Science.gov

Sample records for ablative laser propulsion

  1. Laser Ablation Propulsion A Study

    NASA Astrophysics Data System (ADS)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  2. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  3. Status of the Ablative Laser Propulsion Studies

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Lin, Jun; Cohen, Tinothy; Pakhomov, Andrew V.; Thompson, M. Shane

    2004-01-01

    We present a short review of our laser-propulsion research as well as some of the current results of the Ablative Laser Propulsion (ALP) studies currently underway at the University of Alabama in Huntsville. It has been shown that direct surface ablation of a solid material produces high specific impulse (Isp) at relatively high energy conversion efficiency (20 - 40%). We detail measurements of specific impulse, thrust and coupling coefficients for elemental target materials both with single and with double pulse laser shots. We also present measurements taken using three independent methods for determination of Isp. The three methods produce consistent values from ion time-of-flight technique, impulse measurements and imaging of the expansion front of plasma plume. We present a demonstration of our ALP lightcraft, a small free-flying micro-vehicle that is propelled by ablation. For ALP lightcraft we use a subscale thin shell of nickel replicated over a diamond turned mandrel that produces a highly polished self-focusing, truncated at the focus parabolic mirror. The mass of the lightcraft is 54 mg and it is driven by 100-ps wide, 35-mJ laser pulses at 532 nm wavelength. This is an ongoing research. We also present the latest work on laserdriven micro-thrusters and detail some the near term goals of our program.

  4. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  5. Laser ablation with applied magnetic field for electric propulsion

    NASA Astrophysics Data System (ADS)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  6. CO{sub 2} Laser Ablation Propulsion Tractor Beams

    SciTech Connect

    Sinko, John E.; Schlecht, Clifford A.

    2010-05-06

    Manipulation of objects at a distance has already been achieved with no small measure of success in the realm of microscopic objects on the scale size of nanometers to micrometers in applications including laser trapping and laser tweezers. However, there has been relatively little effort to apply such remote control to macroscopic systems. A space tractor beam could be applied to a wide range of applications, including removal of orbital debris, facilitation of spacecraft docking, adjustment of satellite attitude or orbital position, etc. In this paper, an ablative laser propulsion tractor beam is demonstrated based on radiation from a CO{sub 2} laser. Cooperative, layered polymer targets were used for remote impulse generation using a CO{sub 2} laser. The use of a structured ablatant enabling switching between thrust directional parity (i.e., forward or reverse) and imparting torque to a remote target. Fluence-dependent results are presented in the context of polymer ablation modeling work and with consideration of confined ablation effects.

  7. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    SciTech Connect

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-28

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  8. Laser Ablation of Materials for Propulsion of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  9. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  10. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  11. Measurement of ablative laser propulsion parameters for aluminum, Co-Ni ferrite and polyurethane polymer

    NASA Astrophysics Data System (ADS)

    Jamil, Yasir; Saeed, Humaima; Raza Ahmad, M.; Ahmad Khan, Shakeel; Farooq, Hashim; Shahid, Muhammad; Zia, K. M.; Amin, Nasir

    2013-01-01

    Laser ablation propulsion is a form of beam-powered propulsion in which a pulsed laser ablates a target material thus producing thrust. We report in this work the measurements of various parameters related to laser-induced micropropulsion in toluene diisocyanate-based polyurethane polymer, aluminum and Co-Ni ferrite. The targets were irradiated by a Q-switched pulsed Nd-YAG laser at 1064 nm (pulse duration 5 ns) under atmospheric conditions. A contact-free optical triangulation method was used to measure the laser ablation induced thrust in the samples. The measurements and calculations depict that Co-Ni ferrite is better in terms of critical propulsion parameters C m and I sp. It has been observed that the propulsion parameters depend on the energy per pulse of the incident laser beam.

  12. Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant

    SciTech Connect

    Sinko, John E.; Sasoh, Akihiro

    2010-05-06

    Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literature data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.

  13. Efficient space propulsion engines based on laser ablation

    SciTech Connect

    Phipps, C.R.

    1993-08-01

    Recent results have shown laser momentum transfer coefficients C{sub m} as large as 700 dynes/J from visible and near-infrared laser pulses with heterogeneous targets. Using inexpensive target materials, it is now possible to deliver a 1-tonne satellite from LEO to GEO in 21 days using a 10-kW onboard laser ablation engine, or to maintain several 1-tonne GEO satellites on station from Earth indefinitely using a laser with 100-W average power.

  14. Effect of nozzle geometry on the performance of laser ablative propulsion thruster

    NASA Astrophysics Data System (ADS)

    Li, Long; Jiao, Long; Tang, Zhiping; Hu, Xiaojun; Peng, Jie

    2016-05-01

    The performance of "ablation mode" laser propulsion thrusters can be improved obviously by nozzle constraint. The nozzle geometry of "ablation mode" laser propulsion thrusters has been studied experimentally with CO2 lasers. Experimental results indicate that the propulsion performance of cylindrical nozzle thrusters is better than expansionary nozzle thrusters at the same lengths. The cylindrical nozzle thrusters were optimized by different laser energies. The results show that two important factors, the length-to-diameter ratio α and the thruster diameter to laser-spot diameter ratio β, affect the propulsion performance of the thruster obviously. The momentum coupling coefficient C m increases with the increase of α, while C m increases at first and then decreases with the increase of β.

  15. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  16. A study of laser ablation propulsion using polyoxymethelyne and a high power diode laser

    NASA Astrophysics Data System (ADS)

    Kolesar, Michael D.

    With an increased interest by universities, government and commercial groups in using constellations of pico and nano satellites, the need for micro-thrusters to aid in the station-keeping capabilities has become strong. This report examines using polymers and a laser to ablate material as a potential propulsion option for station-keeping. Homopolymer polyoxymethelyne (POM), commonly known as Delrin(TM), was tested as a fuel for a high powered (20 Watt 980 nm) solid state diode laser ablation thruster to be used for station-keeping on pico and nano sized satellites. The experiments required a partial vacuum to reduce the effects of air decomposition and remove water vapor during the ablation event. The vacuum chamber, shadowgraph, and an impulse measurement system were all designed and built around the 20-Watt laser. Three different sample thicknesses were tested (.005", .010", and .020") to determine the behavior of the polymer. The laser was focused onto the POM sample, which was mounted to a load cell and calibrated to measure the impulse of the system imparted by the laser pulse. The calculated thrust values ranged from 600 microN to 1300 microN with a high uncertainty due to the small sample size. The exhaust plume from the ablation event was captured using a shadowgraph. A low velocity was recorded because the chamber was not a complete vacuum, causing the exhaust plume to collide with the air molecules in the test chamber. However the load cell results suggested that 1.30 mN per burst can be produced with an uncertainty of 30%. With the work outlined in this paper, POM shows the promise and challenge of being a good candidate as a fuel material. POM warrants further development and investment as a fuel to be used with a laser ablation micro-thruster.

  17. Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Zheng; Si-Qi, Zhang; Tian, Liang; Lu, Gao; Hua, Gao; Zi-Li, Zhang

    2016-04-01

    The characteristics of droplets ejected from liquid glycerol doped with carbon are investigated in laser ablation propulsion. Results show that carbon content has an effect on both the coupling coefficient and the specific impulse. The doped-carbon moves the laser focal position from the glycerol interior to the surface. This results in a less consumed glycerol and a high specific impulse. An optimal propulsion can be realized by varying carbon content in glycerol. Project supported by the National Natural Science Foundation of China (Grant No. 10905049) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 53200859165 and 2562010050).

  18. Effects of Propellant Surface Morphology on Laser Ablative Propulsion Performance

    NASA Astrophysics Data System (ADS)

    Ogita, Naoya; Shikida, Mitsuhiro; Sasoh, Akihiro

    2011-11-01

    The effects of surface structure made using Micro Electro Mechanical System (MEMS) technology on the propulsion performance are investigated. Up to 30% increase in the momentum coupling coefficient is obtained.

  19. CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant

    SciTech Connect

    Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya; Sakai, Takeharu; Sasoh, Akihiro; Tsukiyama, Yosuke; Umehara, Noritsugu

    2010-05-06

    The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms of the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.

  20. Effects of Two-Pulse Sequencing on Characteristics of Elementary Propellants for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Thompson, M. Shane; Pakhomov, Andrew V.; Herren, Kenneth A.

    2003-01-01

    This work continues on previous investigations of elementary propellants for Ablative Laser Propulsion (ALP). This paper details the experimental methods used for alignment of a non-colinear temporal pulse splitting apparatus. Spatial coincidence of the separate pulses is established, the pulses are delayed, and first data is reported on this pulse spacing effect on time-of-fight (TOF) measurements. This includes ion velocity and number density measurements, and this data is compared to results from a previous work. Also, first data on the experimental determination of the time required for the laser-induced plasma to become purely reflective to incident pulses is presented.

  1. Time-resolved imaging for the dynamic study of ablative laser propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    Time-resolved imaging techniques have been developed and used for a study of plasma dynamics in Ablative Laser Propulsion (ALP), an advanced propulsion technique utilizing the momentum of laser-ablated solid propellants for rocket thrust. We used a gated Intensified Charge Coupled Device camera to record light emission from laser-induced plasma. The plasma was ignited by 100-ps wide laser pulses, of energy 35 mJ at 532 nm wavelength. The required algorithms for processing 2-D digital images of the plasma and deriving the plasma edge velocities were also developed. The 2-D angular distribution functions for both plasma velocity and emission intensity were deduced from these measurements for the first time. The fitting functions for observed angular distributions were derived for a wide range of elements, such as C (graphite), Al, Si, Cu, Fe, Zn, Sn and Pb. Results show that the specific impulses (I sp) vary between 2.6 x 103 s (carbon) and 1.2 x 103 s (zinc), which are in excellent agreement with previously conducted Force Measurements. We also developed a digital video imaging (DVI) technique to study the dynamics of a ballistic pendulum driven by TEA CO2 laser pulses. The pulses had 200 ns pulsewidth and 10.6 J energy at 10.6 mum wavelength. The experiment using the DVI technique in the range of pressures from 3.5 mTorr to 1 atmosphere has been developed for the first time. Coupling coefficients (Cm) and mass removal rates as functions of pressure were deduced from these measurements. The technique allowed the addressing of the partition of the energy and momentum between air breakdown and target ablation. The study was performed on Aluminum targets. The partition functions show a sharp transition region between 1.0 and 10 Torr, where the momentum and energy imparted to the target via ablation appear comparable to those due to air breakdown. Our observations show that currently developing air-breathing laser-propulsion schemes would hardly support launching

  2. Usage Of Polyacetal Powders As Laser Ablation Propulsion Propellants

    SciTech Connect

    Sasoh, Akihiro; Ogita, Naoya; Sinko, John E.

    2010-05-06

    We examined impulse characteristics of polyoxymeythylene (POM) powders under irradiation by a TEA (Transversely-Excited at Atmospheric pressure)CO{sub 2} laser pulse. The impulse performance exhibited large scatter due to splashing particles. When the powder was hydraulically compacted to form a disk, the momentum coupling coefficient became comparable with that for bulk material, but the mass consumption was increased by several times.

  3. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  4. Laser ablation in a running hall effect thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2013-07-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites (more than 120 in orbit to date). Moreover, they can offer a cost-effective solution for interplanetary journey, as proved by the recent ESA SMART-1 mission to the Moon. The main limiting factor of the HETs lifetime is the erosion of the annular channel ceramics walls. In order to provide a better understanding of the energy deposition on the insulated walls, a laser irradiation study has been carried out on a PPS100-ML thruster during its run in the PIVOINE-2G ground test facility (CNRS Orléans, France). Two distinct approaches have been followed: continuous wave fiber laser irradiation (generation of thermal defects) and nanosecond pulsed laser ablation (generation of topological defects). The irradiated zones have been monitored in situ by IR thermography and optical emission spectroscopy and further investigated ex situ by scanning electron microscopy and profilometry.

  5. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown. PMID:25402938

  6. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-05-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster.

  7. Comparative study of femtosecond and nanosecond laser ablation for propulsion applications

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2012-07-01

    Dependences of absolute vapor/plasma pressure on femtosecond and nanosecond laser intensities were obtained for graphitic materials using a non-contact broadband ultrasonic technique, and propulsion prospects of femtosecond and nanosecond laser launching approaches are discussed.

  8. A new perspective of ablative pulsed laser propulsion: study on different morphologies of nano-structured ZnO

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Saeed, Humaima; Hussain, Tousif

    2015-05-01

    We report for the first time a new application of four different morphologies including nano-noodles of zinc oxide as a laser ablation micro-thruster. Nano-noodles represent a unique class of materials in which the electrons are confined near the surface owing to the majority of the near surface atoms. The synthesized samples of ZnO were of single phase, having a wurtzite hexagonal structure. Three different morphologies, viz. initial (nanoparticles), intermediate (nano-noodles) and final (complete nano-noodles) of zinc oxide were ablated using a Nd : YAG laser operating at 1064 nm for the measurement of propulsion parameters. The momentum coupling coefficient (Cm) and the specific impulse (Isp) were evaluated using the non-contact optical triangulation method. It has been observed that the morphology of the material affects the laser ablation propulsion (LAP) parameters. For each sample, the laser fluence for the optimum coupling coefficient owing to the plasma shielding effect has also been found. The synthesized nanostructured zinc oxide samples have been found useful as efficient laser propellants that can be used in a variety of applications due to diversity in their momentum coupling coefficient and specific impulse values.

  9. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  10. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  11. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  12. Characterization of energetic and non-energetic polymers for laser ablation propulsion applications

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Billa, Narasimha Rao; Guthikonda, Nagaraju; Jana, Tushar; Acrhem Team; School Of Chemistry Team

    2015-06-01

    Energetic Polymers, considered to be cleaner, environmental friendly materials are one of the primary candidates for future plasma thrusters. For e.g., energetic hydroxyl terminated polybutadiene (HTPB) is being used as a binder for high-performance composite propellants. Understanding the conversion of optical energy to kinetic energy is essential in evaluating these materials as thrusters. Spatio-temporal evolution of laser ablative (LA) and blow-off (BO) shock waves (SW) during laser excitation provide a valuable insight into the energy release of the polymers. LASW and LBOSW during 7 ns laser pulse (532 nm, 10Hz) interaction with ~ 200 micron thick HTPB and its variants with energetic additives taken in the form of a sheet were studied simultaneously using defocused shadowgraphic imaging over 0.2 - 30 μs time scales. The results were compared with non-energetic polyvinyl chloride (PVC) under same experimental conditions. The SW was observed to propagate faster through the HTPB variant compared to HTPB. Appearance of LBOSW at different time scales for the polymers revealed the shock propagation characteristics through the polymers. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  13. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  14. In-Tube Laser Propulsion Configurations

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Urabe, Naohide; Torikai, Hiroyuki; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    Laser propulsion research activities at Shock Wave Research Center, Institute of Fluid Science, Tohoku University, focus themselves on `in-tube' configurations. The thrust is enhanced in a confined acceleration region. Other advantages are obtained from the viewpoint of practical application. We are now investigating various extensions of the Laser-driven In-Tube Accelerator (LITA) (1) ablative in-tube propulsion, (2) thrust enhancement using applied magnetic field, (3) plasma pre-generation using a pilot laser irradiation, (4) demonstration of supersonic laser propulsion. The progresses in these subjects are presented.

  15. Laser-ablation processes

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    The various mechanisms by which ablation of materials can be induced with lasers are discussed in this paper. The various ablation processes and potential applications are reviewed from the threshold for ablation up to fluxes of about 10{sup 13} W/cm{sup 2}, with emphasis on three particular processes; namely, front-surface spallation, two-dimensional blowoff, and contained vaporization.

  16. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  17. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  18. Laser thermal propulsion

    NASA Technical Reports Server (NTRS)

    Keefer, D.; Elkins, R.; Peters, C.; Jones, L.

    1984-01-01

    Laser thermal propulsion (LTP) is studied for the case in which laser power is absorbed by a small very high-temperature plasma (about 20,000 K) and transferred to the remainder of the pure hydrogen propellant by radiation and mixing. This concept could lead to the realization of a lightweight orbital transfer vehicle propulsion system having a specific impulse in the range 1000-2000 s. Approximately 12 percent of the input power may be radiated to the thruster walls, and 15 percent of the total propellant flow must be heated to 20,000 K to provide a bulk temperature of 5000 K prior to expansion. Three principal research issues identified are: (1) conditions for hydrogen plasma ignition, (2) control of the plasma position within the laser beam, plasma stability, and plasma absorption efficiency, and (3) characterization of the mixing of the plasma and buffer flows.

  19. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  20. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  1. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  2. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  3. Improved laser ablation model for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Gibbings, Alison; Watson, Ian; Hopkins, John-Mark

    2014-10-01

    This paper presents an improved laser ablation model and compares the performance - momentum coupling and deflection system mass - of laser ablation against contactless deflection methods based on ion-propulsion. The deflection of an asteroid through laser ablation is achieved by illuminating the surface of the asteroid with high intensity laser light. The absorbed energy induces the sublimation of the surface material and the generation of a plume of gas and ejecta. Similar to a rocket engine, the flow of expelled material produces a continuous and controllable thrust that could be used to modify the trajectory and tumbling motion of the asteroid. Recent results gained from a series of laser ablation experiments were used to improve the sublimation and deflection models. In each experiment a terrestrial olivine sample was ablated, under vacuum, with a 90 W continuous wave laser. The paper presents a model that better fits the outcomes of the experimental campaign, in particular in terms of mass flow rate and spot temperature.

  4. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    SciTech Connect

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-08-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed.

  5. Investigation of performance and mechanism for chemical laser propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Li, Long

    2013-05-01

    Chemical laser propulsion (CLP) is accompanied by the release of chemical energy in the process of laser propulsion, which can improve laser propulsion performance. In this article the propulsion performance of POM propellant under the constraint of a cylindrical tube-type thruster in atmospheric and nitrogen environments, respectively, has been conducted experimentally. The results indicate that the ablation masses of a single pulse under two gas environments are close, but the momentum coupling coefficient Cm and specific impulse Isp in atmospheric environment are higher than that in nitrogen environment, which demonstrates an exothermic reaction occurred between the ablation product and the environment oxygen. To learn the mechanism of CLP the molecular spectra for ablation products of POM propellant in atmospheric and vacuum environments are measured and analyzed, respectively, and it reveals that the final product in a vacuum is CH2O, while the final products are CO2 and H2O in the atmosphere. Then the chemical reaction, composition and chemical energy release have been confirmed in the atmospheric environment. By using Arrhenius finite rate chemical reaction model with the code Fluent the flow field evolution of ablation product was simulated numerically. The results show the intensity of chemical energy release is related to the contact and mixing degree of the ablation product and the oxygen in the atmosphere, mixing more fully, the chemical energy released more intensively.

  6. Numerical Study of Thrust Generation in the Process of Laser Ablated Doped Polymer

    NASA Astrophysics Data System (ADS)

    Li, Nanlei; Hong, Yanji; Li, Xiuqian

    2011-11-01

    Recoil impulse of ablation products is a dominant source of thrust during laser ablation of polymers in vacuum. Based on the experiment phenomenon, put forward the threshold energy model to described ablation process, used laser deposition energy in polymer as ablation criterion, and calculated the fluence of energy generation from polymer chemolysis. Take the doped polymer PVC as research object, analyzed and computed interested parameter in process of laser ablated polymer, such as exhaust velocities of ablated product, ablated mass of polymer, recoil momentum gained by polymer target. Consulted experiment data, the numerical model well revealed the propulsion capability of different polymers.

  7. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  8. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  9. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  10. Laser Diagnostics for Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    MacDonald-Tenenbaum, Natalia

    2015-09-01

    Over the past several decades, a variety of laser diagnostic techniques have been developed and applied to diagnose spacecraft propulsion devices. Laser diagnostics are inherently non-intrusive, and provide the opportunity to probe properties such as temperature, concentration or number density of plume species, and plume velocities in the harsh environments of combustion and plasma discharges. This presentation provides an overview of laser diagnostic capabilities for spacecraft propulsion devices such as small monopropellant thrusters, arcjets, ion engines and Hall thrusters. Particular emphasis is placed on recent developments for time-resolved ion velocity measurements in Hall thruster plumes. Results are presented for one such diagnostic method, a time-synchronized CW-laser induced fluorescence (LIF) technique based on a sample hold scheme. This method is capable of correlating measured fluorescence excitation lineshapes with high frequency current fluctuations in the plasma discharge of a Hall thruster and is tolerant of natural drifting in the current oscillation frequency.

  11. Ultrasonic characterization of laser ablation

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Telschow, K. L.

    When a pulsed laser beam strikes the surface of an absorbing material, ultrasonic waves are generated due to thermoelectric expansion and, at higher laser power densities, ablation of the material. These sound generation mechanisms have been the subject of numerous theoretical and experimental studies and are now fairly well understood. In particular, it has been established that at low power densities the thermoelastic mechanism is well described by a surface center of expansion. This mechanism produces a characteristic waveform whose amplitude is proportional to the energy absorbed from the laser pulse and also dependent on the thermal and elastic properties of the material. The ablation ultrasonic source can be described by a point normal force acting on the material surface. For laser power densities near the ablation onset, the time dependence of the source is that of the laser pulse. The resultant waveform recorded on epicenter (source and detector collinear) has a sharp peak determined by the momentum impulse delivered to the material by the ablation process. Particularly in the near ablation onset region, this ultrasonic displacement peak can be used to characterize the ablation process occurring at the material surface. The onset power density for ablation and subsequent ablation dependence on power density are material dependent and thought to be a function of the heat capacity and thermal conductivity of the material. With this in mind, it is possible that these ablation signals could be used to characterize material microstructures, and perhaps material mechanical properties such as hardness, through microstructural changes of the material thermal parameters. This paper explores this question for samples of Type 304 stainless steel with microstructures controlled through work hardening and annealing.

  12. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  13. Laser ablation of human tooth

    NASA Astrophysics Data System (ADS)

    Franklin, Sushmita R.; Chauhan, P.; Mitra, A.; Thareja, R. K.

    2005-05-01

    We report the measurements of ablation threshold of human tooth in air using photo-thermal deflection technique. A third harmonic (355nm) of Nd:YAG (yttrium aluminum garnet) laser was used for irradiation and a low power helium neon laser as a probe beam. The experimental observations of ablation threshold in conjunction with theoretical model based on heat conduction equations for simulating the interaction of a laser radiation with a calcified tissue are used to estimate the absorption coefficient of human tooth.

  14. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  15. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  16. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  17. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  18. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  19. A Conceptual Tree of Laser Propulsion

    SciTech Connect

    Pakhomov, Andrew V.; Sinko, John E.

    2008-04-28

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely.

  20. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. CO{sub 2} Laser Ablation Area Scaling And Redeposition On Flat Polyoxymethylene Targets

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Tsukiyama, Yosuke; Umehara, Noritsugu; Ichihashi, Katsuhiro; Ogita, Naoya; Sasoh, Akihiro; Roeser, Hans-Peter

    2010-10-08

    One of the remaining unknown subjects of laser propulsion involves whether special benefits or challenges exist for applying laser ablation propulsion to targets with particularly large or small spot areas. This subject is of high importance for a wide range of topics ranging from laser removal of space debris to micropropulsion for laser propulsion vehicles. Analysis is complex since different ablation phenomena are dominant between atmosphere and vacuum conditions. Progress has also been impeded by the difficulty of setting control parameters (particularly fluence) constant while the spot area is adjusted. It is also usually difficult for one group to address small- and large-area effects using a single high-power laser system. Recent collaborative experiments on laser ablation area scaling at several institutions, using 100-J class and 10-J class CO{sub 2} lasers, have advanced the understanding of laser propulsion area scaling. The spot area-dependence of laser propulsion parameters has been investigated over an area range covering approximately 0.05-50 cm{sup 2} at low fluence of about 0.6 J/cm{sup 2}. The experiments were conducted well below the threshold for plasma formation, and provide an estimate of the ablation threshold for CO{sub 2} laser ablation of POM.

  2. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  3. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  4. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  5. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  6. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  7. Experimental Investigation of the Reflection Mode Micro Laser Propulsion under Highly Frequent and Multi Pulse Laser

    SciTech Connect

    Zhang Xinghua; Cai Jian; Li Long

    2011-11-10

    Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} and 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.

  8. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  9. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  10. Optical Effects on Laser Ablated Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Prabhu, R. D.; Govinthasamy, R.; Murthy, N. S.

    2006-03-01

    Laser ablation of poly (ethylene terephthalate) and polyimide films were investigated using Excimer-UV laser. SEM analyses indicate the presence of rings for a wide range of ablation parameters (fluence, frequency and number of pulses). It is proposed that the particles present in the plasma plume could cause the incident laser light to diffract, similar to the optical effects observed in the femtosecond laser ablation of solids. The polymer surface provides a perfect medium to register the optical signatures as seen in the SEM images. The fringe-spacings observed in the images are compared with the theoretical diffraction patterns and the height of the plasma particles above the surface is estimated using an optimization scheme. The results of the analysis are consistent with experimentally observed dynamics of the plasma plume. It is proposed that such optical effects could be a routine feature in the laser ablation of polymers. The significance of such artifacts for lithography is discussed.

  11. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  12. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  13. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  14. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  15. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  16. Laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Durrant, S.F.

    1996-07-01

    Laser ablation for solid sample introduction to inductively coupled plasma mass spectrometry for bulk and spatially-resolved elemental analysis is briefly reviewed. {copyright} {ital 1996 American Institute of Physics.}

  17. Active space debris removal by using laser propulsion

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.

    2013-03-01

    At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.

  18. Laser Ablation of Alumina in Water

    SciTech Connect

    Musaev, O.; Midgley, A; Wrobel, J; Kruger, M

    2010-01-01

    Bulk {alpha}-alumina immersed in distilled water was ablated by pulsed UV laser radiation. The resulting colloidal solution contained micron and submicron size particles. X-ray diffraction and Raman spectra of the ablated and original material are similar. Hence, most of the ablated material is {alpha}-alumina. From transmission electron microscope images, most of the submicron and all of the micron-sized particles have sharp edges and do not have spherical shapes, indicating that the dominant ablation mechanism is due to crack propagation. Some spherical particles of diameter less than 100 nm are observed, indicating that they were formed from the liquid state.

  19. Chemically assisted laser ablation ICP mass spectrometry.

    PubMed

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis. PMID:12553756

  20. Laser propulsion for the orbital transfer mission

    NASA Technical Reports Server (NTRS)

    Frisbee, R. H.; Horvath, J. C.; Sercel, J. C.

    1985-01-01

    America's space activities in the 1990s and beyond will partly consist of missions involving the transportation of cargo from low earth orbit (LEO) to higher orbits or to an escape trajectory. Such missions are to be performed with the aid of an orbit transfer vehicle (OTV). The operation of the OTV can be based on different propulsion concepts. A chemical OTV is characterized by a high thrust and low specific impulse. The result is a short trip time at the cost of large quantities of propellant. On the other hand, low-thrust systems such as electric propulsion units, consume very little propellant, but would have a long trip time. The present paper is concerned with a compromise between these two extremes. The employed propulsion system utilizes laser thermal propulsion, in which a ground or space-based laser is used to beam energy to a thruster on the OTV. The laser light is absorbed by a propellant. The resulting heating of the propellant causes an expansion of the propellant through a nozzle to produce thrust. Details regarding this propulsion concept are discussed, taking into account operational questions and missions.

  1. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  2. Subpicosecond laser ablation of dental enamel

    NASA Astrophysics Data System (ADS)

    Rode, A. V.; Gamaly, E. G.; Luther-Davies, B.; Taylor, B. T.; Dawes, J.; Chan, A.; Lowe, R. M.; Hannaford, P.

    2002-08-01

    Laser ablation of dental enamel with subpicosecond laser pulses has been studied over the intensity range of (0.1-1.4) x1014 W/cm2 using 95 and 150 fs pulses at a pulse repetition rate of 1 kHz. The experimentally determined ablation threshold of 2.2plus-or-minus0.1 J/cm2 was in good agreement with theoretical predictions based on an electrostatic ablation model. The ablation rate increased linearly with the laser fluence for up to 15 times the ablation threshold. The absence of collateral damage was observed using optical and scanning electron microscopy. Pulpal temperature measurements showed an increase of about 10 degC during the 200 s course of ablation. However, air cooling at a rate of 5 l/min resulted in the intrapulpal temperature being maintained below the pulpal damage threshhold of 5.5 degC. The material removal rates for subpicosecond precision laser ablation of dental enamel are compared with other techniques.

  3. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  4. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  5. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  6. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  7. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Larson, C. William

    2008-04-01

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  8. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    SciTech Connect

    Larson, C. William

    2008-04-28

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  9. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1994-06-01

    Ever since the first report of laser action, it has been recognized that laser ablation (evaporation/volatilization) may provide a useful sampling mechanism for chemical analysis. In particular, laser ablation is rapidly gaining popularity as a method of sample introduction for mass spectrometry. While most laser ablation/mass spectrometry has been performed with fixed frequency lasers operating at relatively high intensities/fluences ({ge}10{sup 8} W/cm{sup 2}, {ge}1 J/cm{sup 2}), there has been some recent interest in the use of tunable lasers to enhance the ionization yield of selected components in an analytical sample. This process has been termed resonant laser ablation (RLA), and typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one- or two-photon resonant transition in the analyte of interest. Potential advantages of RLA include: (1) simplification of the mass spectrum, by enhancement of signal from the analyte of interest; (2) improvement of the absolute detection limits by improving the ionization efficiency, and (3) improvement in relative sensitivity. The sensitivity enhancement results from reduction of spurious signal, and accompanying noise, in the detection channel. This spurious signal may be due to bleed through from adjacent mass channels, or from isobaric interferences. RLA tends to produce higher mass resolution because of minimal spatial spread in the ion source and small space charge effects. In this manuscript we present a survey of RLA attributes and applications.

  10. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  11. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  12. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.

  13. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1997-01-01

    We will report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation are presented. {copyright} {ital 1997 American Institute of Physics.}

  14. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  15. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  16. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  17. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  18. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  19. Laser systems for ablative fractional resurfacing.

    PubMed

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    Ablative fractional resurfacing (AFR) creates microscopic vertical ablated channels that are surrounded by a thin layer of coagulated tissue, constituting the microscopic treatment zones (MTZs). AFR induces epidermal and dermal remodeling, which raises new possibilities for the treatment of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed. PMID:21158542

  20. Laser Propulsion - Is it another myth or a real potential?

    SciTech Connect

    Cook, Joung R.

    2008-04-28

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  1. Laser Ablation for Small Hepatocellular Carcinoma

    PubMed Central

    Pacella, Claudio Maurizio; Francica, Giampiero; Di Costanzo, Giovanni Giuseppe

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is increasingly detected at small size (<5 cm) owing to surveillance programmes in high-risk patients. For these cases, curative therapies such as resection, liver transplantation, or percutaneous ablation have been proposed. When surgical options are precluded, image-guided tumor ablation is recommended as the most appropriate therapeutic choice in terms of tumor local control, safety, and improvement in survival. Laser ablation (LA) represents one of currently available loco-ablative techniques: light is delivered via flexible quartz fibers of diameter from 300 to 600 μm inserted into tumor lesion through either fine needles (21g Chiba needles) or large-bore catheters. The thermal destruction of tissue is achieved through conversion of absorbed light (usually infrared) into heat. A range of different imaging modalities have been used to guide percutaneous laser ablation, but ultrasound and magnetic resonance imaging are most widely employed, according to local experience and resource availability. Available clinical data suggest that LA is highly effective in terms of tumoricidal capability with an excellent safety profile; the best results in terms of long-term survival are obtained in early HCC so that LA can be proposed not only in unresectable cases but, not differently from radiofrequency ablation, also as the first-line treatment. PMID:22191028

  2. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  3. Laser propulsion for orbit transfer - Laser technology issues

    NASA Technical Reports Server (NTRS)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  4. Excimer laser ablation of ferrite ceramics

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    We study the ablation of Ni-Zn or Mn-7n ferrites by 248-nm KrF excimer laser irradiation for high-resolution patterning. A transfer lens system is used to project the image of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluente for ablation of the ferrite surface is about 0.3 J/cm2. A typical fluente of 1 J/cm2 is used to produce good-quality patterning. Scanning electron microscopy of the ablated area shows a "glassy" skin with extensive microcracks and solidified droplets being ejected that is frozen in action. This skin can be removed by ultrasonic cleaning.

  5. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  6. Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation

    NASA Technical Reports Server (NTRS)

    Park, Sang-Young; Mazanek, Daniel D.

    2005-01-01

    This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is

  7. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  8. NOVEL LASER ABLATION TECHNOLOGY FOR SURFACE DECONTAMINATION

    EPA Science Inventory

    The objective of this project is to develop a novel Laser Ablation Decontamination in Liquid (LADIL) technology for surface decontamination and safe removal of radioactive and/or toxic contaminants. It aims to achieve more efficient surface decontamination without secondary conta...

  9. Numerical modeling of laser thermal propulsion flows

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Thoenes, J.

    1984-01-01

    An review of the problems associated with modeling laser thermal propulsion flows, a synopsis of the status of such models, and the attributes of a successful model are presented. The continuous gaseous hydrogen laser-supported combustion wave (LSCW) thruster, for which a high-energy laser system (preferably space-based) should exist by the time the propulsion technology is developed, is considered in particular. The model proposed by Raizer (1970) is based on the assumptions of one-dimensional flow at constant pressure with heat conduction as the principal heat transfer mechanism. Consideration is given to subsequent models which account for radiative transfer into the ambient gas; provide a two-dimensional generalization of Raizer's analysis for the subsonic propagation of laser sparks in air; include the effect of forward plasma radiation in a one-dimensional model; and attempt a time-dependent (elliptic) solution of the full Navier-Stokes equations for the flow in a simple axisymmetric thruster. Attention is also given to thruster and nozzle flow models and thermodynamic and transport properties.

  10. Study of underwater laser propulsion using different target materials.

    PubMed

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets. PMID:25090568

  11. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  12. Models For Laser Ablation Mass Removal And Impulse Generation In Vacuum

    SciTech Connect

    Sinko, John E.; Gregory, Don A.

    2010-05-06

    To the present day, literature efforts at modeling laser propulsion impulse often used empirical models. Recently, a simple physical approach was demonstrated to be effective for predicting many practical properties of laser ablative impulse generation under vacuum. The model used photochemical mass removal and energy conservation to predict parameters such as the peak momentum coupling coefficient, the optimal fluence position at which this maximum is reached, and various critical properties related to the laser ablation threshold. Although the current model understanding is not complete, improvements in the treatment of mass removal and ambient pressure are expected to allow this type of model to be broadly applicable to many diverse applications using laser ablation impulse generation. In this paper, we also introduce an alternative formulation of the model incorporating photothermal mass removal. Implications and limitations of the model formulation in its initial stage of development are discussed, particularly concerning critical fluence effects and directions for improvement.

  13. Laser-ablation processes (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dingus, Ronald S.

    1992-06-01

    The physical mechanisms associated with ablation of matter by laser irradiation are quite different in different regions of parameter space. The important parameters are the laser wavelength; the laser flux versus time, position, and angle of incidence at the target; and the target properties as well as the properties of the laser-transport medium adjacent to the irradiated target surface. Important target properties include surface contour, laser reflectivity and absorption depth, thermal diffusively, vaporization energy, Gruneisen coefficient, spall strength, ionization energies and plasma opacity versus temperature and density. As the flux increases, the process becomes less dependent on most of these target properties. Depending on the values of these various parameters, at relatively low fluxes targets can be vaporized and these vapors can be transparent to the laser beam. If a transparent liquid or solid transport medium exists in front of the vaporized target material, then a complicated contained- vaporization process takes place and the work done on the target by the vapors can be several orders of magnitude larger than with a gas or vacuum transport medium; the degree of work enhancement can depend strongly on the vapor condensability and condensed matter thermal conductivity. For short-pulselength irradiations of semi-transparent targets with a low- acoustic-impedance-laser-transport medium adjacent to the target, ablation needs to be a vacuum in order for the beam to be able to propagate to the target. For targets in a vacuum exposed to fluxes of this order (and considerably higher) and for long pulselengths, most of the laser energy will be absorbed (before reaching the critical surface) by inverse bremsstrahlung in material blown off from the target; at higher fluxes, the beam will be stopped at the critical surface producing localized absorption along with much higher energy densities and non-thermal equilibrium behavior. When the combination of

  14. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  15. Femtosecond laser ablation elemental mass spectrometry.

    PubMed

    Hergenröder, Roland; Samek, Ota; Hommes, Vanja

    2006-01-01

    Laser ablation mass spectrometry (LA-MS) has always been an interesting method for the elemental analysis of solid samples. Chemical analysis with a laser requires small amounts of material. Depending on the analytical detection system, subpicogram quantities may be sufficient. In addition, a focused laser beam permits the spatial characterization of heterogeneity in solid samples typically with micrometer resolution in terms of lateral and depth dimensions. With the advent of high-energy, ultra-short pulse lasers, new possibilities arise. The task of this review is to discuss the principle differences between the ablation process of short (>1 ps) and ultra-short (<1 ps) pulses. Based on the timescales and the energy balance of the process that underlies an ablation event, it will be shown that ultra-short pulses are less thermal and cause less collateral damages than longer pulses. The confinement of the pulse energy to the focal region guarantees a better spatial resolution in all dimensions and improves the analytical figures of merit (e.g., fractionation). Applications that demonstrate these features and that will be presented are in-depth profiling of multi-layer samples and the elemental analysis of biological materials. PMID:16477613

  16. Thrust enhancement via gel-type liquid confinement of laser ablation of solid metal propellant

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Han, Tae-Hee; Gojani, Ardian B.; Yoh, Jack J.

    2010-01-01

    Laser propulsion has been developed as a suitable small thruster technology for the attitude control of micro and nano class satellites. Laser-based thrusters meet the satellite design criteria for being of light weight and cost effective, because they do not require fuel storing and oxidizer for combustion. Also, thrust control by laser propulsion is achieved fairly easy. In this paper, we consider the confinement of plasma expansion by a gel-type liquid material, which results in the enhancement of the thrust for propulsion. We also present our attempts to resolve some known issues regarding laser ablation of solid and liquid targets. The level of thrust is quantified via the momentum coupling coefficient, which was experimentally measured using a ballistic pendulum system. We have discovered that the laser ablation confinement by the gel-type medium results in 2.3 times more enhanced driving force as compared to the water confinement. A proof of performance is demonstrated for using gel-type material for generating propulsion, and material characterization for optimal thrust performance is presented.

  17. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  18. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  19. Magnetic Colloids By Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Singh, M. K.; Agarwal, A.; Gopal, R.

    2011-06-01

    Colloidal magnetic nanoparticles have been successfully synthesized by nano second pules laser ablation of a cobalt slice immersed in liquid (distilled water) medium. The focused output of 1064 nm wavelength of pulsed Nd: YAG laser operating at 40 mJ/pulse is used for ablation. The liquid enviorment allows formation of colloids with nanoparticles in uniform particle diameter. Synchrotron X-ray powder diffraction (XRD) is used for the study of structural property of synthesized nanoparticles. The magnetic properties of cobalt nanoparticles are also investigated. The coercivity of is found to be 73 Oe. The optical properties have been determined by UV-visible absorption spectroscopy and band gap found to be 2.16 and 3.60 eV.

  20. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  1. Resolving Bias in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Bowring, James; Horstwood, Matthew; Gehrels, George

    2013-06-01

    Increasingly, scientific investigations requiring geochronology utilize laser ablation (LA)-inductively coupled plasma mass spectrometry (ICPMS), taking advantage of the efficiency and throughput possible for uranium-thorium-lead (U-Th-Pb) dating. A number of biases exist when comparing data among laboratories and an ongoing community-based effort is working to resolve and eliminate these biases to improve the accuracy of scientific interpretation based on these data.

  2. Critical Fluences And Modeling Of CO{sub 2} Laser Ablation Of Polyoxymethylene From Vaporization To The Plasma Regime

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Tsukiyama, Yosuke; Ogita, Naoya; Sasoh, Akihiro; Umehara, Noritsugu; Gregory, Don A.

    2010-05-06

    A CO{sub 2} laser was operated at pulse energies up to 10 J to ablate polyoxymethylene targets in air and vacuum conditions. Critical effects predicted by ablation models are discussed in relation to the experimental data, including specifically the threshold fluences for vaporization and critical plasma formation, and the fluence at which the optimal momentum coupling coefficient is found. Finally, we discuss a new approach for modeling polymers at long wavelengths, including a connection formula that links the vaporization and plasma regimes for laser ablation propulsion.

  3. Time-Resolved Force and Schlieren Visualization Study of TEA CO2 Laser Ablation of Water Droplets

    NASA Astrophysics Data System (ADS)

    Li, Xiuqian; Hong, Yanji; Wen, Ming; Ye, Jifei; Cui, Cunyan

    2011-11-01

    Time-resolved force sensing technique was applied to the study of propulsive characteristics of water droplets for multi-pulse TEA (transversely excited at atmospheric pressure) CO2 laser propulsion. Laser-driven blast waves and associated flow dynamics in the impulse generation processes of ablation of water droplets were studied by Schlieren visualization. Experimental results showed that coupling coefficient and specific impulse decreased as the interval between laser pulses and pulse numbers was increased. The maximum speed of the blast wave in the opposite and same direction of laser propagation was respectively 10 km/s and 7 km/s.

  4. KTP-532 laser ablation of urethral strictures

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    In 1988, the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision, as in urethrotomy, strictures were treated with a 360$DEG contact photoradiation. Thirty-one males, average age 53.2 years, received 37 treatments. Six patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and post-gonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of a circumferential ablation followed by foley catheter placement (mean 10 days). Follow-up on 29 of 31 patients ranged from 1 to 16 months (mean 9.7) Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptoms but no stricture recurrence. Six patients (20.5%) failed therapy requiring additional surgery or regular dilatations. No complications were encountered. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious.

  5. Investigating Age Resolution in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, Matt; Kosler, Jan; Jackson, Simon; Pearson, Norman; Sylvester, Paul

    2009-02-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; Vancouver, British Columbia, Canada, 12-13 July 2008; Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-thorium-lead (U-Th-Pb) dating is an increasingly popular approach for determining the age of mineral grains and the timing of geological events. The spatial resolution offered by this technique allows detailed investigations of complex igneous and metamorphic processes, and the speed of data capture allows vast amounts of information to be gathered rapidly. Laser ablation U-Th-Pb dating is therefore becoming an increasingly influential technique to the geochronology community, providing cost-effective and ready access to age data for laboratories and end users worldwide. However, complications in acquiring, processing, and interpreting data can lead to inaccurate age information entering the literature. With the numbers of practitioners expanding rapidly, the need to standardize approaches and resolve difficulties (particularly involving the subjectivity in processing laser ablation U-Th-Pb data) is becoming important.

  6. KTP-532 laser ablation of urethral strictures.

    PubMed

    Turek, P J; Malloy, T R; Cendron, M; Carpiniello, V L; Wein, A J

    1992-10-01

    In 1988 the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision as in urethrotomy, strictures were treated with 360-degree contact photoradiation. Thirty-one male patients, average age 53.2 years, received thirty-seven treatments; 6 patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and postgonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of circumferential ablation, followed by Foley catheter placement (mean, 10 days). Follow-up on 29 of 31 patients ranged from one to sixteen months (mean 9.7). Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptom, but not stricture, recurrence. Six patients (20.5%) failed therapy, requiring additional surgery or regular dilations. No complications were seen. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious. PMID:1413350

  7. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  8. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  9. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  10. Effect of Laser Wavelength and Ablation Time on Pulsed Laser Ablation Synthesis of AL Nanoparticles in Ethanol

    NASA Astrophysics Data System (ADS)

    Baladi, A.; Mamoory, R. Sarraf

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 5-15 minutes using the 1064 and 533 nm wavelengths of a Nd:YAG laser with energies of 280-320 mJ per pulse. It has been found that higher wavelength leads to significantly higher ablation efficiency, and finer spherical nanoparticles are also synthesized. Besides, it was obvious that higher ablation time resulted in higher ablated mass, while lower ablation rate was observed. Finer nanoparticles, moreover, are synthesized in higher ablation times.

  11. CO2 Laser Absorption in Ablation Plasmas

    SciTech Connect

    Eckel, Hans-Albert; Tegel, Jochen; Schall, Wolfgang O.

    2006-05-02

    The impulse formation by laser ablation is limited by the premature absorption of the incident laser radiation in the initially produced cloud of ablation products. The power fraction of a CO2 laser pulse transmitted through a small hole in a POM sample for pulse energies of 35 to 150 J focused on a spot of 2 cm2 has been compared with the incident power. The plasma formation in vacuum and in air of 3500 Pa and the spread of the shock wave with velocities of 1.6 to 2.4 km/s in the low pressure air was observed by Schlieren photography. A sharp edged dark zone with a maximum extension of 10 to 12 mm away from the target surface develops within 5 {mu}s independently of the pressure and is assumed to be a plasma. In order to find out, if this is also the zone where the majority of the incident laser radiation is absorbed, a CO2 probe laser beam was directed through the expansion cloud parallel to and at various distances from the sample surface. The time behavior of the absorption signal of the probe beam has been measured and an absorption wave could be observed.

  12. Ablation dynamics in laser sclerotomy ab externo

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Droege, Gerit; Mohrenstecher, Dirk; Scheu, M.; Birngruber, Reginald

    1996-01-01

    Laser sclerostomy ab externo with flashlamp excited mid-IR laser systems emitting in the 2-3 micrometer spectral range is in phase II clinical trials. Although acutely high success rates were achieved, the restenosis rate after several months is about 40%. Laser pulses of several hundreds of microseconds, known to induce thermo-mechanical explosive evaporation were used for this procedure. We investigated the ablation dynamics in tissue and the cavitation bubble dynamics in water by means of an Er:YAG laser system to estimate the extent of mechanical damage zones in the sclera and in the anterior chamber, which may contribute to the clinical failure. We found substantial mechanical tissue deformation during the ablation process caused by the cavitation effects. Stress waves up to several bar generated by explosive evaporization were measured. The fast mechanical stretching and collapsing of the scleral tissue induced by cavitation resulted in tissue dissection as could be proved by flash photography and histology. The observed high restenosis might be a result of a subsequent enhanced wound healing process. Early fistula occlusions due to iris adherences, observed in about 20% of the clinical cases may be attributed to intraocular trauma induced by vapor bubble expansion through the anterior chamber after scleral perforation. An automatic feedback system minimizing adverse effects by steering and terminating the laser process during scleral fistulization is demonstrated. Moreover, a new approach in laser sclerostomy ab externo is presented using a cw-IR laser diode system emitting at the 1.94 micrometer mid-IR water absorption peak. This system was used in vitro and showed smaller damage zones compared to the pulsed laser radiation.

  13. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  14. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  15. Spectroscopic characterization of laser ablated silicon plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Mumtaz, M.; Shahzada, S.; Nadeem, A.; Haq, S. U.

    2014-06-01

    We report plasma parameters of laser ablated silicon plasma using the fundamental (1064 nm) and second harmonics (532 nm) of a Nd : YAG laser. The electron temperature and electron number density are evaluated using the Boltzmann plot method and Stark broadened line profile, respectively. The electron temperature and electron number density are deduced using the same laser irradiance 2-16 GW cm-2 for 1064 nm and 532 nm as 6350-7000 K and (3.42-4.44) × 1016 cm-3 and 6000-6400 K and (4.20-5.72) × 1016 cm-3, respectively. The spatial distribution of plasma parameters shows a decreasing trend of 8200-6300 K and (4.00-3.60) × 1016 cm-3 for 1064 nm and 6400-5500 K and (5.10-4.50) × 1016 cm-3 for 532 nm laser ablation. Furthermore, plasma parameters are also investigated at low pressure from 45 to 550 mbar, yielding the electron temperature as 4580-5535 K and electron number density as (1.51-2.12) × 1016 cm-3. The trend of the above-mentioned results is in good agreement with previous investigations. However, wavelength-dependent studies and the spatial evolution of plasma parameters have been reported for the first time.

  16. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  17. Laser-driven hypersonic air-breathing propulsion simulator

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Lo, Edmond Y.; Pugh, Evan R.

    1992-01-01

    A feasibility study is presented of simulating airbreathing propulsion on small scale hypersonic models using laser energy. The laser heat addition scheme allows simultaneous inlet and exhaust flows during wind tunnel testing of models with scramjet models. The proposed propulsion simulation concept has extended the Kantrowitz (1974) idea to propulsive wind tunnel models of hypersonic aircraft. Critical issues in aeropropulsive testing of models based on a ramjet power plant are addressed which include transfer of the correct amount of energy to the flowing gas, efficient absorption of laser energy into the gas, and test performance under tunnel reservoir conditions and at reasonable Reynolds numbers.

  18. Polarization of plastic targets by laser ablation

    NASA Astrophysics Data System (ADS)

    Giuffreda, E.; Delle Side, D.; Krasa, J.; Nassisi, V.

    2016-05-01

    Charge separation in plasmas produced on plastic targets by low laser irradiance, structure of the ion front, and the current of fast electrons expanding into the vacuum chamber ahead of ions are characterized. Of particular interest is the negative current flowing through the plastic targets to the grounded vacuum chamber during the period of laser-target interaction. The subsequent multi - peaked structure of positive target current is correlated with occurrence of double sheet layers. The late-time negative charging of targets provides evidence for production of very slow ions by ionization of neutrals ablated at the target crater by radiation from plasma produced by 23 ns excimer KrF laser. The experimental setting allowing the target current observation is discussed.

  19. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses

    PubMed Central

    Lanvin, Thomas; Conkey, Donald B.; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-01-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal. PMID:26203381

  20. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  1. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  2. Deflection of uncooperative targets using laser ablation

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  3. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  4. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices. PMID:26301907

  5. Design and characterization of nozzles and solid propellants for IR laser propulsion

    NASA Astrophysics Data System (ADS)

    Toro, Cinthya; Gómez, Nicolás D.; Boggio, Norberto G.; Codnia, Jorge; Azcárate, M. Laura; Rinaldi, Carlos

    2014-10-01

    In this article, we present an experimental study of the effect of conical section nozzles coupled to solid targets on laser ablation propulsion. The impulse produced on the target by laser ablation was measured in terms of the coupling coefficient C m using a piezoelectric (PZT) sensor. The standard deviation of the PZT signal was used as an estimator of the transferred impulse. The ablation was performed with a TEA CO2 laser at room temperature and atmospheric pressure. The targets were pellets of 90/10 % w/w Zn/CaCO3 concentration ratio. Aluminum nozzles with conical section were coupled to these propellant pellets. A comparative study of the variation of C m using nozzles of different inlet and outlet diameters of the ejected material as well as of different heights was made. The results demonstrate that for the pellet composition analyzed, as the nozzle's height increases and its diameter decreases improvements up to 250 % respect to the target without nozzle are obtained. These are promising results for the potential development of laser ablation microthrusters.

  6. Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence

    NASA Astrophysics Data System (ADS)

    Li, Shuchang; Li, Suyu; Zhang, Fangjian; Tian, Dan; Li, He; Liu, Dunli; Jiang, Yuanfei; Chen, Anmin; Jin, Mingxing

    2015-11-01

    We use a computational model to study the ablation mechanism of metal target irradiated by femtosecond pulse laser. It is confirmed that the Coulomb explosion can occur during femtosecond laser ablation of metal. The influence of thermal ablation and Coulomb explosion on the ablation depth is respectively investigated. Comparing the calculated results with the experimental ones, we find that the theoretical results which consider the thermal ablation only agree well with the experimental ones at high laser fluence, and those which take the Coulomb explosion into account fit well with the experimental ones at lower laser fluence, which exactly explains the ablation mechanism. In contrast with the previous theoretical results which only consider the thermal ablation, our theoretical simulation describes the ablation mechanism straightforward by making comparison of ablation depth, and provides a more reasonable explanation that fits with the actual ablation process.

  7. Sulphur selective ablation by UV laser

    NASA Astrophysics Data System (ADS)

    Lorusso, Antonella; Nassisi, Vincenzo; Belloni, Fabio; Buccolieri, Giovanni; Caretto, Giuseppe; Castellano, Alfredo

    2005-06-01

    In this work we report the preliminary experimental results on the selective ablation of sulphur in ancient stones. The sulphur concentration was reduced after laser action. For this goal an excimer laser operating at 308 nm wavelength and time duration of 20 ns was used. In order to estimate the sulphur concentration before and after laser cleaning, a portable apparatus for energy-dispersive X-ray fluorescence (EDXRF) was utilised. The processed sample were characterized by an initial sulphur concentration of 2.8% w/w. After the laser treatment, sulphur concentration decreased after a total deposited energy of about 30 J/cm2 up to 1.2% w/w value. Due to the porosity of the stone, in fact, it is difficult to eliminate completely the S presence in the composition of the stones. It was also observed that after a few laser shots the initial black area of the stone became white showing in this way the great potential of the laser action on the cleaning process of the pietra leccese.

  8. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1992-01-01

    Ground-based high-power CW lasers can be used to beam power to photovoltaic receivers in space that furnish electricity to space vehicles; this energy can also be used to power electric-propulsion orbital transfer vehicles. An account is presently given of the anticipated requirements for the pulsed FEL lasers, large adaptive optics, photovoltaic receivers, and high specific impulse electrical propulsion. Preliminary system analysis results are presented.

  9. Beamed Energy Propulsion by Means of Target Ablation

    NASA Astrophysics Data System (ADS)

    Rosenberg, Benjamin A.

    2004-03-01

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  10. Beamed Energy Propulsion by Means of Target Ablation

    SciTech Connect

    Rosenberg, Benjamin A.

    2004-03-30

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  11. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  12. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  13. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  14. Laser ablation loading of a surface-electrode ion trap

    SciTech Connect

    Leibrandt, David R.; Clark, Robert J.; Labaziewicz, Jaroslaw; Antohi, Paul; Bakr, Waseem; Brown, Kenneth R.; Chuang, Isaac L.

    2007-11-15

    We demonstrate loading of {sup 88}Sr{sup +} ions by laser ablation into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 4 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful (> or approx. 500 meV)

  15. Hydrogen alpha laser ablation plasma diagnostics.

    PubMed

    Parigger, C G; Surmick, D M; Gautam, G; El Sherbini, A M

    2015-08-01

    Spectral measurements of the H(α) Balmer series line and the continuum radiation are applied to draw inferences of electron density, temperature, and the level of self-absorption in laser ablation of a solid ice target in ambient air. Electron densities of 17 to 3.2×10(24) m(-3) are determined from absolute calibrated emission coefficients for time delays of 100-650 ns after generation of laser plasma using Q-switched Nd:YAG radiation. The corresponding temperatures of 4.5-0.95 eV were evaluated from the absolute spectral radiance of the continuum at the longer wavelengths. The redshifted, Stark-broadened hydrogen alpha line emerges from the continuum radiation after a time delay of 300 ns. The electron densities inferred from power law formulas agree with the values obtained from the plasma emission coefficients. PMID:26258326

  16. [Laser ablation of intervertebral disc: animal experiment].

    PubMed

    Qi, Q; Dang, G D; Cai, Q L

    1994-03-01

    The lumbar intervertebral discs (L3-6) were ablated through a transperitoneal approach in 12 adult dogs by using Nd: YAG laser (1.06 microns) with a 600 microns quartz fiber. The status of limbs motion and sphincter (bladder, bowel) was observed for evaluating the safety of laser irradiation. After irradiation, the animals were sacrificed at prescribed intervals of up to 40 weeks (2, 4, 8, 12 and 40 weeks after operation). The lumbar intervertebral discs were harvested and subjected to light microscopic observation. No dog had suffered from neurogenic dysfunction of limb motion and sphincter. Histological findings immediately after the irradiation showed the disc was vaporized and a cavity was made. After 2 and 4 weeks, fibrous tissues began to proliferate, but cartilaginous tissues replaced the fibrous tissues 12 weeks after the laser irradiation. No new bone formation was found within 40 weeks after operation. On the basis of this study and our previous cadaveric study, percutaneous laser disc decompression (PLDD) was applied in clinical practice in march of 1993. 10 patients underwent PLDD utilizing the same laser equipment. The average follow-up was 3 months. According to the Macnab's criteria, there was an excellent response in 7 patients and a good response in 3. PMID:7842915

  17. Femtosecond laser ablation of brass in air and liquid media

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-01

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  18. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  19. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  20. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  1. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  2. Renaissance of laser interstitial thermal ablation.

    PubMed

    Missios, Symeon; Bekelis, Kimon; Barnett, Gene H

    2015-03-01

    Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating intracranial tumors, originally introduced in 1983. Its use in neurosurgical procedures was historically limited by early technical difficulties related to the monitoring and control of the extent of thermal damage. The development of magnetic resonance thermography and its application to LITT have allowed for real-time thermal imaging and feedback control during laser energy delivery, allowing for precise and accurate provision of tissue hyperthermia. Improvements in laser probe design, surgical stereotactic targeting hardware, and computer monitoring software have accelerated acceptance and clinical utilization of LITT as a neurosurgical treatment alternative. Current commercially available LITT systems have been used for the treatment of neurosurgical soft-tissue lesions, including difficult to access brain tumors, malignant gliomas, and radiosurgery-resistant metastases, as well as for the ablation of such lesions as epileptogenic foci and radiation necrosis. In this review, the authors aim to critically analyze the literature to describe the advent of LITT as a neurosurgical, laser excision tool, including its development, use, indications, and efficacy as it relates to neurosurgical applications. PMID:25727222

  3. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    SciTech Connect

    Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2010-10-08

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  4. Metal particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  5. UV laser ablation of parylene films from gold substrates

    SciTech Connect

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  6. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling

    SciTech Connect

    Yuan Hong; Tong Huifeng; Li Mu; Sun Chengwei

    2012-07-15

    During the evaporation and ablation of a matter induced by intensive laser radiation, the vapor plasma is ejected from the surface of the target which induces the recoil pressure and impulse in the target. Impulse coupling of laser beams with matter has been extensively studied as the basis of laser propulsion and laser clearing space debris. A one-dimensional (1D) bulk absorption model to simulate the solid target ablated directly by the laser beam is presented; numerical calculation of impulse acting on the target in vacuum with different laser parameters is performed with fluid dynamics theory and 1D Lagrange difference scheme. The calculated results of the impulse coupling coefficients are in good agreement with the experimental results and Phipps' empirical value. The simulated results show that the mechanical coupling coefficients decrease with the increment of laser intensity when the laser pulses generate plasma. The present model can be applied when the laser intensity is 10{sup 8} - 10{sup 10} W/cm{sup 2}, which will provide a guide to the study of momentum coupling of laser beams with matter.

  7. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  8. [Research on cells ablation characters by laser plasma].

    PubMed

    Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen

    2012-08-01

    The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction. PMID:23156745

  9. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  10. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  11. Ablation of crystalline oxides by infrared femtosecond laser pulses

    SciTech Connect

    Watanabe, Fumiya; Cahill, David G.; Gundrum, Bryan; Averback, R. S.

    2006-10-15

    We use focused laser pulses with duration of 180 fs and wavelength of 800 nm to study the interactions of high power near-infrared light with the surfaces of single-crystal transparent oxides (sapphire, LaAlO{sub 3}, SrTiO{sub 3}, yttria-stabilized ZrO{sub 2}, and MgO); the morphologies of the ablation craters are studied by atomic force microscopy and scanning electron microscopy. With the exception of LaAlO{sub 3}, the high temperature annealing of these oxide crystals produces atomically flat starting surfaces that enable studies of the morphology of ablation craters with subnanometer precision. The threshold fluence for ablation is determined directly from atomic-force microscopy images and increases approximately linearly with the band gap of the oxide. For all oxides except sapphire, the depth of the ablation crater increases approximately as the square root of the difference between the peak laser fluence and the threshold fluence for ablation. Sapphire shows unique behavior: (i) at laser fluences within 1 J/cm{sup 2} of the threshold for ablation, the depth of the ablation crater increases gradually instead of abruptly with laser fluence, and (ii) the rms roughness of the ablation crater shows a pronounced minimum of <0.2 nm at a laser fluence of 1 J/cm{sup 2} above the threshold.

  12. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  13. Dynamics of laser ablated colliding plumes

    SciTech Connect

    Gupta, Shyam L.; Pandey, Pramod K.; Thareja, Raj K.

    2013-01-15

    We report the dynamics of single and two collinearly colliding laser ablated plumes of ZnO studied using fast imaging and the spectroscopic measurements. Two dimensional imaging of expanding plume and temporal evolution of various species in interacting zones of plumes are used to calculate plume front velocity, electron temperature, and density of plasma. The two expanding plumes interact with each other at early stage of expansion ({approx}20 ns) resulting in an interaction zone that propagates further leading to the formation of stagnation layer at later times (>150 ns) at the lateral collision front of two plumes. Colliding plumes have larger concentration of higher ionic species, higher temperature, and increased electron density in the stagnation region. A one-to-one correlation between the imaging and optical emission spectroscopic observations in interaction zone of the colliding plumes is reported.

  14. Laser ablation in analytical chemistry-a review.

    PubMed

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  15. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  16. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  17. Experimental studies of laser-ablated zirconium carbide plasma plumes: Fuel corrosion diagnostic development

    SciTech Connect

    Wantuck, P.J.; Butt, D.P.; Sappey, A.D.

    1992-01-01

    Understanding the corrosion behavior of nuclear fuel materials, such as refractory carbides, in a high temperature hydrogen environment is critical for several proposed nuclear thermal propulsion (NTP) concepts. Monitoring the fuel corrosion products is important not only for understanding corrosion characteristics, but to assess the performance of an actual, operating nuclear propulsion system as well. In this paper, we describe an experimental study initiated to develop, test, and subsequently utilize non-intrusive, laser-based diagnostics to characterize the gaseous product species which are expected to evolve during the exposure of representative fuel samples to hydrogen. Laser ablation is used to produce high temperature, vapor plumes from solid solution, uranium-free, zirconium carbide (ZrC) forms for probing by other laser diagnostic methods; predominantly laser-induced fluorescence (LIF). We discuss the laser ablation technique, results of plume emission measurements, as well as the use of planar LIF to image both the ZrC plumes and actual NTP fuel corrosion constituents.

  18. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    SciTech Connect

    Gebauer, Bernhard Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-04-15

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation.

  19. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  20. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel. PMID:14738125

  1. In situ Diagnostics During Carbon Nanotube Production by Laser Ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    1999-01-01

    The preliminary results of spectral analysis of the reaction zone during the carbon nanotube production by laser ablation method indicate synergetic dependence on dual laser setup. The emission spectra recorded from different regions of the laser ablated plume at different delay times from the laser pulses are used to map the temperatures of C2 and C3. These are compared with Laser Induced Fluorescence (LIF) spectra also obtained during production to model the growth mechanism of carbon nanotubes. Experiments conducted to correlate the spectral features with nanotube yields as a function of different production parameters will be discussed.

  2. Laser ablation synthesis and spectral characterization of ruby nanoparticles

    NASA Astrophysics Data System (ADS)

    Baranov, M. S.; Bardina, A. A.; Savelyev, A. G.; Khramov, V. N.; Khaydukov, E. V.

    2016-04-01

    The laser ablation method was implemented for synthesis of ruby nanoparticles. Nanoparticles were obtained by nanosecond ablation of bulk ruby crystal in 10% ethanol water solution. The nanoparticles enable water colloid stability and exhibit narrow photoluminescent line at 694 nm when pumped at blue-green spectral range. The ruby nanoparticles were characterized by SEM and Z-sizer.

  3. Creation of silicon nanocrystals using the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Perminov, P. A.; Dzhun, I. O.; Ezhov, A. A.; Zabotnov, S. V.; Golovan, L. A.; Ivlev, G. D.; Gatskevich, E. I.; Malevich, V. L.; Kashkarov, P. K.

    2011-04-01

    The method for the formation of silicon nanoparticles by picosecond laser pulses is studied upon the surface irradiation of the single-crystal silicon in various liquids. The ablation products are investigated using the atomic-force microscopy and Raman spectroscopy. The experimental results indicate the crystal-line structure of nanoparticles and the dependence of their size on the ablation medium.

  4. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  5. Hydrocarbon level detection with nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Hosseinian S, Raheleh; Nugroho, Waskito; Mohd Marsin, Faridah; Zainal, Jasman

    2013-12-01

    Nanosecond laser induced breakdown in liquid is used as a technique to detect hydrocarbon levels in water. A Q-switched Nd:YAG laser was focused to generate optical breakdown associated with shock wave generation. The shock wave was propagated at the speed of sound in the medium after travelling 1 μs outward from the center of optical breakdown. Different amplitudes of sound were traced with the aid of an ultrasonic probe. The optical properties of the hydrocarbon solution were quantified via fundamental refractive index measurement (the Snell law). A continuous mode diode pumped solid state laser with second harmonic generation was used as the illumination light source. A CCD video camera with Matrox version 4.2 software was utilized to analyze the recording image. Option line analysis was performed to analyze the intensity of optical breakdown at different input energies. Gray level analysis was also conducted on the scattering light after passing through the hydrocarbon solution at different concentrations. The hydrocarbon solution comprised impurities or particles that varied according to the concentration. The average of the gray level is assumed to present the size of the particle. Inherently, as the acoustic wave propagates outward, it transports the mass (particles or impurities) and impacts on the ultrasonic probe. As a result a higher concentration of hydrocarbons reveals a larger amplitude of sound waves. This phenomenon is identified as a finger print for hydrocarbon levels between 100 and 1000 ppm. The transient detection, without complicated sampling preparation and no hazardous chemical involvement, makes laser ablation a promising technique to detect in situ hydrocarbon levels in water.

  6. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM. PMID:27607281

  7. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    SciTech Connect

    Wang Bin; Li Long; Tang Zhiping; Cai Jian

    2010-05-06

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a C{sub m} measuring range from 10{sup 3} Ns/MJ to about 1.6x10{sup 4} Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher C{sub m} and I{sub sp}. Highest C{sub m} of about 10{sup 4} Ns/MJ with the I{sub sp} of 3.57s was achieved by focusing the laser to the average energy density of 8.83x10{sup 8} W/cm{sup 2}. Besides of that, it is also found that when the energy density is certainly high, C{sub m} of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  8. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  9. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  10. Simulation of laser ablation of metals for nanoparticles production

    NASA Astrophysics Data System (ADS)

    Davydov, R. V.; Antonov, V. I.; Davydova, T. I.

    2016-03-01

    In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.

  11. A laser ablation source for offline ion production at LEBIT

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  12. Momentum Transfer by Laser Ablation of Irregularly Shaped Space Debris

    SciTech Connect

    Liedahl, D A; Libby, S B; Rubenchik, A

    2010-02-04

    Proposals for ground-based laser remediation of space debris rely on the creation of appropriately directed ablation-driven impulses to either divert the fragment or drive it into an orbit with a perigee allowing atmospheric capture. For a spherical fragment, the ablation impulse is a function of the orbital parameters and the laser engagement angle. If, however, the target is irregularly shaped and arbitrarily oriented, new impulse effects come into play. Here we present an analysis of some of these effects.

  13. Momentum Transfer by Laser Ablation of Irregularly Shaped Space Debris

    SciTech Connect

    Liedahl, Duane A.; Libby, Stephen B.; Rubenchik, Alexander

    2010-10-08

    Proposals for ground-based laser remediation of space debris rely on the creation of appropriately directed ablation-driven impulses to either divert the fragment or drive it into an orbit with a perigee allowing atmospheric capture. For a spherical fragment, the ablation impulse is a function of the orbital parameters and the laser engagement angle. If, however, the target is irregularly shaped and arbitrarily oriented, new impulse effects come into play. Here we present an analysis of some of these effects.

  14. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  15. Laser ablation for the synthesis of carbon nanotubes

    DOEpatents

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  16. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  17. Laser ablation for the synthesis of carbon nanotubes

    SciTech Connect

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  18. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  19. Laser ablation for the synthesis of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2010-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of side pumped, preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  20. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  1. Reflection of femtosecond laser light in multipulse ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2011-08-15

    The shot-to-shot reflectance of high-intensity laser light is studied as a function of both the number of laser shots and laser fluence in multipulse ablation of a metal when the irradiated surface undergoes structural changes from an initially smooth surface to a deep crater. Our study shows that the reflectance of the irradiated surface significantly decreases due to the high intensity of laser pulses and the laser-induced surface structures in ablation regimes typically used for femtosecond laser processing of materials. The high-intensity effect dominates in the reflection reduction at low numbers of laser shots when laser-induced surface structures do not cause the reflectance to decrease noticeably. With increasing the number of laser shots, the structural effect comes into play, and both high-intensity and structural effects quickly reduce the reflectance of the sample to a low value.

  2. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  3. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  4. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  5. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  6. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  7. MRI-guided laser ablation of neuroendocrine tumor hepatic metastases

    PubMed Central

    Perälä, Jukka; Klemola, Rauli; Kallio, Raija; Li, Chengli; Vihriälä, Ilkka; Salmela, Pasi I; Tervonen, Osmo

    2014-01-01

    Background Neuroendocrine tumors (NET) represent a therapeutically challenging and heterogeneous group of malignancies occurring throughout the body, but mainly in the gastrointestinal system. Purpose To describe magnetic resonance imaging (MRI)-guided laser ablation of NET liver metastases and assess its role within the current treatment options and methods. Material and Methods Two patients with NET tumor hepatic metastases were treated with MRI-guided interstitial laser ablation (LITT). Three tumors were treated. Clinical follow-up time was 10 years. Results Both patients were successfully treated. There were no local recurrences at the ablation site during the follow-up. Both patients had survived at 10-year follow-up. One patient is disease-free. Conclusion MRI-guided laser ablation can be used to treat NET tumor liver metastases but combination therapy and a rigorous follow-up schedule are recommended. PMID:24778794

  8. Combination of erbium and holmium laser radiation for tissue ablation

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans S.; Frenz, Martin; Koenz, Flurin; Altermatt, Hans J.; Weber, Heinz P.

    1996-05-01

    Erbium lasers emitting at 2.94 micrometers and holmium lasers emitting at 2.1 micrometers are interesting tools for cutting, drilling, smoothing and welding of water containing tissues. The high absorption coefficient of water at these wavelengths leads to their good ablation efficiency with controlled thermally altered zones around the ablation sites. Combination of pulses with both wavelengths transmitted through one fiber were used to perform incisions in soft tissue and impacts in bone disks. Histological results and scanning electron microscope evaluations reveal the strong influence of the absorption coefficient on tissue effects, especially on the ablation efficiency and the zone of thermally damaged tissue. It is demonstrated that the combination of high ablation rates and deep coagulation zones can be achieved. The results indicate that this laser system can be considered as a first step towards a multi-functional medical instrument.

  9. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    SciTech Connect

    Zhao, Xin; Shin, Yung C.

    2014-09-15

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse. The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.

  10. Near infrared femtosecond laser ablation of urinary calculi in water

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M.; Kuranov, Roman V.; McElroy, Austin B.; Wang, Tianyi; Paranjape, Amit S.; Milner, Thomas E.

    2009-02-01

    Pulsed light emitted from a near infrared (λ=800nm) femtosecond laser is capable of plasma induced photodisruption of various materials. We used femtosecond laser pulses to ablate human urinary calculi. Femtosecond pulsed laser interaction with urinary calculi was investigated with various stone compositions, different incident fluences and number of applied pulses. Spectral-domain optical coherence tomography was used to image cross sections of ablation craters on the surface of urinary calculi. Our results indicate that femtosecond laser pulses can ablate various calculi compositions. Crater diameter and depth varies from tens of microns to several hundred microns when up to 1000 pulses were applied. Future studies are required to determine if pulsed near infrared femtosecond laser pulses can be applied clinically for lithotripsy of urinary calculi.

  11. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kurosaki, Ryozo

    2011-03-01

    In this paper, we report on a micro-cutting of carbon fiber reinforced plastics (CFRP) by nanosecond-pulsed laser ablation with a diode-pumped solid state UV laser (DPSS UV laser, λ= 355nm). A well-defined cutting of CFRP which were free of debris and thermal-damages around the grooves, were performed by the laser ablation with a multiple-scanpass irradiation method. CFRP is a high strength composite material with a lightweight, and is increasingly being used various applications. UV pulsed laser ablation is suitable for laser cutting process of CFRP materials, which drastically reduces a thermal damage at cut regions.

  12. Excimer laser ablation of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ta

    The ablation behavior of Polystyrene-Organically Modified Montmorillonite (OMMT) nanocomposites was evaluated by measuring the weight loss induced by KrF excimer laser irradiation of the nanocomposite specimens under air atmosphere. The characteristic values of ablation, ablation threshold fluence and effective absorption coefficient for polystyrene and its naonocomposites were calculated based on the weight loss data. The effects of morphology due to spatial variation in injection molded samples are also discussed in this work. Results demonstrate that both the dispersion state and the concentration of clay play important roles in excimer laser ablation. The sensitivity of threshold fluence and absorption coefficient to dispersion state of OMMT depends on the clay concentration. The excimer laser induced surface micro/nano structure formation and modification of PS-Clay Nanocomposites at various OMMT concentrations were also investigated. Scanning electron microscopy, atomic force microscopy and Fourier Transform Infrared (FTIR) spectroscopy with attenuated total reflectance accessory were utilized to analyze the ablated surface. Results show that, in general, better dispersion of OMMT leads to less continuous surface structures and more pronounced carbonyl regions on FTIR spectra. Clay nanoparticles are exposed on ablated surfaces and affect surface structure formation after irradiation by laser. A mechanism for the formation of excimer laser induced surface structures on injection molded parts is thus proposed.

  13. YSGG 2790-nm superficial ablative and fractional ablative laser treatment.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    The 2790-nm wavelength YSGG laser was introduced for aesthetic purposes under the trade name Pearl by Cutera in 2007. In clinical use, the Pearl superficial resurfacing laser has proved effective and well tolerated for the correction of superficial brown epidermal dyschromia and superficial fine lines and scars, and the Pearl Fractional laser produces excellent improvement in both dyschromia and improvement of deeper lines and moderately deep acne scarring. The two laser treatments can be combined in a single treatment session on different parts of the face or on the entire face, depending on patient needs and priorities. PMID:21763987

  14. Improving Consistency in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, Matt; Gehrels, George; Bowring, James

    2010-07-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; San Francisco, California, 12-13 December 2009; The use of uranium-thorium-lead (U-Th-Pb) laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) geochronology involves rapid analysis of U-and Th-rich accessory minerals. It routinely achieves 1-2% precision for U-Th-Pb dates constituting detrital mineral age spectra and for dating igneous and metamorphic events. The speed and low setup and analysis cost of LA-ICP-MS U-Th-Pb geochronology has led to a proliferation of active laboratories. Tens of thousands of analyses are produced per month, but there is little agreement on how to transform these data into accurate U-Th-Pb dates. Recent interlaboratory blind comparisons of zircon samples indicate that resolvable biases exist among laboratories and the sources of bias are not fully understood. Common protocols of data reduction and reporting are essential for scientists to be able to compare and interpret these data accurately.

  15. Cleaning of large area by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir I.; Uteza, Olivier P.

    2000-01-01

    Surface removal technologies are being challenged from environmental and economic perspectives. This paper is concerned with laser ablation applied to large surface cleaning with an automatized excimer laser unit. The study focused on metallic surfaces that are oxidized and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The whole system is described: laser, beam deliver, particle collection cell, real time control of cleaning processes. Results concerning surface laser interaction and substrate modifications are presented.

  16. Hypersonic Inlet for a Laser Powered Propulsion System

    NASA Astrophysics Data System (ADS)

    Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave

    2011-11-01

    Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.

  17. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  18. Ultrashort laser ablation of PMMA and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Fabrikesi, E.; Spyratou, E.; Bacharis, C.; Thomson, R. R.; Kar, A. K.

    2008-10-01

    The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.

  19. Combined Experimental and Numerical Investigations into Laser Propulsion Engineering Physics

    NASA Astrophysics Data System (ADS)

    Kenoyer, David Adam

    The RPI pulsed Laser Propulsion (LP) research effort focuses on the future application of launching nano- and micro-satellites (1-10 kg payloads) into Low Earth Orbit (LEO), using a remote Ground Based Laser (GBL) power station to supply the required energy for flight. This research program includes both experimental and numerical studies investigating the propulsive performance of several engine geometries (constituting a lightcraft family). Using the Lumonics twin K-922m TEA pulsed laser system, axial and lateral thrust, C m, Isp, and η measurements were made for these engine geometries, examining the effects of several critical factors including: engine orientation (e.g. lateral and angular offset), laser pulse energy, pulse repetition frequency, pulse duration, propellant type, and engine size-scaling effects. Investigation into the origins of lateral "beam riding" forces was of particular interest. Lateral impulse measurements and high speed Schlieren photography were utilized to provide an understanding of laser beam-riding/propulsive physics. The acquired lightcraft database was used to further develop an existing 7-Degree Of Freedom (DOF) flight dynamics model extensively calibrated against 16 actual trajectories of small scale model lightcraft flown at White Sands Missile Range, NM on a 10 kW pulsed CO2 laser called PLVTS. The full system 7-DOF model is comprised of updated individual aerodynamics, engine, laser beam propagation, variable vehicle inertia, reaction controls system, and dynamics models, integrated to represent all major phenomena in a consistent framework. This flight dynamics model and associated 7-DOF code provide a physics-based predictive tool for basic research investigations into laser launched lightcraft for suborbital and orbital missions. Simulations were performed to demonstrate the flight capabilities of each engine geometry using the updated lightcraft propulsion database, the results of which further demonstrate that autonomous

  20. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  1. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hong, M. H.; Lu, Y. F.; Wu, D. J.; Lan, B.; Chong, T. C.

    2003-05-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences.

  2. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  3. UV solid state laser ablation of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  4. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation.

    PubMed

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian

    2015-10-01

    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation. PMID:24965101

  5. Optical properties measurement of the laser-ablated tissues for the combined laser ablation with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    Laser ablation therapy combined with photodynamic therapy (PDT) is studied for treatment of advanced cancers. The clinical outcome of PDT may be improved by the accurate knowledge about the light distribution within tissue. Optical properties [absorption coefficient (μa), scattering coefficient (μs), anisotropy factor (g), refractive index, etc.] of tissues help us realizing a light propagation through the tissue. It is important to understand of the effect of laser coagulation formed by laser ablation to PDT. The aim of this study is to estimate of influence of coagulated region to PDT for effective PDT combined laser ablation therapy. We evaluated the optical property of mouse tumor tissue in native and coagulated state using a double integrating sphere system and an inverse Monte Carlo method in the wavelength range from 350 to 1000 nm. After laser ablation, the μa and reduced scattering coefficient spectra of coagulated tissues were increased in the wavelength range from 350 to 1000 nm. The optical penetration depth of coagulated tissues is 1.2-2.9 times lower than the native state in the wavelength range from 350 to 1000 nm. The intensity of the light energy inside the coagulated tissue falls to about 60% of its original value at the end of coagulated layer. The evaluation of light energy distribution by the determination of the tissues optical properties could be useful for optimization of the treatment procedure in combined laser ablation with PDT.

  6. Diffraction modelling of laser ablation using transmission masks

    NASA Astrophysics Data System (ADS)

    Dyer, P. E.; Mackay, J.; Walton, C. D.

    2004-10-01

    We present an analysis of near-field diffraction effects in ablation with transmission masks, based on coupling a simplified form of the Fresnel-Kirchhoff diffraction integral with basic models for material removal. Modelling for square, hexagonal and circular proximity masks is described and compared with previously reported experiments on glass, silicon and polyimide using excimer, femtosecond and CO2 lasers. The model has general applicability and can provide useful insight into the effect of near-field diffraction in ablation patterning.

  7. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  8. Tailoring Laser Propulsion for Future Applications in Space

    SciTech Connect

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-08

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  9. Tailoring Laser Propulsion for Future Applications in Space

    NASA Astrophysics Data System (ADS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  10. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    SciTech Connect

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  11. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A.

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  12. Microwave ablation versus laser ablation in occluding lateral veins in goats.

    PubMed

    Wang, Xu-hong; Wang, Xiao-ping; Su, Wen-juan; Yuan, Yuan

    2016-02-01

    Increasing number of endovenous techniques are available for the treatment of saphenous vein reflux and endovenous laser ablation (EVLA) is a frequently used method. A newly developed alternative, based on thermal therapy, is endovenous microwave ablation (EMA). This study evaluated the effect of the two procedures, in terms of coagulation and histological changes, in occluding lateral veins in goats. Twelve animals were randomized into two group, with 6 treated with EMA (EMA group), and the rest 6 with EVLA (EVLA group). Results of coagulation, including coagulation, fibrinolysis and platelet activation, were assessed at three or four different time points: before, immediately after, 24 h (and 48 h) after ablation. The diameter change, a measure of efficacy, was ultrasonographically measured before and 1 month after the ablation. Histological changes were grossly and microscopically evaluated immediately, 1 and 3 month(s) after the ablation. The length of the ablated vein and preoperative average diameter were comparable between the two groups. In both EMA and EVLA groups, several coagulation parameters, fibrinolysis and platelet activation parameters only underwent slight changes. Ultrasound imaging displayed that the diameter reduction of the veins treated by EMA was significantly larger than by EVLA, in consistent with the results of macroscopic examination. Microscopic examination revealed necrosis and thickening of the vein wall, and occlusion of the lumen within 3 months after ablation in both EMA and EVLA groups. It is concluded that EMA is a minimally invasive therapy, which appears to be safe and effective for treatment of lateral veins in goats. PMID:26838749

  13. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment. PMID:22614434

  14. Laser/space material uncooperative propulsion for orbital debris removal and asteroid, meteoroid, and comet deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1999-01-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1-10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts, it is shown that it is possible to scale up the systems to prevent these catastrophic collisions given sufficient early warning.

  15. Laser ablation and influence of Debye temperature and laser parameters on size and number of nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaezzadeh, Majid; Saeidi, Mohammadreza; Zarei, Mohsen

    2010-03-01

    Dependence of size and number of nanoparticles on kind of material, power of laser and pulse duration of laser in laser ablation is investigated by presenting a model based on Debye model for specific heat capacity. Simulations from the theory demonstrate that there is a critical power of laser which is very important for controlling size of nanoparticles in laser ablation method. The critical power of laser depends on material Debye temperature and pulse duration of laser. Finally difference between experimental diagrams of zinc and carbon is explained by using results of the theory.

  16. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  17. Laser propulsion to earth orbit. Has its time come?

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1989-01-01

    Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.

  18. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  19. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  20. Direct coupling of a laser ablation cell to an AMS

    NASA Astrophysics Data System (ADS)

    Wacker, L.; Münsterer, C.; Hattendorf, B.; Christl, M.; Günther, D.; Synal, H.-A.

    2013-01-01

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1-20 Hz), the crater diameter (1-150 μm) and the energy density applied (0.2-3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  1. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  2. Ultrathin sectioning with DUV-pulsed laser ablation: development of a laser ablation nano tome.

    PubMed

    Kanemaru, Takaaki; Oki, Yuji

    2015-08-01

    The electrically automated ultrathin sectioning apparatus, which has been developed in recent years, can produce consecutive ultrathin sections with a diamond knife and a gallium ion beam. These newly developed apparatuses, however, have several shortcomings, such as the limited block cutting area, thermal damage to the sample by the focused ion beam and a sample electronic charge. To overcome these faults and for easier scanning electron microscopy three-dimensional fine structural reconstruction, we have developed a new cutting method using a deep ultraviolet laser, which we have named the 'LANTome (Light Ablation Nanotome)'. Using this method, we confirmed the widening of sectioning areas, shortening of the sectioning time, automatic smoothing of rough surfaces, no sample electronic charge and minimal heat effects on the sample tissue, such as thermal denaturation. PMID:25888714

  3. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the second in a series of three papers examining nanomaterial formation in laser ablation in liquids (LAL). Here we study the effect of the laser wavelength and fluence on the mass yield and size distribution of nanoparticles prepared by laser ablation of a platinum target immersed in water. For all wavelengths tested, laser fluences in the range of 10-70 J/cm{sup 2} resulted in spheroidal, nonagglomerated platinum nanoparticles with sizes ranging from 1 to 30 nm. Nanoparticle size distributions are found to be composed of two modes that are attributed to thermal vaporization and explosive boiling mechanisms. The peak of the smaller size mode remains nearly constant at 3 nm for all laser conditions, which is suggested to be due to the strong confinement of the vapor plume by the liquid. The larger size mode peaks in the range of 5-15 nm with a population that is strongly dependent on the laser parameters. It is concluded that changes in the mean size reported in many earlier studies on LAL of metal targets are a result of the relative quantity of nanoparticles from each mechanism rather than direct control over the ablation process. Additionally, it was observed that the yield of platinum nanoparticles was significantly larger for 1064 nm wavelength at fluences greater than 10 J/cm{sup 2}. The maximum ablation rate was approximately 4.4 mg/h, with an estimated ablation and collection efficiency of 0.9 {mu}g/J. Dependence of the mass yield on wavelength and fluence is seen to be dependent primarily on the extent of the explosive mechanism.

  4. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  5. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  6. Below-Band-Gap Laser Ablation Of Diamond For TEM

    NASA Technical Reports Server (NTRS)

    George, Thomas; Foote, Marc C.; Vasquez, Richard P.; Fortier, Edward P.; Posthill, John B.

    1995-01-01

    Thin, electron-transparent layers of diamond for examination in transmission electron microscope (TEM) fabricated from thicker diamond substrates by using laser beam to ablate surface of substrate. Involves use of photon energy below band gap. Growing interest in use of diamond as bulk substrate and as coating material in variety of applications has given rise to increasing need for TEM for characterization of diamond-based materials. Below-band-gap laser ablation method helps to satisfy this need. Also applied in general to cutting and etching of diamonds.

  7. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.

  8. Experimental Investigations of Laser Propulsion by Using Gas-Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Rachuk, V. S.; Guterman, V. Yu.; Ivanov, A. V.; Rebrov, S. G.; Golikov, A. N.; Ponomarev, N. B.; Rezunkov, Yu. A.

    2006-05-01

    To launch vehicles with using of laser propulsion engines, promising direction is employing powerful Gas-dynamic Lasers (GDL) operating in a continuous mode. Russian enterprises have enough experience of creating such type of lasers. Experiments conducted with the continuous mode GDL on investigating of characteristics of Laser Propulsion (LP) at different schematics of operation processes in the LP are described in this article. The investigations are conducted by using the facility equipped with a CO2 GDL of a 10.6 μm wavelength.

  9. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  10. Thermal melting and ablation of silicon by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-01

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  11. Formation and characterization of nanoparticles via laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Golightly, Justin Samuel

    The work presented in this thesis encompassed laser ablation of various transition metals within a liquid environment. Through an improved understanding of the ablation process, control over the properties of the resultant nanoparticles can be obtained, and thusly nanoparticles can be tailored with specific properties. Creation of nanoparticles via laser ablation in solution is a relatively youngtechnique for nanoparticle synthesis, and the work presented should prove useful in guiding further exploration in ablation processes in liquids for nanomaterial production. When a laser is focused onto a target under a liquid environment, the target material and its surrounding liquid are vaporized. The concoction of vapor is ejected normal to the surface as a bubble. The bubble has a temperature reaching the boiling point of the metal, and has a gradient to the boiling point of the solvent. The bubble expands until it reaches a critical volume, and then subsequently collapses. It is within this bubble that nanoparticle formation occurs. As the bubble expands, the vapor cools and nanoparticle growth transpires. During the bubble collapse, pressures reaching GigaPascals have been reported, and a secondary nanoparticle formation occurs as a result of these high pressures. Chapter 1 delves a little more into the nanoparticle formation mechanisms, as well as an introduction to the analytical techniques used for characterization. Ablation of titanium took place in isopropanol, ethanol, water, and n-hexane, under various fluences, with a 532 nm Nd:YAG operating at 10 Hz. It was found that a myriad of nanoparticles could be made with vastly different compositions that were both solvent and fluence dependent. Nanoparticles were made that incorporated carbon and oxygen from the solvent, showing how solvent choice is an important factor in nanoparticle creation. Chapter 3 discusses the results of the titanium work in great detail and demonstrates carbide production with ablation in

  12. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    NASA Astrophysics Data System (ADS)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  13. Small glass particle cloud generation induced by laser ablation

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Kotsuka, Yuriko; Nakahara, Motonao; Kubota, Shiro

    2005-03-01

    Burst of small fragments of glass has been evidenced in the present study, when ground glass surface is laser ablated. Production of macro particles by laser ablation is an inherent characteristic of ground glass, and no similar phenomena have been observed in case of metal or polymer ablation. In this case, no additional metal coating has been made to further enhance absorption of laser pulse. Pulse laser shadowgraph has been taken to study the details of the phenomena in air and in vacuum. At least in vacuum, particle burst is found almost normal to the surface. By using ns-duration Nd:YAG laser of 100 mJ/pulse, observed particle velocity ranges 0.5 km/s to 1.5 km/s in case of in air and the maximum velocity is extended up to 1.5-2 km/s in vacuum. SEM observation of the ground surface reveals that glass surface is covered with micro cracks with several microns deep, which might attribute to macro particle production. In this sense, not surface roughness but also surface structure will be important in the ablation phenomena of glass. It is plausible that absorption of laser beam at the glass surface causes spallation like phenomena as well as production of an amount of plasma, and the plasma production might be responsible for the acceleration of broken fragments of glass. We applied the phenomena to ignite PETN powder explosive, and succeeded in igniting PETN powder only by laser ablation of ground glass.

  14. Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Svetlichnyi, Valery A.

    2015-12-01

    Laser ablation of bulk targets in a fluid -- a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed.

  15. Endometrial laser ablation in rabbits: A comparative study of three laser types

    SciTech Connect

    Rosenberg, C.; Tadir, Y.; Braslavsky, D.; Fisch, B.; Karni, Z.; Ovadia, J. )

    1990-01-01

    Endometrial laser ablation is one of the alternatives to hysterectomy in cases of intractable uterine bleeding. It is currently performed using the Nd:YAG laser at 1.06 microns. The aim of this study was to compare the tissue effect of three types of laser irradiation (Nd:YAG laser at 1.06 and 1.32 microns and holmium laser at 2.12 microns) on the rabbit endometrium. Crater formation, coagulation necrosis, and muscle necrosis were evaluated at the time of ablation, as well as at 1 week and 4 weeks postablation. The results were assessed by determining the depth and width of the affected portion in the uterine wall (lumen to serosa). It was shown that Nd:YAG laser at 1.32 microns caused more generalized and extended effects as compared with the other laser types examined. Endometrial regeneration was faster after ablation by the Nd:YAG laser at 1.06 microns and the holmium laser than by the Nd:YAG laser at 1.32 microns. The widest range of ablation energy (defined as that causing ablation without muscle damage) was achieved by applying the holmium laser. Further evaluation of the holmium laser for this indication is recommended.

  16. Laser propulsion for space applications: Is it another myth or a real potential?

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2007-05-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  17. Cluster Generation Under Pulsed Laser Ablation Of Compound Semiconductors

    SciTech Connect

    Bulgakov, Alexander V.; Evtushenko, Anton B.; Shukhov, Yuri G.; Ozerov, Igor; Marine, Wladimir

    2010-10-08

    A comparative experimental study of pulsed laser ablation in vacuum of two binary semiconductors, zinc oxide and indium phosphide, has been performed using IR- and visible laser pulses with particular attention to cluster generation. Neutral and cationic Zn{sub n}O{sub m} and In{sub n}P{sub m} particles of various stoichiometry have been produced and investigated by time-of-flight mass spectrometry. At ZnO ablation, large cationic (n>9) and all neutral clusters are mainly stoichiometric in the ablation plume. In contrast, indium phosphide clusters are strongly indium-rich with In{sub 4}P being a magic cluster. Analysis of the plume composition upon laser exposure has revealed congruent vaporization of ZnO and a disproportionate loss of phosphorus by the irradiated InP surface. Plume expansion conditions under ZnO ablation are shown to be favorable for stoichiometric cluster formation. A delayed vaporization of phosphorus under InP ablation has been observed that results in generation of off-stoichiometric clusters.

  18. Fundamentals and applications of polymers designed for laser ablation

    NASA Astrophysics Data System (ADS)

    Lippert, T.; Hauer, M.; Phipps, C. R.; Wokaun, A.

    The ablation characteristics of various polymers were studied at low and high fluences for an irradiation wavelength of 308 nm. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest thresholds of ablation (as low as 25 mJcm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJcm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients have a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with the laser pulse, indicating photochemical ablation. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for an application as the polymer fuel in laser plasma thrusters.

  19. Impulse enhancement by in-tube operation in laser propulsion

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Urabe, Naohide; Kim, Sukyum

    2002-09-01

    The laser-driven in-tube accelerator (LITA) is a unique concept of laser propulsion. It is characterized by accelerating an object in a tube. Owing to a confinement effect, the thrust performance can be improved. This device has other advantages over the existing technology on the simplicity and suitability to environment. Experiments on the thrust performance of LITA were conducted. The thrust was determined from the object hovering condition. The measured dimensionless momentum coupling coefficient agrees between xenon and argon as the working gas. This implies that in order to obtain a high impulse chemical species with a low speed of sound is useful.

  20. Laser ablation--reflections on a very complex technique for solid sampling.

    PubMed

    Niemax, K

    2001-06-01

    This paper is an attempt to point out the complex correlations between the experimental conditions in solid sampling by lasers. In particular, the influence of the laser properties, the surrounding gas, and the matrix on the analytical results of laser ablation techniques, such as laser induced breakdown spectrometry or laser ablation-ICP-MS, will be discussed. PMID:11495052

  1. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    SciTech Connect

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-11-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated.

  2. Spectroscopic and morphological study of laser ablated Titanium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muahmamd Shahid; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Saman; Dawood, Asadullah; Arooj

    2016-07-01

    The laser-induced breakdown spectroscopy (LIBS) and surface morphology of Titanium (Ti) plasma as a function of laser irradiance have been investigated under ambient environment of argon at fixed pressure of 50 Torr. Ablation was performed by employing Q-switched Nd:YAG laser pulses (λ ≈ 1064 nm, τ ≈ 10 ns, repetition rate ≈ 10 Hz). Ti targets were exposed to various laser intensities ranging from 6 to 50 GW/cm2. LIBS analysis has been employed for the investigation of plasma parameters. Scanning Electron Microscope (SEM) analysis was employed for investigation of surface morphology. Ablation depth was measured by optical microscopy technique. It was observed that both plasma parameters, i.e., excitation temperature and electron density have been significantly influenced by laser irradiance. It is observed that with increasing laser irradiance up to 13 GW/cm2, the electron temperature decreases whereas number density significantly increases and attains its maxima. Afterwards by increasing irradiance electron temperature increases, attains its maxima and a decrease in electron number density is observed at irradiance of 19 GW/cm2. Further increase in irradiance causes saturation with insignificant changes in both electron temperature and electron number density. This saturation in both excitation temperature and electron number density is explainable on the basis of self-sustaining regime. SEM micrographs reveal the ripple and coneformation at the boundaries of ablated region of Ti. The height of cones as well as the ablation depth is maximum at irradiance of 13 GW/cm2 whereas electron number density is also maximum. The maximum electron number density is considered to be responsible for maximum ablation as well as mass removal. A strong correlation between plasma parameters and surface morphology is established.

  3. Underwater excimer laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Elaboudi, I.; Lazare, S.; Belin, C.; Talaga, D.; Labrugère, C.

    2008-09-01

    In this paper, we study the photoablation kinetic of poly (ethylene terephthalate) (PET), polycarbonate (PC), polyimide (PI) and polystyrene (PS) in both air and water. Compared to the results obtained in air, we highlight the decrease of the ablation threshold (AT) of polyesters in contact with water as a function of polymer chemical structure. In order to check the expected hydrolytic reaction of polyesters near the ablation threshold, the chemical modification of the polymer surfaces, as well the composition of the ablation products, were investigated after irradiation near the fluence of ablation threshold in air (air- F t ) by X-ray photoelectron spectroscopy (XPS) and confocal Raman microspectroscopy. The morphology of polymers obtained by underwater irradiation and near the air- F t was also examined using scanning electron microscopy (SEM). To understand the process and its dynamics in contact with water, we consider the model of temperature at the polymer-water interface based on the semi-analytical solution of the transit heat-diffusion equation.

  4. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser. PMID:19404369

  5. Pulsed CO2 laser ablation of graphite and polymers

    NASA Astrophysics Data System (ADS)

    Wong, K. H.; Tou, T. Y.; Low, K. S.

    1998-02-01

    Spectroscopic analysis of the emission plumes of graphite, polyimide, polyethylene terepthalate, and polymethylmethacrylate that have been ablated by using a pulsed CO2 laser operating at 10.6 μm shows the presence of CN and C2, species not previously reported for CO2 laser ablation. The gross dynamics of the luminous plume, which was studied by using a streak camera, compares favorably with predictions from the snowplow model, which also accurately forecasts the time history of the plume expansion for a wide range of background gas pressures and laser fluences. Framing shadowgraphy reveals the onset of laser-supported detonation waves at approximately 50 mbar Ar, thus somewhat limiting the validity of this model.

  6. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  7. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  8. Production of nanoparticles from natural hydroxylapatite by laser ablation

    PubMed Central

    2011-01-01

    Laser ablation of solids in liquids technique has been used to obtain colloidal nanoparticles from biological hydroxylapatite using pulsed as well as a continuous wave (CW) laser. Transmission electron microscopy (TEM) measurements revealed the formation of spherical particles with size distribution ranging from few nanometers to hundred nanometers and irregular submicronic particles. High resolution TEM showed that particles obtained by the use of pulsed laser were crystalline, while those obtained by the use of CW laser were amorphous. The shape and size of particles are consistent with the explosive ejection as formation mechanism. PMID:21711800

  9. Laser ablation in a liquid-confined environment using a nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Lee, Ho; Welch, Ashley J.

    2008-04-01

    Laser ablation of aluminum metal with 1ns, 800nm pulse at low radiant exposures was investigated in air (dry) and water (wet) environments. Compared to dry ablation, an approximately eight times increase in material removal rate was associated with wet ablation. Based on optical reflectance and scanning electron microscope images, bubble formation/collapse was responsible for augmented acoustic pressure and ablation performance. Numerically simulated temperature distributions during wet ablation were consistent with the occurrence of explosive water vaporization near the critical temperature of water. Strong pressure emission during liquid vaporization and jet formation can account for enhanced ablation process. Radial expansion of bubbles minimized the redeposition of debris, leading to improvements in energy coupling to the target and ablation performance.

  10. Infrared Laser Ablation Sample Transfer for MALDI and Electrospray

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Murray, Kermit King

    2011-08-01

    We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1-2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.

  11. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  12. Laser-induced breakdown spectroscopy in a running Hall Effect Thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2012-08-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites and for interplanetary missions. The main limiting factor of the HET lifetime is the erosion of the annular channel ceramic walls. Erosion monitoring has been performed in the laboratory using optical emission spectroscopy (OES) measurements and data treatment based on the coronal model and the actinometric hypothesis. This study uses laser ablation of the ceramic wall in a running HET in order to introduce controlled amounts of sputtered material in the thruster plasma. The transient laser-induced breakdown plasma expands orthogonally in a steady-state plasma jet created by the HET discharge. The proposed spectroscopic method involves species from both plasmas (B, Xe, Xe+). The optical emission signal is correlated to the ablated volume (measured by profilometry) leading to the first direct validation of the actinometric hypothesis in this frame and opening the road for calibration of in-flight erosion monitoring based on the OES method.

  13. Pulsed laser ablation of pepsin on an inorganic substrate

    NASA Astrophysics Data System (ADS)

    Cicco, N.; Lopizzo, T.; Marotta, V.; Morone, A.; Verrastro, M.; Viggiano, V.

    2009-03-01

    Pressed pepsin pellets used as targets were ablated with the pulses of the Nd-YAG laser. The activity of the pepsin thin layer, deposited on a glass substrate, was successfully detected by analyzing the proteolytic degradation areas on the polyacrylamide gel (PA-gel) copolymerized with albumin from the hen egg white (ovalbumin), used as an enzymatic substrate.

  14. Fractal Character of Titania Nanoparticles Formed by Laser Ablation

    SciTech Connect

    Musaev, O.; Midgley, A; Wrobel, J; Yan, J; Kruger, M

    2009-01-01

    Titania nanoparticles were fabricated by laser ablation of polycrystalline rutile in water at room temperature. The resulting nanoparticles were analyzed with x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electron micrograph image of deposited nanoparticles demonstrates fractal properties.

  15. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  16. Optical limiting properties of silver nanoparticles fabricated by laser ablation

    NASA Astrophysics Data System (ADS)

    Ong, T. S.; Lee, S. S.; Van, L. H.; Hong, Ming Hui; Chong, Tow Chong

    2004-10-01

    Silver nanoparticles have been fabricated by laser ablation of a silver metal foil in solution. The presence of sodium bis(2-ethylhexyl) sulfosuccinate increases the yield of the nanoparticles and enhances their stability. The optical limiting performance of the silver nanoparticles embedded in a PMMA film is compared to that in an aqueous solution.

  17. Photon Flux Amplification for Enhancing Photonic Laser Propulsive Forces

    NASA Technical Reports Server (NTRS)

    Gray, Perry A.; Carruth, M. Ralph, Jr.; Edwards, David L.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    An enhancement to the available force from a solar/laser sail is being investigated. This enhancement involves the use of a high power laser as the main source of propulsion or as a supplement to a solar sail. The enhancement utilizes a high power laser and multiple photon reflections to amplify the laser photon flux impinging on a sail. It is thus possible to amplify the force by as much as a factor of 50 or more. This paper explores the use of a stable optical cavity and will illustrate the optics involved in producing a stable cavity. A breadboard of the optical system was constructed and a stable cavity was demonstrated. Once the breadboard system was complete and a stable cavity achieved, the system was placed in vacuum and photon force amplification was measured using a vacuum compatible microbalance.

  18. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  19. Study of Laser Ablation Efficiency for an Acrylic-Based Photopolymerizing Composition

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Yu.

    2014-05-01

    Results are presented from study of the effi ciency (ablated mass per unit energy, mechanical recoil momentum per unit energy) of laser ablation for a light-curable polymer. A substantial difference is seen between the thresholds and indicated criteria for laser ablation effi ciency in the liquid and cured phases. The highest energy effi ciency for laser ablation (~22.6 %) is achieved when the initially liquid polymer is exposed to radiation with the wavelength optimal for photopolymerization (365 ± 15 nm).

  20. Laser ablation of GaAs in liquid: the role of laser pulse duration

    NASA Astrophysics Data System (ADS)

    De Bonis, Angela; Galasso, Agostino; Santagata, Antonio; Teghil, Roberto

    2016-01-01

    The synthesis of gallium arsenide (GaAs) nanoparticles has attracted wide scientific and technological interest due to the possibility of tuning the GaAs NP (nanoparticle) band gap across the visible spectrum and their consequent use in optoelectronic devices. In recent years, laser ablation in liquid (LAL) has been widely used for the preparation of colloidal solutions of semiconducting and metallic nanoparticles, thanks to its flexibility. With the aim of highlighting the key role played by laser pulse duration on the ablation mechanism and on the properties of the obtained materials, laser ablation of a gallium arsenide target in acetone was performed using laser sources operating in two different temporal regimes: Nd:glass laser (λ   =  527 nm, pulse duration of 250 fs and frequency repetition rate of 10 Hz) and Nd:YAG laser (λ   =  532 nm, pulse duration of 7 ns and frequency repetition rate of 10 Hz). The ablation process was studied following the dynamics of the laser induced shock waves (SWs) and cavitation bubbles (CBs) by fast shadowgraphy, showing that CB dimension and lifetime is related to the laser pulse length. A characterization of the obtained materials by TEM (transmission electron microscopy) and microRaman spectroscopy have shown that quite spherical gallium oxide/GaAs nanoparticles can be obtained by nanosecond laser ablation. On the other hand, pure polycrystalline GaAs nanoparticles can be produced by using an ultrashort laser source.

  1. Recent advances in laser ablation modelling for asteroid deflection methods

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2014-09-01

    Over the past few years, a series of studies have demonstrated the theoretical benefits of using laser ablation in order to mitigate the threat of a potential asteroid on a collision course with earth. Compared to other slow-push mitigation strategies, laser ablation allows for a significant reduction in fuel consumption since the ablated material is used as propellant. A precise modelling of the ablation process is however difficult due to the high variability in the physical parameters encountered among the different asteroids as well as the scarcity of experimental studies available in the literature. In this paper, we derive a new thermal model to simulate the efficiency of a laser-based detector. The useful material properties are first derived from thermochemical tables and equilibrium thermodynamic considerations. These properties are then injected in a 3D axisymetrical thermal model developed in Matlab. A temperature-dependent conduction flux is imposed on the exterior boundary condition that takes into account the balance between the incident power and the power losses due to the vaporization process across the Knudsen layer and the radiations respectively. A non-linear solver is finally used and the solution integrated over the ablation front to reconstruct the net thrust and the global mass flow. Compared to an initial 1D model, this new approach shows the importance of the parietal radiation losses in the case of a CW laser. Despite the low energy conversion efficiency, this new model still demonstrates the theoretical benefit of using lasers over more conventional low-thrust strategies.

  2. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  3. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    SciTech Connect

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-07-15

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T{sub c}/T{sub tr} of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E{sub abl} normalized to the cohesion energy, {epsilon}{sub abl}=E{sub abl}/E{sub coh}, are surprisingly universal: all are near 0.3 with {+-}30% scattering. The difference in the ratio T{sub c}/T{sub tr} means that for metals the melting threshold {epsilon}{sub m} is low, {epsilon}{sub m}<{epsilon}{sub abl}, while for LJ it is high, {epsilon}{sub m}>{epsilon}{sub abl}. This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in {epsilon}{sub abl}, metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation.

  4. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  5. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  6. Near-infrared laser ablation of poly tetrafluoroethylene (Teflon) sensitized by nanoenergetic materials

    SciTech Connect

    Yang Yanqiang; Wang Shufeng; Sun Zhaoyong; Dlott, Dana D.

    2004-08-30

    Laser ablation of Teflon doped with size-selected (30-250 nm) Al nanoparticles is studied. Unlike pure Teflon, which requires a vacuum-ultraviolet or femtosecond excimer laser for ablation, this sensitized Teflon can be ablated with a near-infrared laser. Using 100 ps duration pulses, near-infrared ablation thresholds are lower by about a factor of 10 from excimer ablation of pure Teflon. A mechanism is discussed that involves Teflon decomposition by spherical shock fronts originating at each irradiated nanoparticle. Studies of the distance dependence of this process as a function of particle diameter and oxide layer thickness suggest ways of optimizing the ablation process.

  7. Excimer laser photorefractive keratectomy with different ablation zones.

    PubMed

    Hassan, Z; Lampé, Z; Békési, L; Berta, A

    1997-01-01

    In this study we would like to introduce the excimer laser, and to demonstrate our results and complications by using different ablation zones during photorefractive keratectomy (PRK) in the correction of myopia and astigmatismus. In 1996 we performed photorefractive keratectomy on 100 myopic eyes of 52 patients (28 females, 24 males). Mean age was 26.21 years (ranged from 19 to 54 years). The preoperative refraction ranged from -1.0 D to -18.0 Diopters. The diameter of the ablation zones were between 5 and 6.5 mm. We evaluated the results and the complications of the surgeries of 100 eyes which were performed with Schwind keratom F excimer laser. After 2 days, 1 week, 1 month, 3 months, and 6 months postoperatively we tested the best uncorrected and corrected visual acuities, and performed intraocular pressure measurement, slit lamp examination as well as corneal topography. The postoperative refractions were between +/- 0.5 to +/- 1.0 Diopters. After six months postoperatively the slit lamp examination showed that 80% of the patients had no corneal haze while 20% had stage I (Hanna) corneal haze. The smaller the diameter of the ablation zone was, the more pronounced the corneal haze and the night-glare were. The photorefractive excimer laser keratectomy is judged to be a safe method, although it might have some side-effects. The different ablation zones of this treatment means an important modification, that not only allows the method to meet the individual requirements, but reduces the chance of the complications as well. Based on the authors' experiences PRK for moderate myopia with large diameter ablation zones appears more predictable than than with smaller ablation zone diameters. PMID:9408312

  8. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    PubMed

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-01

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. PMID:22242626

  9. Ion extraction from positively biased laser-ablation plasma

    NASA Astrophysics Data System (ADS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-07-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  10. Deposition, characterization, and laser ablation patterning of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Vase, Per; Yueqiang, Shen; Freltoft, Torsten

    1990-12-01

    High quality epitaxial thin films of YBa 2Cu 3O 7 have been deposited on single-crystal MgO(001) substrates by 355 nm Nd:YAG laser ablation. Through a systematic optimization of the deposition parameters, it was found that for a target-substrate distance of 30 mm, the optimal laser intensity, substrate temperature, and deposition oxygen pressure were 300 MW/cm 2, 750 ° C, and 0.5-1.0 mbar, respectively. Microstrips with dimensions down to 10 μm across were fabricated using both a photoresist technique and laser ablation through a metal mask. The superconducting transition takes place over 1 K, and the critical temperature is reproducible within ±1.5 K, the best result being Tc,0 = 90 K. The highest critical current density measured on a 10 X 0.15 μm 2 strips was 4 X 10 6 A/cm 2 at 77 K . Film patterning using laser ablation through a metal mask was studied in detail to investigate the applicability of this method. Etch rates as a function of laser intensity were measured, and the process was followed in situ by on-line monitoring of the film resistivity.

  11. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGESBeta

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  12. Ultraviolet laser ablation of polycarbonate and glass in air

    SciTech Connect

    Bormotova, T. A.; Blumenthal, R.

    2009-02-01

    The fundamental physical processes that follow ultraviolet laser ablation of polycarbonate and borosilicate glass in air have been investigated using photodeflection as a function of the distance from the surface to probe laser. Four features were observed in the data sets for each material. Two of these features correlate well with gas dynamical predictions for the expansion of the shock wave and gas plume. The third feature is consistent with the propagation of the popping sound of the laser ablation event. The final feature, which occurs at very early times and does not shift significantly in time as the surface to probe distance is increased from 0 to greater than 6 mm, has been tentatively ascribed to the ejection of fast electrons. The final significant observation is complete blocking of the probe laser, only observed during borosilicate ablation, which is attributed to scattering of the probe laser light by macroscopic SiO{sub x} particles that grow in the final stages of plume expansion and cooling.

  13. Laser ablation of copper and aluminium in air

    NASA Astrophysics Data System (ADS)

    Xia, Yueyuan; Mei, Liangmo; Tan, Chunyu; Liu, Xiangdong; Wang, Qingpu; Yue, Shubin

    1991-06-01

    The ablation behavior of copper alloy and aluminium irradiated in air by 1.06 μm, 10 ns pulsed laser with power density of 6.4×109W/cm2 was studied using scanning electron microscopy (SEM), MCS-RBS and X-ray microanalysis. Evidence of bulk vaporization via bubble formation was observed for the copper alloy under the laser irradiation. Silver-enrichment microregions were found in the ablation crater created by the laser shots on the copper alloy sample. Material removal rates of these materials were determined by crater shape-profile measurement. Using self-similar solutions of the gas-dynamic equations, gas-dynamic parameters of the vaporization waves are obtained. These parameters are used to calculate material removal rates and impulse coupling coefficients of these materials under the pulsed laser irradiation. The calculated mass removal rates and the coupling coefficients are compared with the corresponding experimentally determined values. The surface kinetic energy of the irradiated area on the Al sample is estimated. Possible mechanisms for laser ablation of the materials under study are discussed.

  14. Solid material evaporation into an ECR source by laser ablation

    SciTech Connect

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-09-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10{sup 7} W/cm{sup 2} has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source.

  15. Preliminary characterization of hard dental tissue ablation with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Squier, Jeffrey A.

    1998-05-01

    Because of low operating speed and excessive collateral damage, lasers have not succeeded in replacing conventional tools in many surgical and dental applications. Recent developments now allow the new generation of amplified ultrashort pulse lasers to operate at high repetition rates and high single pulse energies. A Titanium:sapphire Chirped Pulse Regenerative Amplifier system operating at 1 KHz and 50 fs pulse duration, was used to demonstrate ultrashort pulse ablation of hard and soft tissue. Maximum ablation rates for enamel and dentin were approximately 0.650 micrometers /pulse and 1.2 micrometers /pulse respectively. Temperature measurements at both front and rear surface of a 1 mm dentin and enamel slices showed minimal increases. Scanning electron micrographs clearly show that little thermal damage is generate by the laser system. If an effective delivery system is developed, ultrashort pulse system may offer a viable alternative as a safe, low noise dental tool.

  16. Generic incubation law for laser damage and ablation thresholds

    NASA Astrophysics Data System (ADS)

    Sun, Zhanliang; Lenzner, Matthias; Rudolph, Wolfgang

    2015-02-01

    In multi-pulse laser damage and ablation experiments, the laser-induced damage threshold (LIDT) usually changes with the number of pulses in the train, a phenomenon known as incubation. We introduce a general incubation model based on two physical mechanisms—pulse induced change of (i) absorption and (ii) critical energy that must be deposited to cause ablation. The model is applicable to a broad class of materials and we apply it to fit data for dielectrics and metals. It also explains observed changes of the LIDT as a function of the laser repetition rate. We discuss under which conditions the crater-size method to determine LIDTs can be applied in multi-pulse experiments.

  17. Modeling of dynamical processes in laser ablation

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    Various physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed-laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume, plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms, hydrodynamic and collisional descriptions of plume transport, and molecular dynamics models of the interaction of plume particles with the deposition substrate.

  18. Next generation Er:YAG fractional ablative laser

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  19. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  20. Thermal-mechanical modeling of laser ablation hybrid machining

    NASA Astrophysics Data System (ADS)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  1. Saturation effects in femtosecond laser ablation of silicon-on-insulator

    SciTech Connect

    Zhang Hao; Oosten, D. van; Krol, D. M.; Dijkhuis, J. I.

    2011-12-05

    We report a surface morphology study on single-shot submicron features fabricated on silicon on insulator by tightly focused femtosecond laser pulses. In the regime just below single-shot ablation threshold nano-tips are formed, whereas in the regime just above single-shot ablation threshold, a saturation in the ablation depth is found. We attribute this saturation by secondary laser absorption in the laser-induced plasma. In this regime, we find excellent agreement between the measured depths and a simple numerical model. When the laser fluence is further increased, a sharp increase in ablation depth is observed accompanied by a roughening of the ablated hole.

  2. Ultra-short pulsed laser tissue ablation using focused laser beam

    NASA Astrophysics Data System (ADS)

    Jaunich, Megan K.; Raje, Shreya; Mitra, Kunal; Grace, Michael S.; Fahey, Molly; Spooner, Greg

    2008-02-01

    Short pulse lasers are used for a variety of therapeutic applications in medicine. Recently ultra-short pulse lasers have gained prominence due to the reduction in collateral thermal damage to surrounding healthy tissue during tissue ablation. In this paper, ultra-short pulsed laser ablation of mouse skin tissue is analyzed by assessing the extent of damage produced due to focused laser beam irradiation. The laser used for this study is a fiber-based desktop laser (Raydiance, Inc.) having a wavelength of 1552 nm and a pulse width of 1.3 ps. The laser beam is focused on the sample surface to a spot size on the order of 10 microns, thus producing high peak intensity necessary for precise clean ablation. A parametric study is performed on in vitro mouse tissue specimens and live anaesthetized mice with mammary tumors through variation of laser parameters such as time-averaged laser power, repetition rate, laser scanning rate and irradiation time. Radial temperature distribution is measured using thermal camera to analyze the heat affected zone. Temperature measurements are performed to assess the peak temperature rise attained during ablation. A detailed histological study is performed using frozen section technique to observe the nature and extent of laser-induced damages.

  3. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  4. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  5. Laser ablation synthesis of lanthanide oxide clusters: Mechanisms and chemistry

    SciTech Connect

    Gibson, J.K.

    1995-07-15

    Excimer laser ablation into vacuum of hydrated lanthanide oxalates has produced new lanthanide (Ln) oxide cluster ions which were identified by time-of-flight mass spectrometry. In addition to binary oxide clusters (Ln{sub {ital m}}O{sup +}{sub {ital n}}), mixed lanthanide oxide clusters [Ln{sub {ital m}1}Ln{sub {ital m}2}{sup {prime}}O{sup +}{sub {ital n}} with ({ital m}1+{ital m}2){le}9] were discerned for the following Ln-Ln{prime}: La-Tb, La-Ho, La-Lu, and Ho-Lu. The observed cluster ion stoichiometries, abundance distributions, and hydration systematics provide insights into cluster formation mechanisms and chemistries. Time-variable ion sampling revealed cluster enhancement in the tail of the ablation plume. The body of experimental results support cluster formation by aggregation of small ablated species. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  7. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    PubMed Central

    Chen, H.; Li, H.; Sun, YC.; Wang, Y.; Lü, PJ.

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application. PMID:26864679

  8. Practical Laser Ablation U-Th Thermochronology and Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Van Soest, M. C.; Tripathy, A.; Boyce, J. W.

    2012-12-01

    (U-Th)/He thermochronology of the accessory phases apatite and zircon has become an essential tool for many landscape evolution and tectonic studies. Moreover, new geochronologic applications of the (U-Th)/He method -dating impact events, young volcanic eruptions, and secondary hydrothermal mineralization, for example - are only recently being explored. A significant impediment to all applications of the method is a commonly observed scatter of replicate dates for different crystals from an individual sample, typically greater than that which can be explained by analytical imprecision alone. While several reasons for this have been proposed, three are certainly important: 1) the propensity for many accessory minerals to be strongly and complexly zoned in U and Th; 2) inclusions of other (U+Th)-rich minerals in dated grains; and 3) frequently ignored and generally unquantifiable uncertainties in the alpha ejection corrections applied to dated crystals. For nearly a decade, we have worked to establish a new technique that avoids or minimizes the impact of these factors. Individual crystals are mounted, polished, and imaged to resolve internal zonation and inclusion content as a means of selecting appropriate grains for analysis. A 193 nm ArF excimer laser is used to ablate sample from the center of the polished surface, sufficiently far from the crystal rim to eliminate the need for an alpha ejection correction. 4He is measured in the ablated material by magnetic sector, gas-source mass spectrometry. After precise measurement of the ablation pit to permit the determination of 4He concentration, the sample is removed and mounted for U + Th analysis by laser ablation inductively coupled, plasma mass spectrometry. For parent element analyses, the ablation pit is targeted so as to encompass the 4He ablation pit on a scale large enough to integrate intragranular U + Th zoning and account for recoil redistribution of 4He within grains. We have documented the efficacy of

  9. An Electron Emission Effect on Dynamics of Laser Ablation

    SciTech Connect

    Nastoyashchii, A. F.

    2004-03-30

    The paper deals with the effect of electron emission on a heat transfer in the area of a plasma critical density (near plasma-solid surface boundary). As is known, experimental data show the limitation of electron thermal conductivity in the mentioned area. In the laser fusion research just the limitation of the heat transfer at target irradiation with long-wave lasers has made application of CO2-lasers unreasonable in spite of their high efficiency. On other hand, as to the applied tasks of laser ablation (e.g. in launching small-scale satellites) the aspect of the CO2-lasers application is being widely discussed. In the paper the mentioned limitation is explained on the basis of classical representations. It is marked, that the heat transfer limitations arise from the conditions of preserving plasma quasi-neutrality at the absorption area boundary where the electron density is close to critical one for the given laser wavelength. Possible mechanisms of the electron emission in the mode of the laser ablation are discussed.

  10. [The incidence of ventricular arrhythmia following direct current ablation, high-frequency current ablation and laser photo-ablation].

    PubMed

    Hindricks, G; Haverkamp, W; Dute, U; Gülker, H

    1988-11-01

    Incidence and severity of ventricular arrhythmias (VA) following transvenous catheter ablation have so far not been fully elucidated. In the present study we evaluated the comparative incidence of postablation ventricular arrhythmias following high voltage-direct current electrical ablation (DCA), radiofrequency-ablation (RFA), and laser-photoablation (LPA). Experiments were performed on a total of 26 anesthetized mongrel dogs (BW: 20-30 kg). DCA (n = 14; 150-200 J) and RFA (n = 7; 38.5-72.5 J) were performed unipolarly via a 6F USCI catheter, LPA (n = 5; 40-80 J) was delivered through a quarz core fiber (diameter 0.4 mm) housed within a special designed catheter. Energies were delivered to various sites of free wall and apical endocardium of the left ventricle. Immediately after DCA fast runs of ventricular tachycardia (VT) developed in 13 out of 14 dogs degenerating into ventricular fibrillation in two animals. Mean cycle length of induced VT was 298 +/- 86 ms. Persistent VA, morphologically mainly characterized by an accelerated idioventricular rhythm interrupted by runs of ventricular salvoes, occurred in 12 animals (mean rate: 78 +/- 13 VPB/min 3 h after ablation). During VT early endocardial activations were recorded from the ablation site. No significant correlation between total applied energy (150-550 J) and incidence of arrhythmogenic effects was observed. RFA and LPA induced ventricular salvoes and runs of non-sustained ventricular tachycardia, in one animal ventricular fibrillation occurred during RFA; however, no persistent arrhythmic activity developed after RFA and LPA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3213137

  11. Laser-driven ablation through fast electrons in PALS experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Chodukowski, T.; Demchenko, N.; Kalinowska, Z.; Kasperczuk, A.; Krousky, E.; Pfeifer, M.; Pisarczyk, P.; Pisarczyk, T.; Renner, O.; Skala, J.; Smid, M.; Ullschmied, J.

    2016-03-01

    Energy transfer to shock wave in Al and Cu targets irradiated by a laser pulse with intensity of I≈1-50 PW/cm2 and duration of 250 ps was investigated at Prague Asterix Laser System (PALS). The iodine laser provided energy in the range of 100-600 J at the first and third harmonic frequencies. The focal spot radius of laser beam on the target was varied from 160 to 40 μm. The dominant contribution of fast electron energy transfer into the ablation process was found when using the first harmonic radiation, the focal spot radius of 40-100 μm, and the energy of 300-600 J. The fast electron heating results in the growth of ablation pressure from 60 Mbar at the intensity of 10 PW/cm2 to 180 Mbar at the intensity of 50 PW/cm2 and in the growth of the efficiency of the energy conversion into the shock wave from 2 to 7% under the conditions of 2D ablation.

  12. Analytical model for CO(2) laser ablation of fused quartz.

    PubMed

    Nowak, Krzysztof M; Baker, Howard J; Hall, Denis R

    2015-10-10

    This paper reports the development of an analytical model, with supporting experimental data, which quite accurately describes the key features of CO2 laser ablation of fused silica glass. The quantitative model of nonexplosive, evaporative material removal is shown to match the experimental data very well, to the extent that it can be used as a tool for ablative measurements of absorption coefficient and vaporization energy. The experimental results indicated that a minimum of 12  MJ kg-1 is required to fully vaporize fused quartz initially held at room temperature, which is in good agreement with the prediction of the model supplied with input data available in the literature. An optimal window for the machining of fused quartz was revealed in terms of pulse duration 20-80 μs and CO2 laser wavelength optimized for maximum absorption coefficient. Material removal rates of 0.33 μm per J cm-2 allow for a high-precision depth control with modest laser stability. The model may also be used as a parameter selection guide for CO2 laser ablation of fused silica or other materials of similar thermophysical properties. PMID:26479800

  13. Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation.

    PubMed

    Malskat, W S J; Stokbroekx, M A L; van der Geld, C W M; Nijsten, T E C; van den Bos, R R

    2014-03-01

    Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures. PMID

  14. Mathematical Modeling of Laser Ablation in Liquids with Applications to Laser Ultrasonics

    SciTech Connect

    Conant, R. J.; Telschow, Kenneth Louis; Walter, John Bradley

    2002-12-01

    The use of laser ablation as a means of generating ultrasonic waves in liquid metals is studied in this paper. A mathematical model for predicting the onset of ablation is developed, as is a model of the ablation process based on steady state, one-dimensional gas dynamics in which the vapor phase is treated as an ideal gas. The results of this model are then used in a quasi-two-dimensional model of laser ablation that accounts for the spatial distribution of intensity in the laser beam. Model predictions are compared with experiments conducted on liquid mercury and excellent agreement is obtained. Based on these results, a simplified model is developed that shows excellent agreement with both the theory and the experiments.

  15. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  16. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  17. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  18. Laser ablation of optically thin absorbing liquid layer predeposited onto a transparent solid substrate

    SciTech Connect

    Kudryashov, S. I.; Lyon, K.; Shukla, S.; Murry, D.; Allen, S. D.

    2006-09-01

    Ablation of optically thin liquid 2-propanol layers of variable thickness on IR-transparent solid Si substrate by a nanosecond CO{sub 2} laser has been experimentally studied using time-resolved optical interferometric and microscopy techniques. Basic ablation parameters - threshold fluences for surface vaporization and explosive homogeneous boiling of the superheated liquid, ablation depths, vaporization (ablation) rates, and characteristic ablation times versus laser fluence - were measured as a function of alcohol layer thickness. The underlying ablation mechanisms, their thermodynamics, and microscopic details are discussed.

  19. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  20. Pre-ignition laser ablation of nanocomposite energetic materials

    NASA Astrophysics Data System (ADS)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-01

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 × 104 to 1.7 × 107 K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO2 lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO3) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO3 at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  1. The mesoscopic modeling of laser ablation

    NASA Astrophysics Data System (ADS)

    Stoneham, A. M.; Ramos, M. M. D.; Ribeiro, R. M.

    It is common to look at the atomic processes of removal of atoms or ions from surfaces. At this microscopic scale, one has to understand which surface ions are involved, which excited states are created, how electrons are transferred and scattered, and how the excitation leads to ion removal. It is even more common to look at continuum models of energy deposition in solids, and at the subsequent heat transfer. In these macroscopic analyses, thermal conduction is combined with empirical assumptions about surface binding. Both these pictures are useful, and both pictures have weaknesses. The atomistic pictures concentrate on relatively few atoms, and do not recognize structural features or the energy and carrier fluxes on larger scales. The continuum macroscopic models leave out crystallographic information and the interplay of the processes with high nonequilibrium at smaller scales. Fortunately, there is a middle way: mesoscopic modeling, which both models the key microstructural features and provides a link between microscopic and macroscopic. In a mesoscopic model, the length scale is determined by the system; often this scale is similar to the grain size. Microstructural features like grain boundaries or dislocations are considered explicitly. The time scale in a mesoscopic model is determined by the ablation process (such as the pulse length) rather than the short time limitations of molecular dynamics, yet the highly nonequilibrium behavior is adequately represented. Mesoscopic models are especially important when key process rates vary on a short length scale. Some microstructural feature (like those in dentine or dental enamel) may absorb light much more than others; other features (like grain boundaries) may capture carriers readily, or allow easier evaporation, or capture and retain charge (like grain boundaries); it is these processes which need a mesoscopic analysis. The results described will be taken largely from the work on MgO of Ribeiro, Ramos, and

  2. Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions

    NASA Astrophysics Data System (ADS)

    Halimah Mohamed., K.; Mahmoud Goodarz, Naseri; Amir, Reza Sadrolhosseini; Arash, Dehzangi; Ahmad, Kamalianfar; Elias, B. Saion; Reza, Zamiri; Hossein Abastabar, Ahangar; Burhanuddin, Y. Majlis

    2014-07-01

    A laser ablation technique is applied for synthesis of silver nanoparticles in different concentrations of polyvinyl alcohol (PVA) aqueous solution. The ablation of high pure silver plate in the solution is carried out by a nanosecond Q-switched Nd:YAG pulsed laser. X-ray diffraction and transmission electron microscopy are implemented to explore the particles sizes. The effects of PVA concentrations on the absorbance of the silver nanoparticles are studied as well, by using a UV-vis spectrophotometer. The preparation process is carried out for deionized water as a reference sample. The comparison of the obtained results with the reference sample shows that the formation efficiency of nanoparticles in PVA is much higher and the sizes of particles are also smaller.

  3. Ablation and nanostructuring of metals by femtosecond laser pulses

    SciTech Connect

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  4. Targets on superhydrophobic surfaces for laser ablation ion sources

    NASA Astrophysics Data System (ADS)

    Renisch, D.; Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch. E.; Eberhardt, K.; Eibach, M.; Nagy, Sz.; Neidherr, D.; Nörtershäuser, W.; Smorra, C.

    2012-06-01

    Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser ablation ion source improved the ion production significantly.

  5. CdTe nanoparticles synthesized by laser ablation

    SciTech Connect

    Semaltianos, N. G.; Logothetidis, S.; Perrie, W.; Romani, S.; Potter, R. J.; Dearden, G.; Watkins, K. G.; Sharp, M.

    2009-07-20

    Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and 'green' method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTe nanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy=6 {mu}J (fluence=1.7 J/cm{sup 2})] ablation of the target material. Nanoparticles with diameters from {approx}2 up to {approx}25 nm were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of {approx_equal}7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio {approx}1:0.9). Photoluminescence emission from the produced nanoparticles was detected in the deep red ({approx}652 nm)

  6. Hydrodynamic simulation of ultrashort pulse laser ablation of gold film

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng

    2015-06-01

    The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.

  7. Dopant-enhanced ablation of nitrocellulose by a nitrogen laser

    NASA Astrophysics Data System (ADS)

    Kosmidis, C. E.; Skordoulis, C. D.

    1993-01-01

    The photoetching behavior of pure nitrocellulose and of nitrocellulose dyed with stilbene-420, coumarin-120 and rhodamine 6G by 337 nm nitrogen laser pulses has been studied. Ablation with a low power nitrogen laser is hereby reported for the first time. A two step photochemical mechanism is proposed to account for the ablation of the pure material. With the addition of dyes strongly absorbing at 337 nm the photoetching rate of nitrocellulose can be increased significantly. This increase is proportional to the molar extinction coefficient of the dye at 337 nm and its concentration in the polymer. The photoetching mechanism and the energy transfer processes from the dye to the polymer are discussed in detail.

  8. Laser-ablation-assisted microparticle acceleration for drug delivery

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Takayama, K.; Ohki, T.; Gopalan, J.

    2005-10-01

    Localized drug delivery with minimal tissue damage is desired in some of the clinical procedures such as gene therapy, treatment of cancer cells, treatment of thrombosis, etc. We present an effective method for delivering drug-coated microparticles using laser ablation on a thin metal foil containing particles. A thin metal foil, with a deposition of a layer of microparticles is subjected to laser ablation on its backface such that a shock wave propagates through the foil. Due to shock wave loading, the surface of the foil containing microparticles is accelerated to very high speeds, ejecting the deposited particles at hypersonic speeds. The ejected particles have sufficient momentum to penetrate soft body tissues, and the penetration depth observed is sufficient for most of the pharmacological treatments. We have tried delivering 1μm tungsten particles into gelatin models that represent soft tissues, and liver tissues of an experimental rat. Sufficient penetration depths have been observed in these experiments with minimum target damage.

  9. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  10. Dissolution in a supercritical liquid as a mechanism of laser ablation of sapphire

    SciTech Connect

    Dolgaev, Sergei I; Karasev, M E; Kulevskii, L A; Simakin, Aleksandr V; Shafeev, Georgii A

    2001-07-31

    The laser ablation of sapphire is studied by irradiating its interface with water and aqueous solutions of KOH, KCl and Na{sub 2}CO{sub 3} by 2.92-{mu}m 130-ns holmium laser pulses. The ablation rate depends on the concentration and type of the dissolved substance. The highest ablation rate is 2.5{mu}m per pulse for a laser fluence of 120 J cm{sup -2}. The ablation of sapphire is attributed to its dissolution in water or in aqueous solutions in the supercritical state. (interaction of laser radiation with matter. laser plasma)

  11. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  12. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-10-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  13. Particle size dependent chemistry from laser ablation of brass.

    PubMed

    Liu, Chunyi; Mao, Xianglei; Mao, Sam S; Greif, Ralph; Russo, Richard E

    2005-10-15

    The proportion of zinc and copper in particles formed by laser ablation of brass was found to vary with the particle diameter. Energy-dispersive X-ray analysis showed that smaller particles were zinc enhanced while larger particles were composed mostly of copper. A model based on condensation of vapor onto large droplets ejected from a melted liquid layer is proposed to describe the change in particle composition versus size. PMID:16223257

  14. Special regime of liquid-assisted laser ablation of ceramics

    NASA Astrophysics Data System (ADS)

    Sinev, D. A.; Dobrina, D. A.; Strusevich, A. V.; Veiko, V. P.; Baranov, M. A.; Yakusheva, A. A.

    2016-05-01

    Results of experimental study the peculiarities of liquid-assisted laser ablation of alumina-silicate ceramics are reported giving attention particularly to effect of thin-wall glass macrosphere appearance at the end of irradiation onto a formed hole in bulk material. Typical times of formation, size and temperature dynamics, and chemical composition were determined; kinetics and mechanism of formation are discussed in presented paper.

  15. Modeling Of Laser Ablation And Fragmentation Of Human Calculi

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.; Howsare, Charles

    1989-09-01

    The large-scale radiation-hydrodynamics computer code LASNEX, has been used to model experimental results in the laser ablation and fragmentation of renal and biliary calculi. Recent experiments have demonstrated laser ablation and fragmentation of human calculi in vitro and in vivo. In the interaction, laser light incident upon the calculus is of sufficient intensity to produce a plasma (a hot ionized gas). The physical picture which emerges is as follows. The plasma couples to acoustic and shear waves which then propagate through the dense stone material, causing spall and fracture by reflection from material discontinuities or boundaries. Experiments have thus far yielded data on the interaction against which models can be tested. Data on the following have been published: (1) light emission, (2) absorption and emission spectra, (3) fragmentation efficiency, (4) cavitation bubble dynamics and (5) mass removal. We have performed one dimensional simulations of the laser-matter interaction to elucidate the im-portant physical mechanisms. We find that good quantitative fits between simulation and experiment are obtained for visible light emission, electron temperature, electron density, plasma pressure and cavitation bubble growth. With regard to mass removal, experiment and simulation are consistent with each other and give an excellent estimate of the ablation threshold. The modeling indicates that a very small ablation layer at the surface of the calulus is responsible for significant mass loss by fragmentation within the bulk of the calculus. With such quantitative fits in hand, we believe this type of modeling can now be applied to the study of other procedures involving plasma formation of interest to the medical community.

  16. Fabrication of Sapphire Micro Optics by F 2-Laser Ablation

    NASA Astrophysics Data System (ADS)

    Wiesner, Markus; Ihlemann, Jürgen

    F2-laser irradiation enables high precision ablation of sapphire. A mask projection system with high numerical aperture, equipped with an optical coherence tomography module for focus control, delivers submicron resolution. High fluences of up to 10 J/cm2 lead to smooth, crack free surfaces. Various micro-optical elements like fiber tip lenses, gratings, and diffractive optical elements can be manufactured this way.

  17. Optical feedback signal for ultrashort laser pulse ablation of tissue

    SciTech Connect

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  18. Laser Photonic Propulsion Force for Station-Keeping Applications

    NASA Technical Reports Server (NTRS)

    Perez, Andres Dono; Yang, Fan Yang; Foster, Cyrus; Faber, Nicolas; Jonsson, Jonas; Stupl, Jan

    2014-01-01

    Small satellites, e.g. cubesats, do not tend to incorporate propulsion subsystems that can compensate for perturbation forces, which causes orbital decay. Cubesats are especially susceptible to the phenomenon of orbital decay, which limits their potential performance, since these effects are more noticeable in Low Earth Orbit (LEO). We postulate that a network of ground-based lasers could extend the operational lifetimes of these satellites by applying a photonic force onto their surfaces. This boosting force would help to counteract the degrading force, which is mainly produced by the drag of the atmosphere. This solution may present an advantage for low cost missions, in that it would enable longer mission durations without the need to incorporate a propulsion system, which comprises a large part of the mass budget and the power constraints of a satellite. This poster presents an analysis of the trade space for both the required network of laser ground stations and the satellite orbits. The analysis is based on simulations of the orbital decay of model satellites.

  19. Laser ablation loading of a radiofrequency ion trap

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Okhapkin, M. V.; Herrera-Sancho, O. A.; Peik, E.

    2012-06-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10-7 to 10-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  20. Interferometric diagnostic suite for ultrafast laser ablation of metals

    SciTech Connect

    Clarke, S. A.; Rodriguez, G.; Taylor, Antoinette J.,; Forsman, A. C.

    2004-01-01

    We report on the development of a suite of novel techniques to measure important characteristics in intense ultrashort laser solid target experiments such as critical surface displacement, ablation depth, and plasma characteristics. Measurement of these important characteristics on an ultrafast ({approx}50 fs) time scale is important in understanding the primary event mechanisms in laser ablation of metal targets. Unlike traditional methods that infer these characteristics from spectral power shifts, phase shifts in frequency domain interferometry (FDI) or laser breakthrough studies of multiple shots on bulk materials, these techniques directly measure these characteristics from a single ultrafast heating pulse. These techniques are based on absolute displacement interferometry and nanotopographic applications of wavefront sensors. By applying all these femtosecond time-resolved techniques to a range of materials (Al, Au, and Au on plastic) over a range of pulse energies (10{sup 11} to 10{sup 16} W/cm{sup 2}) and pulse durations (50 to 700 fs), greater insight into the ablation mechanism and its pulse parameter dependencies can be determined. Comparison of these results with hydrocode software programs also reveals the applicability of hydrocode models.

  1. Holmium laser ablation of cartilage: effects of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  2. Microscopic and macroscopic modeling of femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Fokin, Vladimir B.; Levashov, Pavel R.

    2015-12-01

    Simulation of femtosecond laser ablation of a bulk aluminum target is performed using two complementary approaches. The first method is single-fluid two-temperature hydrodynamics (HD) completed with a two-temperature equation of state (EOS). The second approach is a combination of classical molecular dynamics (MD) and a continuum model of a free electron subsystem. In both methods, an identical and accurate description of optical and transport properties of the electron subsystem is based on wide-range models reproducing effects of electron heat wave propagation, electron-phonon/ion coupling and laser energy absorption on a time-dependent profile of the dielectric function. For simulation of homogeneous nucleation in a metastable liquid phase, a kinetic model of nucleation is implemented in the HD approach. The phase diagrams of the EOS and MD potential are in good agreement that gives opportunity to compare the dynamics of laser ablation obtained by both methods directly. Results of simulation are presented in the range of incident fluences 0.1-20 J/cm2 and match well with experimental findings for an ablation crater depth. The MD accurately reproduces nonequilibrium phase transitions and takes into account surface effects on nanoscale. The HD approach demonstrates good qualitative agreement with the MD method in the dynamics of phase explosion and spallation. Other advantages and disadvantages of both approaches are examined and discussed.

  3. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  4. Update On CO{sub 2} Laser Ablation Of Polyoxymethylene At 101 kPa

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Ogita, Naoya; Sasoh, Akihiro; Roeser, Hans-Peter

    2010-10-08

    Recent work has brought about a renewed interest in CO{sub 2} laser ablation studies of polyoxymethylene, due to its potential as a test target for enhancing modern understanding of the laser ablation process. In this paper, new results taken in air at atmosphere pressure are reported, including data measured at institutions in Germany and Japan, which increase the body of literature data on CO{sub 2} laser ablation of polyoxymethylene. The results are discussed in terms of aerospace parameters such as the momentum coupling coefficient and specific impulse, and are compared to a previous literature study. The threshold fluence is specified for ablation of polyoxymethylene by CO{sub 2} laser radiation. Fluences higher (and lower) than previously tested for CO{sub 2} laser ablation were studied herein, and record specific impulse values for CO{sub 2} laser ablation of flat polyoxymethylene are also reported here.

  5. Characteristics of optical emission intensities and bubblelike phenomena induced by laser ablation in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Machmudah, Siti; Goto, Hiroshi; Wahyudiono; Goto, Motonobu; Sasaki, Koichi

    2014-01-01

    We investigated the characteristics of laser ablation phenomena in supercritical fluids by optical emission and shadowgraph imaging. In comparison with laser ablation in liquid H2O, the optical emission of a laser ablation plasma produced in supercritical H2O had a longer lifetime and a larger transport length. It was found in supercritical CO2 that laser ablation plasmas with bright optical emissions were produced at a mass density of approximately 300 kg/m3. A clear correlation between the optical emission intensity and the density fluctuation was not observed in our experimental results, which were obtained in a regime deviated from the critical point. Bubblelike hollows were observed by shadowgraph imaging in both supercritical H2O and CO2. The dynamics of the bubblelike hollows were different from the dynamics of a cavitation bubble induced by laser ablation in a liquid medium but relatively similar to the dynamics of ambient gas in gas-phase laser ablation.

  6. Metallic targets ablation by laser plasma production in a vacuum

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-03-01

    A model of metallic target ablation and metallic plasma production by laser irradiation is reported. The model considers laser energy absorption by the plasma, electron emission from hot targets and ion flux to the target from the plasma as well as an electric sheath produced at the target-plasma interface. The proposed approach takes into account that the plasma, partially shields the laser radiation from the target, and also converts absorbed laser energy to kinetic and potential energies of the charged plasma particles, which they transport not only through the ambient vacuum but also through the electrostatic sheath to the solid surface. Therefore additional plasma heating by the accelerated emitted electrons and target heating caused by bombardment of it by the accelerated ions are considered. A system of equations, including equations for solid heat conduction, plasma generation, and plasma expansion, is solved self-consistently. The results of calculations explain the measured dependencies of ablation yield (μ g/pulse) for Al, Ni, and Ti targets on laser fluence in range of (5-21)J/cm2 published previously by Torrisi et al.

  7. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  8. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (λ=193 nm, ν=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup −2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  9. Ablation of biological tissues by radiation of strontium vapor laser

    SciTech Connect

    Soldatov, A. N. Vasilieva, A. V.

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  10. Doping of silicon by carbon during laser ablation process

    NASA Astrophysics Data System (ADS)

    Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.

    2007-04-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  11. Doping of silicon with carbon during laser ablation process

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.

    2006-12-01

    The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  12. Ablation of biological tissues by radiation of strontium vapor laser

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Vasilieva, A. V.

    2015-11-01

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 - 6.45 μm, with a generation pulse length of 50 - 150 ns, and pulse energy of ˜ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  13. Properties of zirconia thin films deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Mustaciosu, C.; Dinescu, M.

    2013-11-01

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO2 target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (λ=193 nm, ν=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm-2. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  14. Nanostructuring of ITO thin films through femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sahin, Ramazan; Kabacelik, Ismail

    2016-04-01

    Due to reduced thermal effects, tightly focused femtosecond laser beams can yield submicron resolution with minimal side effects. In laser direct writing applications, diffraction-free nature of the Bessel beams relaxes alignment of the sample and shortens the production time. Micron-sized central spots and long depth of focused beams can be simultaneously produced. We apply fs Bessel beam single-pulse ablation method to transparent conductive oxide films. We use laser of 1030 nm wavelength and two different axicons (base angles are 25° and 40°). Fabricated structures are characterized by optical microscope, atomic force microscope and scanning electron microscope. Laser beam shaping and virtues of non-diffracted Bessel beams provide periodic structures for scribing in the solar cells or high-resolution displays and reduce the process time.

  15. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  16. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Qi, Litao; Nishii, Kazuhiro; Yasui, Motohiro; Aoki, Hikoharu; Namba, Yoshiharu

    2010-10-01

    Ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation was carried out with a femtosecond pulsed laser operating at a wavelength of 780 nm and a pulse width of 164 fs. The quality and morphology of the laser ablated sapphire surface were evaluated by scanning electron microscopy and atomic force microscopy. For single laser pulse irradiation, two ablation phases were observed, which have a strong dependency on the pulse energy. The volume of the ablated craters kept an approximately linear relationship with the pulse energy. The threshold fluences of the two ablation phases on different crystallographic facet planes were calculated from the relationship between the squared diameter of the craters and pulse energy. With multiple laser pulses irradiation, craters free of cracks were obtained in the 'gentle' ablation phase. The threshold fluence for N laser pulses was calculated and found to decrease inversely to the number of laser pulses irradiating on the substrate surface due to incubation effect. The depth of the craters increased with the number of laser pulses until reaching a saturation value. The mechanism of femtosecond laser ablation of sapphire in two ablation phases was discussed and identified as either phase explosion, Coulomb explosion or particle vaporization. The choice of crystallographic facet plane has little effect on the process of femtosecond laser ablation of sapphire when compared with the parameters of the femtosecond laser pulses, such as pulse energy and number of laser pulses. In the 'gentle' ablation phase, laser-induced periodic surface structures (LIPSS) with a spatial period of 340 nm were obtained and the mechanism of the LIPSS formation is discussed. There is a potential application of the femtosecond laser ablation to the fabrication of sapphire-based devices.

  17. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  18. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    PubMed

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  19. Spectroscopic measurements of ablation plasma generated with laser-driven intense extreme ultraviolet (EUV) light

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Hane, K.; Shikata, H.; Masuda, M.; Nagatomi, K.; Sunahara, A.; Yoshida, M.; Fujioka, S.; Nishimura, H.

    2016-03-01

    Material ablation by a focused Extreme ultraviolet (EUV) light is studied by comparing expanding ion properties and plasma parameters with laser ablation. The kinetic energy distributions of expanding ions from EUV and laser ablation showed different spectra implying different geometries of plasma expansion. The calculation results of plasma parameters showed that EUV energy is mostly deposited in high electron density region close to the solid density, while laser energy is deposited in low energy density region. Plasma parameters experimentally obtained from visible spectra did not show noticeable difference between EUV and laser ablation due to the corresponding low cut off density.

  20. Laser ablation of a platinum target in water. III. Laser-induced reactions

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the third paper in our series studying the laser-target-liquid interactions occurring in laser ablation in liquids (LAL). Here, laser ablation of a platinum target in pure water at 355 nm wavelength is studied as a function of laser energy. We describe three distinct reaction regimes between the ablated target species and water at different laser focusing conditions. At low laser fluence (<10 J/cm{sup 2}), material removal is caused by laser heating of the platinum surface and the primary products are small clusters with a large percentage of platinum atoms in a nonzero oxidation state. At intermediate fluences (10-70 J/cm{sup 2}), platinum nanoparticles are the primary products. Our previous studies demonstrated that in this fluence regime ablation occurs through both thermal vaporization and explosive ejection of molten droplets. In both cases reactivity is small due to the low reactivity of platinum with water. At high fluences (>70 J/cm{sup 2}), we find large, faceted particles that are attributed to the drying of PtO{sub x} gels formed by reactive plasma etching of the target. Taken together these results demonstrate that significant tunability in the target-liquid interaction is possible during nanomaterial synthesis by LAL.

  1. A study of particle generation during laser ablation withapplications

    SciTech Connect

    Liu, Chunyi

    2005-08-12

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  2. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  3. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  4. Preparation of nanofluids using laser ablation in liquid technique

    SciTech Connect

    Tran, P.X.; Soong, Yee

    2007-06-01

    In this work we report some results on thermal and transport properties of Ag-di water and Al-di water nanofluids that were prepared using Nd:yag laser to ablate Ag and Al in deionized water. The produced nanofluids were characterized using UV-VIS spectroscopy and TEM analysis. Our results on the UV-VIS spectra of the generated nanofluids demonstrated that using laser ablation in liquid we could generate stable colloids containing well-dispersed nanosized particles without use of any dispersants or surface reactive reagents. For Ag-di water nanofluids, the particles were spherical and the majority of the particles were in the 9 – 21 nm range with some big ones 23 - 26nm in size. The results on Al showed that the amplitude of the UV-VIS absorption spectra of Al-di water changed with time indicating that the ablated Al species reacts with water to yield an amorphous gel that transforms to the crystallized aluminum hydroxides with different shapes and sizes. The shapes were fibrous, triangular, rectangular, spherical shapes and joining of two pieces of triangles. In fact, these triangular and rectangular shapes were indeed pyramidal structures and hexagonal prisms, respectively.

  5. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  6. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  7. Laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  8. Ablation of selected conducting layers by fiber laser

    NASA Astrophysics Data System (ADS)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  9. IR laser ablation of doped poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Walczak, M.; Díaz, L.; Santos, M.; Castillejo, M.

    2007-05-01

    We investigate the TEA CO 2 laser ablation of films of poly(methyl methacrylate), PMMA, with average MW 2.5, 120 and 996 kDa doped with photosensitive compounds iodo-naphthalene (NapI) and iodo-phenanthrene (PhenI) by examining the induced morphological and physicochemical modifications. The films casted on CaF 2 substrates were irradiated with a pulsed CO 2 laser (10P(20) line at 10.59 μm) in resonance with vibrational modes of PMMA and of the dopants at fluences up to 6 J/cm 2. Laser induced fluorescence probing of photoproducts in a pump and probe configuration is carried out at 266 nm. Formation of naphthalene (NapH) and phenanthrene (PhenH) is observed in NapI and PhenI doped PMMA, respectively, with relatively higher yields in high MW polymer, in similarity with results obtained previously upon irradiation in the UV at 248 nm. Above threshold, formation of photoproducts is nearly complete after 200 ms. As established via optical microscopy, bubbles are formed in the irradiated areas with sizes that depend on polymer MW and filaments are observed to be ejected out of the irradiated volume in the samples made with high MW polymer. The implications of these results for the mechanisms of polymer IR laser ablation are discussed and compared with UV range studies.

  10. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    NASA Astrophysics Data System (ADS)

    Ouyang, Peixuan; Li, Peijie; Leksina, E. G.; Michurin, S. V.; He, Liangju

    2016-01-01

    In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  11. On the efficiency of laser ablation of photopolymerizing compositions in liquid and solidified states

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Yu.; Protasov, Yu. S.; Protasov, Yu. Yu.; Telekh, V. D.

    2015-02-01

    The efficiency of laser ablation of photocuring compositions that are working substances of various laser-plasma facilities is investigated for the first time. A substantial difference in spectral-energetic laser ablation thresholds, specific mass consumption, momentum coupling coefficient, and conversion efficiency of the laser energy to the kinetic energy of gas-plasma flow for liquid and solidified phases is demonstrated. Application of this class of working media allows not only solving problems related to laser ablation of a target, transport, fine dosing, and obtaining long lifetime and reliability of laser-plasma-based technological setups, but also considerably broadens the range of their operational characteristics.

  12. MR temperature imaging of nanoshell mediated laser ablation.

    PubMed

    Stafford, R Jason; Shetty, Anil; Elliott, Andrew M; Schwartz, Jon A; Goodrich, Glenn P; Hazle, John D

    2011-01-01

    Minimally invasive thermal therapy using high-power diode lasers is an active area of clinical research. Gold nanoshells (AuNS) can be tuned to absorb light in the range used for laser ablation and may facilitate more conformal tumor heating and sparing of normal tissue via enhanced tumor specific heating. This concept was investigated in a xenograft model of prostate cancer (PC-3) using MR temperature imaging (MRTI) in a 1.5T scanner to characterize the spatiotemporal temperature distribution resulting from nanoparticle mediated heating. Tumors with and without intravenously injected AuNS were exposed to an external laser tuned to 808 nm for 180 sec at 4 W/cm(2) under real-time monitoring with proton resonance frequency shift based MRTI. Microscopy indicated that these nanoparticles (140-150 nm) accumulated passively in the tumor and remained close to the tumor microvasculature. MRTI measured a statistically significant (p < 0.001) increase in maximum temperature in the tumor cortex (mean = 21 ± 7°C) in +AuNS tumors versus control tumors. Analysis of the temperature maps helped demonstrate that the overall distribution of temperature within +AuNS tumors was demonstrably higher versus control, and resulted in damage visible on histopathology. This research demonstrates that passive uptake of intravenously injected AuNS in PC-3 xenografts converts the tumor vasculature into a potent heating source for nanoparticle mediated ablation at power levels which do not generate significant damage in normal tissue. When used in conjunction with MRTI, this has implications for development and validation of more conformal delivery of therapy for interstitial laser ablations. PMID:22098362

  13. MR Temperature Imaging of Nanoshell Mediated Laser Ablation

    PubMed Central

    Stafford, R. Jason; Shetty, Anil; Elliott, Andrew M.; Schwartz, Jon A.; Goodrich, Glenn P.; Hazle, John .D.

    2014-01-01

    Minimally invasive thermal therapy using high-power diode lasers is an active area of clinical research. Gold nanoshells (AuNS) can be tuned to absorb light in the range used for laser ablation and may facilitate more conformal tumor heating and sparing of normal tissue via enhanced tumor specific heating. This concept was investigated in a xenograft model of prostate cancer (PC-3) using MR temperature imaging (MRTI) in a 1.5T scanner to characterize the spatiotemporal temperature distribution resulting from nanoparticle mediated heating . Tumors with and without intravenously injected AuNS were exposed to an external laser tuned to 808 nm for 180 sec at 4W/cm2 under real-time monitoring with proton resonance frequency shift based MRTI. Microscopy indicated that these nanoparticles (140–150 nm) accumulated passively in the tumor and remained close to the tumor microvasculature. MRTI measured a statistically significant (p<0.001) increase in maximum temperature in the tumor cortex (mean=21±7°C) in +AuNS tumors versus control tumors. Analysis of the temperature maps helped demonstrate that the overall distribution of temperature within +AuNS tumors was demonstrably higher versus control, and resulted in damage visible on histopathology. This research demonstrates that passive uptake of intravenously injected AuNS in PC-3 xenografts converts the tumor vasculature into a potent heating source for nanoparticle mediated ablation at power levels which do not generate significant damage in normal tissue. When used in conjunction with MRTI, this has implications for development and validation of more conformal delivery of therapy for interstitial laser ablations. PMID:22098362

  14. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  15. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  16. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  17. Matter-antimatter gigaelectron volt gamma ray laser rocket propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2012-12-01

    It is shown that the idea of a photon rocket through the complete annihilation of matter with antimatter, first proposed by Sänger, is not a utopian scheme as it is widely believed. Its feasibility appears to be possible by the radiative collapse of a relativistic high current pinch discharge in a hydrogen-antihydrogen ambiplasma down to a radius determined by Heisenberg's uncertainty principle. Through this collapse to ultrahigh densities the proton-antiproton pairs in the center of the pinch can become the upper gigaelectron volt laser level for the transition into a coherent gamma ray beam by proton-antiproton annihilation, with the magnetic field of the collapsed pinch discharge absorbing the recoil momentum of the beam and transmitting it by the Moessbauer effect to the spacecraft. The gamma ray laser beam is launched as a photon avalanche from one end of the pinch discharge channel. Because of the enormous technical problems to produce and store large amounts of anti-matter, such a propulsion concept may find its first realization in small unmanned space probes to explore nearby solar systems. The laboratory demonstration of a gigaelectron volt gamma ray laser by comparison requiring small amounts of anti-matter may be much closer.

  18. Synchronized videography of plasma plume expansion during femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Paolasini, Steven; Kietzig, Anne

    2014-03-01

    Femtosecond lasers are gaining industrial interest for surface patterning and structuring because of the reduced heat effects to the surrounding material, resulting in a good quality product with a high aspect ratio. Analysis of the plasma plume generated during ablation can provide useful information about the laser-material interactions and thereby the quality of the resulting surface patterns. As a low-cost alternative to rather complicated ICCD camera setups, presented here is an approach based on filming the laser machining process with a high speed camera and tuning the frame rate of the camera to slightly lower than the laser pulse frequency. The delay in frequency between the laser and camera results in frames taken from sequential pulses. Each frame represents a later phase of plume expansion although taken from different pulses. Assuming equal plume evolution processes from pulse to pulse, the sequence of images obtained completes a plume expansion video. To test the assumption of homogeneity between sequential plumes, the camera can be tuned to the frequency of the laser, as to capture consecutive plumes at the same phase in their evolution. This approach enables a relatively low-cost, high resolution visualization of plasma plume evolution suitable for industrial micromachining applications with femtosecond lasers. Using this approach we illustrate differences in plume expansion at the example of machining homogeneous surface patterns in different liquid and gaseous processing environments.

  19. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  20. Excimer Laser Ablation of Egg Tempera Paints and Varnishes

    NASA Astrophysics Data System (ADS)

    Morais, P. J.; Bordalo, R.; Santos, L. dos; Marques, S. F.; Salgueiredo, E.; Gouveia, H.

    In this work a series of egg tempera paint and varnish systems have been prepared, artificially aged and irradiated with KrF excimer laser at a wavelength of 248 nm. The samples were prepared with pure pigments and selected mixtures. It was found that, for some pigments, the colour changed upon laser irradiation even at low energy densities, below the ablation threshold while for other inorganic pigmented egg temperas the degree of discoloration is very small at moderate fluence of ˜0.30 J cm?2. The varnish systems did not present signs of discoloration. The thickness, superficial roughness and magnitude of the colour changes of the samples were measured. X-ray diffraction, Raman spectroscopy and UV/visible spectroscopy were used in order to investigate the changes induced by the KrF excimer laser radiation.

  1. In Situ Characterization of Laser Ablation by Pulsed Photoacoustics: The Case of Organic Nanocrystal Synthesis

    NASA Astrophysics Data System (ADS)

    Alba-Rosales, J. E.; Ramos-Ortiz, G.; Rodríguez, M.; Polo-Parada, L.; Gutiérrez-Juárez, G.

    2013-09-01

    Here, a new methodology based on the pulsed photoacoustic (PA) technique for real-time monitoring of the ablation process used to synthesize organic nanocrystals is described. The methodology is implemented by ablating microcrystals grown from an organic chromophore with nonlinear optical properties. It was determined that the PA signal from the ablation process increases in amplitude and is time-shifted as the ablation process advances. Comparing the PA signals generated at different ablation times under different laser fluences with the nanocrystal characterization obtained through light scattering, optical microscopy, and AFM, it was demonstrated that the pulsed PA technique can be useful for monitoring the process and determining the threshold of ablation.

  2. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR

    NASA Astrophysics Data System (ADS)

    Wolynski, Alexander; Herrmann, Thomas; Mucha, Patrick; Haloui, Hatim; L'huillier, Johannes

    Laser processing of carbon fibre reinforced plastics (CFRP) has a great industrial relevance for high performance structural parts in airplanes, machine tools and cars. Through-holes drilled by nanosecond laser pulses show thermal induced molten layers and voids. Recently, picosecond lasers have demonstrated the ability to drill high-efficient and high-quality rivet through-holes. In this paper a high-power picosecond laser system operating at different wavelengths (355 nm, 532 nm and 1064 nm) has been used for CFRP ablation experiments to study the influence of different laser parameters in terms of machining quality and processing time.

  3. Customized ablation using an all-solid-state deep-UV laser

    NASA Astrophysics Data System (ADS)

    Korn, G.; Lenzner, M.; Kittelmann, O.; Zatonski, R.; Kirsch, M.; Kuklin, Y.

    2003-07-01

    We show first deep UV ablation results achieved with our new all solid state laser system. The system parameters allow high repetition rate ablation with a small spot diameter of about 0.250mm and a fluence of 350 mJ/cm2 at a wavelength of 210 nm using sequential frequency conversion of a diode pumped laser source. The single shot and multishot ablation rates as well as the ablation profiles have been defined using MicroProf (Fries Research and Technology GmbH, Germany). By means of computer controlled scanning we produce smooth ablation profiles corresponding to a correction of myopia, hyperopia or astigmatism. Due to the small spot size and high repetition rate of the laser we are able to generate in short time intervals complicated ablation profiles described by higher order polynomial functions which are required for the needs of customized corneal ablation.

  4. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  5. Excimer laser ablation of thick SiOx-films: Etch rate measurements and simulation of the ablation threshold

    NASA Astrophysics Data System (ADS)

    Ihlemann, J.; Meinertz, J.; Danev, G.

    2012-08-01

    Excimer laser ablation of 4.5 μm thick SiOx-films with x ≈ 1 is investigated at 193 nm, 248 nm, and 308 nm. Strong absorption enables precisely tunable removal depths. The ablation rates correlate with laser penetration depths calculated from low level absorption coefficients. The experimental ablation thresholds are in agreement with numerical simulations on the basis of linear absorption and one-dimensional heat flow. This behaviour is similar to that of strongly UV-absorbing polymers, leading to well controllable micro machining prospects. After laser processing, SiOx can be converted to SiO2, opening a route to laser based fabrication of micro optical components.

  6. Measurements of Ablation Pressure and Mass Ablation Rate Using a Target Pendulum and a Thin Foil Target at 10 μm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Tateyama, Ryuzi; Ogura, Kazuki; Mima, Kunioki; Nakai, Sadao; Yamanaka, Chiyoe

    1983-04-01

    The ablation pressure and the mass ablation rate for a 10 μm CO2 laser were measured using two methods: a ballistic target pendulum and shifted X-ray emission images which are equivalent to X-ray back-lighting. The measured ablation pressure was 10 Mbar and the mass ablation rate was 106 g/cm2\\cdotsec at the absorbed laser intensity of 5× 1013 W/cm2. Comparing the ablation mass rate measured by the pendulum with that derived from the penetration depth of the hot electrons using K_α line emission, we could identify the hot electron driven ablation as the dominant process.

  7. Effect of ZrO2 Powders on the Pyrolysis of Polycarbosilanes Coating Under Laser Ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Han; Chen, Zhaofeng; Tao, Jie; Yan, Bo; Li, Cong; Wang, Liangbing; Zhang, Ying; Fang, Dan; Wan, Shuicheng; Wu, Wangping

    Aircrafts hold the outstanding mastery of the sky in modern wars, however the laser beam weapons can carry out laser attacking to aircrafts. The purpose of the present paper is to research on a new type laser protective material. Polycarbosilanes (PCS)/divinylbenzene mixtures containing ZrO2 powders were brushed to the surface of the aluminum alloy plates and then cured at 150°C for 6 h. The PCS-coated plates were ablated by laser for 3 s. The phase identification of as-ablated powders was examined by X-ray diffraction. The results indicated that the as-ablated powders of cured PCS were composed of major phase β-SiC and smaller amounts of free carbon. The PCS composite coating played a certain role of laser ablation resistance. The effect of added ZrO2 powders on the pyrolysis of PCS-coating under laser ablation is conspicuous.

  8. Ablation processing of biomedical materials by ultrashort laser pulse ranging from 50 fs through 2 ps

    NASA Astrophysics Data System (ADS)

    Ozono, Kazue; Obara, Minoru; Sakuma, Jun

    2003-06-01

    In recent years, femtosecond laser processing of human hard/soft tissues has been studied. Here, we have demonstrated ablation etching of hydroxyapatite. Hydroxyapatite (Ca10(PO4)6(OH)2) is a key component of human tooth and human bone. The human bone is mainly made of hydroxyapatite oriented along the collagen. The micromachining of hydroxyapatite is highly required for orthopedics and dentistry. The important issue is to preserve the chemical property of the ablated surface. If chemical properties of hydroxyapatite change once, the human bone or tooth cannot grow again after laser processing. As for nanosecond laser ablation (for example excimer laser ablation), the relative content of calcium and phosphorus in (Ca10(PO4)6(OH)2) is found to change after laser ablation. We used here pulsewidth tunable output from 50 fs through 2 ps at 820 nm and 1 kpps. We measured calcium spectrum and phosphorus spectrum of the ablated surface of hydroxyapatite by XPS. As a result, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs - 2-ps laser ablation. We also demonstrated ablation processing of human tooth with Ti:sapphire laser, and precise ablation processing and microstructure fabrication are realized.

  9. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1993-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 50%, with 80% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  10. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1994-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary power for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 500%, with 800% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that, with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  11. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism. PMID:27056700

  12. Growth modes of ZnO nanostructures from laser ablation

    SciTech Connect

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-08

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  13. Ablation layers to prevent pitting in laser peening

    DOEpatents

    Hackel, Lloyd A

    2016-08-09

    A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.

  14. Laser Ablation Plume Expansion In The Presence Of Charged Impurities

    SciTech Connect

    Djebli, M.

    2008-09-23

    The expansion of plasma created by laser ablation is investigated using the fluid model. At the first stage of the expansion, electrons are considered in thermal equilibrium. The presence of highly charged impurities is considered through Poisson's equation. The set of nonlinear differential equations is solved using a moving boundary and taken into account the charge separation effect. The uniformly distributed impurities can accelerate or decelerate the ion motion depending on their charge and concentration. It is also found that the separation of the charge is valid for a specific time which depends on the impurities parameters.

  15. Modification of carbon nanotubes by laser ablation of copper

    NASA Astrophysics Data System (ADS)

    Koshio, A.; Shiraishi, M.; Kobayashi, Y.; Ishihara, M.; Koga, Y.; Bandow, S.; Iijima, S.; Kokai, F.

    2004-10-01

    Multi-wall carbon nanotubes (MWNTs) were modified by laser ablation of Cu in the presence of He gas. Quasi-spherical particles with diameters of 200 nm to 2 μm were sparsely deposited on as-grown MWNTs. Agglomerated nanoparticles with sizes of 1-10 nm covered ultrasonically treated MWNTs. Both particles were oxidized. The interaction of nanoparticles with the surface of the ultrasonicated MWNTs, due to small charge transfer to carbon atoms of the MWNTs upon adsorption of Cu, was suggested. We discuss the size distribution and morphology of the particles from cluster and particle formation in the gas phase and the surface properties of the two MWNTs.

  16. Growth modes of ZnO nanostructures from laser ablation

    NASA Astrophysics Data System (ADS)

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-01

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  17. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  18. Endovenous Laser Ablation of Incompetent Perforator Veins: A New Technique in Treatment of Chronic Venous Disease

    SciTech Connect

    Ozkan, Ugur

    2009-09-15

    The aim of this study was to assess the feasibility of endovenous laser ablation of incompetent perforator veins in a patient with incompetency of the small saphenous vein and multiple perforator veins. Two different methods were used to ablate seven perforator veins with a laser giving 50-60 J/cm energy. Total occlusion was observed in six perforators, and partial ablation in one perforator, at 1-month follow-up. To our knowledge, endovenous laser ablation of incompetent perforator veins is easy and a good therapeutic method.

  19. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Klein, Alexander L.; Torretti, Francesco; Lassise, Adam; Hoekstra, Ronnie; Ubachs, Wim; Gelderblom, Hanneke; Versolato, Oscar O.

    2016-07-01

    The propulsion of a liquid indium-tin microdroplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer over nearly three decades of pulse energy, enabling the optimization of the laser-droplet coupling. The subsequent deformation of the droplet is described by an analytical model that accounts for the droplet's propulsion velocity and the liquid properties. Comparing our findings to those from vaporization-accelerated millimeter-sized water droplets, we demonstrate that the fluid-dynamic response of laser-impacted droplets is scalable and decoupled from the propulsion mechanism. By contrast, the physics behind the propulsion of liquid-metal droplets differs from that of water. It is studied here in detail and under industrially relevant conditions as found in next-generation nanolithography machines.

  20. Ins and outs of endovenous laser ablation: afterthoughts.

    PubMed

    Neumann, H A Martino; van Gemert, Martin J C

    2014-03-01

    Physicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the laser. He should understand what is going on in the varicose vein. On the other hand, the physicist is usually not aware what problems the doctor finds on his road towards improving a new technique. We have tried to bring both languages together in the special on Ins and outs of endovenous laser ablation published in this issue of Lasers in Medical Science. The 13 articles include endovenous related clinical (de Roos 2014; Kockaert and Nijsten 2014; van den Bos and Proebstle 2014) and socioeconomical articles (Kelleher et al 2014), the first paper on the molecular pathophysiologic mechanisms (Heger et al 2014), fiber tips (Stokbroekx et al 2014), the future of EVLA (Rabe 2014), a review of EVLA with some important issues for debate (Malskat et al 2014), an excellent paper on transcutaneous laser therapies of spider and small varicose veins (Meesters et al 2014), as well as several scientific modeling articles, varying from a mathematical model of EVLA that includes the carbonized blood layer on the fiber tip (van Ruijven et al 2014) and its application to the simulation of clinical conditions (Poluektova et al 2014) via experimental measurements of temperature profiles in response to EVLA, radiofrequency waves, and steam injections (Malskat et al 2014) to a literature review and novel physics approach of the absorption and particularly scattering properties of whole blood also including the infrared wavelengths used by EVLA (Bosschaart et al 2014). The aim of our afterthoughts, the 14th article in this special, is to try to amalgamate the clinical and physical contents of these contributions, providing the reader with the bridge that overlaps these different backgrounds. PMID

  1. Deposition of polyimide precursor by resonant infrared laser ablation

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Gies, A. P.; Schriver, K. E.; Haglund, R. F., Jr.

    2007-11-01

    We report the successful deposition of a polyimide precursor using resonant infrared laser ablation (RIR-LA). A solution of poly(amic acid) (PAA) dissolved in N-methyl-2-pyrrolidinone (NMP), the melt processable precursor to polyimide, was frozen in liquid nitrogen for use as an ablation target in a high-vacuum chamber. Fourier transform infrared spectroscopy was used to determine that the local chemical structure remained unaltered. Gel permeation chromatography demonstrated that the transferred PAA retained its molecular weight, showing that RIR-LA is able to transfer the polymer intact, with no detectable chain fragmentation. These results are in stark contrast to UV-processing which degrades the polymer. After deposition the PAA may be removed with a suitable solvent; however, once the material has undergone cyclodehydration it forms an impenetrable three-dimensional network associated with thermosetting polymers. The transfer of uncured PAA precursor supports the hypothesis that RIR-LA is intrinsically a low temperature process, because the PAA is transferred without reaching the curing temperature. The RIR-LA also effectively removes the solvent NMP from the PAA, during both the ablation and deposition phases; this is a necessary step in generating PI films.

  2. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  3. FINAL REPORT. WASTE VOLUME REDUCTION USING SURFACE CHARACTERIZATION AND DECONTAMINATION BY LASER ABLATION

    EPA Science Inventory

    Laser ablation was studied as a method for removing contaminated surface layers from concrete. The objectives of this research were to determine the mechanism and efficacy of laser ablation, to understand the chemistry of contaminated concrete surfaces, and to chemically and phys...

  4. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    SciTech Connect

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  5. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    DOEpatents

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  6. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    SciTech Connect

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  7. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  8. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  9. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern. PMID:21806249

  10. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  11. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  12. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    SciTech Connect

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences ≤3 J/cm^2.

  13. Effects of Laser Irradiation on Artwork Pigments Studied by Laser Ablation and Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Torres, R.; Jadraque, M.; Castillejo, M.; Martín, M.

    Laser ablation and time-of-flight mass spectrometric analysis of the ablation plume is used to study the different response of several inorganic pigments to laser irradiation. Lead white and lead chromate in pellets and in a binding media are studied. Lead white is compared to azurite, of similar stoichiometry. For lead white the plume composition is rather independent on laser ablation wavelength and does not show important changes after repeated laser beam exposure opposite to that observed for azurite. Ablation of lead white pellets leads to ionized and neutral Pb and PbnOmHx clusters. Much less extent of aggregation in the plume is observed for lead chromate pellets and for the lead pigments in tempera. Similarities can be found between plume composition of ablated lead white and PbO, suggesting that laser/pigment interaction involves formation of PbO, therefore providing indications of the participation of a thermal decomposition mechanism.

  14. Synthesis of Titanium Oxide Nanoparticles by Ytterbium Fiber Laser Ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; del Val, J.; Riveiro, A.; Lusquiños, F.; Quintero, F.; Comesaña, R.; Pou, J.

    Nanosized titanium particles have recently received a special attention due to their applications in many different fields, such as catalysis, biomedical engineering, etc. Pulsed laser ablation in liquid media allows obtaining metallic and metallic oxide nanoparticles in colloids. This technique has been used in the present work to prepare titanium colloids from a solid piece immersed in liquid media. A monomode Ytterbium doped fiber laser has been focused onto the upper surface of the titanium target in de-ionized water or ethanol. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by XRD, HRTEM, and UV/VIS absorption spectroscopy. The produced titanium oxide crystalline nanoparticles show spherical shape and are polycrystalline, exhibiting anatase as well as rutile phases.

  15. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  16. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  18. Laser ablation and target acceleration under the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Matsuo, K.; Breil, J.; Nicolai, P.; Feugeas, J.-L.; Asahina, T.; Sunahara, A.; Johzaki, T.; Fujioka, S.; Sano, T.; Mima, K.

    2015-11-01

    Various discussion and experiments have been made about the laser plasma phenomena under the strong magnetic field recently. One of the advantage is guiding electron beam for heating core plasma in last phase of Fast Ignition scheme. However, the implosion dynamics in FI is influenced by the magnetic field due to the anisotropic of electron heat conduction. Some simple experiments where target is accelerated by laser driven ablation under the strong magnetic field were conducted to benchmark the simulation code. Related to the experiment, we focus on the early stage of the acceleration in this study. 2-D radiative MHD code (PINOCO-MHD) is used for the simulation. In the simulation magnetic field transport, diffusion and Braginskii coefficient for electron heat conduction are taken account. In preliminary simulation result suggests that the magnetic pressure may have an influence on the target surface and/or ablated plasma at very early phase. The effect of the magnetic pressure is very sensitive to the vacuum, initial and boundary conditions, and they should be treated carefully. These numerical conditions will be discussed as well. This study was partially supported by JSPS KAKENHI Grant No. 26400532.

  19. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  20. Neutral atomic jet generation by laser ablation of copper targets

    SciTech Connect

    Matos, J. B. de; Rodrigues, N. A. S.

    2014-08-15

    This work aimed the obtainment of a neutral atomic jet departing from a plume generated by laser ablation of copper targets. A pair of electrodes together with a transducer pressure sensor was used to study the ablated plume charge composition and also to measure the ion extraction from the plasma plume. The neutral beam was produced with this setup and the relative abundance of neutrals in the plasma was measured, it decreases from 30% to 8% when the laser fluence is varied from 20 J/cm{sup 2} to 32 J/cm{sup 2}. The necessary voltage to completely remove the ions from the plume varied from 10 V to 230 V in the same fluence range. TOF analysis resulted in center of mass velocities between 3.4 and 4.6 km/s, longitudinal temperature in the range from 1 × 10{sup 4} K to 2.4 × 10{sup 4} K and a Mach number of M = 2.36, calculated using purely hydrodynamic expansion approximation.

  1. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  2. Absence of amorphous phase in high power femtosecond laser-ablated silicon

    SciTech Connect

    Rogers, Matthew S.; Grigoropoulos, Costas P.; Minor, Andrew M.; Mao, Samuel S.

    2009-01-05

    As femtosecond lasers emerge as viable tools for advanced microscale materials processing, it becomes increasingly important to understand the characteristics of materials resulting from femtosecond laser microablation or micromachining. We conducted transmission electron microscopy experiments to investigate crater structures in silicon produced by repetitive high power femtosecond laser ablation. Comparable experiments of nanosecond laser ablation of silicon were also performed. We found that an amorphous silicon layer that is typically produced in nanosecond laser ablation is absent when the material is irradiated by high power femtosecond laser pulses. Instead, only a defective single crystalline layer was observed in the high power femtosecond laser-ablated silicon crater. Possible mechanisms underlying the formation of the defective single crystalline phase are discussed.

  3. Laser ablation and high precision patterning of biomaterials and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Spyratou, E.; Makropoulou, M.

    2010-10-01

    The use of intraocular lenses (IOL) is the most promising method for restoring excellent vision in cataract surgery. In addition, multifocal intraocular lenses for good distant and near vision are investigated. Several new materials, techniques and patterns are studied for the formation and etching of intraocular lenses in order to improve their optical properties and reduce the diffractive aberrations. As pulsed laser ablation is well established as a universal tool for surface processing of organic polymer materials, this study was focused in using laser ablation with short and ultra short laser pulses for surface modification of PMMA and intraocular lenses, instead of using other conventional techniques. The main advantage of using very short laser pulses, e.g. of ns, ps or fs duration, is that heat diffusion into the polymer material is negligible. As a result high precision patterning of the sample, without thermal damage of the surroundings, becomes possible. In this study, laser ablation was performed using commercially available hydrophobic acrylic IOLs, hydrophilic acrylic IOLs, and PMMA IOLs, with various diopters. We investigated the ablation efficiency and the phenomenology of the etched patterns by testing the ablation rate, versus laser energy fluence, at several wavelengths and the surface modification with atomic force microscopy (AFM), or scanning electron microscopy (SEM). The irradiated polymers have different optical properties, at the applied wavelengths, and therefore, present different ablation behaviour and morphology of the laser ablated crater walls and surrounding surfaces. The experimental results, some theoretical assumptions for mathematical modeling of the relevant ablation mechanisms are discussed.

  4. Single-shot ablation threshold of chromium using UV femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Banerjee, S. P.; Fedosejevs, R.

    2014-07-01

    Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was 46 ± 5 mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.

  5. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  6. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  7. Laser Ablation Increases PEM/Catalyst Interfacial Area

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  8. Ablation algorithms and corneal asphericity in myopic correction with excimer lasers

    NASA Astrophysics Data System (ADS)

    Iroshnikov, Nikita G.; Larichev, Andrey V.; Yablokov, Michail G.

    2007-06-01

    The purpose of this work is studying a corneal asphericity change after a myopic refractive correction by mean of excimer lasers. As the ablation profile shape plays a key role in the post-op corneal asphericity, ablation profiles of recent lasers should be studied. The other task of this research was to analyze operation (LASIK) outcomes of one of the lasers with generic spherical ablation profile and to compare an asphericity change with theoretical predictions. The several correction methods, like custom generated aspherical profiles, may be utilized for mitigation of unwanted effects of asphericity change. Here we also present preliminary results of such correction for one of the excimer lasers.

  9. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  10. Flight test of multi-pulses vertical laser propulsion in air breathing mode

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Wu, Jie; Wang, Guangyu

    2013-05-01

    The air breathing vertical laser propulsion experiment refers to that in the air breathing mode the light craft under the irradiation of incident laser of vertical direction will turn pulse laser energy into the vertical propulsion thrust of the light craft and continue along the fixed rail upward propulsion flight. It is an important experiment to test the minimum single pulse energy, the optimization degree of light craft structure, and the characteristics of turning the laser energy into the thrust. The experiment is to be conducted dozens of meters in height away the ground generally. The article gives a detailed explanation of the whole process of the air breathing vertical propulsion test, including vertical propulsion light craft design, the connections design, the connections performance test, the frictional resistance detection and the whole process of movement performance test. A vertical propulsion tower was used to conduct the single pulse experiment and multi-pulse performance was predicted with a multiple-pulse thrust measuring system. The impulse coupling coefficient was estimated from fight height. Finally, through the experiments of air breathing vertical laser propulsion, the relation of the movement time and flight height was obtained. In the curve, the mean acceleration of the light craft can arrive to 6m/s2 in the first 20 pulses and the propulsion height can reach 3.5m in 1.12s. After 0.65s, the acceleration of the light craft decreased significantly. The results of the article lay the good foundation for the laser propulsion launch system verification.

  11. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  12. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  13. Ultrashort pulse lasers applied to propulsion/control in space- and atmospheric-flight

    NASA Astrophysics Data System (ADS)

    Kremeyer, Kevin

    2008-05-01

    An impulse measurement device and analysis package was conceived, designed, constructed, tested, and demonstrated to be capable of: measuring nanoNewton-seconds to milliNewton-seconds of impulse due to laser-ablation; being transported as carry-on baggage; set-up and tear-down times of less than an hour; target exchange times of less than two minutes (targets can be ablated at multiple positions for thousands of shots); measurements in air and in vacuum; error of just a few percent; repeatability over a wide range of potential systematic error sources; and time between measurements, including ring-down and analysis, of less than 30 seconds. The instrument consists of a cantilever (i.e. leaf spring), whose time-dependent displacement/oscillation is measured and analyzed to determine the impulse imparted by a laser pulse to a target. These shapes are readily/commercially available, and any target material can be used, provided it can be fashioned in the form of a cantilever, or as a coating/film/tape, suitable for mounting on a cantilever of known geometry. The instrument was calibrated both statically and dynamically, and measurements were performed on brass, steel, and Aluminum, using laser pulses of ~7ns, ~500ps, and ~500fs. The results agree well with those published in the literature, with surface effects, atmosphere, and pre-/post-pulses demonstrating interesting effects and indicating areas for further study. In addition to exploring space-propulsion applications, measurements were performed to explore the strong beneficial effects of depositing lines of energy ahead of supersonic and hypersonic vehicles. This deposition creates a low-density channel, through which a vehicle can travel with dramatically reduced drag. Temperature and pressure are both also reduced on the front surfaces of the vehicle, while density and pressure are increased at the vehicle base. When applied off-center, this technique can be used to control the vehicle, employing the entire

  14. Fabrication of Fresnel microlens with excimer laser contour ablation

    NASA Astrophysics Data System (ADS)

    Wójcik, Michał R.; Antończak, Arkadiusz J.; Kozioł, Paweł E.; Łazarek, Łukasz K.; Stepak, Bogusz D.; Abramski, Krzysztof M.

    2014-08-01

    Laser micromachining systems based on excimer lasers are usually oriented to work with mask projection regime because of the low pulse repetition rate as well as large beam aperture of the laser source. In case of fabricating of the complex 3D structures, this approach introduces a number of limitations. Alternative solution might be usage of direct writing laser mode. Some examples of the so called contour ablation approach for fabricating microlenses with an absolutely monotonically changing cross-sectional profile are presented in the literature. Based on this idea and introducing new variables like automatic mask selection as well as optimizing process algorithms led us to obtain more versatile method for shape approximation. Hence, there were fabricated structures with cross-sectional profiles described as functions that are monotonic on specified intervals such as Fresnel microlenses. In this paper we describe approximation of process parameters for obtaining desired cross-sectional profiles and finally fabrication of few exemplary microlenses. All structures were characterized by a digital optical microscopy and compared to the given profiles. The accuracy of reproduction of the desired structures at the level of single microns was achieved.

  15. Shock pressures induced in condensed matter by laser ablation

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Tierney, Thomas E.; Kopp, Roger A.; Gammel, J. Tinka

    2004-03-01

    The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m2. States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery.

  16. Shock pressures induced in condensed matter by laser ablation.

    PubMed

    Swift, Damian C; Tierney, Thomas E; Kopp, Roger A; Gammel, J Tinka

    2004-03-01

    The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m(2). States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery. PMID:15089414

  17. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  18. Metal particles produced by laser ablation for ICP-MS measurements.

    PubMed

    Gonzalez, Jhanis J; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E

    2007-09-30

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50Jcm(-2). Characterization of particles and correlation with inductively coupled plasma mass spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of approximately 50 and approximately 12 for fs versus ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the (66)Zn transient signal by a factor of 10 compared to nanosecond laser pulses. PMID:19073072

  19. Fabrication of silver nanoparticles dispersed in palm oil using laser ablation.

    PubMed

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Sadrolhosseini, Amir Reza; Mahdi, Mohd Adzir

    2010-01-01

    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time. PMID:21151470

  20. Successful lysis in a stroke following endovenous laser ablation and extensive miniphlebectomy of varicose veins.

    PubMed

    Spinedi, Luca; Staub, Daniel; Uthoff, Heiko

    2016-05-01

    Stroke is a very rare but potential fatal complication of endovenous thermal treatment in patients with a right-to-left shunt. To our best knowledge, there are only two reports in the literature of stroke after endovenous thermal ablation of varicose veins, one after endovenous laser ablation and one after radiofrequency ablation and phlebectomy, both treated conservatively. This report describes a successful lysis in a patient with an ischemic stroke associated with bilateral endovenous heat-induced thrombosis class I after endovenous laser ablation of both great saphenous vein and extensive miniphlebectomy in a patient with an unknown patent foramen ovale. PMID:26447137

  1. Particle generation by ultraviolet-laser ablation during surface decontamination.

    PubMed

    Lee, Doh-Won; Cheng, Meng-Dawn

    2006-11-01

    A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces. PMID:17117745

  2. The direct measurement of ablation pressure driven by 351-nm laser radiation

    NASA Astrophysics Data System (ADS)

    Fratanduono, D. E.; Boehly, T. R.; Celliers, P. M.; Barrios, M. A.; Eggert, J. H.; Smith, R. F.; Hicks, D. G.; Collins, G. W.; Meyerhofer, D. D.

    2011-10-01

    The instantaneous scaling of ablation pressure to laser intensity is directly inferred for ramp compression of diamond targets irradiated by 351-nm light. Continuously increasing pressure profiles from 100 to 970 GPa are produced by direct-drive laser ablation at intensities up to 7 × 1013 W/cm2. The free-surface velocity on the rear of the target is used to directly infer the instantaneous ablation-pressure profile at the front of the target. The laser intensity on target is determined by laser power measurements and fully characterized laser spots. The ablation pressure is found to depend on the laser intensity as P(GPa )=42(±3)[I(TW/cm2)]0.71(±0.01).

  3. Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond laser regimes

    SciTech Connect

    Lopez-Arias, M.; Oujja, M.; Sanz, M.; Castillejo, M.; Ganeev, R. A.; Boltaev, G. S.; Satlikov, N. Kh.; Tugushev, R. I.; Usmanov, T.

    2012-02-15

    Low-order harmonics, third and fifth, of IR (1064 nm) laser emission have been produced in laser ablation plasmas of the metals manganese, copper and silver. The harmonics were generated in a process triggered by laser ablation followed by frequency up-conversion of a fundamental laser beam that propagates parallel to the target surface. These studies were carried out in two temporal regimes by creating the ablation plasma using either nanosecond or picosecond pulses and then probing the plasma plume with pulses of the same duration. The spatiotemporal behavior of the generated harmonics was characterized and reveals the distinct composition and dynamics of the plasma species that act as nonlinear media, allowing the comparison of different processes that control the generation efficiency. These results serve to guide the choice of laser ablation plasmas to be used for efficient high harmonic generation of laser radiation.

  4. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    NASA Astrophysics Data System (ADS)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  5. Density profile of a line plasma generated by laser ablation for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hwangbo, Y.; Ryu, W.-J.; Kim, K. N.; Park, S. H.

    2016-03-01

    An elongated line plasma generated by a laser ablation of an aluminum target was investigated, which can be used in the laser wakefield acceleration (LWFA) by employing ultra-intense laser pulse through the longitudinal direction of the plasma. To generate a uniform and long plasma channel along the propagation of ultra-intense laser pulse (main pulse), a cylindrical lens combined with a biprism was used to shape the intensity of a ns Nd:YAG laser (pre-pulse) on the Al target. A uniformity of laser intensity can be manipulated by changing the distance between the biprism and the target. The density profile of the plasma generated by laser ablation was measured using two interferometers, indicating that a 3-mm long uniform line plasma with a density of 6 × 1017 cm-3 could be generated. The density with main pulse was also measured and the results indicated that the density would increase further due to additional ionization of the plasma by the main ultra-intense laser pulse. The resulting plasma density, which is a crucial parameter for the LWFA, can be controlled by the intensity of the pre-pulse, the time delay between the pre- and main pulse, and the distance of the main pulse from the target surface.

  6. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    SciTech Connect

    Zeng, Xianzhong

    2004-12-10

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and the effects of the cavities on the ablation processes were investigated. The temperatures and electron number densities of the resulting laser-induced plasmas in the cavities were determined from spectroscopic measurements. Reflection and confinement effects by the cavity walls and plasma shielding were discussed to explain the increased temperature and electron number density with respect to increasing cavity aspect ratio. The temporal variations of the plasma temperature and electron number density inside the cavity decreased more rapidly than outside the cavity. The effect of laser energy on formation of a plasma inside a cavity was also investigated. Propagation of the shock wave generated during pulsed laser ablation in cavities was measured using laser shadowgraph imaging and compared with laser ablation on a flat surface. It is found that outside the cavity, after about 30 ns the radius of the expanding shock wave was proportional to t2/5, which corresponds to a spherical blast wave. The calculated pressures and temperatures of the shocked air outside of the cavities were higher than those obtained on the flat surface. Lasers with femtosecond pulse duration are receiving much attention for direct fabrication of microstructures due to their capabilities of high-precision ablation with minimal damage to the sample. We have also performed experimental studies of pulsed femtosecond laser ablation on the flat surface of silicon samples and compared results with pulsed nanosecond

  7. Outcome of Endovenous Laser Ablation of Varicose Veins

    PubMed Central

    Rustempasic, Nedzad; Cvorak, Alemko; Agincic, Alija

    2014-01-01

    ABSTRACT Introduction: In Bosnia and Herzegovina according to available data, treatment of incompetent superficial lower extremity varicose veins by endovenous laser ablation (EVLA) has been introduced two years ago and so far no paper has been published regarding results of EVLA treatment of patients from our country. We wanted to present our results with EVLA treatment. Aim of study: to evaluate and compare primary posttreatment outcomes of endovenous laser ablation (EVLA) with classical surgical method of varicose vein treatment. Patients and methods: The study was clinical and prospective. It was carried out at Clinic for vascular surgery in Sarajevo where fifty-eight (58) patients received surgical treatment for varicose veins and in Aesthetic Surgery Center “Nasa mala klinika” in Sarajevo were sixty-one (61) patients with varicose veins were treated by endovenous laser ablation. Total 119 patients (limbs) with pathologic reflux only in great saphenous vein were evaluated between 1st of January 2013 and 31st of April 2014. Following primary outcome endpoints were evaluated smean day of return to normal everyday activities, patient subjective quantification of pain during first seven days after intervention, incidence of deep venous thrombosis (DVT), incidence of wound bleeding requiring surgical intervention, incidence of peri-saphenous vein hematoma and infection rate. Results: Mean of return to normal activities (expressed in days after intervention); EVLA vs. stripping (surgery) =1.21vs12.24, T test 13,619; p=0, 000, p<0,05. T test was used for comparing Mean value of visual pain analog scale for the first 7 days between groups, for all seven days pain was significantly higher in surgical group of patients as compared to EVLA group; p<0,05. Incidence of hematoma greater than 1% of total body surface area was significantly higher in patients receiving surgical treatment; Pearson Chi Square=23,830, p<0,05; odds ratio:10,453. Incidences of infection, deep

  8. Laser-dye ablation technique for removal of carious dentin and enamel

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Gillings, Barrie R.; Dawes, Judith M.

    1997-05-01

    A GaAlAs semiconductor diode laser operating at a wavelength of 796 nm has been sued in conjunction with Indocyanine Green (ICG) dye to ablate carious dentin and enamel from extracted human teeth. The laser-dye ablation technique offers selective ablation as it is controlled by the placement of the ICG dye. In contrast with other laser techniques, the risk of collateral thermal damage is substantially reduced. The diode laser is suitable for ordinary fiber delivery and is cheaper and more compact than the higher power CO2; Er:YAG, Nd:YAG and Argon lasers currently being used by researchers. This paper reports the ablation of dental caries in fifty extracted teeth with various laser diode powers and dye concentrations. The mass of material ablated, temperature rise in the pulp and surface temperature were measured. The ablation was found to be efficient with negligible thermal damage to surrounding tissue. At the same time average surface temperatures reached during ablation may be sufficient to sterilize the treated surface. Hardness measurements and scanning electron microscopy of the laser treated cavity surfaces show the new surfaces to be suitable for placement of a dental filling.

  9. Pulsed IR laser ablation of organic polymers in air: shielding effects and plasma pipe formation

    NASA Astrophysics Data System (ADS)

    Panchenko, A. N.; Shulepov, M. A.; Tel'minov, A. E.; Zakharov, L. A.; Paletsky, A. A.; Bulgakova, N. M.

    2011-09-01

    We report the effect of 'plasma pipe' formation on pulsed laser ablation of organic polymers in air under normal conditions. Ablation of polymers (PMMA, polyimide) is carried out in a wide range of CO2 laser fluences with special attention to plasma formation in the ablation products. Evolution of laser ablation plumes in air under different pressures is investigated with simultaneous registration of radiation spectra of the ablation products. An analysis based on thermo-chemical modelling is performed to elucidate the effects of laser light attenuation upon ablation, including plasma and chemical processes in a near-target space. The analysis has shown that the experimental observations of plume development in air can be explained by a combination of processes including formation of a pre-ionized channel along the laser beam propagation, laser-supported detonation wave and effective combustion of the polymer ablation products. A scenario of a streamer-like polymer plasma flow within an air plasma pipe created via laser-induced breakdown is proposed.

  10. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    PubMed

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed. PMID:24105399

  11. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  12. Laser ablated coupling structures for optical printed circuit boards

    NASA Astrophysics Data System (ADS)

    Van Steenberge, Geert; Geerinck, Peter; Riester, Markus; Pongratz, Siegfried; Van Daele, Peter

    2005-09-01

    We report on the cost effective fabrication of 45° micromirror couplers within single-mode polymer waveguides for achieving fully embedded board-level optoelectronic interconnections. Compatibility with existing board manufacturing technology is achieved by making use of polymers with high thermal stability. The sol-gel polymers behave as negative photo resist and waveguides are patterned by UV exposure. Micromirrors are fabricated using excimer laser ablation, a very flexible technology that is particularly well suited for structuring of polymers because of their excellent UV-absorption properties and highly non-thermal ablation behavior. A coupling structure based on total internal reflection (TIR) is enhanced by developing a process for embedding a metal coated 45° mirror in the optical layers. The mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Surface roughness of both the mirrors and the upper cladding surface above the mirrors is investigated using a non-contact optical profiler. Initial loss measurements at 1.3 μm show a propagation loss of 0.62 dB/cm and an excess mirror loss of 1.55 dB. During most recent experiments mirror roughness has been reduced from 160 nm to 20 nm, which will seriously reduce the mirror loss.

  13. Evaluation of ablation efficiency and surface morphology of human teeth upon irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2014-11-01

    This study investigates changes in ablation efficiency and surface morphology induced in human dental enamel and dentin upon interaction with femtosecond laser pulses at variable energies and number of laser pulses. Craters were created using a Ti:sapphire femtosecond laser ablation system operating at a wavelength of 785 nm, pulse width of 130 fs, and repetition rate of 20 Hz. Various techniques, such as optical and scanning electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS), were used to evaluate ablation depth, amount of material ablated, and surface morphology of the craters. Ablation rate (ablation depth per pulse) was found to be lower in enamel than dentin with the maximum rate occurring at fluence of 12.4 J cm-2 in both materials. A drop in ablation rate was observed for fluence greater than 12.4 J cm-2 and was attributed to attenuation of laser energy due to interaction with the laser-generated particles. Above this fluence, signs of thermal effects, such as melting and formation of droplets of molten material at the sample surface, were observed. The response of the ICP-MS indicated that the amount of ablated material removed from dentin is greater than that removed from enamel by a factor of 1.5 or more at all investigated fluence.

  14. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W. J.; Hasenberg, Tom; Kang, Hyun Wook

    2015-12-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  15. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    PubMed

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-12-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser. PMID:26662067

  16. Assessment of in vivo Laser Ablation Using MR Elastography with an Inertial Driver

    PubMed Central

    Chen, Jun; Woodrum, David A.; Glaser, Kevin J.; Murphy, Matthew C.; Gorny, Krzysztof; Ehman, Richard.

    2013-01-01

    As a nonsurgical treatment for malignant hepatic tumors, percutaneous tumor thermal ablation requires accurate monitor and evaluation of cell death during and after the treatment, because if sufficient ablation is not achieved on tumors, then they can progress after treatment. Currently there is not a single effective way available to accurately monitor cell death during and after in vivo thermal ablation. For the first time, we used MR elastography with a new inertial driver to repeatedly measure tissue stiffness during and after in vivo laser ablation on porcine livers. During 2-minute ablations using 4.5-, 7.5- and 15-W laser power, the stiffness of the lesion underwent very complicated changes indicative of the dynamic protein folding and unfolding that occurred under the different levels of heating. After laser ablations of a lethal dose (2 min, 15 W), lesion stiffnesses were significantly greater than the baseline values (p < 0.007) and became stiffer over time; also, the mean [95% CI] stiffness increments from baseline were significantly greater than those after lower dose (2 min, 7.5-W) laser ablations (64.4% [32.8%, 96.0%] vs 22.5% [16.3%, 28.6%], p = 0.009), which reflected the irreversible cell denaturation during the laser ablation with the lethal dose. PMID:23904298

  17. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    SciTech Connect

    Rapp, S.; Heinrich, G.; Wollgarten, M.; Huber, H. P.; Schmidt, M.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deeper understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.

  18. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach. PMID:22565342

  19. Modeling of nanosecond-laser ablation: calculations based on a nonstationary averaging technique (spatial moments)

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Luk'yanchuk, Boris S.; Bityurin, Nikita M.; Baeuerle, D.

    1998-09-01

    Semi-analytical approach to a quantitative analysis of thermal ns laser ablation is presented. It permits one to take into account: (1) Arbitrary temperature dependences of material parameters, such as the specific heat, thermal conductivity, absorptivity, absorption coefficient, etc. (2) Arbitrary temporal profiles of the laser pulse. (3) Strong (Arrhenius- type) dependence of the ablation velocity on the temperature of the ablation front, which leads to a non-steady movement of the ablation boundary during the (single) pulse. (4) Screening of the incoming radiation by the ablated products. (5) Influence of the ablation (vaporization) enthalpy on the heating process. (6) Influence of melting and/or other phase transformations. The nonlinear heat conduction equation is reduced to three ordinary differential equations which describe the evolution of the surface temperature, spatial width of the enthalpy distribution, and the ablated depth. Due to its speed and flexibility, the method provides powerful tool for the fast analysis of the experimental data. The influence of different factors onto ablation curves (ablated depth h vs. fluence (phi) ) is studied. Analytical formulas for (phi) th and h((phi) ) dependences are derived and discussed. The ablation curves reveal three regions of fluence: Arrhenius region, linear region, and screening region. Threshold fluence (phi) th and Arrhenius tails at (phi) less than (phi) th, are affected heavily by the temperature dependences in material parameters, surface evaporation rate, and pulse duration and shape. In contrast, the slope of the ablation curves at (phi) greater than (phi) th, is determined almost exclusively by the latent heat of vaporization, high temperature dependence of absorptivity, and, in the case of screening, by the absorption coefficient of the plume (alpha) g. In the screening region ablated depth increases logarithmically with fluence and its qualitative behavior is weakly affected by the temperature

  20. Growth of metal oxide nanoparticles using pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Drmosh, Q. A.; Saleh, Tawfik A.; Yamani, Z. H.

    2011-02-01

    Nano particles exhibit physical and chemical properties distinctively different from that of bulk due to high number of surface atoms, surface energy and surface area to volume ratio. Laser is a unique source of radiation and has been applied in the synthesis of nano structured metal oxides. The pulsed laser ablation (PLA) technique in liquid medium has been proven an effective and simple technique for preparing nanoparticles of high purity. Pulsed laser deposition (PLD) is another way to fabricate nano structured single crystal thin films of metal oxides. PLA technique has been applied in our laboratory for the growth of metal oxides such as nano-ZnO, nano-ZnO2 nano- SnO2, nano-Bi2O3, nano-NiO and nano-MnO2. Different techniques such as AFM, UV, FT-IR, PL and XRD were applied to characterize these materials. We will present our latest development in the growth of nano metal oxides using PLA and PLD.

  1. Laser cleaning of ablation debris from CO 2-laser-etched vias in polyimide

    NASA Astrophysics Data System (ADS)

    Coupland, Kristen; Herman, Peter R.; Gu, Bo

    1998-05-01

    CO 2-laser-drilled vias in polyimide-based flex circuits generate substantial surface debris, requiring new approaches to reduce or eliminate the debris and therefore do away with wet chemical or plasma cleaning steps. A dry laser cleaning process based on a wavelength-tunable CO 2 laser is shown for the first time to effectively remove the ablation debris. Other techniques based on gas flow, pressure control, or ultraviolet lasers, were found ineffective due to the presence of both massive (>10 μm) fibrous debris and submicron (<500 nm) soot. The debris-removal process is driven by disparate mechanisms. The soot is ejected in only ˜5 laser pulses by rapid thermal expansion of the laser-heated polyimide substrate. The removal of fibrous debris develops over many more pulses and involves Fresnel diffraction, surface-rippling phenomena, and multipulse ablation of the debris fragments. The fastest debris cleaning time of 2.5 s per via was provided by the 9R12 laser line at 20 Hz and 0.6 J/cm 2 fluence.

  2. Laser ablation and selective excitation directed to trace element analysis

    NASA Astrophysics Data System (ADS)

    Kwong, V. H. S.

    1980-08-01

    A trace (element) analyser based on laser ablation and selectively excited radiation is proposed as an ultramicro-ultratrace technique for quantitative element analysis. Measurements of trace quantities of chromium in samples of NBS standard reference material (steel), doped skim milk powder and doped flour were undertaken. There is a linear 45 deg slope for Log/Log plot dependence of signal versus concentration that extends at least up to 1.3% (concentration by weight) in the case of chromium. The detection limit for the current unoptimized system is in the ppm range which corresponds to the absolute detection limit of 10 to the 13th power g. Although no chemical interference effects were observed, two physical interference effects were evident: differential mass vaporization and inhomogeneous spatial and temporal distribution of fast expanding analyte. The differential Doppler shift between the atoms along the line of observation reduces self-absorption even at high analyte concentrations.

  3. Microstructure and Optics of Laser Ablation Grown Si Clusters

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Federici, J.; Grebel, H.; Iqbal, Z.

    1998-03-01

    Nanoclusters of silicon grown by laser ablation on aluminum,quartz and KBr substrates were studied by micro-Raman spectroscopy at a spatial resolution of 1 micron. The cluster films consist of islands composed of nanocrystalline and microcrystalline silicon separated by a matrix showing the Raman spectrum of amorphous silicon.The crystallite sizes determined from the position of the Raman frequency ranged from below 10 nm to above this value(Z. Iqbal & S. Veprek, J.Phys. C15, 377 (1982)). HRTEM studies on clusters deposited on KBr confirmed this picture - and in addition revealed interesting architectures at the boundaries between the amorphous and crystalline domains, which may be relevant to the growth process. The results will be compared with AFM studies and correlated with the observed large optical non-linearity of the films (S. Vijayalakshmi, M. George & H. Grebel, Appl.Phys.Lett. 70, 708 (1997)).

  4. Optical ablation by high-power short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D.

    1996-02-01

    Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations {tau} ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}{sup 1/2} scaling that indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional heating and melting for {tau}{approx_gt}50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results. {copyright} {ital 1996 Optical Society of America.}

  5. Superconducting properties of epitaxial laser ablated thin films

    NASA Astrophysics Data System (ADS)

    Berling, D.; Del Vecchio, A.; Leggieri, G.; Loegel, B.; Luches, A.; Mehdaoui, A.; Tapfer, L.

    1996-02-01

    We present experimental results obtained for high quality epitaxial thin films (film thicknesses around 5000 Å; rocking curve FWHM down to 0.1°). These films are obtained by laser ablation of REBa 2Cu 3O 7-δ (RE = Y, Er) deposited on SrTio 3 and YSZ substrates. The superconducting properties have been studied by complex susceptibility in an extended AC field range ( hac ≤ 300 Oe) and show sharp magnetic transition width and high critical currents (10 7A cm -2 < jc(77K) < 10 8A cm -2). The loss peak is only weakly depressed by an increasing AC field and the observed shifts are up to an order of magnitude lower than those observed for intragranular contributions in bulk samples. The agreement with the behaviour expected from a critical state model is also discussed.

  6. Laser Ablation of Gallium Arsenide in Different Solutions

    SciTech Connect

    Ganeev, R.A.; Kuroda, H.; Ryasnyanskii, A.I.

    2005-12-15

    The optical, structural, and nonlinear optical characteristics of GaAs nanoparticles obtained by laser ablation in different liquids were investigated. Thermally induced self-defocusing in GaAs solutions was observed using both a high pulse repetition rate and nanosecond pulses. In studying the nonlinear optical characteristics of GaAs solutions using picosecond and femtosecond pulses, two-photon absorption was observed. The nonlinear absorption coefficient of an aqueous GaAs solution measured by the Z-scan technique and the nonlinear susceptibility of GaAs nanoparticles were, respectively, 0.7 x 10{sup -9} cm W{sup -1} and 2 x 10{sup -9} esu at a wavelength of 795 nm.

  7. Asteroid rotation and orbit control via laser ablation

    NASA Astrophysics Data System (ADS)

    Vetrisano, Massimo; Colombo, Camilla; Vasile, Massimiliano

    2016-04-01

    This paper presents an approach to control the rotational motion of an asteroid while a spacecraft is deflecting its trajectory through laser ablation. During the deflection, the proximity motion of the spacecraft is coupled with the orbital and rotational motion of the asteroid. The combination of the deflection acceleration, solar radiation pressure, gravity field and plume impingement will force the spacecraft to drift away from the asteroid. In turn, a variation of the motion of the spacecraft produces a change in the modulus and direction of the deflection action which modifies the rotational and orbital motion of the asteroid. An on-board state estimation and control algorithm is then presented that simultaneously provides an optimal proximity control and a control of the rotational motion of the asteroid. It will be shown that the simultaneous control of the rotational and proximity motions of asteroid and spacecraft has a significant impact on the required deflection time.

  8. Infra-red femtosecond laser ablation: Benefit for LA-ICP-MS elemental analysis?

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; d'Abzac, F.; Freydier, R.; Seydoux-Guillaume, A.; Chmeleff, J.; Chatel, B.

    2011-12-01

    Femtosecond (fs) laser ablation systems have now been used for about a decade for elemental analysis in chemical and geosciences laboratories. Published studies investigated the influence of various analytical parameters, such as laser pulsewidth, wavelength, energy or ablation duration, on the quality of the analytical data produced by fs Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). It was rapidly found that under comparable analytical conditions, chemical fractionation effects that may occur during laser-induced particle production, transport and/or decomposition in the ICP-MS plasma torch become negligible in the fs laser ablation regime under 300 fs laser pulsewidth. Another major benefit of fs laser ablation is its restricted matrix-sensitive nature compared to ns laser ablation, thereby facilitating greatly LA-ICP-MS calibration for chemical analysis with a reference material having completely different optical and chemical properties compared to the sample to be analyzed (e.g., a standard glass to calibrate analyses of a phosphate mineral). This effect is particularly remarkable as it can be stated from both UV and IR fs laser ablation studies. Reproducible laser ablations of optical quality quartz can also be produced using such an IR laser. Precise, accurate and reproducible chemical analyses may be obtained using ns laser ablation systems. However, this is achieved under carefully controlled analytical conditions using state of the art ablation cells. Instead, it appears that fs laser ablation is making LA-ICP-MS analyses more reliable. More recently, analytical studies combined with high spatial resolution microscopic techniques allowed us to understand better the nature of fs laser-matter interaction through the direct examination of the laser-induced craters and of the particles produced. These investigations have shown the dominance of mechanical over thermal effects on the solids ablated using a fs laser. Whatever the

  9. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    SciTech Connect

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas; Döbeli, Max

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  10. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.; Zhang, Y.; Liu, S. D.; Zhao, Y. T.

    2012-12-01

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloud are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.

  11. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  12. Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media

    NASA Astrophysics Data System (ADS)

    Riabinina, Daria; Chaker, Mohamed; Margot, Joëlle

    2012-04-01

    The dependence on laser fluence and laser pulse duration of size, size distribution and concentration of gold nanoparticles synthesized by laser ablation in liquid media was investigated. It was demonstrated that increasing laser energy from 1 to 5 mJ/pulse enhances the ablation rate by a factor of 100. The behavior of the ablation rate, hence of the nanoparticle concentration, as a function of pulse duration (varied from 40 fs to 200 ps) was found to strongly differ from that in air, which can be explained by photoionization and important losses of laser energy in the femtosecond regime. The optimal pulse duration for maximum ablation rate in liquid media was found to be equal to 2 ps.

  13. Laser-solid interaction and dynamics of the laser-ablated materials

    SciTech Connect

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-07-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors` thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c{sub s}{alpha}, where 1 {minus} {alpha} is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, {alpha} is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible.

  14. Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuki; Sakata, Ryoichi; Konishi, Kazuki; Ono, Koki; Matsuoka, Shusaku; Watanabe, Kota; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2016-06-01

    By pairing femtosecond laser pulses (duration ˜40 fs and central wavelength ˜810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm2 and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm2, while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse.

  15. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  16. Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Parker, Gregory J.; Parker, Daniel E.; Nie, Bai; Lozovoy, Vadim; Dantus, Marcos

    2015-05-01

    A LIBS system is demonstrated using a 100 m cavity Yb fiber oscillator producing ~ 70 ps, 320 nJ clusters of 50-100 fs sub-pulses at 2 MHz. A new empirical model for femtosecond ablation is presented to explain the LIBS signal intensity's non-linear dependence on pulse fluence by accounting for the Gaussian beam's spatial distribution. This model is compared to experimental data and found to be superior to linear threshold fits. This model is then used to measure the ablation threshold of Cu using a typical amplified Ti:sapphire system, and found to reproduce previously reported values to within ~ 20%. The ablation threshold of Cu using the Yb fiber oscillator system was measured to be five times lower than on the amplified Ti:sapphire system. This effect is attributed to the formation of nanostructures on the surface, which have previously been shown to decrease the ablation threshold. The plasma lifetime is found to be ~ 1 ns, much shorter than that of nanosecond ablation, further indicating that the decreased threshold results from surface effects rather than laser-plasma interaction. The low threshold and high pulse energy of the Yb fiber oscillator allows the acquisition of LIBS spectra at megahertz repetition rates. This system could potentially be developed into a compact, fiber-based portable LIBS device taking advantage of the benefits of ultrafast pulses and high repetition rates.

  17. The ablation threshold of Er;Cr:YSGG laser radiation in bone tissue

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Zezell, Denise Maria

    2015-06-01

    In laser cut clinical applications, the use of energy densities lower than the ablation threshold causes increase of temperature of the irradiated tissue, which might result in an irreversible thermal damage. Hence, knowing the ablation threshold is crucial for insuring the safety of these procedures. The aim of this study was to determine the ablation threshold of the Er,Cr:YSGG laser in bone tissue. Bone pieces from jaws of New Zealand rabbits were cut as blocks of 5 mm × 8 mm and polished with sandpaper. The Er,Cr:YSGG laser used in this study had wavelength of 2780 nm, 20 Hz of frequency, and the irradiation condition was chosen so as to simulate the irradiation during a surgical procedure. The laser irradiation was performed with 12 different values of laser energy densities, between 3 J/cm2 and 42 J/cm2, during 3 seconds, resulting in the overlap of 60 pulses. This process was repeated in each sample, for all laser energy densities. After irradiation, the samples were analyzed by scanning electron microscope (SEM), and it was measured the crater diameter for each energy density. By fitting a curve that related the ablation threshold with the energy density and the corresponding diameter of ablation crater, it was possible to determine the ablation threshold. The results showed that the ablation threshold of the Er,Cr:YSGG in bone tissue was 1.95+/-0.42 J/cm2.

  18. Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation

    SciTech Connect

    Modestov, Mikhail; Bychkov, Vitaly; Valiev, Damir; Marklund, Mattias

    2009-10-15

    The main characteristics of the linear Darrieus-Landau instability in the laser ablation flow are investigated. The dispersion relation of the instability is found numerically as a solution to an eigenvalue stability problem, taking into account the continuous structure of the flow. The results are compared to the classical Darrieus-Landau instability of a usual slow flame. The difference between the two cases is due to the specific features of laser ablation: sonic velocities of hot plasma and strong temperature dependence of thermal conduction. It is demonstrated that the Darrieus-Landau instability in laser ablation is much stronger than in the classical case. In particular, the maximum growth rate in the case of laser ablation is about three times larger than that for slow flames. The characteristic length scale of the Darrieus-Landau instability in the ablation flow is comparable to the total distance from the ablation zone to the critical zone of laser light absorption. The possibility of experimental observations of the Darrieus-Landau instability in laser ablation is discussed.

  19. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Izmer, Andrej V.; Zoriy, Miroslav V.; Schaumlöffel, D.; Sabine Becker, J.

    2006-02-01

    Laser ablation ICP-MS (inductively coupled plasma mass spectrometry) is becoming one of the most important analytical techniques for fast determination of trace impurities in solid samples. Quantification of analytical results requires matrix-matched standards, which are in some cases (e.g., high-purity metals, proteins separated by 2D gel electrophoresis) difficult to obtain or prepare. In order to overcome the quantification problem a special arrangement for on-line solution-based calibration has been proposed in laser ablation ICP-MS by the insertion of a microflow nebulizer in the laser ablation chamber. This arrangement allows an easy, accurate and precise quantification by on-line isotope dilution using a defined standard solution with an isotope enriched tracer nebulized to the laser-ablated sample material. An ideal matrix matching in LA-ICP-MS is therefore obtained during the measurement. The figures of merit of this arrangement with a microflow nebulizer inserted in the laser ablation chamber and applications of on-line isotope dilution in LA-ICP-MS on two different types of sample material (NIST glass SRM 612 and NIST apple leaves SRM 1515) will be described.

  20. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    NASA Astrophysics Data System (ADS)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  1. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    SciTech Connect

    Williams, George J.; Gilland, James H.

    2009-03-16

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  2. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    PubMed

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material. PMID:27157748

  3. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  4. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  5. Manufacturing of Medical Implants by Combination of Selective Laser Melting and Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hallmann, S.; Glockner, P.; Daniel, C.; Seyda, V.; Emmelmann, C.

    2015-09-01

    The perfect fit of hip stem prostheses is supposed to have positive effects on their lifetime performance. Moreover, the ingrowth of tissue into the surface of the implant has to be assured to create a firm and load bearing contact. For the manufacturing of customized hip stem prostheses, the technology of Selective Laser Melting has shown promising results. Poor surface quality, however, makes it necessary to finish up the part by e.g., sand blasting or polishing. With the use of laser ablation for post-processing, reproducible and functionalized surface morphologies might be achievable. Hence, with the motive to produce customized hip stem prostheses, a combined process chain for both mentioned laser technologies is developed. It is examined what type of surface should be produced at which part of the process chain. The produced implants should contain the demanded final surface characteristics without any conventional post-processing. Slight advantages for the Selective Laser Melting regarding the accuracy for different geometrical structures of 400 μm depth were observed. However, an overall improvement of surface quality after the laser ablation process in terms of osseointegration could be achieved. A complete laser based production of customized hip stem implants is found to be with good prospects.

  6. Analytical and Numerical Study of the Air Breathing Model for Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Tang, Zhiping

    2004-03-01

    Laser propulsion is a new concept technique of propulsion and will have important application in future space technology. In this paper, the analytic formulas for the impulse and momentum coupling coefficient based on point explosion theory have been derived by considering the restraint of the reflector. In the numerical study, a new method that combining the self-similarity solution for point-explosion at the first stage and the high resolution PPM mesh at the second stage, has been applied to calculate the high-temperature plasma flow field generated by the focused laser beam. The simulated results show that the efficiency of laser propulsion, such as thrust, total impulse, momentum coupling coefficient etc are strongly related to the geometry of the reflector and the power of the input laser beam.

  7. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  8. Modeling CO{sub 2} laser ablation impulse of polymers in vapor and plasma regimes

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.

    2009-09-28

    An improved model for CO{sub 2} laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  9. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  10. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchick, A.M.; Gold, D.M.; Darrown, C.B.; Da Silva, L.B.

    1998-01-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using ultrashort pulse laser (USPL). Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  11. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  12. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    PubMed

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS. PMID:26695078

  13. Custom specific fabrication of integrated optical devices by excimer laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Klotzbuecher, Thomas; Popp, Martin; Braune, Torsten; Haase, Jens; Gaudron, Anne; Smaglinski, Ingo; Paatzsch, Thomas; Bauer, Hans-Dieter; Ehrfeld, Wolfgang

    2000-06-01

    Excimer laser ablation was used for direct writing of multimode waveguide structures with passive fiber alignment grooves in polymers. First, integrated optical multimode components were simulated by the method of beam propagation to optimize the optical performance of the design. Then the CNC codes for laser machining were created directly from the corresponding CAD data. ArF Excimer laser radiation of wavelength (lambda) equals 193 nm was used for ablation of adjacent grooves with a cross sectional area of 50 X 50 micrometers 2 and lengths in the order of several mm. The laser-written grooves were filled with a liquid pre-polymer which after UV-curing served as the waveguiding structures. The smoothest surfaces during laser ablation were achieved by applying several ablation scans with reduced material removal rates but higher feedrates. Debris formation, also influencing the surface roughness, was suppressed or minimized by making use of capable polymers. With the method of laser ablation linear waveguides of length 1 equals 10 mm with insertion losses Li in the rang of 1.3 to 1.9 dB have been realized for (lambda) equals 1310 nm, depending on the polymer used. By means of 1 X 2-splitters, 4 X 4 as well as 4 X 16 starcouplers it was shown that laser ablation is a well suited tool for rapid prototyping of integrated optical multimode elements.

  14. Overcoming the specific power limitations of nuclear electric propulsion by laser radiators

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1997-07-01

    It is shown that the specific power of nuclear electric propulsion can be greatly increased by replacing black body radiators with laser radiators. In black body radiators the atomic oscillators have a random phase with the emission rate for black body radiators proportional to the sum of the squared amplitudes. In laser radiators the oscillators are all in phase with the emission rate proportional to the squared sum of the amplitudes, which is the reason for the much larger emission rate of laser radiators. In a laser radiator the low entropy low temperature laser beam removes the waste heat by resonance absorption and isotropic reemission of the laser radiation into space.

  15. Focal Laser Ablation of Prostate Cancer: Definition, Needs, and Future

    PubMed Central

    Colin, Pierre; Mordon, Serge; Nevoux, Pierre; Marqa, Mohammed Feras; Ouzzane, Adil; Puech, Philippe; Bozzini, Gregory; Leroux, Bertrand; Villers, Arnauld; Betrouni, Nacim

    2012-01-01

    Current challenges and innovations in prostate cancer management concern the development of focal therapies that allow the treatment of only the cancer areas sparing the rest of the gland to minimize the potential morbidity. Among these techniques, focal laser ablation (FLA) appears as a potential candidate to reach the goal of focusing energy delivery on the identified targets. The aim of this study is to perform an up-to-date review of this new therapeutic modality. Relevant literature was identified using MEDLINE database with no language restrictions (entries: focal therapy, laser interstitial thermotherapy, prostate cancer, FLA) and by cross-referencing from previously identified studies. Precision, real-time monitoring, MRI compatibility, and low cost of integrated system are principal advantages of FLA. Feasibility and safety of this technique have been reported in phase I assays. FLA might eventually prove to be a middle ground between active surveillance and radical treatment. In conclusion, FLA may have found a role in the management of prostate cancer. However, further trials are required to demonstrate the oncologic effectiveness in the long term. PMID:22666240

  16. Fundamentals of femtosecond laser ablation of dielectric materials

    SciTech Connect

    Byskov-Nielsen, J.; Le, D. Q. S.; Christensen, M. N.; Balling, P.; Christensen, B. H.

    2010-10-08

    The modeling of laser-excited dielectric materials requires a detailed description of the electronic excitation. Dielectric materials do not absorb visible light by traditional linear absorption, so the dynamical generation of conduction-band electrons strongly couples to the absorption. The generation of free electrons is initiated by strong-field excitation and followed by multiplication through impact ionization by energetic electrons heated by the laser. The present paper describes an approach to solving the coupled problem of electron excitation and one-dimensional light propagation. The electronic excitation is described in the so-called multiple-rate-equation model, and the light is absorbed by a combination of strong-field excitation and linear absorption by the excited electrons, which are assumed to behave as a free-electron gas described by a Drude model. The model is generic and based on a few key parameters: the wavelength and the pulse duration of the light, and the band gap of the dielectric medium. This allows parametric investigations of ablation phenomena.

  17. Gas Effect On Plasma Dynamics Of Laser Ablation Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Abdelli-Messaci, S.; Kerdja, T.; Lafane, S.; Malek, S.

    2008-09-01

    In order to synthesis zinc oxide thin films and nanostructures, laser ablation of ZnO target into both vacuum and oxygen atmosphere was performed. The gas effect on the plume dynamics was studied for O2 pressures varied between 10-2 to 70 mbar. Plasma plume evolution was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser (λ = 248 nm, τ = 25 ns) at a fluence of 2 J/cm2. The light emitted by the plume was observed along the perpendicular to the ejection direction through a fast intensified charge-coupled device (ICCD). We have found that the plasma dynamics is very affected by the gas pressures. The photographs reveal the stratification of plasma into slow and fast components for 0.5 mbar O2 pressures and beyond. The photographs also show the apparition of hydrodynamic instabilities which are related to chemical reactions between the plasma and the surrounding gas for a certain range of pressures.

  18. Numerical analysis of hydrodynamic instability in magnetized laser ablation flow

    NASA Astrophysics Data System (ADS)

    Ohnishi, Naofumi; Ishii, Ayako; Kuramitsu, Yasuhiro; Morita, Taichi; Sakawa, Youichi; Takabe, Hideaki

    2015-12-01

    We have conducted radiation magneto-hydrodynamics (RMHD) simulations of Richtmyer-Meshkov instability (RMI) in a magnetized counter flow produced by intense lasers. A jet-like plasma from a planar plastic target is formed and maintained in several-tens of nanoseconds by expanding plasma from rear side of two separated laser spots, and parallelly located another target is ablated by the radiation from the plasma, reproducing past experimental works. A planar shock driven by the radiation interacts with the jet as a nonuniform density structure, resulting in the RMI. The magnetic field is amplified up to ∼40 times greater than the background value at the interface at which the instability occurs. However, a certain extent of the amplification results from the compression effect induced by the counter flow, and the obtained amplification level is difficult to be measured in the experiments. An experiment for observing a clear amplification must be designed through the RMHD simulations so that the RMI takes place in the low-density area between two targets.

  19. Gas Effect On Plasma Dynamics Of Laser Ablation Zinc Oxide

    SciTech Connect

    Abdelli-Messaci, S.; Kerdja, T.; Lafane, S.; Malek, S.

    2008-09-23

    In order to synthesis zinc oxide thin films and nanostructures, laser ablation of ZnO target into both vacuum and oxygen atmosphere was performed. The gas effect on the plume dynamics was studied for O{sub 2} pressures varied between 10{sup -2} to 70 mbar. Plasma plume evolution was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser ({lambda} = 248 nm, {tau} = 25 ns) at a fluence of 2 J/cm{sup 2}. The light emitted by the plume was observed along the perpendicular to the ejection direction through a fast intensified charge-coupled device (ICCD). We have found that the plasma dynamics is very affected by the gas pressures. The photographs reveal the stratification of plasma into slow and fast components for 0.5 mbar O{sub 2} pressures and beyond. The photographs also show the apparition of hydrodynamic instabilities which are related to chemical reactions between the plasma and the surrounding gas for a certain range of pressures.

  20. KrF laser-induced ablation and patterning of Y--Ba--Cu--O films

    SciTech Connect

    Heitz, J.; Wang, X.Z.; Schwab, P.; Baeuerle, D. ); Schultz, L. )

    1990-09-01

    The ablation and patterning of Y--Ba--Cu--O films on (100) SrTiO{sub 3} and (100) MgO substrates by KrF excimer-laser light projection was investigated. Three different regimes of laser-material interactions were observed. Transition temperatures and critical current densities in laser-fabricated strip lines were investigated.