in models of soil processes and it is often assumed that autotrophic soil activity is more sensitive to

  7. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4μm with pulse duration of 26 μs

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-02-01

    Several studies over the past 20 years have identified that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-µs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase and the pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for TEA lasers and too short for RF-excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the J5-V laser for microvia drilling which can produce laser pulses greater than 100 mJ in energy at 9.4-μm with a pulse duration of 26-µs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate enamel and dentin. The onset of plasma shielding does not occur until the fluence exceeds 100 J/cm2 allowing efficient ablation at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  8. Comparing the Healing Effects of Arnebia euchroma Ointment With Petrolatum on the Ulcers Caused by Fractional CO2 Laser: A Single-Blinded Clinical Trial

    PubMed Central

    Aliasl, Jale; Khoshzaban, Fariba; Barikbin, Behrooz; Naseri, Mohsen; Kamalinejad, Mohammad; Emadi, Fatemeh; Razzaghi, Zahra; Talei, Daryush; Yousefi, Maryam; Aliasl, Fatemeh; Barati, Maryam; Mohseni-Moghaddam, Parvaneh; Hasheminejad, Seyed Abbas; Esmailzad Nami, Hossein

    2014-01-01

    Background: Arnebia euchroma ointment (AEO) has been used in Iranian traditional medicine for burn wound healing. Objectives: The aim of this study is to evaluate wound healing efficacy of AEO in burn wounds after fractional Co2 laser. Patients and Methods: This split-face, single-blinded, single-center clinical study was performed in Shohada-e-Tajrish Hospital, Tehran, Iran. A total of 26 subjects with facial acne scar, who were to receive fractional CO2 laser resurfacing were recruited. After laser procedure, AEO was applied to one side of the face and petrolatum on the other side for wound healing. Digital photographs were taken from acne scar area before resurfacing and on each of the assessment sessions. Three researchers, who were unaware of the applied medications, assessed these digital photographs for erythema, edema, epithelial confluence, crusting/scabbing, and general wound appearance. Subject’s irritations such as dryness and itching were evaluated on the second, fifth, and seventh days. Results: Our study indicated higher epithelial confluence and general wound appearance scores (P = 0.045 for both) and less erythema and edema on fifth day in petrolatum (P = 0.009 and P = 0.034, respectively). The results showed less crusting and erythema (P = 0.016 and P = 0.035, respectively) and higher general wound appearance scores in petrolatum on the second day (P = 0.035 and P = 0.001, respectively). Dryness was the most common subjective complaint in both groups; however, it was more severe in AEO, especially on the second day (P = 0.023). Conclusions: Despite the healing effects of AEO in burn wounds, petrolatum was more effective than AEO in post-laser wound. PMID:25558382

  9. Transient response of the CO2 airborne fraction to fluctuations in emissions: the role of climate-carbon feedbacks versus emissions growth rate

    NASA Astrophysics Data System (ADS)

    Landers, J. P.; Terenzi, F.; Khatiwala, S.

    2010-12-01

    The airborne fraction (AF), the proportion of anthropogenic CO2 emissions remaining in the atmosphere, has stayed remarkably constant over the past several decades. Studies have speculated that this historical constancy may be an inherent characteristic of the carbon cycle, leading to recent reports of an apparent increase in AF over the past few decades being interpreted in terms of a decrease in the efficiency of the ocean and land sinks. If this decrease is a response to hypothesized climate-carbon cycle feedbacks--for example changes in ocean circulation in the Southern Ocean due to global warming-induced increase in Westerlies--then it suggests an earlier than anticipated shift in the uptake capacity of the principal sinks that play a key role in mitigating the impact of human CO2 emissions on the climate system. Before invoking such mechanisms, however, it is important to distinguish variability due to feedbacks from that due to the intrinsic behavior of the system. Specifically, we believe that the large increase in emissions growth rate between the 1990s and the present decade -- from ~1% per year to over 3% per year -- may also serve as a viable explanation for decadal variability in the AF. Here, we use an ocean carbon cycle model driven by a state-of-the-art circulation state estimate coupled with an atmosphere and land biosphere, to explore and quantify the response of the AF to different idealized emission histories. The model closely reproduces the observed atmospheric and oceanic inventory of CO2 when forced with historical emissions. We find that the AF displays a complex transient behavior, taking on the O(100 y) to ``spin up'' to equilibrium. Moreover, its final steady state value depends sensitively on the shape of the emission history and, in particular, the rate-of-increase of the emissions. These results, which are qualitatively consistent with recent studies based on conceptual models (Gloor et al, 2010; Terenzi, PhD. Thesis, 2009), suggest

  10. Interpreting the effect of CO2-induced ocean acidification on elemental partitioning in biogenic carbonates within the framework of Rayleigh fractionation

    NASA Astrophysics Data System (ADS)

    Gilmore, R. E.; Eagle, R.; Ries, J. B.; Tripati, A. K.

    2013-05-01

    The elemental composition of calcium carbonate (CaCO3) precipitated by marine invertebrates varies with the physico-chemical properties of seawater, and is thus used for reconstructing past oceanic conditions, including temperature, pH, and seawater composition. Previous studies have used a Rayleigh fractionation model to interpret elemental partitioning within a range of calcitic and aragonitic organisms, including foraminifera and corals. We present elemental ratios for 18 species of calcareous marine invertebrates, including echinoids, corals, bivalves, gastropods, calcifying algae, crustacea, and serpulid worms, which were reared at CO2-induced aragonite saturation states (±SD) of 2.5 (±0.4), 2.0 (±0.4), 1.5 (±0.3), and 0.7 (±0.2). Importantly, specimens were cultured simultaneously at the same temperature and in seawater sourced from the same reservoir, allowing comparison amongst taxa without regard to native water conditions. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) were used to determine the elemental ratios. We interpret the partitioning of strontium, magnesium, barium, manganese, boron, lithium and uranium within the biogenic carbonates of these 18 invertebrates, along with data from the literature for foraminifera and coccolithophores raised under varying pCO2 and temperature conditions, within a Rayleigh fractionation framework. Application of a Rayleigh model to these systems requires constraints on elemental partitioning into inorganic CaCO3. Our survey of the literature shows that there are limited data for some elements (e.g., Mn) and that, for others (e.g., Sr, Mg), there are a wide range of values reported for a given element. Given this uncertainty, we examine the impact that varying the nominal inorganic partition coefficient has on Rayleigh-derived estimates of calcium-utilization during calcification. The elements examined in this study

  11. A novel thermo-mechanical system enhanced transdermal delivery of hydrophilic active agents by fractional ablation.

    PubMed

    Sintov, Amnon C; Hofmann, Maja A

    2016-09-25

    The Tixel is a novel device based on a thermo-mechanical ablation technology that combines a sophisticated motion and a temperature control. The fractional technology is used to transfer a very precise thermal energy to the skin thereby creating an array of microchannels, accompanying by no signs of pain or inconvenience. This study aimed to evaluate the effect of the Tixel on the skin permeability of three hydrophilic molecular models: verapamil hydrochloride, diclofenac sodium, and magnesium ascorbyl phosphate. Tixel's gold-platted stainless steel tip heated to a temperature of 400°C was applied on skin for 8ms or 9ms at a protrusion of 400μm (the distance in which the tip protrudes beyond the distance gauge). The experiments were carried out partly in vivo in humans using a fluorescent dye and a confocal microscopy and partly in vitro using porcine skin and a Franz diffusion cell system. The results obtained in this study have shown that (a) no significant collateral damage to the skin tissue and no necrosis or dermal coagulation have been noted, (b) the microchannels remained open and endured for at least 6h, and (c) the skin permeability of hydrophilic molecules, which poorly penetrate the lipophilic stratum corneum barrier, was significantly enhanced by using Tixel's pretreatment. PMID:27480396

  12. Adjusted Left Atrial Emptying Fraction as a Predictor of Procedural Outcome after Catheter Ablation for Atrial Fibrillation

    PubMed Central

    Im, Sung Il; Kim, Sun Won; Choi, Cheol Ung; Kim, Jin Won; Yong, Hwan Seok; Kim, Eung Ju; Rha, Seung-Woon; Park, Chang Gyu; Seo, Hong Seog; Oh, Dong Joo; Lim, Hong Euy

    2015-01-01

    Structural remodeling of the left atrium is a risk factor for recurrent arrhythmia after catheter ablation for atrial fibrillation; however, data are sparse regarding the role of functional left atrial remodeling in predicting procedural outcomes. We evaluated whether left atrial transport function could be used to predict recurrent atrial fibrillation. From July 2008 through August 2010, we enrolled 202 consecutive patients who underwent catheter ablation for atrial fibrillation (paroxysmal=120, persistent=82). Left atrial volumes (LAVs) were measured by means of multislice computed tomography at every 10% of the R-R interval, and measurements were adjusted for body surface area to yield the LAV index (LAVI) at baseline. The left atrial emptying fraction (LAEF) was calculated according to LAV differences. During the mean follow-up period of 10 ± 4 months after a single ablation procedure, atrial fibrillation recurred in 59 patients (paroxysmal=19, persistent=40). Multivariate analysis revealed that persistent atrial fibrillation, early mitral inflow velocity, LAVImax, LAVImin, LAEF, LAVImax/LAEF, and LAVImin/LAEF were all independent predictors of atrial fibrillation, but the best predictor was LAVImin/LAEF (β=1.329, P=0.001). The cutoff value was 1.61 (mL/m2)/%, and the sensitivity and specificity were 74.6% and 62.2%, respectively (area under the curve=0.761). Our study shows that adjusted left atrial emptying fraction with use of multislice computed tomography might be a useful, noninvasive method to select patients for ablation. PMID:26175632

  13. CO2 and soil water potential as regulators of the growth and N fraction derived from fixation of a legume in tallgrass prairie communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CO2 enrichment may increase N input to ecosystems by increasing N2 fixation, but the fixation-CO2 response depends on factors such as soil water availability that are influenced by both CO2 and soil properties. We used the d15N natural abundance method to determine N2 fixation by the legume Desmant...

  14. A case of successfully treated recalcitrant EGFR inhibitor-induced acneiform eruption following non-ablative fractional laser.

    PubMed

    Choi, Joong Woon; Kim, Tae In; Jeong, Ki-Heon; Shin, Min Kyung

    2016-07-01

    Epidermal growth factor receptor (EGFR) inhibitor, a targeted therapy in the field of oncology, is a new drugs suggested for the cause of acneiform eruptions. The unresponsiveness to conventional acne therapy is a pivotal reason of seeking alternatives to treat drug-induced acneiform eruptions. A 30-year-old female treated with cetuximab, EGFR inhibitor presented with numerous sized erythematous papules and pustules on her face. All responses of oral medications and topical application were poor. She was treated with two passes of non-ablative 1550 nm fractional erbium glass laser with topical clindamycin. After three laser sessions, the skin lesions improved dramatically without any side effects. There is currently no single effective treatment for acneiform eruption. This report shed light on the possibility that non-ablative fractional laser can be an alternative for recalcitrant drug-induced acneiform eruptions. PMID:27146102

  15. Fractional Erbium laser in the treatment of photoaging: randomized comparative, clinical and histopathological study of ablative (2940nm) vs. non-ablative (1540nm) methods after 3 months*

    PubMed Central

    Borges, Juliano; Cuzzi, Tullia; Mandarim-de-Lacerda, Carlos Alberto; Manela-Azulay, Mônica

    2014-01-01

    BACKGROUND Fractional non-ablative lasers keep the epidermis intact, while fractional ablative lasers remove it, making them theoretically more effective. OBJECTIVES To evaluate the clinical and histological alterations induced by fractional photothermolysis for treating photoaging, comparing the possible equivalence of multiple sessions of 1540nm Erbium, to one session of 2940nm Erbium. METHODS Eighteen patients (mean age 55.9) completed the treatment with three sessions of 1540nm fractional Erbium laser on one side of the face (50 mJ/mB, 15ms, 2 passes), and one session of 2940nm on the other side (5mJ/mB, 0.25ms, 2 passes). Biopsies were performed before and 3 months after treatment. Clinical, histological and morphometric evaluations were carried out. RESULTS All patients presented clinical improvement with no statistically significant difference (p> 0.05) between the treated sides. Histopathology revealed a new organization of collagen and elastic fibers, accompanied by edema, which was more evident with the 2940nm laser. This finding was confirmed by morphometry, which showed a decrease in collagen density for both treatments, with a statistical significance for the 2940nm laser (p > 0.001). CONCLUSIONS Three 1540nm sessions were clinically equivalent to one 2940nm session. The edema probably contributed to the positive results after three months, togheter with the new collagen and elastic fibers organization. The greater edema after the 2940nm session indicates that dermal remodeling takes longer than with 1540nm. It is possible that this histological superiority relates to a more prolonged effect, but a cohort longer than three months is needed to confirm that supposition. PMID:24770501

  16. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  17. Non-ablative fractional laser assists cutaneous delivery of small- and macro-molecules with minimal bacterial infection risk.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Lin, Yin-Ku; Huang, Chang-Wei; Fang, Jia-You

    2016-09-20

    Use of the ablative laser has been approved to enhance topical drug penetration. Investigation into the usefulness of the non-ablative laser for assisting drug delivery is very limited. In this study, we explored the safety and efficacy of the non-ablative fractional erbium:glass (Er:glass) laser as an enhancement approach to promote drug permeation. Both pig and nude mouse skins were employed as transport barriers. We histologically examined the skin structure after laser exposure. The permeants of 5-aminolevulinic acid (ALA), imiquimod, tretinoin, peptide, dextrans and quantum dots (QD) were used to evaluate in vitro and in vivo skin passage. The fractional laser selectively created an array of photothermal dots deep into the dermis with the preservation of the stratum corneum and epidermis. The barrier function of the skin could be recovered 8-60h post-irradiation depending on the laser spot densities. The application of the laser caused no local infection of Staphylococcus aureus and Pseudomonas aeruginosa. Compared to intact skin, ALA flux was enhanced up to 1200-fold after laser exposure. The penetration enhancement level by the laser was decreased following the increase of permeant lipophilicity. The skin accumulation of tretinoin, an extremely lipophilic drug, showed only a 2-fold elevation by laser irradiation. The laser promoted peptide penetration 10-fold compared to the control skin. Skin delivery of dextrans with a molecular weight (MW) of at least 40kDa could be achieved with the Er:glass laser. QD with a diameter of 20nm penetrated into the skin with the assistance of the non-ablative laser. The confocal microscopic images indicated the perpendicular and lateral diffusions of dextrans and nanoparticles via laser-created microscopic thermal zones. Controlled Er:glass laser irradiation offers a valid enhancement strategy to topically administer the permeants with a wide MW and lipophilicity range. PMID:27345564

  18. Release of monocyte migration signals by breast cancer cell lines after ablative and fractionated γ-irradiation

    PubMed Central

    2014-01-01

    Background Radiotherapy, administered in fractionated as well as ablative settings, is an essential treatment component for breast cancer. Besides the direct tumor cell death inducing effects, there is growing evidence that immune mechanisms contribute - at least in part - to its therapeutic success. The present study was designed to characterize the type and the extent of cell death induced by fractionated and ablative radiotherapy as well as its impact on the release of monocyte migration stimulating factors by dying breast cancer cells. Methods Cell death and senescence assays were employed to characterize the response of a panel of breast cancer cell lines with different receptor and p53 status towards γ-irradiation applied in a fractionated (daily doses of 2 Gy) or ablative setting (single dose of 20 Gy). Cell-free culture supernatants were examined for their monocyte migration stimulating potential in transwell migration and 2D chemotaxis/chemokinesis assays. Irradiation-induced transcriptional responses were analyzed by qRT-PCR, and CD39 surface expression was measured by flow cytometry. Results Fast proliferating, hormone receptor negative breast cancer cell lines with defective p53 predominantly underwent primary necrosis in response to γ-irradiation when applied at a single, ablative dose of 20 Gy, whereas hormone receptor positive, p53 wildtype cells revealed a combination of apoptosis, primary, and secondary (post-apoptotic) necrosis. During necrosis the dying tumor cells released apyrase-sensitive nucleotides, which effectively stimulated monocyte migration and chemokinesis. In hormone receptor positive cells with functional p53 this was hampered by irradiation-induced surface expression of the ectonucleotidase CD39. Conclusions Our study shows that ablative radiotherapy potently induces necrosis in fast proliferating, hormone receptor negative breast cancer cell lines with mutant p53, which in turn release monocyte migration and chemokinesis

  19. Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He-40Ar*-CO2) of the mantle by laser ablation analysis of individual MORB vesicles

    NASA Astrophysics Data System (ADS)

    Colin, A.; Burnard, P.; Marty, B.

    2013-01-01

    Individual vesicles in <1 cm3 samples of MORB glasses commonly preserve significantly different volatile (He, Ar, CO2) compositions. Five separate MORB glass samples from different ridges were investigated, selectively opening targeted vesicles using a 193 nm excimer laser. One sample shows evidence of syn-emplacement selective helium loss from the vesicles in the glass rim close to the crystallised zone of the pillow lava, proving that He contents and low He/Ar ratios do not always reflect mantle and/or magmatic processes. However the composition of the different vesicles of three of these samples covers large ranges in He/Ar and Ar/CO2 with linear variations in plots of ln(He/Ar) vs. ln(Ar/CO2) which are consistent with a Rayleigh distillation at equilibrium and allow the relative abundances of the volatiles in the MORB mantle source to be estimated by correcting for degassing processes on a sample-by-sample basis. This technique presents a new tool for characterising and correcting for volatile fractionation processes that have modified the initial mantle source composition. The results confirm a heterogeneous CO2/3He ratio in the MORB source regions with the Azores mantle source enriched in C/3He compared to that of N-MORBs. The considerable heterogeneity in vesicle compositions within such a small volume (<1 cm3) requires injection of less degassed magma at shallow level before eruption. The maximum time interval between magma mixing and quenching on the seafloor is of the order of a few hours.

  20. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  1. Effects of MTZs parameters during non-ablative fractional photothermolysis treatments: a numerical study

    NASA Astrophysics Data System (ADS)

    Ma, Jing-bo; Zhang, Ji-zhuang

    2010-11-01

    The novel method of non-ablative FP is acknowledged as an effective technique by offering significant clinical improvement while minimal risk of complications. A new time-dependent mathematical model was built up to investigate the photo-thermal interactions during FP treatments. With this model, effects of treatment-affecting parameters, such as diameter, density and energy of the micro laser beam as well as skin cooling, were numerically investigated. Different photo-thermal behaviors with various treatment parameters were particularly discussed, based on which, a novel concept of programmable treatment procedure (PTP) was proposed. With this technique, desired therapeutic outcomes may be obtained from personalized treatments.

  2. A kinetic model relating the leaf uptake of carbonyl sulfide (COS) to water and CO2 fluxes and 13C fractionation

    NASA Astrophysics Data System (ADS)

    Seibt, Ulrike; Berry, Joe; Sandoval-Soto, Lisseth; Kuhn, Uwe; Kesselmeier, Jürgen

    2010-05-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that holds great promise for studies of terrestrial carbon and water exchange. During photosynthesis, COS and CO2 follow the same pathway and are both taken up in enzyme reactions in leaves. We have developed a simple model of leaf COS uptake, analogous to the equations for CO2 and water fluxes. Leaf COS uptake predicted from the new equation was in good agreement with data from field and laboratory chambers, although with large uncertainties. We also obtained first estimates for the ratio of conductances of COS and water vapour. Empirically derived estimates were 2.0 ± 0.3 for laboratory data on Fagus sylvatica and 2.2 ± 0.8 for field data on Quercus agrifolia, both close to the theoretical estimate of 2.0 ± 0.2. As a consequence of the close coupling of leaf COS and CO2 uptake, the normalized uptake ratio of COS and CO2 can be used to provide estimates of Ci-Ca, the ratio of intercellular to atmospheric CO2, an important plant gas exchange parameter that cannot be measured directly. Published normalized COS to CO2 uptake ratios for leaf studies on a variety of species fall in the range of 1.5 to 4, corresponding to Ci-Ca ratios of 0.5 to 0.8. In addition, we utilize the coupling of Ci-Ca and photosynthetic 13C discrimination to derive an estimate of 2.8 ± 0.3 for the global mean normalized uptake ratio. This corresponds to a global vegetation sink of COS in the order of 900 ± 100 Gg S yr-1. Similarly, COS and 13C discrimination can be combined to obtain independent estimates of photosynthesis (GPP). The new process-oriented description provides a framework for understanding COS fluxes that should improve the usefulness of atmospheric COS data to obtain estimates of gross photosynthesis and stomatal conductance at regional to global scales.

  3. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    PubMed

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin. PMID:26796701

  4. CO2-Neutral Fuels

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  5. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  6. Non-ablative fractional laser in conjunction with microneedle arrays for improved cutaneous vaccination

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Li, Bo; Wu, Mei X.

    2015-03-01

    Skin is more potent than the muscle for vaccination, but it is not a common site for immunization to date owing, in part, to a relatively high rate of pains and skin irritation and difficulty of administration. Here, we show effective and lesion free cutaneous vaccination by a combination of a biodegradable microneedle array (MNs) and an FDA-approved nonablative fractional laser (NAFL). Delivering a vaccine into many micropores, instead of a single "big" pore in the skin, effectively segregated vaccine-induced inflammation into many microzones and resulted in quick resolution of the inflammation, provided that distances between any two micropores were far enough. When the inoculation site was treated by NAFL prior to insertion of the MNs comprised of PR8 model influenza vaccine, the mice displayed vigorous antigen-uptake, giving rise to strong, Th1-biased immunity. The mice were protected from a challenge of homologous influenza virus at a high dose as well as heterologous H1N1 and H3N2 viruses. The adjuvant effect of NAFL was ascribed primarily to activation of the dsDNA sensing pathway by dsDNA released from laser-damaged skin cells. Thus, mice deficient in the dsDNA sensing pathway, but not toll like receptor (TLR) or inflammasome pathways, showed poor response to NAFL. Importantly, both mice and swine exhibited strong, protective immunity, but no overt skin reactions with this approach, in sharp contrast to intradermal injections that caused severe, overt skin reactions. The effective lesion-free transcutaneous vaccination merits further clinical studies.

  7. Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2015-01-01

    This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark simulation model no. 2 is used to quantify the generation of CH₄, H₂and CO₂. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production uncertainty the most. This analysis is repeated for (i) different temperature regimes and (ii) different solids retention times (SRTs) in the anaerobic digester. Results show that both SRC and MS are good measures of sensitivity unless the anaerobic digester is operating at low SRT and mesophilic conditions. In the latter situation, and due to the intrinsic nonlinearities of the system, SRC fails in decomposing the variance of the model predictions (R² < 0.7) making MS a more reliable method. At high SRT, influent fractionations are the most influential parameters for predictions of CH₄and CO₂emissions. Nevertheless, when the anaerobic digester volume is decreased (for the same load), the role of acetate degraders gains more importance under mesophilic conditions, while lipids and fatty acid metabolism is more influential under thermophilic conditions. The paper ends with a critical discussion of the results and their implications during model calibration and validation exercises. PMID:25812096

  8. Large Amplitude Spatial and Temporal Gradients in Atmospheric Boundary Layer CO2 Mole Fractions Detected With a Tower-Based Network in the U.S. Upper Midwest

    SciTech Connect

    Miles, Natasha; Richardson, S. J.; Davis, Kenneth J.; Lauvaux, Thomas; Andrews, A.; West, Tristram O.; Bandaru, Varaprasad; Crosson, Eric R.

    2012-02-21

    This study presents observations of atmospheric CO{sub 2} mole fraction from a nine-tower, regional network deployed during the North American Carbon Program's Mid-Continent Intensive during 2007-2009. Within this network in a largely agricultural area, mean atmospheric CO{sub 2} gradients were strongly correlated with both ground-based inventory data and estimates from satellite remote sensing. The average seasonal drawdown for corn-dominated sites (35 ppm) is significantly larger than has been observed at other continental boundary layer sites. Observed growing-season median CO{sub 2} gradients are strongly dependent on local flux. The gradients between cross-vegetation site-pairs, for example, average 2.0 ppm/100 km, four times larger than the similar-vegetation site-pair average. Daily-timescale gradients are as large as 5.5 ppm/100 km, but dominated by advection rather than local flux. Flooding in 2008 led to a region-wide 23 week delay in growing-season minima. The observations show that regional-scale CO{sub 2} mole fraction networks yield large, coherent signals governed largely by regional sources and sinks of CO{sub 2}.

  9. The impact of pCO2 and climate on D/H and 13C/12C fractionation of higher-plant biomarkers: Implications for paleoclimate and paleoelevation reconstruction during global warm periods

    NASA Astrophysics Data System (ADS)

    Hren, M. T.; Tipple, B. J.; Pagani, M.

    2012-12-01

    Stable hydrogen isotope compositions (D/H) of plant biomarkers record the hydrogen isotopic composition of leaf water at the time of plant growth. However, the magnitude of the apparent hydrogen isotope fractionation between biomarkers and precipitation can vary due to soil- or leaf-water evaporation or differing water-use strategies. As a result, climate-induced changes in soil- or leaf-water evaporation rates and/or changes in plant assemblages during periods of global warming and high atmospheric CO2 could impact apparent carbon and hydrogen isotope fractionations. We measured hydrogen and carbon isotope ratios of long-carbon chain n-alkanes from modern and ~50 million year old fossil leaves preserved in paleo-Sierra Nevada riverine sediments to determine how climate and ecosystem differences during a period of extremely high pCO2 impact the magnitude and variability of D/H and 13C/12C ratios of leaf-waxes across a topographic gradient. δDalkanes (nC27 to nC31) of individual fossil and modern leaves decrease systematically across the topographic gradient and follow the change in the D/H of precipitation due to orographic lifting and continuous rainout. Using estimated values of Eocene δDprecip at the Pacific margin (-43 to -61‰), apparent fractionations (ɛalkane - precip) for Eocene angiosperm trees are similar to that seen for modern, humid environments (~ -106 to -124‰ ±10‰ 1σ), and more negative than observed in modern sun-exposed leaves in the Sierra Nevada (-96 to -102‰) or soils (-87 to -92‰). Single site variability in leaf-wax δD from individual fossil angiosperms can exceed 20‰, but is considerably smaller than observed for modern, mixed angiosperm/gymnosperm forests of the seasonally dry Sierra Nevada range. δ13Calkane values show little or no systematic variation across the range. However, carbon isotope discrimination in ancient and modern leaves is similar, suggesting strong climatic and weak pCO2 controls on D/H and 13C/12C

  10. New insight in the treatment of refractory melasma: Laser Q-switched Nd: YAG non-ablative fractionated followed by intense pulsed light.

    PubMed

    Cunha, Paulo Rowilson; Pinto, Clovis Antonio Lopes; Mattos, Camila Bonati; Cabrini, Dayane Peverari; Tolosa, Joana Lugli

    2015-01-01

    The purpose of our study was to verify the results of the association of Q-switched Nd: YAG non-ablative fractionated with intense pulsed light, in order to treat patients with refractory melasma. The combination of these two devices seems to be the best treatment to combat hyperpigmentation produced by melasma, with low occurrence of side effects, which may be justified by the selective photothermolysis at subcellular level. PMID:26032175

  11. Complete resolution of minocycline pigmentation following a single treatment with non-ablative 1550-nm fractional resurfacing in combination with the 755-nm Q-switched alexandrite laser.

    PubMed

    Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M

    2016-03-01

    Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation. PMID:26718463

  12. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    NASA Technical Reports Server (NTRS)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2004-01-01

    We investigated the isotopic fractionation of CH4 and hydrogen (H2) in the stratosphere by incorporating isotope-specific rate coefficients into the Lawrence Livermore National Laboratory (LLNL) 2D model and comparing the model results with new observations from the NASA ER-2 aircraft (funded through a separate task under the Upper Atmosphere Research Program). The model results reveal that fractionation which occurs in the stratosphere has a significant influence on isotope compositions in the free troposphere, an important point which had previously been ignored, unrecognized or unquantified for many long-lived trace gases, including CH4 and H2 which we have focused our efforts on to date. Our analyses of the model results and new isotope observations have also been used to test how well the kinetic isotope effects are known, at least to within the uncertainties in model chemistry and transport. Overall, these results represent an important step forward in our understanding of isotope fractionation in the atmosphere and demonstrate that stratospheric isotope fractionation cannot be ignored in modeling studies which use isotope observations in the troposphere to infer the global budgets of CH4 (an important greenhouse gas) and of H2 (a gas whose atmospheric budget must be better quantified, particularly before a large human perturbation from fuel cell use is realized). Our analyses of model results and observations from the NASA ER-2 aircraft are briefly summarized separately below for CH4, H2, and H2O and for the contribution of these modeling studies to date to our understanding of isotope fractionation for N2O, CO2, and O3 as well.

  13. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    NASA Technical Reports Server (NTRS)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2005-01-01

    Until recently, the stable isotopic composition of chemically and datively important stratospheric species, such as ozone (O3), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), was largely unexplored, despite indications from the few measurements available and theoretical studies that global-scale isotopic variations will provide a unique tool for quantifying rates of global-scale mass transport into, within, and out of the stratosphere and for understanding the mechanisms of chemical reactions involved in ozone production. The number and geographical extent of observations are beginning to increase rapidly, however, as access to the stratosphere, both directly and by remote-sensing, has increased over the last 10 years and as new analytical techniques have been developed that make global-scale isotope measurements by whole-air sampling more feasible. The objective of this study, begun in April 1999, is to incorporate into the Livermore 2D model the likely photochemical fractionation processes that determine the isotopic compositions of stratospheric CO2, N2O, CH4, and O3, and to use the model results and new observations from NASA field campaigns in 1996 and 1997 to investigate stratospheric chemistry and mass transport. Additionally, since isotopic signatures from the stratosphere are transferred to the troposphere by downward transport at middle and high latitudes, the isotopic compositions may also serve as sensitive tracers of stratosphere-totroposphere transport. Comparisons of model results with stratospheric and upper tropospheric observations from these campaigns, as well as with ground-based observations from new NOAA and NSF-sponsored studies, will help determine whether the magnitudes of the stratospheric fractionation processes are large enough to use as global-scale tracers of transport into the troposphere and, if so, will be used to help constrain the degree of coupling between the troposphere and the stratosphere.

  14. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery

    NASA Astrophysics Data System (ADS)

    Lach, Elliot

    1994-09-01

    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  15. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  16. CO2 blood test

    MedlinePlus

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum ... Many medicines can interfere with blood test results. Your health care provider will tell you if you need to stop taking any medicines before you have this test. DO ...

  17. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  18. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  19. Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance.

    PubMed

    Crane, Christopher H; Koay, Eugene J

    2016-07-01

    The emergence and success of stereotactic body radiation therapy (SBRT) for the treatment of lung cancer have led to its rapid adoption for liver cancers. SBRT can achieve excellent results for small liver tumors. However, the vast majority of physicians interpret SBRT as meaning doses of radiation (range, 4-20 Gray [Gy]) that may not be ablative but are delivered within about 1 week (ie, in 3-6 fractions). Adherence to this approach has limited the effectiveness of SBRT for large liver tumors (>7 cm) because of the need to reduce doses to meet organ constraints. The prognosis for patients who present with large liver tumors is poor, with a median survival ≤12 months, and most of these patients die from tumor-related liver failure. Herein, the authors present a comprehensive solution to achieve ablative SBRT doses for patients with large liver tumors by using a combination of classic, modern, and novel concepts of radiotherapy: fractionation, dose painting, motion management, image guidance, and simultaneous integrated protection. The authors discuss these concepts in the context of large, inoperable liver tumors and review how this approach can substantially prolong survival for patients, most of whom otherwise have a very poor prognosis and few effective treatment options. Cancer 2016;122:1974-86. © 2016 American Cancer Society. PMID:26950735

  20. Combination ALA-PDT and Ablative Fractional Er:YAG Laser (2,940 nm) on the Treatment of Severe Acne

    PubMed Central

    Yin, Rui; Lin, Lin; Xiao, Yan; Hao, Fei; Hamblin, Michael R.

    2014-01-01

    Background Scarring is a very common complication of severe acne and is difficult to treat by conventional methods. 5-Aminolevulinic acid (ALA) photodynamic therapy (PDT) is a novel treatment for improving acne lesions. Fractional laser resurfacing is a promising treatment for scar treatment because of its unique ability to stimulate the wound healing response and its depth of penetration. Objective To evaluate the efficacy of combination therapies of ALA-PDT and ablative fractional Er:YAG laser (2,940 nm) for scarring lesions in severe acne patients. Methods A prospective, single-arm, pilot study. Forty subjects with severe acne were treated with 15% ALA-PDT for four times at 10-day intervals. They then received ablative fractional Er:YAG laser treatment five times at 4-week intervals. Three independent investigators evaluated subject outcomes at 1, 3, 6, and 12 months post-treatment (primary outcome); patients also provided self-assessments of improvement (secondary outcome). Results Significant reductions in acne score (P<0.01) were obtained at follow-up visits after 1, 3, 6, and 12 months. After 6 month, the lesions showed overall improvement in all of subjects (good to excellent in acne inflammatory lesions), 80% overall improvement in acne scars. After 12 months, most of subjects had improved hypertrophic/atrophic scars (good to excellent in 85%) and no one had recurrent acne inflammatory lesions. Patient self-evaluation also revealed good to excellent improvements (on average) in acne lesions and scarring, with significant improvements in self-esteem after 6 months post-treatment. Conclusions PDT can control the inflammation and improve the severity of acne lesions. Fractional resurfacing is a promising new treatment modality for scars by stimulating wound healing and remodeling. The combination therapy is a promising option for severe acne to prevent and improve car formation. PMID:24391075

  1. Capnography: monitoring CO2.

    PubMed

    Casey, Georgina

    2015-10-01

    MONITORING RESPIRATORY and metabolic function by using capnography to measure end tidal carbon dioxide is standard practice in anaesthesia. It is also becoming more common in intensive care units and during procedural sedation. End tidal carbon dioxide (EtCO2) monitoring may also be used to assess effectiveness of cardiopulmonary resuscitation. Capnography is now emerging in general medical and surgical wards to monitor respiratory depression in patients using opioid analgesics. Using EtCO2 to monitor respiratory function offers many benefits over pulse oximetry. It is important to understand the differences between these two monitoring methods, and why capnography is increasingly favoured in many situations. An understanding of the physiological processes involved in CO2 excretion allows nurses to use capnography in a safe and meaningful way, while monitoring at-risk patients in acute care. PMID:26638570

  2. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  3. Global CO2 simulation using GOSAT-based surface CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saeki, T.; Saito, R.; Morino, I.; Uchino, O.; Yoshida, Y.; Yokota, Y.; Bril, A.; Oshchepkov, S.; Andres, R. J.; Maksyutov, S.

    2012-04-01

    Investigating the distribution and temporal variability of surface CO2 fluxes is an active research topic in the field of contemporary carbon cycle dynamics. The technique central to this effort is atmospheric inverse modeling with which surface CO2 fluxes are estimated by making corrections to a priori flux estimates such that mismatches between model-predicted and observed CO2 concentrations are minimized. Past investigations were carried out by utilizing CO2 measurements collected in global networks of surface-based monitoring sites. Now, datasets of column-averaged CO2 dry air mole fraction (XCO2) retrieved from spectral soundings collected by GOSAT are available for complementing the surface-based CO2 observations. These space-based XCO2 data are expected to enhance the spatiotemporal coverage of the existing surface observation network and thus reduce uncertainty associated with the surface flux estimates. We estimated monthly CO2 fluxes in 64 sub-continental regions from a subset of the surface-based GLOBALVIEW CO2 data and the GOSAT FTS SWIR Level 2 XCO2 retrievals. We further simulated CO2 concentrations in 3-D model space using the surface flux estimates obtained. In this presentation, we report the result of a comparison between the simulated CO2 concentrations and independent surface observations. As part of an effort in inter-comparing GOSAT-based surface CO2 flux estimates, we also look at results yielded with XCO2 data retrieved with the PPDF-DOAS algorithm and those made available by the NASA Atmospheric CO2 Observations from Space team. For this study, we used version 08.1 of the National Institute for Environmental Studies atmospheric transport model, which was driven by the Japan Meteorological Agency's JCDAS wind analysis data. The CO2 forward simulations were performed on 2.5° × 2.5° horizontal grids at 32 vertical levels between the surface and the top of the atmosphere. The a priori flux dataset used was comprised of the sum of four

  4. CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Brown, D.; Callan, R.; Constant, G.; Davies, P. H.; Foord, R.

    CO2 laser-based radars operating at 10 microns are both highly energy-efficient and eye-safe, as well as compact and rugged; they also furnish covertness-enhancing fine pointing accuracy, and are difficult to jam or otherwise confuse. Two modes of operation are generally employed: incoherent, in which the laser is simply used as a high power illumination source, and in the presently elaborated coherent or heterodyne mode. Applications encompass terrain-following and obstacle avoidance, Doppler discrimination of missile and aircraft targets, pollutant gas detection, wind measurement for weapons-aiming, and global wind field monitoring.

  5. CO2 laser preionisation

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  6. Mechanisms of CO2 Interaction with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Romanov, V.; Myshakin, E. M.; Howard, B.; Guthrie, G.

    2013-12-01

    Improved understanding of basic fluid-rock interactions can lead to more accurate models of the coupled fluid-flow and geomechanics in engineered geological systems. We studied carbon dioxide (CO2) interaction with source clay samples from The Clay Minerals Society. The manometric, infrared (IR) and X-ray diffraction (XRD) data indicated that montmorillonite can permanently trap CO2 molecules in its interlayer, after dynamic exposure to supercritical CO2. Such trapping is quite secure and appears to result in partial carbonate formation. Molecular dynamics simulations were carried out to investigate CO2 intercalation into the interlayer and its interaction with interlayer species. Previously reported results of simulations using simplified smectite models suggested that the experimentally observed red shift of the asymmetric-stretch vibrational mode for the trapped carbon dioxide can be attributed to induced polarization of the CO2 molecule by the interlayer water molecules. Modified smectite models were designed to account for the naturally occurring structural disorder that allows guest molecules to occupy localized interlamellar voids. In such models, energy dependences and structural rearrangements of the interlayer species are governed by rotational misalignment in turbostratically disordered clay. CO2 invasion in the interlayer disrupts the long-range ordering of water molecules and cations thus forcing the system to adopt energetically unfavorable configurations. New findings indicate that interaction between intercalated CO2 and H2O is limited and, with the increasing interlayer hydration, CO2 preferentially accumulates in interlamellar voids. The vibrational spectra produced by the new model, assuming that clay systems can exist in fractional hydration states, show either a combination of undisturbed and red-shifted asymmetric-stretch modes or a broad peak consistent with the multiple smeared peaks, which explain the multi-mode features that have appeared

  7. 3D in vivo optical skin imaging for intense pulsed light and fractional ablative resurfacing of photodamaged skin.

    PubMed

    Clementoni, Matteo Tretti; Lavagno, Rosalia; Catenacci, Maximilian; Kantor, Roman; Mariotto, Guido; Shvets, Igor

    2011-11-01

    The authors present a 3D in vivo imaging system used to assess the effectiveness of IPL and fractional laser treatments of photodamaged skin. Preoperative and postoperative images of patients treated with these procedures are analyzed and demonstrate the superior ability of this 3D technology to reveal decrease in vascularity and improvement in melanin distribution and calculate the degree of individual deep wrinkles before and after treatment. PMID:22004864

  8. CO2 Laser Market

    NASA Astrophysics Data System (ADS)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  9. Vadose Zone Remediation of CO2 Leakage from Geologic CO2 Storage Sites

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Benson, Sally M.

    2004-03-03

    In the unlikely event that CO2 leakage from deep geologic CO2 sequestration sites reaches the vadose zone, remediation measures for removing the CO2 gas plume may have to be undertaken. Carbon dioxide leakage plumes are similar in many ways to volatile organic compound (VOC) vapor plumes, and the same remediation approaches are applicable. We present here numerical simulation results of passive and active remediation strategies for CO2 leakage plumes in the vadose zone. The starting time for the remediation scenarios is assumed to be after a steady-state CO2 leakage plume is established in the vadose zone, and the source of this plume has been cut off. We consider first passive remediation, both with and without barometric pumping. Next, we consider active methods involving extraction wells in both vertical and horizontal configurations. To compare the effectiveness of the various remediation strategies, we define a half-life of the CO2 plume as a convenient measure of the CO2 removal rate. For CO2 removal by passive remediation approaches such as barometric pumping, thicker vadose zones generally require longer remediation times. However, for the case of a thin vadose zone where a significant fraction of the CO2 plume mass resides within the high liquid saturation region near the water table, the half-life of the CO2 plume without barometric pumping is longer than for somewhat thicker vadose zones. As for active strategies, results show that a combination of horizontal and vertical wells is the most effective among the strategies investigated, as the performance of commonly used multiple vertical wells was not investigated.

  10. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential. PMID:15256665

  11. In vivo histological evaluation of fractional ablative microplasma radio frequency technology using a roller tip: an animal study.

    PubMed

    Li, Xiaodan; Fang, Lin; Huang, Luping

    2015-12-01

    The aim of the present study is to investigate the histological characteristics associated with microplasma radio frequency (MPRF) technology in an animal study using different treatment parameters. Two white piglets, aged 6 months, received MPRF treatment using a roller tip; the treatment site was located on the dorsal skin. Four groups of parameters were adopted regarding the performance of the treatment at four zones on the dorsum. Immediately, at 7 days and at 1, 3, and 6 months posttreatment, we observed the healing process and obtained specimens from each treatment zone. Hematoxylin and eosin and Masson stainings of histological sections were performed to assess the degree of tissue injury, the heat effect, the healing process, and neocollagenesis. Heat shock protein (HSP) was also detected using immunohistochemistry. The roller tip generated a fractional treatment, which had a general trend involving an increase in depth and width with increasing pulse energy and decreasing sliding speed. During the wound healing process, dermal neocollagenesis was stimulated, remodeled, and matured gradually. The expression of HSP47 and HPS72 was elevated in the dermis surrounding the microlesions after treatment; it peaked at 1 month posttreatment and became diffuse in the dermis. MPRF is a promising fractional skin resurfacing technique. The roller tip can be used with low risk in the entire treatment zone with rapid healing. An appropriate treatment regimen should be chosen to guarantee therapeutic efficacy and safety. PMID:26396104

  12. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  13. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter; Drake, Ronald; John E. McCray

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2 flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2 retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2 produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2 dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination of

  14. CO(2) homeostasis during periodic breathing in obstructive sleep apnea.

    PubMed

    Berger, K I; Ayappa, I; Sorkin, I B; Norman, R G; Rapoport, D M; Goldring, R M

    2000-01-01

    The contribution of apnea to chronic hypercapnia in obstructive sleep apnea (OSA) has not been clarified. Using a model (D. M. Rapoport, R. G. Norman, and R. M. Goldring. J. Appl. Physiol. 75: 2302-2309, 1993), we previously illustrated failure of CO(2) homeostasis during periodic breathing resulting from temporal dissociation between ventilation and perfusion ("temporal V/Q mismatch"). This study measures acute kinetics of CO(2) during periodic breathing and addresses interapnea ventilatory compensation for maintenance of CO(2) homeostasis in 11 patients with OSA during daytime sleep (37-171 min). Ventilation and expiratory CO(2) and O(2) fractions were measured on a breath-by-breath basis by means of a tight-fitting full facemask. Calculations included CO(2) excretion, metabolic CO(2) production, and CO(2) balance (metabolic CO(2) production - exhaled CO(2)). CO(2) balance was tabulated for each apnea/hypopnea event-interevent cycle and as a cumulative value during sleep. Cumulative CO(2) balance varied (-3,570 to +1,388 ml). Positive cumulative CO(2) balance occurred in the absence of overall hypoventilation during sleep. For each cycle, positive CO(2) balance occurred despite increased interevent ventilation to rates as high as 45 l/min. This failure of CO(2) homeostasis was dependent on the event-to-interevent duration ratio. The results demonstrate that 1) periodic breathing provides a mechanism for acute hypercapnia in OSA, 2) acute hypercapnia during periodic breathing may occur without a decrease in average minute ventilation, supporting the presence of temporal V/Q mismatch, as predicted from our model, and 3) compensation for CO(2) accumulation during apnea/hypopnea may be limited by the duration of the interevent interval. The relationship of this acute hypercapnia to sustained chronic hypercapnia in OSA remains to be further explored. PMID:10642388

  15. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  16. Estimates of CO2 since the mid-Miocene

    NASA Astrophysics Data System (ADS)

    Stoll, Heather

    2016-04-01

    For past warm climates, direct CO2 determinations are unavailable. Our inferences of Antarctic ice sheet thresholds and climate sensitivity to CO2 are therefore strongly conditioned by the reliability of CO2 proxy reconstructions. For the Miocene, these rely heavily on proxies using the carbon isotopic fractionation of marine phytoplankton during photosynthesis (ep). While recent records are beginning to reveal more clearly the long term CO2 trends since the middle Miocene , the absolute CO2 concentrations are subject to higher uncertainty. This in turn influences the ability of models to simulate dynamic Antarctic ice sheet behavior in the context of expected ice sheet hysteresis. In this contribution, I discuss a new approach for estimating CO2 from published and new measurements of phytoplankton carbon isotopic fractionation using the ACTI-CO cell model. This approach accounts for the physiological adaptations made by phytoplankton cells to avoid falling below optimal photosynthetic rates as CO2 declines, the carbon concentrating mechanism. The model yields CO2 estimates which can be significantly (up to 2-fold) higher than those estimated from classic equations. Given the large degree of cooling since the late Miocene in extratropical sea surface temperature records, such CO2 estimates are consistent with a more conservative estimate of climate sensitivity over the last 12 Ma.

  17. CO2 interaction with geomaterials.

    SciTech Connect

    Guthrie, George D.; Al-Saidi, Wissam A.; Jordan, Kenneth D.; Voora, Vamsee, K.; Romanov, Vyacheslav N.; Lopano, Christina L; Myshakin, Eugene M.; Hur, Tae Bong; Warzinski, Robert P.; Lynn, Ronald J.; Howard, Bret H.; Cygan, Randall Timothy

    2010-09-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2

  18. CO2 laser therapy of rhinophyma

    NASA Astrophysics Data System (ADS)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.

    2000-06-01

    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  19. CO2 laser milling of hard tissue

    NASA Astrophysics Data System (ADS)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  20. Leaves: Elevated CO2 levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burning fossil fuels and land use changes such as deforestation and urbanization have led to a dramatic rise in the concentration of carbon dioxide (CO2) in the atmosphere since the onset of the Industrial Revolution. The highly dilute CO2 from the atmosphere enters plant leaves where it is concentr...

  1. CO2 Sequestration short course

    SciTech Connect

    DePaolo, Donald J.; Cole, David R; Navrotsky, Alexandra; Bourg, Ian C

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  2. Total (fumarolic + diffuse soil) CO2 output from Furnas volcano

    NASA Astrophysics Data System (ADS)

    Pedone, M.; Viveiros, F.; Aiuppa, A.; Giudice, G.; Grassa, F.; Gagliano, A. L.; Francofonte, V.; Ferreira, T.

    2015-10-01

    Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO2) release by diffuse degassing and fumaroles. While the diffusive CO2 output has long (since the early 1990s) been characterized by soil CO2 surveys, no information is presently available on the fumarolic CO2 output. Here, we performed (in August 2014) a study in which soil CO2 degassing survey was combined for the first time with the measurement of the fumarolic CO2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Village), with the aim of quantifying the total (fumarolic + soil diffuse) CO2 output. We show that, within the main degassing (fumarolic) areas, the soil CO2 flux contribution (9.2 t day-1) represents a minor (~15 %) fraction of the total CO2 output (59 t day-1), which is dominated by the fumaroles (~50 t day-1). The same fumaroles contribute to ~0.25 t day-1 of H2S, based on a fumarole CO2/H2S ratio of 150 to 353 (measured with a portable Multi-GAS). However, we also find that the soil CO2 contribution from a more distal wider degassing structure dominates the total Furnas volcano CO2 budget, which we evaluate (summing up the CO2 flux contributions for degassing soils, fumarolic emissions and springs) at ~1030 t day-1.

  3. Nonlinear transmission of CO2 laser radiation by graphene

    NASA Astrophysics Data System (ADS)

    Sorochenko, V. R.; Obraztsova, Elena D.; Rusakov, P. S.; Rybin, M. G.

    2012-10-01

    The nonlinear transmission of multilayer (~12 layers) graphene at the wavelength λ ~ 10 μm is measured for the first time. The absorption saturation intensity in graphene (~330 kW cm-2) and the ablation threshold of its outer layers (~1 MW cm-2, 0.11 J cm-2) under action of a CO2 laser pulse with a duration of 70 — 85 ns at λ = 10.55 μm are determined. The residual absorption of graphene at its partial saturation was 48 % of the initial value. This is significantly smaller than the value measured previously for samples with a close number of layers at λ = 1.55 μm (92.3 % — 93.8 %). It is shown that the ablation threshold of two graphene layers adjacent to the BaF2 substrate (after successive ablation of outer layers) exceeds 0.27 J cm-2.

  4. Holiday CO2: Inference from the Salt Lake City data

    NASA Astrophysics Data System (ADS)

    Ryoo, J.; Fung, I. Y.; Ehleringer, J. R.; Stephens, B. B.

    2013-12-01

    A network of high-frequency CO2 sensors has been established in Salt Lake City (SLC), Utah (http://co2.utah.edu/), and the annual/monthly pattern of CO2 variability is consistent with a priori estimates of CO2 fluxes (McKain et al., 2012). Here we ask if short-term changes in anthropogenic sources can be detected, and present a case study of Thanksgiving holiday, when traffic and energy use patterns are expected to be different from that during the rest of the month. CO2 mole fraction is much higher during the Thanksgiving holidays than the other days in November 2008 for all 5 sites in SLC, and a similar pattern is found in other years. Taking into account that the wind speed is relatively low in downtown SLC compared to the other SLC sites, the downtown site is further investigated to minimize the meteorological influence on CO2. In order to understand the relative contributions to the high level of CO2 during the Thanksgiving holidays, we carried out a multiple linear regression (MLR) analysis of the rate of CO2 change against various sources. Mobile CO2 sources are assumed to be proportional to local traffic data and residential CO2 sources are assumed to depend exponentially on temperature. Vulcan data were used to specify the other anthropogenic sources (commercial, industrial, nonroad, electricity, aircraft, and cement). The MLR analysis shows that during the Thanksgiving holidays CO2 contributions from residential and commercial CO2 are larger than that during the rest of November, and mobile sources represent only a relatively small contribution. The study demonstrates the feasibility of detecting changes in urban source contributions using high-frequency measurements in combination with daily PBL height and local traffic volume data.

  5. Advances in CO2-Laser Drilling of Glass Substrates

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Queisser, Marco; Gentsch, Clemens; Schröder, Henning; Lang, Klaus-Dieter

    The CO2 -laser drilling in Schott D263Teco thin glass having a thickness of 500 μm is intensively studied. The nearly cylindrical holes having diameters smaller 100 μm could be drilled in 0.25 seconds per hole. Reliability investigations by performing temperature cycling show cracks in 51% of the drilled holes in the glass substrate. The reason is thermally induced stress during thermal CO2 -laser ablation. Different thermal pre- and post-treatments have been successfully studied avoiding such cracks (98.4% crack-free holes) and show the high potential of CO2 -laser drilling for through glass via (TGV) processing in glass substrates for micro-system applications.

  6. Responses of Arabidopsis and Wheat to Rising CO2 Depend on Nitrogen Source and Nighttime CO2 Levels1[OPEN

    PubMed Central

    Rachmilevitch, Shimon

    2015-01-01

    A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3−) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3− assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3− assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3− or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3−, shoot organic N, 15N isotope fractionation, 15NO3− assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3− assimilation and thus decreased dark respiration in the plants reliant on NO3−. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253

  7. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels.

    PubMed

    Asensio, Jose Salvador Rubio; Rachmilevitch, Shimon; Bloom, Arnold J

    2015-05-01

    A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3 (-)) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3 (-) assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3 (-) assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3 (-) or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3 (-), shoot organic N, (15)N isotope fractionation, (15)NO3 (-) assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3 (-) assimilation and thus decreased dark respiration in the plants reliant on NO3 (-). These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253

  8. Online CO2 and H2 O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants.

    PubMed

    Barbour, Margaret M; Evans, John R; Simonin, Kevin A; von Caemmerer, Susanne

    2016-05-01

    Mesophyll conductance significantly, and variably, limits photosynthesis but we currently have no reliable method of measurement for C4 plants. An online oxygen isotope technique was developed to allow quantification of mesophyll conductance in C4 plants and to provide an alternative estimate in C3 plants. The technique is compared to an established carbon isotope method in three C3 species. Mesophyll conductance of C4 species was similar to that in the C3 species measured, and declined in both C4 and C3 species as leaves aged from fully expanded to senescing. In cotton leaves, simultaneous measurement of carbon and oxygen isotope discrimination allowed the partitioning of total conductance to the chloroplasts into cell wall and plasma membrane versus chloroplast membrane components, if CO2 was assumed to be isotopically equilibrated with cytosolic water, and the partitioning remained stable with leaf age. The oxygen isotope technique allowed estimation of mesophyll conductance in C4 plants and, when combined with well-established carbon isotope techniques, may provide additional information on mesophyll conductance in C3 plants. PMID:26778088

  9. An obsession with CO2.

    PubMed

    Jones, Norman L

    2008-08-01

    The concept that underlies this paper is that carbon dioxide (CO2) removal is at least as important as the delivery of oxygen for maximum performance during exercise. Increases in CO2 pressure and reductions in the pH of muscle influence muscle contractile properties and muscle metabolism (via effects on rate-limiting enzymes), and contribute to limiting symptoms. The approach of Barcroft exemplified the importance of integrative physiology, in describing the adaptive responses of the circulatory and respiratory systems to the demands of CO2 production during exercise. The extent to which failure in the response of one system may be countered by adaptation in another is also explained by this approach. A key factor in these linked systems is the transport of CO2 in the circulation. CO2 is mainly (90%) transported as bicarbonate ions--as such, transport of CO2 is critically related to acid-base homeostasis. Understanding in this field has been facilitated by the approach of Peter Stewart. Rooted in classical physico-chemical relationships, the approach identifies the independent variables contributing to homeostasis--the strong ion difference ([SID]), ionization of weak acids (buffers, Atot) and CO2 pressure (PCO2). The independent variables may be reliably measured or estimated in muscle, plasma, and whole blood. Equilibrium conditions are calculated to derive the dependent variables--the most important being the concentrations of bicarbonate and hydrogen ions. During heavy exercise, muscle [H+] can exceed 300 nEq.L-1 (pH 6.5), mainly due to a greatly elevated PCO2 and fall in [SID] as a result of increased lactate (La-) production. As blood flows through active muscle, [La-] increase in plasma is reduced by uptake of La- and Cl- by red blood cells, with a resultant increase in plasma [HCO3-]. Inactive muscle contributes to homeostasis through transfer of La- and Cl- into the muscle from both plasma and red blood cells; this results in a large increase in [HCO3

  10. What are the costs of limiting CO2 concentrations?

    SciTech Connect

    Edmonds, James A.; Sands, Ronald D.

    2003-01-01

    The problem of stabilizing the concentration of CO2 is fundamentally different than the problem of stabilizing the concentration of a conventional pollutant or even other non-CO2 greenhouse gases. A fraction of any net anthropogenic emission is permanently committed to the atmosphere and in the very long term net anthropogenic emissions must cease if atmospheric CO2 concentrations are to be stabilized. Many of the technologies that could play a large future role in limiting cumulative carbon emissions are minor elements in the present energy system. A portfolio of technologies will be needed to address the variety of technology needs across the world's regions and over time.

  11. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  12. CO2 Sequestration Crosswell Monitoring

    NASA Astrophysics Data System (ADS)

    Morency, C.; Luo, Y.; Tromp, J.

    2010-12-01

    Geologic sequestration of CO2, a green house gas, represents an effort to reduce the large amount of CO2 generated as a by-product of fossil fuels combustion and emitted into the atmosphere. This process of sequestration involves CO2 storage deep underground into highly permeable porous media sealed by caprock. "4D seismics" is a natural non-intrusive monitoring technique which involves 3D time-lapse seismic surveys. The success of monitoring CO2 movement relies upon a proper description of the physics of the problem. We realize time-lapse migrations comparing acoustic, elastic (with or without Gassmann's formulae), and poroelastic simulations of 4D seismic imaging. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. We investigate various types of inversions using (1) P-wave traveltimes, (2) P- & S-wave traveltimes and (3) P- & S-wave traveltimes and amplitudes. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method. Biot's equations are implemented in the forward and adjoint simulations to account for poroelastic effects.

  13. Update on CO2 emissions

    SciTech Connect

    Friedingstein, P.; Houghton, R.A.; Marland, Gregg; Hackler, J.; Boden, Thomas A; Conway, T.J.; Canadell, J.G.; Raupach, Mike; Ciais, Philippe; Le Quere, Corrine

    2010-12-01

    Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

  14. The CO2nnect activities

    NASA Astrophysics Data System (ADS)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  15. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  16. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  17. CO2 laser cleaning of black deposits formed during the excimer laser etching of polyimide in air

    NASA Astrophysics Data System (ADS)

    Koren, G.; Donelon, J. J.

    1988-01-01

    Pulsed CO2 laser cleaning of black debris formed during the excimer laser ablation of polyimide in air is demonstrated. The 10.6 μm CO2 laser radiation is strongly absorbed in the debris but only weakly absorbed in polyimide thus enabling the clean removal of the debris without damaging the polyimide.

  18. Alteration of bentonite when contacted with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  19. Spectroscopy Study of Ar + CO2 Plasmas in ASTRAL.

    NASA Astrophysics Data System (ADS)

    Munoz, Jorge; Boivin, Robert; Kamar, Ola; Loch, Stuart; Ballance, Connor

    2006-10-01

    A spectroscopy study of the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source running Ar + CO2 gas mix is presented. ASTRAL produces Ar plasmas: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A spectrometer which features a 0.33 m Criss-Cross monochromator and a CCD camera is used for this study. Very different plasmas are produced following the relative importance of CO2 in the gas mixture. At low CO2 concentration, the plasmas are similar to those obtained with pure Ar with weak CO2, CO2^+, CO and CO^+ bands. The usual blue plasma core associated with intense Ar II transitions is observed with however a significant white glow coming from the outer plasma regions. At higher CO2 concentration, the plasma becomes essentially molecular and can be described as an intense white plasma column. Molecular dissociative processes associated with the production of strong C and O atomic lines are observed under specific plasma conditions. The atomic spectral lines are compared with ADAS modeling results. This study indicates the possible advantages of using a helicon source to control the CO2 plasma chemistry for industrial applications.

  20. The Nanoscale Basis of CO2 Trapping for Geologic Storage.

    PubMed

    Bourg, Ian C; Beckingham, Lauren E; DePaolo, Donald J

    2015-09-01

    Carbon capture and storage (CCS) is likely to be a critical technology to achieve large reductions in global carbon emissions over the next century. Research on the subsurface storage of CO2 is aimed at reducing uncertainties in the efficacy of CO2 storage in sedimentary rock formations. Three key parameters that have a nanoscale basis and that contribute uncertainty to predictions of CO2 trapping are the vertical permeability kv of seals, the residual CO2 saturation Sg,r in reservoir rocks, and the reactive surface area ar of silicate minerals. This review summarizes recent progress and identifies outstanding research needs in these areas. Available data suggest that the permeability of shale and mudstone seals is heavily dependent on clay fraction and can be extremely low even in the presence of fractures. Investigations of residual CO2 trapping indicate that CO2-induced alteration in the wettability of mineral surfaces may significantly influence Sg,r. Ultimately, the rate and extent of CO2 conversion to mineral phases are uncertain due to a poor understanding of the kinetics of slow reactions between minerals and fluids. Rapidly improving characterization techniques using X-rays and neutrons, and computing capability for simulating chemical interactions, provide promise for important advances. PMID:26266820

  1. CO2 mitigation via capture and chemical conversion in seawater.

    PubMed

    Rau, Greg H

    2011-02-01

    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO(2) in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO(2) hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO(2) capture and storage scheme at coastal locations. Such low-tech CO(2) mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO(2) emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature's own very effective but slow CO(2) mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO(2) and ocean acidity on geologic times scales. PMID:21189009

  2. Ablative system

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A carrier liquid containing ablative material bodies is connected to a plenum chamber wall with openings to a high temperature environment. The liquid and bodies pass through the openings of the wall to form a self replacing ablative surface. The wall is composed of honeycomb layers, spheres containing ablative whiskers or wads, and a hardening catalyst for the carrier liquid. The wall also has woven wicks of ablative material fibers that extend through the wall openings and into plenum chamber which contains the liquid.

  3. Reaction of CO2 and Carbonate Mineral in Seawater for Mitigation of CO2 and Ocean Acidity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.

    2010-12-01

    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO2 in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. Contrary to predictions based on classical carbonate chemistry, up to 85% of the captured carbon was retained in solution, i.e., it did not degas or precipitate, even after full equilibration with air. This is because abiotic precipitation of CaCO3 from seawater is chemically inhibited up to dissolved concentrations approaching 20X supersaturation. Thus, above-ground CO2 hydration with seawater, reaction with mineral carbonate, and conversion to dissolved Ca(HCO3)2 may provide a relatively simple point-source CO2 capture and storage scheme at coastal locations. This approach is analogous to wet limestone scrubbing of flue gas that is commonly used for SO2 removal. Such low-tech CO2 mitigation could be especially relevant for retrofitting to existing coastal power plants and for deployment in the developing world, the primary source of future CO2 emissions. An electrochemically powered version of the preceding has been demonstrated for air capture of CO2. In any case, the addition of the resulting alkaline solution to the ocean would benefit marine ecosystems that are currently challenged by acidification. This is indicated by the widespread use of miniature CO2/carbonate mineral/seawater reactors in saltwater aquaria to generate alkalinity for preserving or enhancing coral and shellfish growth. Large-scale applications would thus allow use of the planet’s largest saline reservoir, the ocean, to safely and effectively store anthropogenic carbon in a form other than molecular CO2 or carbonic acid. This approach in essence hastens Nature's own very effective but slow CO2 mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO2 and ocean acidity on geologic times scales.

  4. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    PubMed Central

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  5. The transport of CO2 into central Texas caves (Invited)

    NASA Astrophysics Data System (ADS)

    Breecker, D.; Banner, J. L.; Larson, T.

    2013-12-01

    It is well established that CO2 is flushed out of caves by seasonal or synoptic temperature- and barometric pressure-driven ventilation. The mechanism by which CO2 is transported into caves is not as well studied and must be understood in order to quantify carbon (C) cycling through caves, soils and epikarst. Transport mechanisms into caves include gas and aqueous phase (i.e. drip-water) transport. We interpret δ13C values of cave-air CO2 and O2/Ar ratios of cave-air in order to distinguish between these transport mechanisms in three central Texas caves. Gas phase transport might allow cave-air to be used as a simple proxy for otherwise largely inaccessible epikarst air. Drip-water transport might allow measurements of individual drips to be scaled up to cave-integrated assessment of water flux, calcite precipitation, and degassing-related isotope fractionation using measurements of cave-air CO2. We start by assuming gas phase transport and then evaluate the consistency of the results. We apply to cave-air CO2 the theory for steady state soil CO2 transport, which involves mixing with atmospheric air and isotope fractionation by diffusion. This allows calculation of the C isotope composition of the reduced C source for cave-air CO2 (δ13Cr). Calculated cave-air δ13Cr values are consistent with observed soil δ13Cr values. For instance, where trees are evenly distributed at the surface, cave-air δ13Cr values (-24‰) remained within 1‰ of tree-dominated soil δ13Cr values and were 3.5 to 4.5 ‰ lower than grass-dominated soil δ13Cr values, suggesting that trees are the dominant C source. This internally consistent explanation suggests that CO2 diffuses and/or advects into these caves as a gas because aqueous transport into caves would likely result in different cave-air and soil δ13Cr values, as described next. The magnitude of the CO2(g) -HCO3-(aq) carbon isotope per mil fractionation factor is -8.4 ‰ at 20.5°C, the mean Inner Space Cavern drip

  6. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  7. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    NASA Astrophysics Data System (ADS)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.; Baker, David; Conway, Thomas J.; Chung, Y. S.; Gregg, Jay; Miller, John B.; Southon, John R.; Zhou, Ling-Xi

    2011-12-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2 (CO2ff, derived from Δ14CO2observations). The five-year TAP record shows high CO2ff when local air comes from the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO2ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO2ff. Biospheric CO2 contributes substantially to total CO2variability at both sites, even in winter when non-fossil CO2 sources (including photosynthesis, respiration, biomass burning and biofuel use) contribute 20-30% of the total CO2 enhancement. Carbon monoxide (CO) correlates strongly with CO2ff. The SDZ and TAP far-field (China influenced) samples have CO: CO2ff ratios (RCO:CO2ff) of 47 ± 2 and 44 ± 3 ppb/ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low RCO:CO2ffof 13 ± 3 ppb/ppm, slightly higher than bottom-up inventories, but consistent with emission ratios for other developed nations. We compare our CO2ff observations with modeled CO2ff using the FLEXPART Lagrangian particle dispersion model convolved with a bottom-up CO2ff emission inventories. The modeled annual mean CO2ff mole fractions are consistent with our observations when the model inventory includes the reported 63% increase in Chinese emissions from 2004 to 2010, whereas a model version which holds Chinese emissions flat is unable to replicate the observations.

  8. CO2 ventilation in the Critical Zone: synoptic- or turbulent-scale pressure pumping?

    NASA Astrophysics Data System (ADS)

    Sanchez-Cañete, E. P.; Serrano-Ortiz, P.; Kowalski, A. S.; Oyonarte, C.; Domingo, F.

    2011-12-01

    The critical zone can store large amounts of CO2, showing soil CO2 increases with depth fluctuating from 0.04 to 13.0% by volume. This CO2 can be emitted to the atmosphere through soil ventilation, causing the loss of CO2 stored in the subterranean spaces. The implications of ventilation processes for regional CO2 budgets are still poorly known. Here we analyze subterranean CO2 ventilation in two carbonate ecosystems situated in Southeast Spain, examining their main drivers and implications for the net ecosystem carbon balance measured with an Eddy Covariance system. The first ecosystem is a sub-humid, subalpine shrubland and has two sensors measuring CO2 molar fraction in the soil (25 cm depth) and in a borehole penetrating 7 m into a bedrock outcropping. The second ecosystem is a semiarid shrubland and has sensors buried at 0.15, 0.5 and 1.5 meters measuring a soil CO2 profile. At both sites the ecosystem CO2 fluxes are measured using an Eddy Covariance system. In the first ecosystem, the underground CO2 molar fraction decreases quickly with high friction velocity without periodicity, associated with turbulent pressure perturbations. However in the second ecosystem, the underground CO2 molar fraction increases and decreases with a regular periodicity induced by variations associated with synoptic pressure (passage of fronts). These results suggest pressure pumping mechanisms causing subsurface ventilation can occur over a range of scales, from turbulent (friction velocity) to synoptic.

  9. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  10. Estimation of continuous anthropogenic CO2 using CO2, CO, δ13C(CO2) and Δ14C(CO2)

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Gerbig, C.; Janssens-Maenhout, G.; Levin, I.

    2015-07-01

    We investigate different methods for estimating anthropogenic CO2 using modelled continuous atmospheric concentrations of CO2 alone, as well as CO2 in combination with the surrogate tracers CO, δ13C(CO2) and Δ14C(CO2). These methods are applied at three hypothetical stations representing rural, urban and polluted conditions. We find that independent of the tracer used, an observation-based estimate of continuous anthropogenic CO2 is not feasible at rural measurement sites due to the low signal to noise ratio of anthropogenic CO2 estimates at such settings. At urban and polluted sites, potential future continuous Δ14C(CO2) measurements with a precision of 5 ‰ or better are most promising for anthropogenic CO2 determination (precision ca. 10-20%), but the insensitivity against CO2 contributions from biofuel emissions may reduce its accuracy in the future. Other tracers, such as δ13C(CO2) and CO could provide an accurate and already available alternative if all CO2 sources in the catchment area are well characterized with respect to their isotopic signature and CO to anthropogenic CO2 ratio. We suggest a strategy for calibrating these source characteristics on an annual basis using precise Δ14C(CO2) measurements on grab samples. The precision of anthropogenic CO2 determination using δ13C(CO2) is largely determined by the measurement precision of δ13C(CO2) and CO2. The precision when using the CO-method is mainly limited by the variation of natural CO sources and CO sinks. At present, continuous anthropogenic CO2 could be determined using the tracers δ13C(CO2) and/or CO with a precision of about 30 %, a mean bias of about 10 % and without significant diurnal discrepancies. This allows significant improvement, validation and bias reduction of highly resolved emission inventories using atmospheric observation and regional modelling.

  11. The NASA OCO-2 CO2 Directed Satellite Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    NASA's Orbiting Carbon Observatory (OCO) was designed to provide the measurements needed to estimate the atmospheric CO2 dry air mole fraction (XCO2) with the sensitivity, accuracy, and sampling density needed to quantify regional scale carbon sources and sinks over the globe and characterize their behavior over the annual cycle.

  12. Surface Condensation of CO2 onto Kaolinite

    SciTech Connect

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.; Ramprasad, Sudhir; Martin, Paul F.; McGrail, B. Peter

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He or N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.

  13. Current Hot Potatoes in Atrial Fibrillation Ablation

    PubMed Central

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  14. Outsourcing CO2 within China

    PubMed Central

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  15. Vertical and horizontal soil CO2 transport and its exchanges with the atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Cañete, Enrique P.; Serrano-Ortíz, Penélope; Kowalski, Andrew S.; Curiel Yuste, Jorge; Domingo, Francisco; Oyonarte, Cecilio

    2015-04-01

    The CO2 efflux from soils to the atmosphere constitutes one of the major fluxes of the terrestrial carbon cycle and is a key determinant for sources and sinks of CO2 in land-atmosphere exchanges. Because of their large global magnitude, even small changes in soil CO2 effluxes directly affect the atmospheric CO2 content. Despite much research, models of soil CO2 efflux rates are highly uncertain, with the positive or negative feedbacks between underground carbon pools and fluxes and their temperature sensitivities in future climate scenarios largely unknown. Now it is necessary to change the point of view regarding CO2 exchange studies from an inappropriately conceived static system in which all respired CO2 is directly emitted by molecular processes to the atmosphere, to a dynamic system with gas transport by three different processes: convection, advection and molecular diffusion. Here we study the effects of wind-induced advection on the soil CO2 molar fraction during two years in a shrubland plateau situated in the Southeast of Spain. A borehole and two subterranean profiles (vertical and horizontal) were installed to study CO2 transport in the soil. Exchanges with the atmosphere were measured by an eddy covariance tower. In the vertical profile, two CO2 sensors (GMP-343, Vaisala) were installed at 0.15m and 1.5m along with soil temperature and humidity probes. The horizontal profile was designed to measure horizontal movements in the soil CO2 molar fraction due to down-gradient CO2 from the plant, where the majority CO2 is produced, towards bare soil. Three CO2 sensors (GMM-222, Vaisala) were installed, the first below plant (under-plant), the second in bare soil separated 25 cm from the first sensor (near-plant) and the third in bare soil at 25 cm from the second sensor (bare soil). The results show how the wind induces the movement of subterranean air masses both horizontally and vertically, affecting atmospheric CO2 exchanges. The eddy covariance tower

  16. Intelligent CO 2 beam guiding

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Stimpfl, Joffrey; Emonts, Michael

    The Fraunhofer IPT has recently developed a self-diagnosing laser system technology which can monitor the process parameters of all laser system components and supports the adjustment of the beam guidance of CO2 laser production systems with large ranges of travel. The intelligent system furthermore interprets the correlated laser beam parameter responses and proposes appropriate measures for preventive maintenance. The new assisted beam guidance adjustment bases upon active reflector modules adjusting with a large angular range of average ±0.8∘ at maximum resolution and a position-sensitive detector for the position of the pilot laser.

  17. Impacts of elevated CO2 on plant-microbial interactions

    NASA Astrophysics Data System (ADS)

    Shi, S.; Herman, D.; Nuccio, E. E.; Pett-Ridge, J.; Brodie, E.; He, Z.; Zhou, J.; Firestone, M.

    2014-12-01

    Rising atmospheric CO2 levels are predicted to alter C cycling and terrestrial ecosystem functions through effects on plant-microbial interactions. Under elevated CO2, plants transfer more C belowground. However, the fate, transformation and consequence of this extra C in soil are not well understood. We examined the influence of eCO2 on the belowground C cycling using Avena fatua, a common Mediterranean annual grass, with its root associated microbial community across multiple plant growth stages over one-growing season. Avena grown under eCO2 (700 ppm) 13CO2 increased both total C allocated belowground and the amount of root-derived 13C in the mineral-associated fraction. Although eCO2 did not show any significant impact on the abundance (quantified by qPCR) and composition (assessed by MiSeq 16S and ITS sequencing) of rhizosphere microbial community at any sampling time point, small but significant shifts on rhizosphere microbial functional potential were detected using GeoChip 5.0. In addition, the rhizosphere effect (i.e., impact of roots on rhizosphere community versus bulk soil) was much stronger in plants grown under eCO2 than these under ambient CO2 (aCO2). The rhizosphere enriched genes included key functional genes involved in C, N, P and S cycling as well as stress response. The signal intensities of a number of C cycling genes shifted significantly in rhizosphere communities associated with plants grown under eCO2, and many of these genes are involved in the decomposition of low molecular weight C compounds. When plants became senescent, the abundance of some genes encoding enzymes capable of decomposing macromolecular C compounds (e.g., xylanase, endopolygalacturonase) were significant higher in the rhizosphere of Avena grown in eCO2 than aCO2 condition, which may be due to the higher amount of Avena root debris detected at the end of season. Understanding modulations of plant-microbial interactions due to changing climate may allow improved

  18. A dispersion study of CO2 in a closed area

    NASA Astrophysics Data System (ADS)

    Korinek, Tomas; Frana, Karel

    2016-06-01

    Predictions of air pollution dispersion in an indoor environment are important outputs to control a fresh air ventilation or energy building efficiency. This study deals with numerical simulations of a formation and dispersion of carbon dioxide (CO2) in a closed area. Numerical simulations were carried out by the Reynolds Averaged Navier-Stokes (RANS) approach. A simple domain with one pollution source was used for a validation of the mathematical model, in which values of the CO2 concentration were calculated using CFD and measured. The CO2 was created as a combustion product of the ethanol. There were used two different methods for the calculation of the CO2 formation. The first method adopted the species transport model with reactions and the second method was the non-premix combustion model based on the mixture fraction theory. The third method used in numerical simulations was a constant mass flow inlet of CO2. All computational methods provided a sufficient agreement of the CO2 concentration with the experimental data.

  19. Improvement of Atmospheric CO2 Inversion Analysis at JMA

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Maki, T.; Machida, T.; Matsuda, H.; Sawa, Y.; Niwa, Y.

    2015-12-01

    The Japan Meteorological Agency (JMA) has developed a new inversion system of atmospheric CO2 mole fraction and flux for better understanding of global carbon budget and contribution to global carbon cycle studies. The new system introduces a newly developed on-line atmospheric tracer transport model (GSAM-TM). Its tracer transport process is directly coupled with a low resolution version (TL95) of JMA's operational global numerical weather prediction (NWP) model (JMA_GSM), using mass conservative semi-Lagrangian scheme and Arakawa-Shubert mass flux scheme for vertical convective transportation. It represents mass transportation, mass conservation, and structures of tracer distribution more precisely than JMA's previous transport model (CDTM), which is off-line tracer transport model using semi-Lagrangian scheme and Kuo-based convection scheme with multiplying globally uniform coefficient for mass conservation. The new system also introduces new a priori fluxes for fossil fuel consumption and oceanic CO2 exchange. In this study, we compare CO2 mole fraction field and flux estimates of the new system against that of current annual JMA analysis with CDTM. The new system represents better atmospheric CO2 distribution structure than the current system does especially vertical gradient around tropopause. Due to improvement of fossil fuel CO2 diffusion estimates, analyzed regional budget over Eurasian Continent changed clearly. Budgets for less observation area (South America and Africa) are also changed. Globally averaged atmospheric CO2 budget is not changed significantly. This new system is planned to be operationally implemented in 2016, and we will further improve the CO2 inversion analysis for understanding of carbon cycle.

  20. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts

    SciTech Connect

    Karim, Ayman M.; Su, Yu; Engelhard, Mark H.; King, David L.; Wang, Yong

    2011-02-25

    Abstract: The catalytic roles of Co0 and Co2+ during steam reforming of ethanol were investigated over Co/MgO catalysts. Catalysts with different Co0/(Co0+Co2+) fraction were prepared through calcination and/or reduction at different temperatures, and the Co0 fraction was quantified by TPR and in-situ XPS. High temperature calcination of Co/MgO allowed us to prepare catalysts with more non-reducible Co2+ incorporated in the MgO lattice, while lower calcination temperatures allowed for the preparation of catalysts with higher Co0/(Co0+Co2+) fractions. The catalytic tests on Co0, non-reducible Co2+, and reducible Co2+ indicated that Co0 is much more active than either reducible or non-reducible Co2+ for C-C cleavage and water gas shift reaction. In addition, catalysts with a higher Co0 surface fraction exhibited a lower selectivity to CH4.

  1. Geologic Controls Influencing CO2 Loss from a Leaking Well

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Martinez, M. J.; McKenna, S. A.; Hopkins, P. L.

    2010-12-01

    Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A “Design of Experiments” approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Passive CO2 concentration in higher plants.

    PubMed

    Sage, Rowan F; Khoshravesh, Roxana

    2016-06-01

    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. PMID:27058940

  3. Elevated CO2 enhances otolith growth in young fish.

    PubMed

    Checkley, David M; Dickson, Andrew G; Takahashi, Motomitsu; Radich, J Adam; Eisenkolb, Nadine; Asch, Rebecca

    2009-06-26

    A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals. PMID:19556502

  4. Endometrial ablation

    MedlinePlus

    ... can be seen on the video screen. Small tools can be used through the scope to remove abnormal growths or tissue for examination. Ablation uses heat, cold, or electricity to destroy the lining of the womb. The ...

  5. Better constraining climate sensitivity to CO2 since the Miocene through ACTI-CO process modeling of marine CO2 proxies

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Abrevaya, Lorena; Bolton, Clara; Hernandez Sanchez, Maria Teresa; Mejia, Luz Maria; Mendez Vicence, Ana

    2015-04-01

    Atmospheric CO2 is inferred to be an important forcing agent in climate on an array of timescales. Periods of CO2 higher than preindustrial are not sampled by available direct ice core records, so empirical estimates of climate sensitivity to higher CO2 levels, and climate model responses such as ice cap growth, are conditioned by the large uncertainty in long term CO2 proxy records. Here we report results with ACTI-CO, a process model for carbon allocation within the cell, which can be used to improve the accuracy of CO2 proxy records derived from carbon isotopic fractionation in marine algae. We apply ACTI-CO to new and existing records of carbon isotopic fractionation from diatoms and coccolithophores, focusing on the mid-Miocene to present. We evaluate the degree to which active carbon uptake attenuates the magnitude of change in isotopic fractionation associated with a given CO2 decrease. We also consider cell size and growth rate changes. The results suggest the potential for significant CO2 declines since the middle Miocene, consistent with, but potentially larger in magnitude, than those inferred from previous inverse modeling of climate data using glacial-interglacial climate sensitivity to CO2.

  6. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  7. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  8. CO2 laser frequency multiplication

    SciTech Connect

    Not Available

    1992-03-01

    The duration of the mode-locked CO(2) laser pulses was measured to be 0.9 + or - nsec by the technique of (second harmonic) autocorrelation. Knowing the pulse duration, the spot size, and the harmonic conversion efficiency, a detailed fit of experiment to theory gave an estimate of the nonlinear coefficient of AgGaSe(2). d36 = 31 + or - V(1), in agreement with the most accurate literature values. A number of experiments were made with longer pulse trains in which the highest harmonic energy conversion reached 78%. The damage threshold was measured and it turned out to be related much more strongly to fluence than intensity. The shorter pulse trains had peak intensities of close to 300 MW 1/cm squared whereas the longer trains (3 usec) had intensities up to 40 MW 1/cm squared.

  9. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  10. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  11. Recent Trends in Atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Rayner, P.; Bousquet, P.; Cozic, A.; Miller, J. B.; Lehman, S. J.; Peters, W.; Tans, P. P.; Ciais, P.

    2007-12-01

    The radiocarbon content of atmospheric CO2 (14CO2) varies due to a number of factors. After the near-doubling of the 14CO2 loading in the early 1960s (due to atmospheric nuclear weapons testing), many studies examined the fate of this 'bomb 14C' to understand exchange processes of CO2 with the surface reservoirs. Today, however, the atmosphere and surface reservoirs are close to equilibrium with respect to bomb 14C, and instead, changes in 14CO2 more strongly reflect the response to the addition of 14C-free fossil fuel CO2 to the atmosphere. We use an atmospheric transport model to simulate recent atmospheric 14CO2, and compare this to observations at several sites over the Northern Hemisphere continents. We show that, in the Northern Hemisphere, 14CO2 variability is dominated by the effect of fossil fuel CO2 emissions. The model simulates the time trends quite well, including both the overall secular trend and the seasonal cycle. A seasonal cycle in 14CO2 is observed at the high altitude sites of Niwot Ridge, Colorado, and Jungfraujoch, Switzerland, but the magnitude varies from year to year. Our modeling studies demonstrate that this inter-annual variability can be explained by differences in atmospheric transport. This is in contrast to CO2 concentration seasonal cycles, which are dominated by seasonal changes in CO2 source strengths.

  12. Photosynthesis in a CO2 rich atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of CO2 ([CO2]) in the atmosphere is projected to reach ~550 ppm by 2050. C3 plants respond directly to growth at elevated [CO2] via stimulated photosynthesis and reduced stomatal conductance. The enhancement of photosynthesis is the result of increased velocity of carboxylation of ...

  13. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-02-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2 / N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7)‰ for 13C during CO destruction. The N2O : CO2 average ratio of (1.8 ± 0.2) × 10-2 ppb:ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic converter technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb:ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm:ppm are very close to the expected, theoretically calculated values of O2 depletion per CO2 enhancement.

  14. The Dependence of Plant δ13C on Atmospheric pCO2

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Schubert, B.

    2011-12-01

    Numerous studies on multicellular plants have reported increasing carbon isotope fractionation in leaf tissue with increasing concentrations of atmospheric carbon dioxide (pCO2), but the magnitude of the effect is highly variable (i.e., 0.62 to 2.7 % per 100 ppm CO2). The majority of these experiments tested only small differences in CO2 levels (<100 ppm), with maximum concentrations of elevated pCO2 = 700 ppm. In order to quantify how carbon isotope fractionation in plant tissues is affected by the pCO2 concentration under which plants grow, we measured carbon isotope values in a total of 191 Arabidopsis thaliana and Raphanus sativus plants grown under controlled light, water, and temperature conditions, and varying the pCO2 concentrations across a trajectory of 17 different pCO2 levels ranging from 370 to 4200 ppm. From this large dataset, we show that the carbon isotope discrimination [Δδ13C = (δ13CCO2 - δ13Cplant) / (1000 + δ13Cplant)] is indeed a function of pCO2, however, the relationship is hyperbolic, rather than linear, as is typically assumed. Across the small changes in pCO2 previously studied the response appears linear, however, our expanded dataset clearly shows that increases in Δδ13C level off at high pCO2, which is consistent with the ultimate control over fractionation being the activity of Rubisco as the concentration of pCO2 inside the leaf approaches the pCO2 level outside the leaf. The hyperbolic relationship we have quantified using published and new data is extremely robust (R2 = 0.90, n = 26, P < 0.0001), and evident in n-alkanes as well as bulk tissue, suggesting the potential for application to fossil plant materials in order to reconstruct pCO2 across critical intervals.

  15. Infrared spectra and structures of the neutral and charged CrCO2 and Cr(CO2)2 isomers in solid neon.

    PubMed

    Zhang, Qingnan; Chen, Mohua; Zhou, Mingfei

    2014-08-01

    The reactions from codeposition of laser-ablated chromium atoms with carbon dioxide in excess neon are studied by infrared absorption spectroscopy. The species formed are identified by the effects of isotopic substitution on their infrared spectra. Density functional calculations are performed to support the spectral assignments and to interpret the geometric and electronic structures of the experimentally observed species. Besides the previously reported insertion products OCrCO and O2Cr(CO)2, the one-to-one Cr(CO2) complex and the one-to-two Cr(CO2)2 complex as well as the CrOCrCO and OCCrCO3 complexes are also formed. The Cr(CO2) complex is characterized to be side-on η(2)-C,O-coordinated. The Cr(CO2)2 complex is identified to involve a side-on η(2)-C,O-coordinated CO2 and an end-on η(1)-O-coordinated CO2. OCCrCO3 is a carbonate carbonyl complex predicted to have a planar structure with a η(2)-O,O-coordinated carbonate ligand. The CrOCrCO complex is predicted to be linear with a high-spin ground state. Besides the neutral molecules, charged species are also produced. The Cr(CO2)(+) and Cr(CO2)2(+) cation complexes are characterized to have linear end-on η(1)-O-coordinated structures with blue-shifted antisymmetric CO2 stretching vibrational frequencies. The OCrCO(-) anion is bent with the Cr-O and CO stretching frequencies red-shifted from those of OCrCO neutral molecule. PMID:25033227

  16. The Mechanism of Diopside-Water-Supercritical CO2 Reaction:Relevance to CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Dong, S.; Zhao, L.; Teng, H.

    2013-12-01

    In order to study fundamental mineral carbonation process and reaction extent relevance to CO2 geological sequestration, in situ Raman spectroscopy was used to detect the silicate mineral diopside (CaMgSi2O6)-H2O-scCO2 reaction. In the experiment, diopside bulk grain (0.09g) and grinded powder (0.09g, 200mesh) were put into the sample pool of in situ Raman spectroscopy apparatus in water-saturated condition (10μlH2O: experimental H2O mole fraction in CO2 is 8.1×10-2, solubility of H2O in CO2 at experimental condition is 4.8×10-3), setting at the temperature of 60 degrees centigrade and the pressure of 7.9MPa. Experiment was done following the Lambert-Beer's law:Iv=KLCI0, which shows that Raman intensity(Iv) is proportional to the substance concentration(C)(K, L and I0 are constant in this experiment). The Raman spectrum analysis was performed at the beginning day, day 13, day 28 and day 42 successively. The results indicate that at day 13, a new peak appeared at 1124cm-1 , revealing that in water-saturated scCO2 condition, diopside is converted to huntite (Mg3Ca(CO3)4). The intensity ratio of diopside(1014cm-1) and huntite varies from 4.51:1(beginning) to 2.59:1(day 13) and then to 3.46:1(day 28). However, at day 42, almost no huntite remained in the experiment settings. According to Beer's law, we can conclude that the concentration of huntite increased firstly and then decreased after day 13 until we could not detect it at day 49. The XRD, SEM and FTIR test at day 49 also support the conclusion above. The huntite might form at the very first stage and then got dissolved into HCO3-; further experiments need to be conducted to detect HCO3-. The Raman test on the bulk grain also shows a similar trend as powder, but the reaction of the grain is much slower than powder. Besides, from the test on the grain at day 28, the water film could been detected 100-150μm above the surface of the grain with the thickness of 50-150μm.

  17. Measurements of Ablation Pressure and Mass Ablation Rate Using a Target Pendulum and a Thin Foil Target at 10 μm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Tateyama, Ryuzi; Ogura, Kazuki; Mima, Kunioki; Nakai, Sadao; Yamanaka, Chiyoe

    1983-04-01

    The ablation pressure and the mass ablation rate for a 10 μm CO2 laser were measured using two methods: a ballistic target pendulum and shifted X-ray emission images which are equivalent to X-ray back-lighting. The measured ablation pressure was 10 Mbar and the mass ablation rate was 106 g/cm2\\cdotsec at the absorbed laser intensity of 5× 1013 W/cm2. Comparing the ablation mass rate measured by the pendulum with that derived from the penetration depth of the hot electrons using K_α line emission, we could identify the hot electron driven ablation as the dominant process.

  18. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  19. Forest succession at elevated CO2

    SciTech Connect

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  20. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    PubMed

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases. PMID:26752014

  1. Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Timmermann, A.; Elison Timm, O.; Saito, F.; Abe-Ouchi, A.

    2014-08-01

    One hundred thousand years of ice sheet buildup came to a rapid end ∼25-10 thousand years before present (ka BP), when ice sheets receded quickly and multi-proxy reconstructed global mean surface temperatures rose by ∼3-5 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate-ice sheet model, we simulate the climate and Northern Hemisphere ice sheet evolution from 78 ka BP to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and prescribed CO2, we find that enhanced calving led to a slowdown of ice sheet growth as early as ∼8 ka prior to the Last Glacial Maximum (LGM). The glacial termination was then initiated by enhanced ablation due to increasing obliquity and precession, in agreement with the Milankovitch theory. However, our results also support the notion that the ∼100 ppmv rise of atmospheric CO2 after ∼18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor rising CO2 concentrations alone were sufficient to complete the deglaciation.

  2. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  3. Residual CO2 trapping in Indiana limestone.

    PubMed

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers. PMID:23167314

  4. Joint CO2 and CH4 accountability for global warming

    PubMed Central

    Smith, Kirk R.; Desai, Manish A.; Rogers, Jamesine V.; Houghton, Richard A.

    2013-01-01

    We propose a transparent climate debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national historic emissions databases for both greenhouse gases to 2005, justifying 1950 as the starting point for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate analysis, land use change and forestry. We calculate the CO2(f) and CH4 remaining in the atmosphere in 2005 from 205 countries using the Intergovernmental Panel on Climate Change’s Fourth Assessment Report impulse response functions. We use these calculations to estimate the fraction of remaining global emissions due to each country, which is applied to total radiative forcing in 2005 to determine the combined climate debt from both greenhouse gases in units of milliwatts per square meter per country or microwatts per square meter per person, a metric we term international natural debt (IND). Australia becomes the most indebted large country per capita because of high CH4 emissions, overtaking the United States, which is highest for CO2(f). The differences between the INDs of developing and developed countries decline but remain large. We use IND to assess the relative reduction in IND from choosing between CO2(f) and CH4`control measures and to contrast the imposed versus experienced health impacts from climate change. Based on 2005 emissions, the same hypothetical impact on world 2050 IND could be achieved by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among countries, implying differential optimal strategies. Adding CH4 shifts the basic narrative about differential international accountability for climate change. PMID:23847202

  5. Joint CO2 and CH4 accountability for global warming.

    PubMed

    Smith, Kirk R; Desai, Manish A; Rogers, Jamesine V; Houghton, Richard A

    2013-07-30

    We propose a transparent climate debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national historic emissions databases for both greenhouse gases to 2005, justifying 1950 as the starting point for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate analysis, land use change and forestry. We calculate the CO2(f) and CH4 remaining in the atmosphere in 2005 from 205 countries using the Intergovernmental Panel on Climate Change's Fourth Assessment Report impulse response functions. We use these calculations to estimate the fraction of remaining global emissions due to each country, which is applied to total radiative forcing in 2005 to determine the combined climate debt from both greenhouse gases in units of milliwatts per square meter per country or microwatts per square meter per person, a metric we term international natural debt (IND). Australia becomes the most indebted large country per capita because of high CH4 emissions, overtaking the United States, which is highest for CO2(f). The differences between the INDs of developing and developed countries decline but remain large. We use IND to assess the relative reduction in IND from choosing between CO2(f) and CH4`control measures and to contrast the imposed versus experienced health impacts from climate change. Based on 2005 emissions, the same hypothetical impact on world 2050 IND could be achieved by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among countries, implying differential optimal strategies. Adding CH4 shifts the basic narrative about differential international accountability for climate change. PMID:23847202

  6. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  7. Stable carbon isotope ratios as proxies for CO2 migration: An experimental approach with analogue fluids

    NASA Astrophysics Data System (ADS)

    Myrttinen, A.; Becker, V.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios have proven to be highly sensitive tracers of CO2 migration in the subsurface, provided that the δ13C value of injected CO2 is distinct from that of baseline carbon in the reservoir and in shallow aquifers. This is of great importance for tracing the movement and the fate of injected CO2 in storage reservoirs where fluid and gas samples for chemical and isotope analyses can be obtained. One fundamental aspect that needs to be considered is carbon isotope fractionation between the various dissolved inorganic carbon (DIC) species and sub- or super-critical CO2. Such isotope fractionation may occur at various stages of CO2 migration including, the initial stages of injection during CO2 dissolution; during possible CO2 desiccation in pores; during CO2 migration within the reservoir or even during potential leakage into the near-surface environment. The magnitude and direction of carbon isotope fractionation (1000lnαDIC-CO2) between the DIC species and the injected CO2 depends highly on temperature and pH. At shallow depths, where temperatures are moderate and pH values are typically close to neutral, HCO3- is the dominant form of DIC. Carbon isotope fractionation between CO2 and DIC is therefore expected to reach ~ +10 ‰, resulting in a more positive δ13C value of DIC compared to that of the injected CO2. On the other hand, during injection, elevated temperatures and pH values of below 6 are usually observed. Here, H2CO3 is the dominant form of DIC and carbon isotope fractionation of close to -1 ‰ is expected. However, literature data on isotope fractionation values between H2CO3 and CO2 at temperatures above ˜ 60 °C are limited. In order to investigate the effects of pH and temperature on carbon isotope fractionation at various subsurface conditions, including elevated temperatures and pressures typical for CO2 reservoirs, laboratory experiments with analogue fluids were conducted within the framework of the CO2ISO-LABEL project

  8. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  9. Continuous Vocalization during Kendo Exercises Suppresses Expiration of CO2.

    PubMed

    Arikawa, H; Terada, T; Takahashi, T; Kizaki, K; Imai, H; Era, S

    2015-06-01

    One distinctive trait of kendo, the Japanese martial art of fencing, is the execution of sustained, high-effort vocalizations during actions. The purpose of this study was to determine the effect of these vocalizations on respiratory functions. First, the intensity of 3 kendo exercises was quantified by measuring oxygen uptake (V̇O2) and comparing it with V̇O2max measured during treadmill tests of 8 university kendo athletes. Respiratory variables of these 8 athletes were then analyzed using a portable breath gas analyzer during the most intensive kendo exercise, kakari-keiko, with and without vocalization. Breathing frequency (fB) increased regardless of vocalization, but in trials with vocalization, fB and ventilation were significantly lower, and expiration time was significantly longer. Components of expired gases were also affected by vocalization. Although there was no significant difference in oxygen uptake, vocalization yielded a reduction in carbon dioxide output (V̇CO2) and an increase in fraction of end-tidal carbon dioxide (FetCO2). We thus conclude that these vocalizations greatly affect expiration breathing patterns in kendo. Moreover, repetition of kakari-keiko caused a reduction in V̇CO2 and an increase in FetCO2 and CO2 storage. We consider the possibility that the sustained high-effort vocalizations of kendo also increase cerebral blood flow. PMID:25760149

  10. CO2 Production as an Indicator of Biofilm Metabolism▿ †

    PubMed Central

    Kroukamp, Otini; Wolfaardt, Gideon M.

    2009-01-01

    Biofilms are important in aquatic nutrient cycling and microbial proliferation. In these structures, nutrients like carbon are channeled into the production of extracellular polymeric substances or cell division; both are vital for microbial survival and propagation. The aim of this study was to assess carbon channeling into cellular or noncellular fractions in biofilms. Growing in tubular reactors, biofilms of our model strain Pseudomonas sp. strain CT07 produced cells to the planktonic phase from the early stages of biofilm development, reaching pseudo steady state with a consistent yield of ∼107 cells·cm−2·h−1 within 72 h. Total direct counts and image analysis showed that most of the converted carbon occurred in the noncellular fraction, with the released and sessile cells accounting for <10% and <2% of inflowing carbon, respectively. A CO2 evolution measurement system (CEMS) that monitored CO2 in the gas phase was developed to perform a complete carbon balance across the biofilm. The measurement system was able to determine whole-biofilm CO2 production rates in real time and showed that gaseous CO2 production accounted for 25% of inflowing carbon. In addition, the CEMS made it possible to measure biofilm response to changing environmental conditions; changes in temperature or inflowing carbon concentration were followed by a rapid response in biofilm metabolism and the establishment of new steady-state conditions. PMID:19346353

  11. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  12. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    PubMed

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2. PMID:26596773

  13. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Buelo, Cal D.; Cole, Jonathan J.; Pace, Michael L.

    2016-03-01

    It is well established that lakes are typically sources of CO2 to the atmosphere. However, it remains unclear what portion of CO2 efflux is from endogenously processed organic carbon or from exogenously produced CO2 transported into lakes. We estimated high-frequency CO2 and O2 efflux from three north temperate lakes in summer to determine the proportion of the total CO2 efflux that was exogenously produced. Two of the lakes were amended with nutrients to experimentally enhance endogenous CO2 uptake. In the unfertilized lake, 50% of CO2 efflux was from exogenous sources and hydrology had a large influence on efflux. In the fertilized lakes, endogenous CO2 efflux was negative (into the lake) yet exogenous CO2 made the lakes net sources of CO2 to the atmosphere. Shifts in hydrologic regimes and nutrient loading have the potential to change whether small lakes act primarily as reactors or vents in the watershed.

  14. Frequency and time domain permittivity measurements on solid CO2 and solid CO2-soil mixtures as Martian soil simulants

    NASA Astrophysics Data System (ADS)

    Pettinelli, Elena; Vannaroni, Giuliano; Cereti, Annamaria; Paolucci, Francesca; Della Monica, Giuseppe; Storini, Marisa; Bella, Francesco

    2003-02-01

    Permittivity and conductivity measurements were performed to assess the dielectric behavior of solid CO2 (i.e., CO2 ice, snow, and powder) and solid CO2/soil mixtures. For comparison, some dielectric measurements were also conducted on H2O ice, dry glass beads, glass beads saturated with water, drained glass beads, and frozen drained glass beads. The measurements were performed in the frequency domain (20 Hz to 1 MHz) using a capacitive cell (Parallel Plate Capacitor) and in the time domain using a transmission line (Time Domain Reflectometry). The data obtained with both techniques have shown that solid CO2 has a permittivity value that ranges between 1.4 and 2.1 as a function of density, values that distinguish it from H2O ice. In contrast, H2O ice, dry glass beads, frozen (drained) glass beads, and dry volcanic sand all have very similar permittivity values, and thus they cannot be clearly distinguished at higher frequencies. Data have also shown that a high volume fraction of solid CO2 significantly reduces the permittivity value of a soil. Furthermore, almost all the samples tested in this work seem to behave like low loss materials, having a conductivity which is generally equal to or lower than 10-6 Sm-1 at the highest frequency (and smaller values at lower frequencies). Finally, TDR measurements and data from some dielectric models were compared in order to assess the capability of these models to predict the permittivity of a granular multiphase material.

  15. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  16. Covalent Organic Frameworks for CO2 Capture.

    PubMed

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-01

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. PMID:26924720

  17. Radiocarbon in Tree STEM CO2 Efflux

    NASA Astrophysics Data System (ADS)

    Muhr, J.; Czimczik, C. I.; Angert, A.; Trumbore, S.

    2011-12-01

    Carbon dioxide efflux from tree stems can be a significant component of the stand-level carbon balance. Recent studies have demonstrated that tree stem CO2 efflux may reflect more than just in-situ respiration but also transport from other locations and it has been suggested that it may also include C originally respired in roots or even uptake of soil CO2. We report measurements of the radiocarbon signature of carbon emitted from a range of mature tree stems in tropical and temperate forest ecosystems. Comparison of the radiocarbon signature of respired CO2 with the observed rate of decline in atmsopheric 14C-CO2 provides a measure of the time elapsed between C fixation by the plant and its return to the atmosphere as stem CO2 efflux. In all investigated trees, we observed that stem CO2 efflux had higher radiocarbon signatures than the contemporary atmospheric 14C-CO2, and therefore was derived from C fixed one to several years earlier. In tropical forest trees, we found that the 14C signature of CO2 within the stem (~4-5 cm depth) had even higher radiocarbon signatures than the stem CO2 efflux. In one of the investigated tree species, the in-stem CO2 was derived from C sources fixed on average ~20 years previously. These results confirm observations of root-respired CO2 that also have shown contributions of C substrates older than recent photosynthetic products, and the presence of extracable C reserves in wood that reflect the presence of older C sources. Our results imply that stem CO2 efflux is not only derived from respiration of recent photosynthetic products but includes contributions from older, stored C pools. Ongoing investigations will enable us to compare CO2 efflux for trees subjected to experimental drought, and using different life strategies (deciduous versus evergreen oaks) to determine if the use of these older C stores varies with stress.

  18. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    NASA Astrophysics Data System (ADS)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  19. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Werner, R. A.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Neubert, R. E. M.

    2011-02-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio-chemical compounds to

  20. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2013-09-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the highway tunnel Islisberg (Switzerland). The CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb : ppm, are lower than reported by previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3 ‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7) ‰ for 13C during CO destruction. The N2O : CO2 average ratio (1.8 ± 0.2) × 10-2 ppb : ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb : ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm : ppm are very close to the expected, theoretically calculated values.

  1. Benchmarking terrestrial biospheric models against CO2 observations from GOSAT

    NASA Astrophysics Data System (ADS)

    Swetish, J. B.; Huntzinger, D. N.; Michalak, A. M.; Schwalm, C. R.; Fisher, J. B.; Liu, J.; Bowman, K. W.

    2013-12-01

    There is a large degree of uncertainty in terrestrial biospheric model (TBM) representation of both the magnitude and spatial distribution of carbon sources and sinks on the land surface. The lack of direct observations of land-atmosphere carbon exchange at the resolution of model estimates makes it difficult to assess the strengths and weaknesses of various modeling approaches in terms of their ability to represent the terrestrial carbon cycle. Atmospheric CO2 observations, however, provide an integrated view of surface sources and sinks of carbon, thus providing a potential powerful observational constraint for TBMs. Using the model results from the North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and the framework of NASA's Carbon Monitoring System (CMS) we assess the consistency of TBMs with satellite-based observations of atmospheric CO2. The MsTMIP TBM surface flux estimates, together with fossil fuel, air-sea fluxes, and biomass burning inventories, are coupled with the GEOS-Chem atmospheric transport model within CMS to generate the corresponding atmospheric CO2 signals. These signals are then pressure-averaged and directly compared with dry air column-averaged mole fractions of CO2CO2) from the Greenhouse Gases Observing Satellite (GOSAT). Using model selection and multi-linear regression, we assess which model, or ensemble of models, best explain the ΧCO2 observations. By weighting each model based on its consistency with GOSAT ΧCO2 we identify the optimal weight for each individual model in a weighted multi-model ensemble. The inferred weights derived from the regression can help inform understanding of the relationship between surface flux representations and atmospheric CO2 measurements and can be linked back to process representation within the models themselves. Thus, comparing TBM estimates to atmospheric CO2 observations not only serves as an additional benchmark of model

  2. Soft Approaches to CO2 Activation.

    PubMed

    Das, Shoubhik; Bobbink, Felix D; Gopakumar, Aswin; Dyson, Paul J

    2015-01-01

    The utilization of CO(2) as a C1 synthon is becoming increasingly important as a feedstock derived from carbon capture and storage technologies. Herein, we describe some of our recent research on carbon dioxide valorization, notably, using organocatalysts to convert CO(2) into carboxylic acid, ester, formyl and methyl groups on various organic molecules. We describe these studies within the broader context of CO(2) capture and valorization and suggest approaches for future research. PMID:26842327

  3. CO2 sequestration: Storage capacity guideline needed

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  4. Global Mapping of CO2 on Enceladus

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Matson, D.; Johnson, T. V.

    2014-12-01

    We present the first global map of CO2 on Enceladus. The purpose is to determine whether CO2 is associated to fractures and eruptions, and if it formed recently. Cassini observed tectonic features and plumes on Enceladus, which could be caused by a warm subsurface ocean containing dissolved gases. CO2 should be one of these gases (Postberg F. et al., Nature, 2009), and some of it should be erupted and condensed onto the surface (Matson et al., Icarus, 2012). Validation of this hypothesis could be done by determining the amount, location and molecular state of the CO2. Free CO2 ice and complexed CO2 were reported on Enceladus (Brown et al., Science, 2006; Hansen, LPSC, 2010) from analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) data, and on other Saturn icy satellites (Cruikshank et al., Icarus, 2010 ; Filacchione et al., Icarus, 2010). Complexed CO2 has also been found from Galileo Near-Infrared Mapping Spectrometer (NIMS) spectra on the icy Galilean satellites (McCord et al., Science, 1997 and JGR, 1998), apparently due to both interior outgassing and radiation processing. CO2 has an asymmetric stretching mode that creates an absorption band, the wavelength position of which is sensitive to the nature of molecular associations between CO2 and their neighbors. Free CO2 ice absorbs at 4.268 μm for (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at shorter wavelengths, around 4.25 μm or shorter (Chaban et al., Icarus, 2007). In VIMS spectra of Enceladus, this stretching mode absorption band is near the instrument detection limit. We utilized all VIMS data sets available that had significant spatial resolution to increase the statistics of the observations for any given location and improve the signal to noise. CO2 has also a smaller absorption at 2.7 μm, although it occurs in a range of wavelength that has higher signal-to-noise ratio by several magnitudes, because the surface of Enceladus (mostly H2O ice) has

  5. CO2 MITIGATION VIA ACCELERATED LIMESTONE WEATHERING

    SciTech Connect

    Rau, G H; Knauss, K G; Langer, W H; Caldeira, K G

    2004-02-27

    The climate and environmental impacts of our current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. As part of this effort, various means of capturing and storing CO2 generated from fossil-fuel-based energy production are being investigated. One of the proposed methods involves a geochemistry-based capture and sequestration process that hydrates point-source, waste CO2 with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO2 gas to calcium bicarbonate in solution, the overall reaction being:

  6. R&D100: CO2 Memzyme

    SciTech Connect

    Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing; Vanegas, Juan

    2015-11-19

    By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.

  7. Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone

    NASA Astrophysics Data System (ADS)

    Jung, N. H.; Han, W. S.

    2014-12-01

    This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO­­­2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well

  8. Laser-assisted hair transplantation: histologic comparison between holmium:YAG and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chu, Eugene A.; Rabinov, C. Rose; Wong, Brian J.; Krugman, Mark E.

    1999-06-01

    The histological effects of flash-scanned CO2 (λ=10.6μm) and pulsed Holmium:YAG (Ho:YAG, λ=2.12μm) lasers were evaluated in human scalp following the creation of hair transplant recipient channels. Ho:YAG laser irradiation created larger zones of thermal injury adjacent to the laser channels than irradiation with the CO2 laser device. When the two lasers created recipient sites of nearly equal depth, the Holmium:YAG laser caused a larger region of lateral thermal damage (589.30μm) than the CO2 laser (118.07μm). In addition, Holmium:YAG irradiated specimens exhibited fractures or discontinuities beyond the region of clear thermal injury. This shearing effect is consistent with the photoacoustic mechanism of ablation associated with pulsed mid-IR laser irradiation. In contrast, channels created with the CO2 exhibited minimal epithelial disruption and significantly less lateral thermal damage. While the Holmium:YAG laser is a useful tool for ablation soft tissue with minimal char in select applications (sinus surgery, arthroscopic surgery), this study suggests that the use of the CO2 laser for the creation of transplantation recipient channels result in significantly less lateral thermal injury for the laser parameters employed.

  9. Experimental Ion Mobility measurements in Ne-CO2 and CO2-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Encarnação, P. M. C. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Trindade, A. M. F.; Borges, F. I. G. M.; Conde, C. A. N.

    2016-05-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V‑1s‑1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V‑1s‑1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This second peak, with higher mobility, was attributed to CO2+ ions. The mobility values of the main peak range between 2.11 ± 0.04 and 1.10 ± 0.03 cm2V‑1s‑1 in the 1%–99% interval of CO2, while the second peak's from 2.26 ± 0.02 and 1.95 ± 0.04 cm2V‑1s‑1 (1%–10% of CO2). The inverse of the mobility displays an aproximately linear dependence on the CO2 concentration in the mixture.

  10. Photolytically Generated CO2 on Iapetus

    NASA Astrophysics Data System (ADS)

    Palmer, Eric; Brown, R. H.

    2007-10-01

    The leading edge of Iapetus is covered with a dark material that is carbon rich, suggested to be either a carbonaceous layer (Smith el al 1982), CH4 and NH3 embedded in water ice (Squyres et al 1983), or nitrogen-rich tholin and amorphous carbon (Buratti et al 2005). Laboratory experiments have shown that CO2 can be generated from such material both by photolysis (Allamandola, Sandford & Valero 1988) and radiolysis (Strazzulla & Palumbo 1998). We consider the accumulation of CO2 that could be photolytically generated and sequestered in the polar regions of Iapetus. The polar regions provide only a temporary cold trap for CO2, and any polar cap is expected to be seasonal in nature. Using a numerical model to track the movement of CO2, we find that as CO2 moves between poles, 10% of it would reach escape velocity and be lost from the system every solar orbit (29.46 years). CO2 would accumulate until its loss rate equaled its production rate; thus, the quantity of CO2 in a polar cap would be 10 times the amount produced in a single solar orbit. Provided that the generation of CO2 is large enough, Cassini VIMS would be able to detect a seasonal CO2 polar cap. Since the polar regions are comprised of water ice and do not have the same coating of carbon rich dark material as the dark side, any 4.26 micron band absorption would be CO2 frost rather than complexed CO2.

  11. Core-scale electrical resistivity tomography (ERT) monitoring of CO2-brine mixture in Fontainebleau sandstone

    NASA Astrophysics Data System (ADS)

    Bosch, David; Ledo, Juanjo; Queralt, Pilar; Bellmunt, Fabian; Luquot, Linda; Gouze, Philippe

    2016-07-01

    The main goal of the monitoring stage of Carbon Capture and Storage (CCS) is to obtain an accurate estimation of the subsurface CO2 accumulation and to detect any possible leakage. Laboratory experiments are necessary to investigate the small scale processes governing the CO2-brine-rock interaction. They also provide a means to calibrate the results coming from field scale geophysical methods. In this work we set up an experimental system which is able to perform Electrical Resistivity Tomography (ERT) measurements on centimeter-scale rock samples at various P-T conditions. We present the results of two new experiments related to CO2 monitoring, performed on a cylindrical (4 × 8 cm) Fontainebleau rock sample. In the first one, we have quantified the CO2 saturation at different volume fractions, representing zones from a deep saline aquifer with varying degrees of saturation. In the second one, we have monitored and quantified the effect of CO2 dissolution in the brine at a pressure of 40 bar during eight days, emulating the invasion of CO2 into a shallow aquifer. Results highlight the importance of accounting for the contribution of surface conductivity in highly CO2-saturated regions, even in clay-free rocks, and also for brine conductivity variation due to CO2 dissolution. Ignoring any of these effects will end up in a CO2 saturation underestimation. We present a modified CO2 saturation equation to account for these two influences.

  12. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Fang, S. X.; Zhou, L. X.; Tans, P. P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T.

    2014-03-01

    Atmospheric carbon dioxide (CO2) mole fractions were continuously measured from January 2009 to December 2011 at four atmospheric observatories in China using cavity ring-down spectroscopy instruments. The stations are Lin'an (LAN), Longfengshan (LFS), Shangdianzi (SDZ), and Waliguan (WLG), which are regional (LAN, LFS, SDZ) or global (WLG) measurement stations of the World Meteorological Organization's Global Atmosphere Watch program (WMO/GAW). LAN is located near the megacity of Shanghai, in China's economically most developed region. LFS is in a forest and rice production area, close to the city of Harbin in northeastern China. SDZ is located 150 km northeast of Beijing. WLG, hosting the longest record of measured CO2 mole fractions in China, is a high-altitude site in northwestern China recording background CO2 concentration. The CO2 growth rates are 3.7 ± 1.2 ppm yr-1 for LAN, 2.7 ± 0.8 ppm yr-1 for LFS, 3.5 ± 1.6 ppm yr-1 for SDZ, and 2.2 ± 0.8 ppm yr-1 (1σ) for WLG during the period of 2009 to 2011. The highest annual mean CO2 mole fraction of 404.2 ± 3.9 ppm was observed at LAN in 2011. A comprehensive analysis of CO2 variations, their diurnal and seasonal cycles as well as the analysis of the influence of local sources on the CO2 mole fractions allows a characterization of the sampling sites and of the key processes driving the CO2 mole fractions. These data form a basis to improve our understanding of atmospheric CO2 variations in China and the underlying fluxes using atmospheric inversion models.

  13. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  14. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  15. Mars South Pole CO2 Paleoatmosphere

    NASA Astrophysics Data System (ADS)

    Schneck, T.

    2004-03-01

    Seasonal asymmetry in the CO mixing ratio is explained by condensation of CO_2. High levels of deuteration can be obtained if the gas phase is depleted of CO. UV limbs measurements found intense Cameron band emissions of CO from 1900-2700 A produced by dissociative excitation of CO_2.

  16. CAPTURING CO2 WITH MGO AEROGELS

    EPA Science Inventory

    CO2 capture from flue gas requires that the adsorbent be active at relatively low CO2 concentrations (3 – 13 vol%), high temperatures (~ 250ºC), and in the presence of many other gas species. These conditions will be simulated in the student designed reactor. The...

  17. CO2 ice on Mars: Theoretical simulations

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    A theoretical model of the energy budget of the polar caps of Mars has been created which is used to study the hemispherical asymmetry in CO2 ice. The observations which show survival of seasonal CO2 ice in the Southern Hemisphere in summer and not in the Northern Hemisphere in summer have been reproduced.

  18. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  19. Aqueous ethylenediamine for CO(2) capture.

    PubMed

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T

    2010-08-23

    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems. PMID:20677204

  20. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  1. Field Measurements of Respiratory Del13CO2 and Photodegradation

    NASA Astrophysics Data System (ADS)

    van Asperen, H.; Sabbatini, S.; Nicolini, G.; Warneke, T.; Papale, D.; Notholt, J.

    2014-12-01

    Carbon decomposition dynamics have been studied in a variety of ecosystems and its variation can mostly be explained in terms of environmental variables (e.g. temperature and precipitation). However, carbon dynamics in arid, water limited regions have shown to be very different and are still largely unknown. Several studies have indicated the importance of photodegradation, the direct breakdown of organic matter by sunlight, in these arid regions. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure concentrations of CO2, CH4, N2O, CO as well as del13C in CO2. The FTIR was connected to 2 different flux measurement systems: a Flux Gradient system and 2 flux chambers, providing a continuous data set of gas concentrations and biosphere-atmosphere gas fluxes at different heights and scales. Field measurements showed photodegradation induced carbon fluxes. Also, respiratory del13CO2 was determined by use of Keeling plots, and was determined to vary between -25‰ and -21‰. A clear diurnal pattern in respiratory del13CO2 was found, suggesting either different (dominant) respiratory processes between day and night or the effect of diffusive fractionation.

  2. Venting of CO2 at Enceladus’ Surface

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Davies, Ashley G.; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Tom B.; Radebaugh, Jani

    2015-11-01

    Enceladus has CO2 surface deposits in its South Polar Region that have been recently mapped by J.-P. Combe et al. (2015 AGU Fall Meeting). Assuming that these are CO2 frost, we show how they can be formed. We use an ocean-water circulation model [1] that specifies pressure gradients that drive water to the surface from a relatively gas-rich, subsurface ocean. We now examine the movement of CO2 to the surface; formation of shallow CO2 gas pockets in the ice; and the venting of CO2, when at least some of the gas freezes to form frost. If the local heat flow is known (cf. [2]), then the depths of the corresponding gas pockets can be calculated. References: [1] Matson et al. (2012) Icarus, 221, 53-62. [2] Howett et al. (2011) J. Geophys. Res. 116, E03003. Acknowledgements: AGD thanks the NASA OPR Program for support.

  3. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  4. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  5. Experience with non-ablative fractional photothermolysis with a dual-mode laser device (1,440/1,320 nm): no considerable clinical effect on hypertrophic/acne scars and facial wrinkles.

    PubMed

    Babilas, Philipp; Schreml, Stephan; Eames, Tatiana; Hohenleutner, Ulrich; Landthaler, Michael; Hohenleutner, Silvia

    2011-07-01

    In the literature, non-ablative fractionated photothermolysis (nFP) is accredited with improvement of wrinkles and scars combined with a reduced downtime. The purpose of this work was to evaluate the impact of a combination laser (1,320/1,440 nm) for nFP on hypertrophic scars, acne scars, and facial wrinkles. Thirty-six patients suffering from hypertrophic scars (n = 7), acne scars (n = 9), and wrinkles (n = 20) were treated using a combination Nd:YAG laser [λ(em) = 1,320 and 1,440 nm, pulse duration: 3-ms single pulse, fluence: 8.0-9.0 J/cm(2) (1,320 nm); 2.0-2.5 J/cm(2) (1,440 nm)]. The appearance of the treated condition was evaluated in a retrospective study by two blinded investigators based on follow-up photographs and by patient self-assessment. The frequency of side-effects was also assessed. Both patients and blinded observers rated the treatment results for hypertrophic scars and acne scars as slight improvement, and for wrinkles as equal as compared to baseline. No serious side-effects were reported. The light device used did not lead to a considerable clinical improvement of hypertrophic scars, acne scars, or wrinkles in this study. PMID:21318344

  6. The ins and outs of CO2.

    PubMed

    Raven, John A; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  7. The ins and outs of CO2

    PubMed Central

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  8. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  9. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  10. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    NASA Astrophysics Data System (ADS)

    Rego, R. F.; Nicolodelli, G.; Araujo, M. T.; Tirapelli, L. F.; Araujo-Moreira, F. M.; Bagnato, V. S.

    2013-07-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO2) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO2 laser ablation, (2) drug and CO2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO2 laser ablation, (5) ablated with CO2 laser followed by PDT, and (6) drug followed by CO2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem®. Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO2 laser ablation, especially when the PDT was performed before the CO2 laser ablation.

  11. Processes leading to increased soil organic carbon in a Mojave Desert ecosystem under elevated CO2

    NASA Astrophysics Data System (ADS)

    Koyama, A.; Evans, R. D.

    2011-12-01

    We observed increased soil organic carbon (SOC) following ten years of elevated atmospheric CO2 treatment at the Nevada Desert FACE Facility in the Mojave Desert. Physical and chemical fractions of surface soils collected under the dominant shrub, Larrea tridentata (Larrea), and plant interspace were analyzed for particle size, plant-derived n-alkanes, microbial phospholipid fatty acids (PLFA) and neutral lipid fatty acids (NLFA) to explore potential mechanisms causing the observed increase in SOC. SOC concentrations under Larrea in bulk soils, coarse particulate organic matter (POM), fine POM and mineral-bound soil organic matter (SOM) under elevated CO2 were greater than those under ambient CO2 by 34%, 45%, 26% and 20%, respectively. Under Larrea, n-alkane concentrations were 52% greater under elevated compared to ambient CO2. Such increases in coarse POM and n-alkane concentrations suggest litter input from Larrea was at least one source for increased SOC under elevated CO2. While there was no significant difference in PLFA abundance between the CO2 treatments, elevated CO2 significantly increased the fungi to bacterial PLFA ratio. In addition, fungal and bacterial NLFA and NLFA 16:1ω5, a biomarker of arbuscular mycorrhizal fungi, were significantly higher under elevated than ambient CO2. These observations plus others suggest that Larrea allocated more photosynthate belowground to increased root exudation rather than increased fine root growth under elevated CO2. Thus, increased root exudates and microbial residues as well as episodic increases in litter input from Larrea are mechanisms behind the increased SOC under elevated CO2. Elevated CO2 did not increase SOC in surface soils in plant interspace despite incorporation of CO2 labeled with 13C under elevated CO2.

  12. Instant conversion of air to a clathrate hydrate: CO(2) hydrates directly from moist air and moist CO(2)(g).

    PubMed

    Devlin, J Paul; Monreal, I Abrrey

    2010-12-23

    The rapid conversion of vapor mixtures containing the gases CO(2), H(2)S, and HCN to clathrate hydrates was reported recently. The novel method is based on the pulsing of warm vapor mixtures, including a carrier gas, into a cold condensation chamber. With cooling, the vapors, which also include ∼1% water and either tetrahydrofuran or trimethylene oxide as a catalyst, nucleate aqueous solution nanodroplets that, on a millisecond time scale, crystallize as hydrate nanoparticles that consume 100% of the water. Humid air approximates the content of mixtures used successfully in the vapor-to-hydrate conversions. FTIR spectra are examined for gas hydrates formed directly from air and air enriched with CO(2), as well as hydrate particles for which CO(2)(g) serves as both guest and aerosol medium. In each instance all of the water in the condensed phase converts to a clathrate hydrate. The subsecond ether-catalyzed formation of the hydrates near 230 K requires only a few percent of the CO(2) pressure used in conventional processes that yield fractional amounts of gas hydrates on an hour time scale in the same temperature range. PMID:21105676

  13. Immunohistochemical investigation of wound healing in response to fractional photothermolysis

    NASA Astrophysics Data System (ADS)

    Helbig, Doris; Bodendorf, Marc Oliver; Grunewald, Sonja; Kendler, Michael; Simon, Jan C.; Paasch, Uwe

    2009-11-01

    Despite growing clinical evidence of ablative fractional photothermolysis (AFP), little is known about the spatiotemporal molecular changes within the targeted compartments. Six subjects received three different single AFP treatments using a scanned 250 μm CO2-laser beam. Spatiotemporal changes of skin regeneration were estimated by immunohistochemical investigation (HSP70, HSP72, HSP47, TGFβ, procollagen III, CD3, CD20, and CD68) in skin samples 1 h, 3 days, and 14 days postintervention. The remodeling was uniformly started by regrowth of the epidermal compartment followed by partial to complete replacement of the microscopic ablation zones (MAZ) by newly synthesized condensed procollagen III. From day 3 to 14, the number of macrophages as well as giant cells surrounding the MAZ increased. TGFβ expression was highest 1 h to 3 days following AFP. HSP70 and HSP72 expressions were highest 3-14 days postintervention in the spinocellular layer leading to an upregulation of HSP47. AFP performed by a scanned CO2-laser results in an early epidermal remodeling, which is followed by a dermal remodeling leading to a replacement of the MAZ with newly synthesized (pro)-collagen. During this, an inflammatory infiltrate with CD3+ and CD20+ cells surrounds the MAZ. The count of macrophages and giant cells involved in the replacement of the necrotic zones seems to be crucial for wound healing.

  14. Impact of 4-year CO2 injection on reservoir-rock integrity at the CO2 pilot site Ketzin (Germany)

    NASA Astrophysics Data System (ADS)

    Bock, S.; Förster, H.; Meier, A.; Pudlo, D.; Förster, A.; Gaupp, R.

    2013-12-01

    was observed in the CO2-penetrated reservoir rocks. Application of Scanning Electron Microscopy (SEM) and Electron Microprobe Analysis (EMPA) revealed minor quantities (usually <2 vol-%) of various species of newly precipitated carbonates. The baseline study of the sandstones showed variable amounts of authigenic poikilitic dolomite as the only pre-existing carbonate species, which have not yet been observed in the sandstones exposed to CO2. In these rocks, small mineral aggregates occur, usually composed of a core of dolomite-ankerite solid solutions mantled by siderite, which itself is overgrown by calcite. Three potential CO32- sources for the newly formed carbonates have to be considered: (A) dolomite dissolution, (B) reactions of injected CO2 with the formation fluid, and (C) the drill mud. Further work will involve a reduction of the observation scale. Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Micro-Raman-Spectroscopy will provide space-resolved chemical data for an improved understanding of alteration processes that occurred at the micro- to sub-micrometer scale.

  15. Enhanced peak power CO2 laser processing of PCB materials

    NASA Astrophysics Data System (ADS)

    Moorhouse, C. J.; Villarreal, F.; Wendland, J. J.; Baker, H. J.; Hall, D. R.; Hand, D. P.

    2005-06-01

    Laser drilling has become a common processing step in the fabrication of printed circuit boards (PCB's). For this work, a recently developed enhanced peak power CO2 laser (~2.5 kW peak power, 200W average) or ultra-super pulse (USP) laser is used to drill alumina and copper coated dielectric laminate materials. The higher peak power and faster response times (than conventional CO2 lasers) produced by the USP laser are used to produce high speed alumina laser scribing and copper coated laminate microvia drilling processes. Alumina is a common PCB material used for applications, where its resistance to mechanical and thermal stresses is required. Here we present a comprehensive study of the melt eject mechanisms and recast formation to optimise the speed and quality of alumina laser scribing. Scribe speeds of up to 320 mms-1 (1.8 times current scribe rate) have been achieved using novel temporal pulse shapes unique to the USP laser. Also presented is the microvia drilling process of copper dielectric laminates, where the multi-level configuration presents different optical and thermal properties complicating their simultaneous laser ablation. In our experiments the USP laser has been used to drill standard thickness copper films (up to 50 μm thick) in a single shot. This investigation concentrates on understanding the mechanisms that determine the dielectric undercut dimensions.

  16. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    PubMed

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes. PMID:27056285

  17. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    PubMed

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-01

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies. PMID:25137398

  18. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs. PMID:27362472

  19. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    NASA Astrophysics Data System (ADS)

    Forget, F.; Wordsworth, R.; Millour, E.; Madeleine, J.-B.; Kerber, L.; Leconte, J.; Marcq, E.; Haberle, R. M.

    2013-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 °C anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 °C (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40° at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent

  20. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Neubert, R. E. M.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Werner, R. A.

    2008-11-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects in the order of about 26‰ became obvious, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original 18O signature of the material appeared to have little or no influence.

  1. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Akbarabadi, Morteza; Piri, Mohammad

    2013-02-01

    We present the results of an experimental study on the effects of hysteresis on capillary trapping and relative permeability of CO2/brine systems at reservoir conditions. We performed thirty unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, low- and high-permeability Berea and Nugget sandstones. The experiments were carried out at various flow rates with both supercritical CO2 (scCO2)/brine and gaseous CO2 (gCO2)/brine fluid systems. The unsteady-state experiments were carried out with a wide range of flow rates to establish a broad range of initial brine saturations (Swi). This allowed investigation of the sensitivity of residual trapped CO2 saturation (S) to changes in Swi. The values were successfully compared with those available in the literature. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO2. Post-imbibition dissolution of trapped CO2 and formation of dissolution front was also investigated. During the steady-state experiments, scCO2 and brine were co-injected with monotonically increasing or decreasing fractional flows to perform drainage and imbibition processes. We carried out seven sets of steady-state flow tests with various trajectories generating a comprehensive group of relative permeability hysteresis curves. The scanning curves revealed distinct features with potentially important implications for storage of scCO2 in geological formations. For both series of experiments, the ratio of S to initial CO2 saturation (1- Swi) was found to be much higher for low initial CO2 saturations. The results indicate that very promising fractions (about 49 to 83%) of the initial CO2 saturation can be stored through capillary trapping.

  2. On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals

    NASA Astrophysics Data System (ADS)

    Chevallier, F.

    2015-10-01

    The extending archive of the Greenhouse Gases Observing Satellite (GOSAT) measurements (now covering about 6 years) allows increasingly robust statistics to be computed, that document the performance of the corresponding retrievals of the column-average dry air-mole fraction of CO2 (XCO2). Here, we demonstrate that atmospheric inversions cannot be rigorously optimal when assimilating current XCO2 retrievals, even with averaging kernels, in particular because retrievals and inversions use different assumption about prior uncertainty. We look for some practical evidence of this sub-optimality from the view point of atmospheric inversion by comparing a model simulation constrained by surface air-sample measurements with one of the GOSAT retrieval products (NASA's ACOS). The retrieval-minus-model differences result from various error sources, both in the retrievals and in the simulation: we discuss the plausibility of the origin of the major patterns. We find systematic retrieval errors over the dark surfaces of high-latitude lands and over African savannahs. More importantly, we also find a systematic over-fit of the GOSAT radiances by the retrievals over land for the high-gain detector mode, which is the usual observation mode. The over-fit is partially compensated by the retrieval bias-correction. These issues are likely common to other retrieval products and may explain some of the surprising and inconsistent CO2 atmospheric inversion results obtained with the existing GOSAT retrieval products. We suggest that reducing the observation weight in the retrieval schemes (for instance so that retrieval increments to the retrieval prior values are halved for the studied retrieval product) would significantly improve the retrieval quality and reduce the need for (or at least reduce the complexity of) ad-hoc retrieval bias correction.

  3. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  4. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  5. Refining the alkenone-pCO2 method: The role of algal growth conditions

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Zhang, Y.; Huybers, P. J.; Pagani, M.

    2015-12-01

    The alkenone-pCO2 method based on carbon isotope fractionation during growth of haptophyte algae is one of the most widely used approaches to reconstruct atmospheric CO2 level in the Cenozoic. Based on the fractionation of stable carbon isotopes between dissolved CO2 and phytoplankton biomass, as represented by alkenone lipid biomarkers, this relationship (known as ɛp37:2) scales inversely with growth rate and cell volume to surface area ratio, and positively with CO2. Recently-published estimates for late Pleistocene CO2 levels, however, are poorly correlated with ice core CO2 records, suggesting that alkenone paleobarometry needs to be refined. Here we compiled published records over recent glacial-interglcial (G-IG) cycles and revised the relationship between algal growth rate, as expressed by the physiological parameter 'b', and dissolved phosphate concentration. We further show that the magnitude of change in ɛp37:2 over glacial-interglacial cycles at different sites is dependent on local nutrient conditions, highlighting the importance of constraining b for accurate CO2 estimates. The correlation between GDGT-2/3 ratio and back-calculated b at Ceara Rise (ODP Site 925) suggests that archaeal lipids could be used as proxies to calibrate b. Application of our variable-b method to reported data yields pCO2 estimates that are similar in both trends and magnitude to ice core-derived records.

  6. Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases

    NASA Astrophysics Data System (ADS)

    Snell, H. S. K.; Robinson, D.; Midwood, A. J.

    2014-12-01

    Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle

  7. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  8. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, R.G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  9. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  10. CO2 laser micromachining of optical waveguides for interconnection on circuit boards

    NASA Astrophysics Data System (ADS)

    Zakariyah, Shefiu S.; Conway, Paul P.; Hutt, David A.; Wang, Kai; Selviah, David R.

    2012-12-01

    The introduction of microvia and surface mount technologies into the manufacturing process for printed circuit boards (PCBs) has significantly improved the interconnection density. However, as the speed of signals for data communication on the board approaches and begins to exceed 10 Gb/s, the loss and crosstalk of copper interconnections increase. To resolve these problems, optical interconnections (OI) have been suggested as a viable solution. Literature reports have proved the photochemical nature of excimer laser ablation with its minimal thermal effect, and other ultra-violet lasers are also being investigated for the fabrication of polymer waveguides by laser ablation. In this paper, the authors demonstrate the fabrication of multimode optical polymer waveguides by using infra-red 10.6 μm CO2 laser micromachining to etch acrylate-based photopolymer (Truemode™). CO2 lasers offer a low cost and high speed fabrication route as CO2 lasers can be used to cut through various engineering materials including polymers and metals. The paper characterises the relationship between the laser ablation power, the fabrication speed and the resulting effect on the waveguide optical insertion loss for the first time.

  11. Natural Analog for Geologic Storage of CO2: CO2 accumulation in China

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, T.; Liu, N.; Zhou, B.

    2012-12-01

    Natural accumulations of CO2 are potential analogues of CO2 geological storage that can provide useful information on the behaviour of supercritical CO2 in reservoirs. Natural CO2 accumulations are common across Northeast China, and, although they occur in a wide variety of geological settings, their distribution is principally controlled by the Mesozoic-Cenozoic rift basins and associated Quaternary volcanism. High CO2 concentrations (>60 CO2%) in natural gas reservoirs are usually related to volcanism and magmatism, and possesses mantle-genetic origin. CO2 reservoirs consist of sandstone, volcanic rocks and carbonate rocks with the buried depth from 2000-3000 m. Dawsonite is recognized in almost all of the CO2-bearing basin, which has been proved to share the same carbon source with CO2 in the reservoirs in Songliao basin, Hailaer basin and Donghai basin. Petrographic data show that dawsonite is abundant in feldspar- rich sandstone, volcanic rock fragment-rich sandstones and tuff. In some cases, high percentage of dawsonite cement constitutes a diagenetic seal, which occurs in the reservoir-mudstone caprock and prevents upward leakage of CO2. Besides dawsonite, mantle-genetic CO2 flux leads to the formation of calcite, ankerite and siderite. The statistics of porosity and permeability measured from the dawsonite-bearing sandstone and dawsonite-absent sandstone with the almost same burial depth in Songliao basin show that the mantle-genetic CO2 flux result in lower reservoir quality, suggesting that mineral trapping for CO2 is significant. Chemical analyses of formation water in Songliao basin and Hailaer basin indicate that the concentrations of TDS, HCO3-,CO32-, Mg2+,Ca2+ and Na+ + K+ in dawsonite-bearing sandstone are higher than that in dawsonite-absent sandstone. Distribution of CO2 and dawsonite is constrainted by the regional caprocks in the Songliao basin. The charging time of the mantle-genetic CO2 in China dates from 50 to 25 Ma.

  12. Soil carbon and nitrogen turnover in a pine forest under elevated CO2

    NASA Astrophysics Data System (ADS)

    Lichter, J.; Reblin, J.; Kaubris, A.; Austin, R.; Anderson, J.; Wong, N.; Wu, S.

    2010-12-01

    During twelve years of atmospheric CO2 fumigation at the Duke Forest Free-air Enrichment (FACE) experiment, annual net primary productivity increased approximately 25% under the elevated CO2 treatment. A corresponding increase in litterfall resulted in accumulation of approximately 300 g m-2 more carbon under elevated CO2 than under ambient CO2 concentration in the organic soil horizon of this loblolly pine forest. The net accumulation of carbon in the organic horizon under the elevated CO2 treatment occurred entirely during the first six years of the experiment with little change thereafter. However, while carbon accumulated in the organic horizon under elevated CO2, there were no detectable changes in the carbon or nitrogen contents of the bulk mineral soil. To further examine soil carbon and nitrogen content and turnover in soil organic matter pools of different turnover rates, samples of the upper mineral soil (0-5 cm depth) were separated by density, particle size fractionation, and acid digestion. Although no changes in soil carbon and nitrogen content attributable to the elevated CO2 treatment were detected in any of the SOM fractions, change in the 13C content of soil fractions under elevated CO2 indicated incorporation of new organic matter into all SOM fractions at comparable rates. This result suggests that soil microbial community composition and decomposition have been altered by the increased nitrogen demand associated with the CO2-induced growth enhancement, allowing species that are competitive under conditions of intense nitrogen limitation to mine “recalcitrant” SOM pools for the additional nitrogen required to meet the enhanced demand.

  13. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  14. Simultaneous Injection of Wastewater and CO2 in a Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Okwen, R.; Thomas, M. W.; Stewart, M.; Trotz, M.; Cunningham, J. A.

    2011-12-01

    One of the major obstacles to development, implementation, and deployment of carbon capture and storage(CCS) is cost. As a result, sustainably combining CCS with existing technologies to make CCS less costly or profitable is vital. We propose a CCS strategy in which captured anthropogenic carbon dioxide (CO2) and municipal wastewater are simultaneously injected into a confined saline aquifer. Numerical simulations of simultaneous injection of CO2 and wastewater into a confined saline aquifer were conducted under both isotropic and vertically heterogeneous conditions. The results of the simulations were quantified based on changes in mineral volume fractions and spatial distributions of gas saturation, pH, ionic species concentrations, and pressure, over an injection period of 50 years. Results from the simulation of CO2-wastewater injection (3214 tons/day each) into a carbonate saline aquifer predict very low gas saturations (0.4 maximum after 50 years) and enhancement of dissolved CO2 mass fraction as a result of the dissolution of CO2 into wastewater and resident brine. Transfer of supercritical CO2 to the dissolved phase reduces buoyancy effects and traps CO2 in a more stable phase, increasing storage efficiency. Vertical baffling as a result of vertical heterogeneity also increases sequestration efficiency from about 4% in the homogeneous case to 6% in the vertically heterogeneous case. A simulation of wastewater injection alone into the same saline aquifer predicts near-wellbore scaling from mineral precipitation. However, little or no mineral precipitation is simulated for the CO2-wastewater injection case because the CO2 causes reduction in pH near the wellbore, inhibiting mineral precipitation. These results suggest that co-injection of CO2 and wastewater in deep confined saline aquifers enhances CO2 storage efficiency and security and reduces scaling problems encountered during deep well injection of wastewater.

  15. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  16. CO2 Biogenic vs Anthropogenic Sectoral Contribution for INFLUX

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Prasad, K.; Hu, H.; Whetstone, J. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Davis, K. J.; Turnbull, J. C.; Karion, A.; Sweeney, C.; Brewer, A.; Hardesty, M.; Cambaliza, M. O. L.; Shepson, P. B.; Patarasuk, R.; Gurney, K. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. This project is an experimental test bed which is intended to establish reliable methods for quantifying and validating GHG emissions independently of the inventory methods typically used for Measurement, Reporting and Verification (MRV) of pollution sources. Analyzing the contribution of different source types or sectors is a fundamental step in order to achieve an accuracy level desired for such MRV applications. This is especially challenging when attempting to determine anthropogenic emissions during the growing season since biological GHG fluxes reach a maximum at this time. To this end, the Weather Research and Forecasting Model (WRF-ARW) version 3.5.1 was used along with a modified version of the Green House Gases chemistry module for simulating the CO2 mole fraction transport during September and October 2013. Sectoral anthropogenic CO2 emissions were obtained from Hestia 2012 and from Vulcan 2002 beyond the spatial coverage of Hestia. Biogenic CO2 emissions were simulated by using an augmented version of the "Vegetation Photosynthesis and Respiration Model" (VPRM) included in WRF-CHEM. An implementation of the unconstrained nonlinear global optimization method of Nelder and Mead was employed to find the optimum values for the VPRM parameters for each vegetation category by using data from Ameriflux eddy covariance flux towers. Here we present a preliminary assessment of the relative contribution of biological vs sectoral anthropogenic CO2 fluxes on the INFLUX measurements network. The simulations are compared to tower and aircraft measurements that include trace gases with the capacity to distinguish observationally anthropogenic and biogenic CO2 sources and sinks. In addition, an evaluation of the sensitivity of the sectoral attribution to meteorological

  17. Diurnal variation in respiratory CO2 flux in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Warneke, Thorsten; Sabbatini, Simone; Höpker, Martin; Chiti, Tommaso; Nicolini, Giacomo; Papale, Dario; Böhm, Michael; Notholt, Justus

    2016-04-01

    The application of stable isotopes to study ecosystem processes is increasingly used. However, continuous in-situ observation of CO2 concentrations, CO2 fluxes, and their isotopic components are still sparse. In this study, we present results from an arid grassland in Italy, in which continuous measurements of δ13CO2 and CO2 were performed by means of an in-situ Fourier Transform Infrared Spectrometer connected to a concentration-tower set up and to soil flux chambers. By use of Keeling plots, daily nighttime Keeling plot-intercepts and hourly flux chamber Keeling plot-intercepts could be derived. The flux chambers solely showed CO2 emission, with respiration peaks during the day. Keeling plot intercepts from the tower, overlooking the arid grassland, showed more enriched δ13CO2 values than Keeling plot intercepts derived from chamber measurements, indicating different dominating respiratory sources in their footprint. Flux chamber respiratory δ13CO2 values showed a daily pattern with on average 3.5‰ more depleted δ13CO2 fluxes during the night. It is hypothesized that the observed diurnal variation in respiratory δ13CO2 is a consequence of the physical process of diffusive fractionation taking place during the nocturnal boundary layer build up.

  18. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    SciTech Connect

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale

  19. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

    PubMed

    Engineer, Cawas B; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordström, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian I

    2016-01-01

    Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate. PMID:26482956

  20. Partitioning of the Leaf CO2 Exchange into Components Using CO2 Exchange and Fluorescence Measurements.

    PubMed

    Laisk, A.; Sumberg, A.

    1994-10-01

    Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate. PMID:12232361

  1. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  2. Study on CO2 global recycling system.

    PubMed

    Takeuchi, M; Sakamoto, Y; Niwa, S

    2001-09-28

    In order to assist in finding ways to mitigate CO2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO2 reduction rate is 41%, the balance ratio of the energy and CO2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO2 emissions and to utilize renewable energy. PMID:11589395

  3. Laser-induced structural modifications in glass using a femtosecond laser and a CO2 laser

    NASA Astrophysics Data System (ADS)

    Tamaki, Takayuki; Nakazumi, Shinya; Nakamura, Keigo; Ono, Shunsuke

    2013-03-01

    In this paper, we present the investigation results on laser-induced structural modifications in a BK7 glass sample (OHARA, S-BSL7) by use of a femtosecond laser and a CO2 laser system. A femtosecond fiber laser system (wavelength: 1.06 μm, pulse duration: 250 fs) generates 1 MHz ultrashort laser pulses with a pulse energy up to 2 μJ, and a CO2 laser system generates CW (continuous wave) laser beam with a wavelength of 10.6 μm. Both laser beams were simultaneously irradiated on a BK7 glass substrate (30 mm × 5 mm × 0.7 mm thick). The structural modifications regions were created by translating the glass sample perpendicular to the laser axis with a distance of 1 mm and a scan speed of 0.1 mm/s. The dependence of structural modifications on the laser energy of femtosecond laser pulses and the power of CO2 laser beam were investigated. The results have demonstrated that the refractive index change region with the width of 3 μm was created with simultaneously irradiation of two laser beams although the structural modification regions, which were produced with only femtosecond laser pulses, were surface ablation. And the surface ablation regions were changed to the refractive index change regions as the energy of CO2 laser beam increase to more than 2W.

  4. The overlooked tropical oceanic CO2 sink

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Araujo, Moacyr; Lefèvre, Nathalie

    2016-04-01

    The intense rainfall in the tropical Atlantic spatially overlaps with the spread of the Amazon plume. Based on remote-sensed sea surface salinity and rainfall, we removed the contribution of rainfall to the apparent Amazon plume area, thus refining the quantification of its extension (0.84 ± 0.06 × 106 km2 to 0.89 ± 0.06 × 106 km2). Despite the previous overestimation of the Amazon plume area due to the influence of rainfall (>16%), our calculated annual CO2 flux based on rainfall-corrected sea surface CO2 fugacity confirms that the Amazon River plume is an atmospheric CO2 sink of global importance (-7.61 ± 1.01 to -7.85 ± 1.02 Tg C yr-1). Yet we show that current sea-air CO2 flux assessments for the tropical Atlantic could be overestimated in about 10% by neglecting the CO2 sink associated to the Amazon plume. Thus, including the Amazon plume, the sea-air CO2 exchange for the tropical Atlantic is estimated to be 81.1 ± 1.1 to 81.5 ± 1.1 Tg C yr-1.

  5. CO2 As An Inverse Greenhouse Gas

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    1984-01-01

    It is a well-known fact that mankind's burning of fossil fuels such as coal, gas and oil has significantly increased the CO2 content of Earth's atmosphere, from something less than 300 ppm (parts per million by volume) in the pre-Industrial Revolution era to a con-centration which is currently somewhat over 340 ppm. It is also fairly well established that a concentration of 600 ppm will be reached sometime in the next century. Atmospheric scientists using complex computer models of the atmosphere have predicted that such a concentration doubling will lead to a calamatous climatic warming, due to the thermal infra-red "greenhouse" properties of CO2. However, my investigation of a large body of empirical evidence suggests just the opposite. Indeed, long-term records of surface air temperature and snow cover data indicate that increasing concentrations of atmospheric CO2 may actually tend to cool the Earth and not warm it. These and other observations of the real world lead to the conclusion that, for the present composition of the Earth's atmosphere, CO2 appears to behave as an inverse greenhouse gas. A mechanism for this phenomenon is suggested; and it is then indicated how enhanced concentrations of atmospheric CO2 may be beneficial for the planet, particularly with respect to the ability of enhanced CO2 concentrations to stimulate plant growth and reduce water requirements.

  6. CO2 cooling in terrestrial planet thermospheres

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Hunten, D. M.; Roble, R. G.

    1994-01-01

    We examine the recent progress in the debate on the CO2-O relaxation rate, its temperature dependence, and its corresponding impact on the thermospheric heat budgets of Venus, Earth, and Mars. This comparative approach provides the broadest range of conditions under which a common CO2-O relaxation rate should provide consistent results. New global mean calculations are presented for the heat budgets of these three planets using large CO2-O relaxation rates that have been inferred recently from Earth CO2 radiance measurements and laboratory studies. Results indicate that available Venus and Mars data constrain the CO2-O relaxation rate to be 2-4 x 10(exp -12)/cu cm/s at 300 K. For Venus, this strong cooling serves as an effective thermostat that gives rise to a small variation of thermospheric temperatures over the solar cycle, just as observed. Conversely, CO2 cooling does not appear to be dominant in the dayside heat budget of the Mars thermosphere over most of the solar cycle. For the Earth, this strong cooling implies that the lower thermosphere does not typically require significant eddy diffusion or heat conduction. However, global-scale dynamics or an additional heating mechanism may be needed to restore calculated temperatures to observed values when relaxation rates exceeding 2 x 10(exp -12)/cu cm/s are employed.

  7. CO2 Absorption Spectroscopy and Climate Change

    NASA Astrophysics Data System (ADS)

    Feldman, Daniel; Mlawer, Eli; Mlynczak, Martin; Gero, Jon; Collins, William; Torn, Margaret

    2014-03-01

    Most of the absorption, and therefore radiative forcing, due to increased atmospheric CO2 occurs in line wings, so utilizing an accurate line shape is necessary for climate science. Recent advances in CO2 absorption spectroscopy have been incorporated into benchmark line-by-line radiative transfer models. These updates include the Energy Corrected Sudden Approximation to represent isolated line profiles, line mixing, and line clusters. The CO2 line profiles are sub-Lorentzian and are explicitly modeled up to 25 cm-1 from each line's center. Consistent continuum absorption is implemented over the remainder of the profile except for modest empirical adjustments based on observations. Thus, line-by-line models calculate the absorption effects of CO2 that agree with theory and measurements. This is validated with long-term spectroscopic measurements from the ARM program's AERI instrument. This spectroscopy trains computationally-efficient correlated-k methods for climate model radiative transfer, but they overpredict instantaneous radiative forcing from doubled CO2 by approximately 7% in part because they have larger errors handling the impact of increased CO2 in the stratosphere than the troposphere. The implications of this can be tested with supercomputers. This work was supported by the Director, Office of Science, Office of Biol. & Env. Res., Clim. & Env. Sci. Div., of the U.S. D.O.E., Contract No. DE-AC02-05CH11231 as part of the Atmos. Sys. Res.

  8. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  9. Density of aqueous solutions of CO2

    SciTech Connect

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  10. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  11. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    2003-01-01

    The CO2 Acquisition Membrane (CAM) project was performed to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes developed in this project are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP). These membrane materials may be used in a variety of ISRU systems, for example as the atmospheric inlet filter for an ISPP process to enhance the concentration of CO2 for use as a reactant gas, to passively separate argon and nitrogen trace gases from CO2 for habitat pressurization, to provide a system for removal of CO2 from breathing gases in a closed environment, or within a process stream to selectively separate CO2 from other gaseous components. The membranes identified and developed for CAM were evaluated for use in candidate ISRU processes and other gas separation applications, and will help to lay the foundation for future unmanned sample return and human space missions. CAM is a cooperative project split among three institutions: Lockheed Martin Astronautics (LMA), the Colorado School of Mines (CSM), and Marshall Space Flight Center (MSFC).

  12. Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders

    NASA Astrophysics Data System (ADS)

    Giler, Shamai

    1997-12-01

    CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.

  13. Diffraction modelling of laser ablation using transmission masks

    NASA Astrophysics Data System (ADS)

    Dyer, P. E.; Mackay, J.; Walton, C. D.

    2004-10-01

    We present an analysis of near-field diffraction effects in ablation with transmission masks, based on coupling a simplified form of the Fresnel-Kirchhoff diffraction integral with basic models for material removal. Modelling for square, hexagonal and circular proximity masks is described and compared with previously reported experiments on glass, silicon and polyimide using excimer, femtosecond and CO2 lasers. The model has general applicability and can provide useful insight into the effect of near-field diffraction in ablation patterning.

  14. Measurement of CO2 production by the doubly labeled water technique.

    PubMed

    Speakman, J R; Racey, P A

    1986-09-01

    Recent applications of the doubly labeled water technique to the study of human metabolism have employed multiple sampling of body water over protracted periods, rather than the more traditional method of taking only an initial and final sample for isotopic analysis. In addition fractional turnovers of the body pools have been estimated by fitting curves to the sequential log-converted isotope enrichment against time. By manipulation of data collected in the field in a study of metabolism of vespertilionid bats, it is shown the curve-fitting technique results in an accurate estimate of CO2 production only when the rate of CO2 production is constant. Biologically realistic nonsteady-state conditions result in errors in estimates of CO2 production of up to 30%. In conditions where CO2 production is known to be temporally variable, the more traditional two-sample method may provide a more accurate estimate of CO2 production. PMID:3093452

  15. The effect of inspiratory muscle fatigue on breathing pattern and ventilatory response to CO2.

    PubMed Central

    Mador, M J; Tobin, M J

    1992-01-01

    1. The effects of inducing inspiratory muscle fatigue on the subsequent breathing pattern were examined during resting unstimulated breathing and during CO2 rebreathing. In addition, we examined whether induction of inspiratory muscle fatigue alters CO2 responsiveness. 2. Global inspiratory muscle fatigue and diaphragmatic fatigue were achieved by having subjects breathe against an inspiratory resistive load while generating a predetermined fraction of either their maximal mouth pressure or maximal transdiaphragmatic pressure until they were unable to generate the target pressure. 3. Induction of inspiratory muscle fatigue had no effect on the subsequent breathing pattern during either unstimulated breathing or during CO2 rebreathing. 4. Following induction of inspiratory muscle fatigue, the slope of the ventilatory response to CO2 was significantly decreased from 18.8 +/- 3.3 during control to 13.8 +/- 2.1 l min-1 (% end-tidal CO2 concentration)-1 with fatigue (P < 0.02). PMID:1484352

  16. Measurement of 14CO2 Assimilation in Soils: an Experiment for the Biological Exploration of Mars

    PubMed Central

    Hubbard, Jerry S.; Hobby, George L.; Horowitz, Norman H.; Geiger, Paul J.; Morelli, Frank A.

    1970-01-01

    A method is described for the measurement of 14CO2 assimilation by microorganisms in soils. A determination involves exposing soil to 14CO2, pyrolyzing the exposed soil, trapping the organic pyrolysis products on a column of firebrick coated with CuO, combusting the trapped organics by heating, and measuring the radioactivity in the CO2 produced in the combustion. The detection of significant levels of 14C in the trapped organic fraction appears to be an unambiguous indication of biological activity. The 14CO2 which is adsorbed or exchanged into soils by nonbiological processes does not interfere. The method easily detects the 14CO2 fixed by 102 to 103 algae after light exposure for 3 to 24 hr. Assimilation of 14C is also demonstrable in dark-exposed soils containing 105 to 106 heterotrophic bacteria. Possible applications of the method in the biological exploration of Mars are discussed. Images PMID:16349879

  17. Modeling CO2 Gas Migration of Shallow Subsurface CO2 Leakage Experiments

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Plampin, M. R.; Pawar, R.; Illangasekare, T. H.

    2013-12-01

    Leakage of injected CO2 into shallow subsurface aquifers or back into the atmosphere at geologic carbon sequestration sites is a risk that must be minimized. One potential CO2 leakage pathway involves the transport of dissolved CO2 into a shallow aquifer where the CO2 exsolves, forming a free CO2 gas phase that subsequently migrates through the aquifer. In order to reduce the negative effects of CO2 exsolution, it is important to fully understand each of the processes controlling the movement CO2, as well as the effects of aquifer heterogeneity on the overall fate and transport of CO2. In this work, we present multiphase flow simulations of intermediate scale CO2 exsolution experiments. The multiphase flow simulations were carried out using the Finite Element Heat and Mass Transfer code (FEHM) developed at Los Alamos National Laboratory. Simulations were first designed to model experiments conducted in two different homogeneous packed sands. PEST (Parameter Estimation and Uncertainty Analysis) was used to optimize multiphase flow parameters (i.e., porosity, permeability, relative permeability, and capillary pressure) within FEHM. The optimized parameters were subsequently used to model heterogeneous experiments consisting of various packing configurations using the same sands. Comparisons of CO2 saturation between experiments and simulations will be presented and analyzed.

  18. Leaf cavity CO2 concentrations and CO2 exchange in onion, Allium cepa L.

    PubMed

    Byrd, G T; Loboda, T; Black, C C; Brown, R H

    1995-06-01

    Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 μL L(-1) near the leaf base to below atmospheric (<350 μL L(-1)) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 μmol m(-2) s(-1) and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by (14)CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 μL L(-1) of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L(-1) O2 compared to 20 mL L(-1) O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue. PMID:24307095

  19. Precursory volcanic CO2 signals from space

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  20. The carbon isotope biogeochemistry of (epsilon)CO2 production in a methanogenic marine sediment

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    To investigate the relationship between sigma(CO2) delta(C-13) values and rates of the dominant remineralization processes at the organic-rich field site of Cape Lookout Bight, NC, the isotopic composition of porewater sigma(CO2) was measured on a seasonal basis. The sigma(CO2) delta(C-13) values varies seasonally in response to changes in rates of sulfate reduction and methanogenesis, the dominant remineralization processes at this site. A tube incubation experiment was also performed to determine the isotopic signature of the sigma(CO2) produced by sulfate reduction and methanogenesis. The delta(C-13) of the sigma(CO2) produced in the sulfate reduction zone determined from the tube incubation was -14.3 plus or minus 1.9, a value enriched in C-13 relative to the labile organic fraction. The C-13-enrichment may be caused by low rates of methanogenesis occurring in the sulfate reduction zone. The delta(C-13) of the sigma(CO2) produced in the methanogenic zone was estimated to be +44 per mil, whereas the co-produced methane was -65 per mil. The fractionation factor for CO2 reduction was calculated to be 1.055, a value in agreement with previous estimates at this site. The measured concentration and delta(C-13) of the sigma(CO2) at Cape Lookout was closely reproduced by a diagenetic model using the measured rates of sulfate reduction and sigma(CO2) production, and the isotopic signature of the sigma(CO2) production in the two biogeochemical zones.

  1. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China

    NASA Astrophysics Data System (ADS)

    Fang, Shuang-xi; Tans, Pieter P.; Dong, Fan; Zhou, Huaigang; Luan, Tian

    2016-04-01

    Atmospheric CO2 and CH4 have been continuously measured at the Shangdianzi regional background station (SDZ) in China from 2009 to 2013. Based on the influences of local surface wind and long-distance transport, the observed records were flagged into locally influenced, Beijing-Tianjin-Hebei (BTH) influenced, and Russia, Mongolia, and Inner Mongolia autonomous region influenced (RMI). ∼ 81.4% of CO2 and ∼75.6% of CH4 mole fractions were flagged as locally representative, indicating that the atmospheric CO2 and CH4 at SDZ were strongly influenced by local sources and sinks. Cluster analysis of back trajectories proved that the atmospheric CO2 and CH4 were influenced by air masses from northwest (RMI) or from south and southeast (BTH). The CO2 and CH4 mole fractions in BTH are always higher than in RMI, with the largest difference of 11.5 ± 0.3 ppm for CO2 and 102 ± 1 ppb for CH4 in July. The annual growth rates of CO2 and CH4 in BTH are 3.8 ± 0.01 ppm yr-1 and 10 ± 0.1 ppb yr-1, respectively, which are apparently higher than those of the RMI and the global means. The long-term trends of CO2 and CH4 in BTH are deviating from those in RMI, with ratios of ∼1.0 ppm yr-1 for CO2 and ∼2 ppb yr-1 for CH4, indicating the strengths of CO2 and CH4 emission in Beijing-Tianjin-Hebei plain increased more than 20% every year.

  2. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Shugang; Huo, Wenwen; Xiong, Xiaohu; Cheng, Peng; Lu, Xuefeng; Niu, Zhenchuan

    2014-09-01

    Radiocarbon can be used to trace fossil fuel CO2 (CO2ff) in the atmosphere, because radiocarbon has been depleted in fossil fuels. Here we present our study on the spatial distribution and temporal variations of CO2ff in Xi'an City, China using Δ14C of both green foxtail (Setaria viridis, L. Beauv.) leaf samples and urban air samples collected in the recent years. Our results show that the CO2ff indicated by green foxtail ranged from 14.7 ± 1.7 to 52.6 ± 1.7 ppm, reflecting high CO2ff mole fractions in downtown, industrial areas, and at road sites, and low CO2ff mole fractions in public parks. Meanwhile, the monthly CO2ff reflected by air samples showed higher value in winter (57.8 ± 17.1 ppm) than that in summer (20.2 ± 9.8 ppm) due to the enhancement usage of coal burning and the poor dispersion condition of atmosphere. This study displays that the increased fossil fuel emission is associated with the fast development of Xi'an City in China. It is worth mentioning that the green foxtail samples can be used to map out the CO2ff spatial distribution on large scale quickly and conveniently, while the air samples can be used to trace the CO2ff temporal variations with high resolution effectively. Therefore the Δ14C of both green foxtail and air samples is a good indicator of CO2ff emission.

  3. Advanced CO2 Removal Technology Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  4. NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.

    PubMed

    Krizan, J W; Cava, R J

    2015-07-29

    We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596

  5. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2

    NASA Technical Reports Server (NTRS)

    Kawa, Randy; Huisheng, Bian

    2004-01-01

    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  6. Catalytic Oxidation of CO for Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Schryer, D. R.; Hess, R. V.; Sidney, B. D.; Wood, G. M., Jr.; Paulin, P. A.; Upchurch, B. T.; Brown, K. G.

    1987-01-01

    Stoichiometric mixture converted completely. High-energy pulsed CO2 lasers have potential for measuring many different features of atmosphere of Earth and particularly useful on airborne or space platforms. For this application, laser must be operated in closed cycle to conserve gas, especially if rare nonradioactive isotopes of carbon and oxygen used. However, laser discharge decomposes fraction of CO2 to CO and O2, causing rapid loss in power leading to erratic behavior. To maintain operation, CO and O2 must be recombined to form CO2.

  7. An Experimental Study of CO2 Exsolution and Relative Permeability Measurements during CO2 Saturated Water Depressurization Relevant to Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zuo, L.; Krevor, S. C.; Falta, R. W.; Benson, S. M.

    2011-12-01

    Saline aquifers and depleted oil and gas fields have been considered as preferred geological sequestration options for carbon dioxide to reduce greenhouse gas emissions. Given the high solubility of CO2 in water, over time, the fraction of CO2 in the subsurface may be dominated by dissolved CO2. CO2 laden brine may permeate cap rocks and carry dissolved CO2 to shallower depths, if there is an upward pressure gradient from the reservoir to the overlying groundwater aquifers. This kind of non-hydrostatic pressure gradients can be caused by gas injection in deeper formations, or groundwater depletion. Such upward flows will depressurize the brine and the dissolved CO2 will come out of solution as pressure drops. We present the results of an experimental investigation into the effects of CO2 exsolution on multiphase flow properties in a CO2-water system with various reservoir rocks and a risk assessment of CO2 leakage due to exsolution in carbon sequestration. The relative permeability of exsolved CO2 and water was measured in a core-flooding apparatus during depressurization with X-ray computed tomography. Very low relative permeabilities of CO2 and water are measured in the exsolution experiments, compared to the relative permeabilities derived from steady-state drainage measurements in the same cores, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the CO2 and water phases is hypothesized to result from the presence of a disconnected exsolution gas phase in this flow system. After the CO2 was exsolved, a CO2-saturated water flooding experiment demonstrated the durability and the stability of the low water mobility in the presence of the exsolution gas phase, while the water mobility returned to normal after all of the exsolved CO2 dissolved by a fresh water. A large pressure drop across the core, which is 4~5 times higher than the pressure drop predicted by the drainage relative permeability, was maintained over 120

  8. Monitoring of near surface CO2

    NASA Astrophysics Data System (ADS)

    Faber, E.; Möller, I.; Teschner, M.; Poggenburg, J.; Spickenbom, K.; Schulz, H. J.

    2009-04-01

    Monitoring of near surface CO2 ECKHARD FABER1, INGO MÖLLER1, MANFRED TESCHNER1, JÜRGEN POGGENBURG1, KAI SPICKENBOM1, HANS-MARTIN SCHULZ1,2 1Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, e.faber@bgr.de 2present adress: GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, D-14473 Potsdam Underground gas storage and sequestration of carbon dioxide is one of the methods to reduce the input of antropogenic CO2 into the atmosphere and its greenhouse effect. Storage of CO2 is planned in depleted reservoirs, in aquifers and in salt caverns. Storage sites must have very small leakage rates to safely store the CO2 for centuries. Thus, a careful investigation and site selection is crucial. However, any leakage of CO2 to the surface is potentially dangerous for humans and environment. Therefore, instruments and systems for the detection of any CO2 escaping the storage sites and reaching the atmosphere have to be developed. Systems to monitor gases in deep wells, groundwater and surface sediments for leaking CO2 are developed, tested and are contnuously improved. Our group is mainly analysing CO2 in shallow (down to 3 m) soil samples using automatically operating monitoring systems. The systems are equipped with sensors to measure CO2 (and other gases) concentrations and other environmental parameters (atmospheric pressure, ambient and soil temperatures, etc.). Data are measured in short intervals (minute to subminute), are stored locally and are transferred by telemetrical systems into the BGR laboratory (Weinlich et al., 2006). In addition to soil gases monitoring systems technical equipment is available for continuous underwater gas flow measurements. Several of those monitoring systems are installed in different areas like Czech Republic, Austria, Italy and Germany. To detect any leaking gas from a sequestration site after CO2 injection, the naturally existing CO2 concentration (before injection) must be known. Thus, the natural

  9. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  10. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    NASA Astrophysics Data System (ADS)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.; Oostrom, Mart; Wietsma, Thomas W.; Yu, Qingchun

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analog micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. High resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and

  11. Decarboxylation, CO2 and the reversion problem.

    PubMed

    Kluger, Ronald

    2015-11-17

    Decarboxylation reactions occur rapidly in enzymes but usually are many orders of magnitude slower in solution, if the reaction occurs at all. Where the reaction produces a carbanion and CO2, we would expect that the high energy of the carbanion causes the transition state for C-C bond cleavage also to be high in energy. Since the energy of the carbanion is a thermodynamic property, an enzyme obviously cannot change that property. Yet, enzymes overcome the barrier to forming the carbanion. In thinking about decarboxylation, we had assumed that CO2 is well behaved and forms without its own barriers. However, we analyzed reactions in solution of compounds that resemble intermediates in enzymic reaction and found some of them to be subject to unexpected forms of catalysis. Those results caused us to discard the usual assumptions about CO2 and carbanions. We learned that CO2 can be a very reactive electrophile. In decarboxylation reactions, where CO2 forms in the same step as a carbanion, separation of the products might be the main problem preventing the forward reaction because the carbanion can add readily to CO2 in competition with their separation and solvation. The basicity of the carbanion also might be overestimated because when we see that the decarboxylation is slow, we assume that it is because the carbanion is high in energy. We found reactions where the carbanion is protonated internally; CO2 appears to be able to depart without reversion more rapidly. We tested these ideas using kinetic analysis of catalytic reactions, carbon kinetic isotope effects, and synthesis of predecarboxylation intermediates. In another case, we observed that the decarboxylation is subject to general base catalysis while producing a significant carbon kinetic isotope effect. This requires both a proton transfer from an intermediate and C-C bond-breaking in the rate-determining step. This would occur if the route involves the surprising initial addition of water to the carboxyl

  12. Direct Copolymerization of CO2 and Diols

    PubMed Central

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  13. Direct CO2-Methanation of flue gas

    NASA Astrophysics Data System (ADS)

    Müller, Klaus; Fleige, Michael; Rachow, Fabian; Israel, Johannes; Schmeißer, Dieter

    2013-04-01

    Already discovered by Paul Sabatier in 1902 the Hydrogenation according to CO2 + 4H2 ->CH4 + 2H2O nowadays is discussed in the course of the "Power-to-Gas" approach to utilize excess energy from renewable electricity generation in times of oversupply of electricity. We investigate the behavior of this process in a simulated flue gas atmosphere of conventional base load power plants, which could be used as constant sources of the reactant CO2. In relation to an approach related to carbon capture and cycling, the conversion of CO2 directly from the flue gas of a conventional power plant is a new aspect and has several advantages: The conversion of CO2 into methane could be integrated directly into the combustion process. Even older power plants could be upgraded and used as a possible source for CO2, in the same sense as the amine cleaning of flue gas, as a post combustion process. Further, waste heat of the power plant could be used as process energy for the catalytic reaction. Therefore the influence of different flue gas compositions such as varying contents of nitrogen and residual oxygen are tested in a laboratory scale. The heterogeneous catalysis process is investigated with regard to conversion rates, yield and selectivity and long-term stability of the Ni-catalyst. Also the influence of typical contaminations like SO2 is investigated and will be presented.

  14. The supply chain of CO2 emissions

    PubMed Central

    Davis, Steven J.; Peters, Glen P.; Caldeira, Ken

    2011-01-01

    CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage. PMID:22006314

  15. Direct Copolymerization of CO2 and Diols

    NASA Astrophysics Data System (ADS)

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-04-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification.

  16. CO2 DIAL measurements of water vapor

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Margolis, Jack S.; Brothers, Alan M.; Tratt, David M.

    1987-01-01

    CO2 lidars have heretofore been used to measure water vapor concentrations primarily using the 10R(20) line at 10.247 microns, which has a strong overlap with a water vapor absorption line. This paper discusses the use of that line as well as other CO2 laser lines for which the absorption coefficients are weaker. The literature on measurement of water vapor absorption coefficients using CO2 lasers is reviewed, and the results from four laboratories are shown to be generally consistent with each other after they are normalized to the same partial pressure, temperature, and ethylene absorption coefficent for the 10P(14) CO2 laser line; however, the agreement with the Air Force Geophysics Laboratory's HITRAN and FASCOD 2 spectral data tapes is not good either for the water vapor absorption lines or for the water vapor continuum. Demonstration measurements of atmospheric water vapor have been conducted using the Mobile Atmospheric Pollutant Mapping System, a dual CO2 lidar system using heterodyne detection. Results are discussed for measurements using three sets of laser line pairs covering a wide range of water vapor partial pressures.

  17. Direct Copolymerization of CO2 and Diols.

    PubMed

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  18. Characteristics of optical emission intensities and bubblelike phenomena induced by laser ablation in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Machmudah, Siti; Goto, Hiroshi; Wahyudiono; Goto, Motonobu; Sasaki, Koichi

    2014-01-01

    We investigated the characteristics of laser ablation phenomena in supercritical fluids by optical emission and shadowgraph imaging. In comparison with laser ablation in liquid H2O, the optical emission of a laser ablation plasma produced in supercritical H2O had a longer lifetime and a larger transport length. It was found in supercritical CO2 that laser ablation plasmas with bright optical emissions were produced at a mass density of approximately 300 kg/m3. A clear correlation between the optical emission intensity and the density fluctuation was not observed in our experimental results, which were obtained in a regime deviated from the critical point. Bubblelike hollows were observed by shadowgraph imaging in both supercritical H2O and CO2. The dynamics of the bubblelike hollows were different from the dynamics of a cavitation bubble induced by laser ablation in a liquid medium but relatively similar to the dynamics of ambient gas in gas-phase laser ablation.

  19. CO2-Binding-Organic-Liquids-Enhanced CO2 Capture using Polarity-Swing-Assisted Regeneration

    SciTech Connect

    Zhang, Jian; Kutnyakov, Igor; Koech, Phillip K.; Zwoster, Andy; Howard, Chris; Zheng, Feng; Freeman, Charles J.; Heldebrant, David J.

    2013-01-01

    A new solvent-based CO2 capture process couples the unique attributes of non-aqueous, CO2-binding organic liquids (CO2BOLs) with the newly discovered polarity-swing-assisted regeneration (PSAR) process that is unique to switchable ionic liquids. Laboratory measurements with PSAR indicate the ability to achieve a regeneration effect at 75°C comparable to that at 120°C using thermal regeneration only. Initial measurements also indicate that the kinetic behavior of CO2 release is also improved with PSAR. Abstract cleared PNWD-SA-9743

  20. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.

    PubMed

    Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz

    2014-06-01

    We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development. PMID:24798684

  1. Surface CO2 leakage during the first shallow subsurface CO2release experiment

    SciTech Connect

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2007-09-15

    A new field facility was used to study CO2 migrationprocesses and test techniques to detect and quantify potential CO2leakage from geologic storage sites. For 10 days starting 9 July 2007,and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1,respectively, were released from a ~;100-m long, sub-water table (~;2.5-mdepth) horizontal well. The spatio-temporal evolution of leakage wasmapped through repeated grid measurements of soil CO2 flux (FCO2). Thesurface leakage onset, approach to steady state, and post-release declinematched model predictions closely. Modeling suggested that minimal CO2was taken up by groundwater through dissolution, and CO2 spread out ontop of the water table. FCO2 spatial patterns were related to well designand soil physical properties. Estimates of total CO2 discharge along withsoil respiration and leakage discharge highlight the influence ofbackground CO2 flux variations on detection of CO2 leakagesignals.

  2. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.

    PubMed

    Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos

    2012-03-01

    Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers. PMID:22292779

  3. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.

    PubMed

    Pastore, Melissa A; Megonigal, J Patrick; Langley, J Adam

    2016-01-01

    Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake. PMID:26577708

  4. CO2 Enhancement of Forest Productivity Constrained by Limited Nitrogen Availability

    SciTech Connect

    Norby, Richard J; Warren, Jeffrey; Iversen, Colleen M; Medlyn, Belinda; McMurtrie, Ross

    2010-01-01

    Stimulation of terrestrial productivity by rising CO2 concentration is projected to reduce the airborne fraction of anthropogenic CO2 emissions; coupled climate-carbon (C) cycle models, including those used in the IPCC Fourth Assessment Report (AR4), are sensitive to this negative feedback on atmospheric CO2 1. The representation of the so-called CO2 fertilization effect in the 11 models used in AR4 and subsequent models2,3 was broadly consistent with experimental evidence from four free-air CO2 enrichment (FACE) experiments, which indicated that net primary productivity (NPP) of forests was increased by 23 2% in response to atmospheric CO2 enrichment to 550 ppm4. Substantial uncertainty remains, however, because of the expectation that feedbacks through the nitrogen (N) cycle will reduce the CO2 stimulation of NPP5,6; these feedbacks were not included in the AR4 models and heretofore have not been confirmed by experiments in forests7. Here, we provide new evidence from a FACE experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee, USA, that N limitation has significantly reduced the stimulation of NPP by elevated atmospheric CO2 concentration (eCO2). Isotopic evidence and N budget analysis support the premise that N availability in this forest ecosystem has been declining over time, and declining faster in eCO2. Model analyses and evidence from leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to eCO2. These results provide a strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments.

  5. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko

    2014-06-01

    High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue. PMID:23880918

  6. A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus.

    PubMed

    Herter, Sylvia; Fuchs, Georg; Bacher, Adelbert; Eisenreich, Wolfgang

    2002-06-01

    Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions. PMID:11929869

  7. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  8. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  9. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    Accelerated weathering of limestone (AWL: CO22+ + CaCO3 + H2O ??? Ca2+ + 2HCO3- as a low-tech, inexpensive, high-capacity, environmentally-friendly CO2 capture and sequestration technology was evaluated. With access to seawater and limestone being essential to this approach, significant limestone resources were close to most CO2-emitting power plants along the coastal US. Waste fines, representing > 20% of current US crushed limestone production (> 109 tons/yr), could be used as an inexpensive source of AWL carbonate. AWL end-solution disposal in the ocean would significantly reduce effects on ocean pH and carbonate chemistry relative to those caused by direct atmospheric or ocean CO2 disposal. Indeed, the increase in ocean Ca2+ and bicarbonate offered by AWL should enhance growth of corals and other calcifying marine organisms.

  10. Plant community change mediates the response of foliar delta15N to CO2 enrichment in mesic grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. Isotope fractionation theory and limited experimental evidence indicate that CO2 may increase leaf delta15N by increasing plant community productivity,...

  11. CO2 sequestration in basalts: laboratory measurements

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  12. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bodewits, Dennis; Feaga, Lori; Knight, Matthew; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2016-08-01

    Carbon dioxide is a primary volatile in comet nuclei, and potentially a major contributor to comet activity (i.e., the process of mass loss). However, CO2 cannot be observed directly from the ground, and past surveys of this molecule in comets were limited to space-borne snapshot observations. This situation limits our understanding of the behavior of CO2 in comets, and its role in driving comet mass loss. To address this deficiency, we were awarded a Cy11 Spitzer program designed to quantify the production rate of CO2 on >month-long timescales for 21 comets. We request an additional 269~hr in Cy13 to complete the Spitzer portion of our survey, and to add three more comets (46P/Wirtanen and 2 Target of Opportunity Oort cloud comets). Our survey is designed to probe the orbital trends of CO2 production in the comet population. We aim to: 1) examine the role of CO2 in the persistent post-perihelion activity observed in Jupiter-family comets; 2) measure the seasonal variations of CO2/H2O as a proxy for nucleus heterogeneity, when possible; 3) search for orbital trends sensitive to cumulative insolation as a proxy for nucleus layering; and 4) examine how Oort cloud comets evolve by comparing dynamically new and old targets. The final data set will allow us to investigate the effects of heating on the evolution of comets, if nucleus structures can be inferred through activity, and set the stage for JWST investigations into comet activity and composition.

  13. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  14. Selective Oxytrifluoromethylation of Allylamines with CO2.

    PubMed

    Ye, Jian-Heng; Song, Lei; Zhou, Wen-Jun; Ju, Tao; Yin, Zhu-Bao; Yan, Si-Shun; Zhang, Zhen; Li, Jing; Yu, Da-Gang

    2016-08-16

    Reported is the first oxy-trifluoromethylation of allylamines with carbon dioxide (CO2 ) using copper catalysis, thus leading to important CF3 -containing 2-oxazolidones. It is also the first time CO2 , a nontoxic and easily available greenhouse gas, has been used to tune the difunctionalization of alkenes from amino- to oxy-trifluoromethylation. Of particular note, this multicomponent reaction is highly chemo-, regio-, and diastereoselective under redox-neutral and mild reaction conditions. Moreover, these reactions feature good functional-group tolerance, broad substrate scope, easy scalability and facile product diversification. The important products could also be formed with either spirocycles or two adjacent tetrasubstituted carbon centers. PMID:27411560

  15. Leak Path Development in CO2 Wells

    NASA Astrophysics Data System (ADS)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.

    2014-12-01

    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  16. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  17. CO2 chemosensing in rat oesophagus

    PubMed Central

    Akiba, Y; Mizumori, M; Kuo, M; Ham, M; Guth, P H; Engel, E; Kaunitz, J D

    2016-01-01

    Background Acid in the oesophageal lumen is often sensed as heartburn. It was hypothesised that luminal CO2, a permeant gas, rather than H+, permeates through the epithelium, and is converted to H+, producing an afferent neural signal by activating chemosensors. Methods The rat lower oesophageal mucosa was superfused with pH 7.0 buffer, and pH 1.0 or pH 6.4 high CO2 (PCO2 = 260 Torr) solutions with or without the cell-permeant carbonic anhydrase (CA) inhibitor methazolamide (MTZ, 1 mM), the cell-impermeant CA inhibitor benzolamide (BNZ, 0.1 mM), the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (CPZ, 0.5 mM) or the acid-sensing ion channel (ASIC) inhibitor amiloride (0.1 mM). Interstitial pH (pHint) was measured with 5′,6′-carboxyfluorescein (5 mg/kg intravenously) loaded into the interstitial space, and blood flow was measured with laser-Doppler. Results Perfusion of a high CO2 solution induced hyperaemia without changing pHint, mimicking the effect of pH 1.0 perfusion. Perfused MTZ, BNZ, CPZ and amiloride all inhibited CO2-induced hyperaemia. CA XIV was expressed in the prickle cells, with CA XII in the basal cells. TRPV1 was expressed in the stratum granulosum and in the muscularis mucosa, whereas all ASICs were expressed in the prickle cells, with ASIC3 additionally in the muscularis mucosa. Conclusions The response to CO2 perfusion suggests that CO2 diffuses through the stratum epithelium, interacting with TRPV1 and ASICs in the epithelium or in the submucosa. Inhibition of the hyperaemic response to luminal CO2 by CA, TRPV1 and ASIC inhibitors implicates CA and these chemosensors in transduction of the luminal acid signal. Transepithelial CO2 permeation may explain how luminal H+ equivalents can rapidly be transduced into hyperaemia, and the sensation of heartburn. PMID:18682519

  18. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, L. W.; Way, J. D.; Vlasse, M.

    2001-01-01

    The CO2 Acquisition Membrane (CAM) project will develop, test, and analyze membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The CAM technology will enable passive separation of these gases, allow energy efficient acquisition and purification of these important resources, and lay the foundation for future unmanned sample return and human space missions. The CAM membranes are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP).

  19. Crystallization of CO2 ice and the absence of amorphous CO2 ice in space

    PubMed Central

    Escribano, Rafael M.; Muñoz Caro, Guillermo M.; Cruz-Diaz, Gustavo A.; Rodríguez-Lazcano, Yamilet; Maté, Belén

    2013-01-01

    Carbon dioxide (CO2) is one of the most relevant and abundant species in astrophysical and atmospheric media. In particular, CO2 ice is present in several solar system bodies, as well as in interstellar and circumstellar ice mantles. The amount of CO2 in ice mantles and the presence of pure CO2 ice are significant indicators of the temperature history of dust in protostars. It is therefore important to know if CO2 is mixed with other molecules in the ice matrix or segregated and whether it is present in an amorphous or crystalline form. We apply a multidisciplinary approach involving IR spectroscopy in the laboratory, theoretical modeling of solid structures, and comparison with astronomical observations. We generate an unprecedented highly amorphous CO2 ice and study its crystallization both by thermal annealing and by slow accumulation of monolayers from the gas phase under an ultrahigh vacuum. Structural changes are followed by IR spectroscopy. We also devise theoretical models to reproduce different CO2 ice structures. We detect a preferential in-plane orientation of some vibrational modes of crystalline CO2. We identify the IR features of amorphous CO2 ice, and, in particular, we provide a theoretical explanation for a band at 2,328 cm−1 that dominates the spectrum of the amorphous phase and disappears when the crystallization is complete. Our results allow us to rule out the presence of pure and amorphous CO2 ice in space based on the observations available so far, supporting our current view of the evolution of CO2 ice. PMID:23858474

  20. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Waldrop, M. P.; Mangan, M.

    2011-12-01

    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from <0.6% (ambient forest) to >80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone

  1. Transport of root-derived CO2 via the transpiration stream affects aboveground tree physiology

    NASA Astrophysics Data System (ADS)

    Bloemen, J.; McGuire, M. A.; Aubrey, D. P.; Teskey, R. O.; Steppe, K.

    2012-04-01

    Recent research on soil CO2 efflux has shown that belowground autotrophic respiration is largely underestimated using classical net CO2 flux measurements. Aubrey & Teskey (2009) found that in forest ecosystems a substantial portion of the CO2 released from root respiration remained within the root system and was transported aboveground in the stem via the transpiration stream. The magnitude of this upward movement of CO2 from belowground tissues suggested important implications for how we measure above- and belowground respiration. If a considerable fraction of root-respired CO2 is transported aboveground, where it might be fixed in woody and leaf tissues, then we are routinely underestimating the amount of C needed to sustain belowground tissues. In this study, we infused 13C labeled water into the base of field-grown poplar trees as a surrogate for root-respired CO2 to investigate the possible role of root-derived CO2 as substrate for carbon fixation. The label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and fixed by chlorophyll-containing woody (young bark and xylem) and leaf (petiole) tissues. Moreover, based on 13C analysis of gas samples, we observed that up to 88 ± 0.10 % of the label applied was lost to the atmosphere by stem and branch efflux higher in the trees. Given that one-half of root-respired CO2 may follow this internal flux pathway (Aubrey & Teskey, 2009), we calculated that up to 44% of the root-respired CO2 could diffuse to the atmosphere once transported to the stem and branches. Thus, a large portion of CO2 that diffuses out of aboveground tissues may actually result from root respiration. Our results show that CO2 originating belowground can be transported internally to aboveground parts of trees, where it will have an important impact on tree physiology. Internal transport of CO2 indicates that the gas exchange approach to estimating above- and

  2. Surgical Ablation of Atrial Fibrillation.

    PubMed

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  3. Transendoscopic application of CO2 laser irradiation using the OmniGuide fiber

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P., Jr.; Elce, Yvonne A.

    2005-04-01

    Transendoscopic laser surgery has been performed in large animals since 1984. It is used to treat many upper respiratory disorders, as well as urogenital diseases. Initially, the Nd:YAG laser was the laser of choice until the early 1990's, when smaller, more compact diode lasers entered the veterinary field. In the mid 1980's, several attempts were made to transmit CO2 laser energy transendoscopically. True success was not obtained until 2004 when the OmniGuide CO2 Laser Hollow Light Guide (fiber) was fabricated. Although there is attenuation of energy, this very flexible fiber allows the CO2 laser to be used transendoscopically for incision and ablation of tissue. Both healing and recuperation time are reduced, compared to other wavelengths transmitted through solid quartz fiber. The OmniGuide fiber can be coupled to the output ports of CO2 lasers commonly used in veterinary medicine. Transendoscopic application of the CO2 laser is advantageous in that there is no endoscopic white-out, no volume heating of tissue, and it provides accurate means of performing upper respiratory surgery in the standing large animal.

  4. Response of Nodularia spumigena to pCO2 - Part 3: Turnover of phosphorus compounds

    NASA Astrophysics Data System (ADS)

    Unger, J.; Endres, S.; Wannicke, N.; Engel, A.; Voss, M.; Nausch, G.; Nausch, M.

    2012-10-01

    Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 μatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 μatm and of 2.25 at 508 μatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.

  5. Greenland CO2 and δ13C of CO2 - assigning the contamination

    NASA Astrophysics Data System (ADS)

    Jenk, T.; Rubino, M.; Etheridge, D.; Bigler, M.; Blunier, T.

    2012-04-01

    Analysis of air extracted from bubbles of Greenland ice results in considerably higher CO2 concentrations compared to records from Antarctic sites. This can not be explained by the inter-hemispheric gradient expected for past climatic conditions. Instead, it is attributed to chemical reactions between impurities in the ice, contributing excess CO2 to the atmospheric signal which was initially trapped in the bubbles. This is consistent with the fact that Greenland ice contains a significantly higher amount of impurities compared to Antarctic ice. Different candidates of CO2 producing chemical reactions were suggested by previous studies: (i) the acidification of carbonates, (ii) the oxidation of hydrocarbons and (iii) the photodecarboxilation of humic like substances. However, there is no agreement on how much each of the above reactions contributes. This study aims to identify the contribution from organic and inorganic sources to the Greenland CO2 excess. Compared to previous studies we base our analysis on an increased set of parameters and data points. We discuss data of CO2 and δ13C-CO2, both in high (2.5 cm) and low resolution (55 to 110 cm) along with parallel records of chemical impurities from three different sites in Greenland. The samples for the presented high resolution CO2 and δ13C of CO2 records were measured on a new set-up at the Centre for Ice and Climate (needle cracker, GC-IRMS).

  6. CO2 Virtual Science Data Environment: Providing Streamlined Access to CO2 Data

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Cinquini, L.; Davidoff, S.; Duran, B.; Eldering, A.; Granat, R. A.; Gunson, M. R.; Hofman, J.; Knosp, B.; Murphy, E.; Osterman, G. B.; Zimdars, P.

    2014-12-01

    CO2 is an important greenhouse gas and therefore characterizing and understanding its global distribution is crucial for the study of Earth's changing climate. Currently, satellite remote sensing measurements of CO2 are available from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric InfraRed Sounder (AIRS), Orbiting Carbon Observatory 2 (OCO-2), and Tropospheric Emission Spectrometer (TES). Traditionally, data from these different missions are distributed separately from one another and they each possess different data formats, making it cumbersome for researchers to access, analyze, and perform inter-comparison. We present an effort at JPL to design a web-based science data environment (co2.jpl.nasa.gov) that allows users to access and utilize CO2 data from GOSAT, AIRS, OCO-2, TES, and the ground-based Total Carbon Column Observing Network (TCCON) in a single user-friendly interface. The features of the data environment include the ability to download full mission-specific CO2-related Level 2 data files or to customize them based on location, time, data variable, version, and format. An important feature of the JPL CO2 data environment is that it allows generation of customized Level 3 products and provides detailed documentation on the mission specifications along with technical data information. These tools are designed to allow users streamlined access to relevant remote sensing and ground-based CO2 datasets in order to facilitate research on atmospheric CO2.

  7. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  8. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  9. Lessons from computer simulations of ablation of atrial fibrillation.

    PubMed

    Jacquemet, Vincent

    2016-05-01

    This paper reviews the simulations of catheter ablation in computer models of the atria, from the first attempts to the most recent anatomical models. It describes how postulated substrates of atrial fibrillation can be incorporated into mathematical models, how modelling studies can be designed to test ablation strategies, what their current trade-offs and limitations are, and what clinically relevant lessons can be learnt from these simulations. Drawing a parallel between clinical and modelling studies, six ablation targets are considered: pulmonary vein isolation, linear ablation, ectopic foci, complex fractionated atrial electrogram, rotors and ganglionated plexi. The examples presented for each ablation target illustrate a major advantage of computer models, the ability to identify why a therapy is successful or not in a given atrial fibrillation substrate. The integration of pathophysiological data to create detailed models of arrhythmogenic substrates is expected to solidify the understanding of ablation mechanisms and to provide theoretical arguments supporting substrate-specific ablation strategies. PMID:26846178

  10. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  11. Effects of dissolved CO2 on Shallow Freshwater Microbial Communities simulating a CO2 Leakage Scenario

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Lowry, G. V.; Gregory, K.

    2013-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2

  12. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  13. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in

  14. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  15. The importance of internal CO2 gradients in tree roots for assessing belowground carbon allocation

    NASA Astrophysics Data System (ADS)

    Bloemen, Jasper; De Bel, Bryan; Wittocx, Jonas; Anné, Thomas; McGuire, Mary Anne; Teskey, Robert O.; Steppe, Kathy

    2015-04-01

    In trees, it is known that allocation of recent assimilates belowground fuels metabolic processes like root respiration. Nonetheless, the fraction of carbon allocated belowground remains poorly quantified as the energetic costs of tree root metabolism remain largely unknown. Current estimates of root respiration are calculated from measurements of CO2 efflux from roots or soil. However, a substantial portion of CO2 released by root respiration might remain within the tree root system rather than diffusing into the soil environment, indicating that root respiration consumes substantially more carbohydrates than previously recognized. We measured internal CO2 concentration ([CO2]) and sap flow in three longitudinal sections of two large roots of American beech (Fagus grandifolia) and yellow poplar (Liriodendron tulipifera) trees (n=4 trees per species), while simultaneously measuring [CO2] in neighboring soil. We hypothesized that [CO2] would be lowest in soil and increase from the root tip to the base of the stem. We observed substantially higher [CO2] in tree roots (on average 8.5 ± 2.0 and 5.2 ± 1.9 Vol% for American beech and yellow poplar, respectively) compared with the soil environment (1.0 ± 0.4 and 1.3 ± 1.3 Vol% around American beech and yellow poplar, respectively), indicating that root tissues exert substantial barriers to outward diffusion of respired CO2. Moreover, we observed an internal [CO2] gradient from root tip to stem base which suggests that progressively more respired CO2 dissolved in flowing xylem sap as it moved from the soil through the root xylem. These results confirm that a fraction of root-respired CO2 concentrates in the xylem sap of the root system and fluxes upward within the tree. This CO2 that is removed from the site of respiration cannot be accounted for with measurements of CO2 efflux from roots or soil, indicating that efflux-based techniques underestimate the energetic costs of tree root metabolism and therefore the amount

  16. CO2 laser used in cosmetology

    NASA Astrophysics Data System (ADS)

    Su, Chenglie

    1993-03-01

    Cases of various kinds of warts, nevi, papillomas, skin angiomas, ephilises, skin vegetation, scars and brandy noses were vaporized and solidified with a 2.5 - 8 W low power CO2 laser with an overall satisfaction rate up to 99.8% and the satisfaction rate for one time 92%.

  17. Agriculture waste and rising CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there are many uncertainties concerning agriculture’s role in global environmental change including the effects of rising atmospheric CO2 concentration. A viable and stable world food supply depends on productive agricultural systems, but environmental concerns within agriculture have to...

  18. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1976-01-01

    Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.

  19. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  20. Blackbody-pumped CO2 laser experiment

    NASA Astrophysics Data System (ADS)

    Christiansen, W. H.; Insuik, R. J.

    1983-07-01

    Thermal radiation from a high temperature oven was used as an optical pump to achieve lasing from CO2 mixtures. Laser output as a function of blackbody temperature and gas conditions is described. This achievement represents the first blackbody cavity pumped laser and has potential for solar pumping. Previously announced in STAR as N83-10420

  1. 76 FR 43489 - Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... dioxide CO 2 e carbon dioxide equivalents EO Executive Order EPA U.S. Environmental Protection Agency FR... the national inventory, see 74 FR 55351, under the definition for ``carbon dioxide equivalent.'' We... Prevention of Significant Deterioration (PSD) and Title V permitting requirements to biogenic carbon...

  2. Artificial photosynthesis - CO2 towards methanol

    NASA Astrophysics Data System (ADS)

    Nazimek, D.; Czech, B.

    2011-03-01

    The new insight into the problem of carbon dioxide utilization into valuable compound - methanol and then its transformation into fuel is presented. Because the highly endothermic requirements of the reaction of CO2 hydrogenation a photocatalytic route is applied. Combining of the two reactions: water splitting and CO2 hydrogenation using H2O as a source of hydrogen at the same time and place are proposed. The studies over modified TiO2 catalysts supported on Al2O3 were conducted in a self-designed circulated photocatalytic reaction system under at room temperature and constant pressure. Experimental results indicated that the highest yield of the photoreduction of CO2 with H2O were obtained using TiO2 with the active anatase phase modified by Ru and WO3 addition. The conversion was very high - almost 97% of CO2 was transformed mainly into methanol (14%vol.) and into small amount of formic and acetic acid and ester.

  3. Nuclear-pumped CO2 laser

    NASA Technical Reports Server (NTRS)

    Rowe, M.

    1979-01-01

    The He-3 (n,p)T reaction was examined as an energy source for a CO2 laser. For this purpose He-3 was added to a functioning CO2 electrically excited laser. Initially the laser was run electrically with 12 torr total pressure. The gas mixture was 1:1:8, CO2:N2:He. At zero reactor power, the laser was tested in place next to the core of the Georgia Tech. Research Reactor. After verification of laser action He-3 was added to the system. The He-3 partial pressures of 10 torr, 50 torr, and 300 torr were added in three separate reactor runs. Reactor power ranged from zero to 5 million watts, which corresponds to a peak flux of 10 to the 14th power/sq cm. At reactor powers greater than 10 kW, gain of up to 30 percent was shown. However, indications are this may be due to gamma excitation rather than caused by the He-3 (n,p)T reaction. These results do agree with the data of past CO2 nuclear pumped laser experiments.

  4. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  5. Isolation of microorganisms from CO2 sequestration sites through enrichments under high pCO2

    NASA Astrophysics Data System (ADS)

    Peet, K. C.; Freedman, A. J.; Boreham, C.; Thompson, J. R.

    2012-12-01

    Carbon Capture and Storage (CCS) in geologic formations has the potential to reduce greenhouse gas emissions from fossil fuel processing and combustion. However, little is known about the effects that CO2 may have on biological activity in deep earth environments. To understand microorganisms associated with these environments, we have developed a simple high-pressure enrichment methodology to cultivate organisms capable of growth under supercritical CO2 (scCO2). Growth media targeting different subsurface functional metabolic groups is added to sterilized 316 stainless steel tubing sealed with quarter turn plug valves values and pressurized to 120-136 atm using a helium-padded CO2 tank, followed by incubation at 37 °C to achieve the scCO2 state. Repeated passages of crushed subsurface rock samples and growth media under supercritical CO2 headspaces are assessed for growth via microscopic enumeration. We have utilized this method to survey sandstone cores for microbes capable of growth under scCO2 from two different geologic sites targeted for carbon sequestration activities. Reproducible growth of microbial biomass under high pCO2 has been sustained from each site. Cell morphologies consist of primarily 1-2 μm rods and oval spores, with densities from 1E5-1E7 cells per ml of culture. We have purified and characterized a bacterial strain most closely related to Bacillus subterraneus (99% 16S rRNA identity) capable of growth under scCO2. Preliminary physiological characterization of this strain indicates it is a spore-forming facultative anaerobe able to grow in 0.5 to 50 ppt salinity. Genome sequencing and analysis currently in progress will help reveal genetic mechanisms of acclimation to high pCO2 conditions associated with geologic carbon sequestration.

  6. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    PubMed

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  7. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  8. Modelling the Martian CO2 Ice Clouds

    NASA Astrophysics Data System (ADS)

    Listowski, Constantino; Määttänen, A.; Montmessin, F.; Lefèvre, F.

    2012-10-01

    Martian CO2 ice cloud formation represents a rare phenomenon in the Solar System: the condensation of the main component of the atmosphere. Moreover, on Mars, condensation occurs in a rarefied atmosphere (large Knudsen numbers, Kn) that limits the growth efficiency. These clouds form in the polar winter troposphere and in the mesosphere near the equator. CO2 ice cloud modeling has turned out to be challenging: recent efforts (e.g. [1]) fail in explaining typical small sizes (80 nm-130 nm) observed for mesospheric clouds [2]. Supercold pockets (T<< Tcond), which appear to be common in the mesosphere [3],might be exclusively responsible of the formation of such clouds, as a consequence of gravity waves propagating throughout the atmosphere [4]. In order to understand by modeling the effect CO2 clouds could have on the Martian climate, one needs to properly predict the crystal sizes, and so the growth rates involved. We will show that Earth microphysical crystal growth models, which deal with the condensation of trace gases, are misleading when transposed for CO2 cloud formation: they overestimate the growth rates at high saturation ratios. On the other hand, an approach based on the continuum regime (small Kn), corrected to account for the free molecular regime (high Kn) remains efficient. We present our new approach for modelling the growth of Martian CO2 cloud crystals, investigated with a 1D-microphysical model. [1] Colaprete, A., et al., (2008) PSS, 56, 150C [2] Montmessin, F., et al., (2006) Icarus, 183, 403-410 [3] Montmessin at al., (2011) mamo, 404-405 [4] Spiga, A., et al., (2012), GRL, 39, L02201 [5] Wood, S. E., (1999), Ph.D. thesis, UCLA [6] Young, J. B., J. Geophys. Res., 36, 294-2956, 1993

  9. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  10. CO2 monitoring at the pilot-scale CO2 injection site in Nagaoka, Japan

    NASA Astrophysics Data System (ADS)

    Tanase, D.; Xue, Z.; Watanabe, J.; Saito, H.

    2005-12-01

    A pilot-scale CO2 sequestration project supported by the Japanese Government (METI) has been conducted by Research Institute of Innovative Technology for the Earth (RITE) in co-operation with Engineering Advancement Association of Japan (ENAA). The test site is located at the South Nagaoka gas field operated by Teikoku Oil Co., Ltd. in Nagaoka city, Niigata Prefecture, 200 km north of Tokyo. The targeted layer for the CO2 injection is a thin permeable zone intercalated in a 60 m thick sandstone bed of early Pleistocene age, which lies about 1,100 m below the ground surface. One injection well (IW-1) and three observation wells (OB-2, -3, -4) were drilled at the site. The CO2 injection started on 7 July 2003 and ended on 11 January 2005 with the total injected amount of 10,400 tonnes within eighteen months. Purchased CO2 of 99.9 % pure was injected in the supercritical state at the rate of 20-40 tonnes per day. A series of time-lapse CO2 monitoring consisted of geophysical well logging and cross-well seismic tomography has been performed at the injection site and the results provide valuable insight into the CO2 movement in the sandstone reservoir. Time-lapse well loggings of induction, gamma ray, neutron and sonic were performed almost once a month to monitor CO2 breakthrough at the three observation wells. On 10 March 2004, a breakthrough was first detected at OB-2, 40 m apart from the injection well, after the cumulative injection of 4,000 tonnes. As an evidence of CO2 breakthrough changes appeared in results of sonic, induction and neutron logs. The sonic P-wave velocity decreased significantly up to 23% after the breakthrough, and then results of sonic logging showed the CO2-bearing zone getting wider during the injection of CO2. Differences appeared also in widths of CO2-bearing zone of induction and neutron logs. On 16 July 2004, another breakthrough of CO2 was detected at OB-4 of 60 m away from the injection well as changes in sonic and neutron logs. No sign

  11. Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2012-01-01

    The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.

  12. Tracking and verifying anthropogenic CO2 emissions over the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    Oney, Brian; Brunner, Dominik; Henne, Stephan; Leuenberger, Markus

    2013-04-01

    The Swiss Plateau is the densely populated and industrialized part of Switzerland producing more than 90% of the country's total greenhouse gas emissions. Verification of the efficacy of emission mitigation measures in a post Kyoto Protocol era will require several levels of scrutiny at local and regional scales. We present a measurement and modeling system, which quantifies anthropogenic CO2 emissions at a regional scale using the Lagrangian particle dispersion model FLEXPART driven by output from a high-resolution regional scale atmospheric model (COSMO) and observations from two tall tower sites. These rural measurement sites are situated between the largest cities of Switzerland (Zürich, Geneva, Basel and Bern). We present methods used to discretize the anthropogenic CO2 signal from atmospheric CO2 measurements. First, we perform high resolution, time-inverted simulations of air transport combined with a new high quality Swiss CO2 emissions inventory to determine a model-estimated anthropogenic portion of the measured CO2. Second, we assess the utility of CO measurements and the relationship between CO2 and CO in combustion processes as a proxy to quantify the anthropogenic CO2 fraction directly from the measurements. We then compare these two methods in their ability to determine the anthropogenic portion of CO2 measurements at a high temporal resolution (hours). Finally, we assess the quality of the simulated atmospheric transport by comparing CO concentrations obtained with the same atmospheric transport model and a high resolution CO emission inventory with the measured CO concentrations. This comparison of methods for determining anthropogenic CO2 emissions provides information on how to independently certify reported CO2 emissions. This study is a first step towards a prototype GHG monitoring and verification system for the regional scale in a complex topographic setting, which constitutes a necessary component of emissions reporting.

  13. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles

    NASA Astrophysics Data System (ADS)

    Aster, Ellen M.; Wallace, Paul J.; Moore, Lowell R.; Watkins, James; Gazel, Esteban; Bodnar, Robert J.

    2016-09-01

    Melt inclusions record valuable information about pre-eruptive volatile concentrations of melts. However, a vapor bubble commonly forms in inclusions after trapping, and this decreases the dissolved CO2 concentration in the melt (glass) phase in the inclusion. To quantify CO2 loss to vapor bubbles, Raman spectroscopic analysis was used to determine the density of CO2 in bubbles in melt inclusions from two Cascade cinder cones near Mt. Lassen and two Mexican cinder cones (Jorullo, Parícutin). Using analyses of dissolved CO2 and H2O in the glass in the inclusions, the measured CO2 vapor densities were used to reconstruct the original dissolved CO2 contents of the melt inclusions at the time of trapping. Our results show that 30-90% of the CO2 in a melt inclusion is contained in the vapor bubble, values similar to those found in other recent studies. We developed a model for vapor bubble growth to show how post-entrapment bubbles form in melt inclusions as a result of cooling, crystallization, and eruptive quenching. The model allows us to predict the bubble volume fraction as a function of ΔT (the difference between the trapping temperature and eruptive temperature) and the amount of CO2 lost to a bubble. Comparison of the Raman and modeling methods shows highly variable agreement. For 10 of 17 inclusions, the two methods are within ± 550 ppm CO2 (avg. difference 290 ppm), equivalent to ±~300 bars uncertainty in estimated trapping pressure for restored inclusions. Discrepancies between the two methods occur for inclusions that have been strongly affected by post-entrapment diffusive H+ loss, because this process enhances bubble formation. For our dataset, restoring the CO2 lost to vapor bubbles increases inferred trapping pressures of the inclusions by 600 to as much as 4000 bars, highlighting the importance of accounting for vapor bubble formation in melt inclusion studies.

  14. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  15. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without

  16. Sequestration of carbon dioxide (CO2) using red mud.

    PubMed

    Yadav, Vishwajeet S; Prasad, Murari; Khan, Jeeshan; Amritphale, S S; Singh, M; Raju, C B

    2010-04-15

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5-2.2 g cm(-3)). Carbonation of each fraction of red mud was carried out separately at room temperature using a stainless steel reaction chamber at a fixed pressure of 3.5 bar. Effects of reaction time (0.5-12 h) and liquid to solid ratio (0.2-0.6) were studied for carbonation of red mud. Different instrumental techniques such as X-ray diffraction, FTIR and scanning electron microscope (SEM) were used to ascertain the different mineral phases before and after carbonation of each fraction of red mud. Characterization studies revealed the presence of boehmite, cancrinite, chantalite, hematite, gibbsite, anatase, rutile and quartz. Calcium bearing mineral phases (cancrinite and chantalite) were found responsible for carbonation of red mud. Maximum carbonation was observed for the fraction RM II having higher concentration of cancrinite. The carbonation capacity is evaluated to be 5.3 g of CO(2)/100 g of RM II. PMID:20036053

  17. Short-term effects of CO(2) and O(2) on citrate metabolism in illuminated leaves.

    PubMed

    Tcherkez, Guillaume; Mahé, Aline; Guérard, Florence; Boex-Fontvieille, Edouard R A; Gout, Elisabeth; Lamothe, Marlène; Barbour, Margaret M; Bligny, Richard

    2012-12-01

    Although there is now a considerable literature on the inhibition of leaf respiration (CO(2) evolution) by light, little is known about the effect of other environmental conditions on day respiratory metabolism. In particular, CO(2) and O(2) mole fractions are assumed to cause changes in the tricarboxylic acid pathway (TCAP) but the amplitude and even the direction of such changes are still a matter of debate. Here, we took advantage of isotopic techniques, new simple equations and instant freeze sampling to follow respiratory metabolism in illuminated cocklebur leaves (Xanthium strumarium L.) under different CO(2) /O(2) conditions. Gas exchange coupled to online isotopic analysis showed that CO(2) evolved by leaves in the light came from 'old' carbon skeletons and there was a slight decrease in (13) C natural abundance when [CO(2) ] increased. This suggested the involvement of enzymatic steps fractionating more strongly against (13) C and thus increasingly limiting for the metabolic respiratory flux as [CO(2) ] increased. Isotopic labelling with (13) C(2) -2,4-citrate lead to (13) C-enriched Glu and 2-oxoglutarate (2OG), clearly demonstrating poor metabolism of citrate by the TCAP. There was a clear relationship between the ribulose-1,5-bisphosphate oxygenation-to-carboxylation ratio (v(o) /v(c) ) and the (13) C commitment to 2OG, demonstrating that 2OG and Glu synthesis via the TCAP is positively influenced by photorespiration. PMID:22646810

  18. Molecular Behavior CO2 and CO2-H2O Mixtures at Interfaces

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Chialvo, A.; Rother, G.; Vlcek, L.

    2010-12-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. Regardless of the formation type, the CO2 will encounter a complex heterogeneous porous matrix with widely varying pore size and pore distribution, interconnectivity, and surface composition. A small but non-trivial percentage of the pore space is comprised of voids that range from 100 nm down to a few nm in size. These nanoporous environments are more dominant in the cap or seal rocks, such as shale or clay-rich mudstones that act as confining barriers to leakage of CO2 out of the storage reservoir. A concern is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We investigated the behavior of pure CO2 and CO2-H2O mixtures interacting with simple substrates, e.g. SiO2 and muscovite, that act as proxies for more complex mineralogical systems. SANS results were described for sorption properties of supercritical CO2 inside mesoporous silica aerogel (95% porosity; 5-40 nm pores), a proxy for the quartz sub-system. The Adsorbed Phase Model (APM) allows, for the first time, a means to quantify the physical properties (e.g. excess, absolute and total adsorption) of the adsorbed phase formed by fluids inside porous media in terms of the mean density and volume of the sorption phase. The results show clear evidence for fluid depletion for conditions above the critical density. Classical molecular dynamics (CMD) modeling of CO2-silica aerogel interactions also indicates the presence of fluid depletion for conditions above the critical density consistent with SANS results. CMD was also used to assess the microscopic behavior of CO2-H2O mixture

  19. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    SciTech Connect

    Aubrey, Doug, P.; Teskey, Robert, O.

    2009-07-01

    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m-2 d-1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m-2 d-1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  20. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium. PMID:23387603

  1. Direct coupling of a laser ablation cell to an AMS

    NASA Astrophysics Data System (ADS)

    Wacker, L.; Münsterer, C.; Hattendorf, B.; Christl, M.; Günther, D.; Synal, H.-A.

    2013-01-01

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1-20 Hz), the crater diameter (1-150 μm) and the energy density applied (0.2-3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  2. Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2.

    PubMed

    Holtum, Joseph A M; Winter, Klaus

    2003-11-01

    Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 microl CO2 l(-1), net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 microl CO2 l(-1) and mean of 600 microl CO2 l(-1), the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 microl CO2 l(-1) was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 microl CO2 l(-1) to 600 microl CO2 l(-1). The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature. PMID:12905026

  3. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  4. The Relationship Between CO2 Levels and CO2 Related Symptoms Reported on the ISS

    NASA Technical Reports Server (NTRS)

    VanBaalen, M.; Law, J.; Foy, M.; Wear, M. L.; Mason, S.; Mendez, C.; Meyers, V.

    2014-01-01

    Medical Operations, Toxicology, and the Lifetime Surveillance of Astronaut Health collaborated to assess the association of CO2 levels on board the International Space Station and USOS crew reported symptoms inflight, i.e. headache and vision changes. Private Medical Conference (PMC) documents and the weekly Space Medicine Operations Team (SMOT) Notes were used to provide a robust data set of inflight medical events. All events and non-events were documented independent of CO2 levels and other potential contributors. Average (arithmetic mean) and single point maximum ppCO2 was calculated for the 24 hours and 7 days prior to the PMC or SMOT date and time provided by LSAH. Observations falling within the first 7 days of flight (147) were removed from the datasets analyzed to avoid confounding with Space Adaptation Syndrome. The final analysis was based on 1716 observations. For headache, 46 headaches were observed. CO2 level, age at launch, time inflight, and data source were all significantly associated with headache. In particular, for each 1 mmHg increase in CO2, the odds of a crewmember reporting a headache doubled. For vision changes, 29 reports of vision changes were observed. These observations were not found to be statistically associated with CO2 levels as analyzed. While the incidence of headache has was not high (3%), headaches may be an indicator of underlying increases in intracranial pressure, which may result likely from the synergy between CO2-induced cerebral vasodilatation and decreased venous drainage in microgravity. Vision changes were inconsistently reported and as a result did not align appropriately with the CO2 levels. Further analysis is needed. Our results support ongoing efforts to lower the CO2 exposure limits in spacecraft.

  5. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  6. In situ redeposition of trace metals mobilized by CO2-charged brines

    NASA Astrophysics Data System (ADS)

    Wigley, M.; Kampman, N.; Chapman, H. J.; Dubacq, B.; Bickle, M. J.

    2013-05-01

    Mobilization of contaminants by CO2-charged brines is one concern relating to injection of CO2 as part of carbon capture and storage projects. This study monitors the mobility of trace metals in an exhumed CO2-charged aquifer near the town of Green River, Utah (USA), where CO2-charged brines have bleached red sandstones, and concentrated trace metals at the bleaching reaction front. Mass balance calculations on the trace metal enrichments are used to calculate time-integrated fluid fluxes and show that a significant fraction of the metals mobilized by the CO2-rich brines are redeposited locally. A sequential extraction procedure on metal-enriched samples shows that these metals are incorporated into secondary carbonate and oxide phases which have been shown to grow at the CO2-promoted bleaching reaction front. We argue that while CO2-charged brines are capable of mobilizing trace metals, local metal redeposition implies that the potential for contamination of overlying freshwater aquifers is low.

  7. Long-term fate and impacts of fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Archer, D. D.; Brovkin, V.

    2006-12-01

    Several modeling studies have recently predicted the lifetime of fossil fuel CO2 in the atmosphere, and their conclusions are quite consistent with each other, that a significant fraction of the fossil fuel CO2 will continue to affect climate for millennia. The main points of difference between the models are the time scale for CaCO3 neutralization, the effects of rising CO2 and climate change on weathering rates, and the extent of an ocean warming CO2 solubility feedback. The long tail of the CO2 lifetime will be important for the future evolution of ice sheets, and could lead to a prolonged period of interglacial climate. An interglacial climate state accelerates the global rate of CO2 uptake by igneous rock weathering, by exposing unweathered bedrock in the Canadian shield. If our current interglacial climate state lasts as long as the time scale of the silicate weathering feedback (order 100,000 years), the change in weathering regime will have time to further affect atmospheric CO2.

  8. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2

    NASA Astrophysics Data System (ADS)

    Mu, Baoxia; Cui, Xiuhua; Shen, Yifan; Dai, Kang

    2015-09-01

    Quenching of highly vibrationally excited CsH(X1Σ+, v = 15-23) by collisions with CO2 was investigated. A significant fraction of the initial population of highly vibrationally excited CsH(v = 22) was relaxed to a low vibrational level (Δv = -5). The near-resonant 5-1 vibration-to-vibration (V-V) energy was efficiently exchanged. The rate constants for the rotational levels of CO2(0000) [J = 36-60] and CO2(0001) [J = 5-31] from the collisions with excited CsH were determined. The experiments revealed that the collisions resulting in CO2(0000) were accompanied by substantial excitation in rotation and translation. The vibrationally excited CO2(0001) state exhibited rotational and translational energy distributions near those of the initial state. The total quenching rates relative to the probed state of excited CsH were determined for both CO2 states. The corresponding data indicated that the gains in the rotational and translational energies in CO2 were sensitive to the collisional depletion of excited CsH.

  9. CO2 mineralization-bridge between storage and utilization of CO2.

    PubMed

    Geerlings, Hans; Zevenhoven, Ron

    2013-01-01

    CO2 mineralization comprises a chemical reaction between suitable minerals and the greenhouse gas carbon dioxide. The CO2 is effectively sequestered as a carbonate, which is stable on geological timescales. In addition, the variety of materials that can be produced through mineralization could find applications in the marketplace, which makes implementation of the technology more attractive. In this article, we review recent developments and assess the current status of the CO2 mineralization field. In an outlook, we briefly describe a few mineralization routes, which upon further development have the potential to be implemented on a large scale. PMID:23452171

  10. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.

    1999-01-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  11. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  12. CO2 permeability of fractured cap rocks - experiments and numerical simulations (CO2Seals)

    NASA Astrophysics Data System (ADS)

    (Draeger), Ines Rick; Clauser, Christoph

    2010-05-01

    In CO2 sequestration and underground gas storage the sealing capacity of a cap rock is of paramount importance. The main question is therefore how the leakage of CO2 through fissures and faults within the cap rock may affect the CO2 sealing efficiency of low-permeable seal lithotypes. In many cases, these structures provide the main pathways for leakage of CO2. Here, we provide an overview of one part of the joint research project CO2Seals, which deals with the effect of structural features - such as tectonic faults and fissures in the overburden - on the migration of CO2 in addition to mineralogical, petrophysical, and geochemical properties of different lithotypes. The primary contribution of the entire project consists of an improvement of the present quantitative understanding of CO2 transport and retention processes and associated interactions in cap rocks between rock and CO2 or brine. To this end, we are adapting different numerical tools for simulating the relevant petrophysical and geochemical processes of CO2 in cap rocks, in close operation with: (1) large-scale CO2-percolation experiments on fractured cap rock samples; (2) permeability, gas breakthrough, and diffusion experiments; (3) measurements of the mechanical stability of cap rocks and the geochemical alterations of fault zone rock. The observed resulting changes in petrophysical properties, such as porosity, relative rock permeability (CO2 and brine), and fault permeability provide basics for the following numerical simulations. For example, first permeability tests of a marl and clay cap rock out of Cretaceous and Jurassic formations revealed gas permeability of 10-18 m2 down to 10-22 m2. In addition, first percolation experiments indicated that the influence of fault zones on the measured CO2 permeability of clays is very low. Furthermore, numerical bench-scale models are performed to provide confidence for the subsequent transfer to reservoir systems. Large-scale numerical models were created

  13. Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau.

    PubMed

    Goldberg, David S; Lackner, Klaus S; Han, Patrick; Slagle, Angela L; Wang, Tao

    2013-07-01

    Reducing atmospheric CO2 using a combination of air capture and offshore geological storage can address technical and policy concerns with climate mitigation. Because CO2 mixes rapidly in the atmosphere, air capture could operate