NASA Technical Reports Server (NTRS)
Erickson, W. D.; Sullivan, E. M. (Inventor)
1973-01-01
An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.
NASA Astrophysics Data System (ADS)
Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.
2018-01-01
Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.
NASA Technical Reports Server (NTRS)
Martin, Heath Thomas
2013-01-01
Ablative insulators are used in the interior surfaces of solid rocket motors to prevent the mechanical structure of the rocket from failing due to intense heating by the high-temperature solid-propellant combustion products. The complexity of the ablation process underscores the need for ablative material response data procured from a realistic solid rocket motor environment, where all of the potential contributions to material degradation are present and in their appropriate proportions. For this purpose, the present study examines ablative material behavior in a laboratory-scale solid rocket motor. The test apparatus includes a planar, two-dimensional flow channel in which flat ablative material samples are installed downstream of an aluminized solid propellant grain and imaged via real-time X-ray radiography. In this way, the in-situ transient thermal response of an ablator to all of the thermal, chemical, and mechanical erosion mechanisms present in a solid rocket environment can be observed and recorded. The ablative material is instrumented with multiple micro-thermocouples, so that in-depth temperature histories are known. Both total heat flux and thermal radiation flux gauges have been designed, fabricated, and tested to characterize the thermal environment to which the ablative material samples are exposed. These tests not only allow different ablative materials to be compared in a realistic solid rocket motor environment but also improve the understanding of the mechanisms that influence the erosion behavior of a given ablative material.
Multiple target laser ablation system
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1972-01-01
Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.
Multiple target laser ablation system
Mashburn, D.N.
1996-01-09
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.
Numerical method of carbon-based material ablation effects on aero-heating for half-sphere
NASA Astrophysics Data System (ADS)
Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng
2018-05-01
A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.
NASA Technical Reports Server (NTRS)
Winter, Michael
2012-01-01
The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative characterization of the material response of ablative materials during arc-jet testing will be discussed.
Unsteady motion of laser ablation plume by vortex induced by the expansion of curved shock wave
NASA Astrophysics Data System (ADS)
Tran, D. T.; Mori, K.
2017-02-01
There are a number of industrial applications of laser ablation in a gas atmosphere. When an intense pulsed laser beam is irradiated on a solid surface in the gas atmosphere, the surface material is ablated and expands into the atmosphere. At the same time, a spherical shock wave is launched by the ablation jet to induce the unsteady flow around the target surface. The ablated materials, luminously working as tracer, exhibit strange unsteady motions depending on the experimental conditions. By using a high-speed video camera (HPV-X2), unsteady motion ablated materials are visualized at the frame rate more than 106 fps, and qualitatively characterized.
Effects of material composition on the ablation performance of low density elastomeric ablators
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Kabana, W. P.
1973-01-01
The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.
The thermal and mechanical properties of a low density elastomeric ablation material
NASA Technical Reports Server (NTRS)
Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.
1973-01-01
Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.
Ultrafast dynamics of hard tissue ablation using fs-lasers.
Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald
2018-05-29
Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ablative Laser Propulsion Using Multi-Layered Material Systems
NASA Technical Reports Server (NTRS)
Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.
2002-01-01
Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.
X-ray Micro-Tomography of Ablative Heat Shield Materials
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.
2016-01-01
X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation
Ablation by-products of dental materials from the Er:YAG laser and the dental handpiece
NASA Astrophysics Data System (ADS)
Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.
1995-05-01
Recently there has been much interest in lasers and their potential use to replace the dental drill. The research has been directed towards vital dental tissues. It must be understood that any laser to be used in dentistry which will replace the dental drill must also ablate and remove existing dental materials. Some concern exists about the ablation products when the Er:YAG laser is used to ablate dental materials. It is incumbent on the professionals using these lasers to understand the materials being produced by these lasers and protect themselves and their patients from possible toxic products. It is the intent of this paper to evaluate the products produced by the ablation of both dental amalgam and composite dental restorative materials and compare them with those produced by the traditional dental handpiece (drill).
Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements
NASA Technical Reports Server (NTRS)
Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)
2002-01-01
As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.
Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.
2010-01-01
Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.
Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials
NASA Astrophysics Data System (ADS)
Garcia-Giron, A.; Sola, D.; Peña, J. I.
2016-02-01
In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.
Fracture in Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Chavez-Garcia, Jose; Pham, John
2013-01-01
This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.
A study of angular dependence in the ablation rate of polymers by nanosecond pulses
NASA Astrophysics Data System (ADS)
Pedder, James E. A.; Holmes, Andrew S.
2006-02-01
Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.
Research and application of surface heat treatment for multipulse laser ablation of materials
NASA Astrophysics Data System (ADS)
Cai, Song; Chen, Genyu; Zhou, Cong
2015-11-01
This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.
Ablation-cooled material removal with ultrafast bursts of pulses
NASA Astrophysics Data System (ADS)
Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer
2016-09-01
The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.
Ablation-cooled material removal with ultrafast bursts of pulses.
Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer
2016-09-01
The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.
NASA Astrophysics Data System (ADS)
Mishchik, Konstantin; Gaudfrin, Kevin; Audouard, Eric F.; Mottay, Eric P.; Lopez, John
2017-03-01
Nowadays processing of transparent materials, such as glass, quartz, sapphire and others, is a subject of high interest for worldwide industry since these materials are widely used for mass markets such as consumer electronics, flat display panels manufacturing, optoelectronics or watchmaking industry. The key issue is to combine high throughput, low residual stress and good processing quality in order to avoid chipping and any post-processing step such as grinding or polishing. Complimentary to non-ablative techniques used for zero-kerf glass cutting, surface ablation of such materials is interesting for engraving, grooving as well as full ablation cutting. Indeed this technique enables to process complex parts including via or blind, open or closed, straight or small radius of curvature patterns. We report on surface ablation experiments on transparent materials using a high average power (70W) and high repetition rate (1 MHz) femtosecond laser. These experiments have been done at 1030nm and 515nm on different inorganic transparent materials, such as regular and strengthened glass, borosilicate glass or sapphire, in order to underline their different ablation behavior. Despite the heat accumulation that occurs above 100 kHz we have reached a good compromise between throughput and processing quality. The effects of fluence, pulse-to-pulse overlap and number of passes are discussed in terms of etch rate, ablation efficiency, optimum fluence, maximum achievable depth, micro cracks formation and residual stresses. These experimental results will be also compared with numerical calculations obtained owing to a simple engineering model based on the two-temperature description of the ultrafast ablation.
Effect analysis of material properties of picosecond laser ablation for ABS/PVC
NASA Astrophysics Data System (ADS)
Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.
2017-06-01
This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.
Material removal effect of microchannel processing by femtosecond laser
NASA Astrophysics Data System (ADS)
Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu
2017-11-01
Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.
Amalgam ablation with the Er:YAG laser
NASA Astrophysics Data System (ADS)
Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.
1995-04-01
Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.
NASA Technical Reports Server (NTRS)
Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.
1974-01-01
An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Thermal response of a 4D carbon/carbon composite with volume ablation: a numerical simulation study
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2018-02-01
As carbon/carbon composites usually work at high temperature environments, material ablation inevitably occurs, which further affects the system stability and safety. In this paper, the thermal response of a thermoprotective four-directional carbon/carbon (4D C/C) composite is studied herein using a numerical model focusing on volume ablation. The model is based on energy- and mass-conservation principles as well as on the thermal decomposition equation of solid materials. The thermophysical properties of the C/C composite during the ablation process are calculated, and the thermal response during ablation, including temperature distribution, density, decomposition rate, char layer thickness, and mass loss, are quantitatively predicted. The present numerical study provides a fundamental understanding of the ablative mechanisms of a 4D C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials
NASA Technical Reports Server (NTRS)
Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Thomson, Clint (Inventor); Benel, Gabriel (Inventor)
2014-01-01
A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.
Hard tissue ablation with a spray-assisted mid-IR laser
NASA Astrophysics Data System (ADS)
Kang, H. W.; Rizoiu, I.; Welch, A. J.
2007-12-01
The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.
Ablative Thermal Protection System Fundamentals
NASA Technical Reports Server (NTRS)
Beck, Robin A. S.
2013-01-01
This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.
Testing of Advanced Conformal Ablative TPS
NASA Technical Reports Server (NTRS)
Gasch, Matthew; Agrawal, Parul; Beck, Robin
2013-01-01
In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50-500 W/sq cm. The recession and temperature profile for these materials were comparable to PICA proving them to be viable alternatives for TPS technology development for future missions.
NASA Technical Reports Server (NTRS)
Champman, A. J.
1972-01-01
Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.
Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)
NASA Astrophysics Data System (ADS)
Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan
2015-09-01
A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.
Thermal-mechanical modeling of laser ablation hybrid machining
NASA Astrophysics Data System (ADS)
Matin, Mohammad Kaiser
2001-08-01
Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Standardization of the carbon-phenolic materials and processes. Vol. 1: Experimental studies
NASA Technical Reports Server (NTRS)
Hall, William B.
1988-01-01
Carbon-phenolic composite materials are used as ablative material in the solid rocket motor nozzle of the Space Shuttle. The nozzle is lined with carbon cloth-phenolic resin composites. The nominal effects of the completely consumed solid propellant on the carbon-phenolic material are given. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by ablation, the heat and mass transfer process in which a large amount of heat is absorbed by sacrificially removing material from the nozzle surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a very poor heat conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic composites) are tape wrapped, hydroclave and/or autoclave cured, machined, and assembled. The tape consists of a prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is shown. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 1 of two, Experimental Studies.
Doping He droplets by laser ablation with a pulsed supersonic jet source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzy, R.; Singer, M.; Izadnia, S.
Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less
Nanosecond laser-metal ablation at different ambient conditions
NASA Astrophysics Data System (ADS)
Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed
2018-05-01
Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.
Laser ablation based fuel ignition
Early, J.W.; Lester, C.S.
1998-06-23
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.
Laser ablation based fuel ignition
Early, James W.; Lester, Charles S.
1998-01-01
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.
Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds
NASA Technical Reports Server (NTRS)
Esper, Jaime; Lengowski, Michael
2012-01-01
Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.
NASA Technical Reports Server (NTRS)
Hall, William B.
1988-01-01
Carbon-phenolic composite materials are used in the ablation process in the nozzles of the Space Shuttle Main Engine. The nozzle is lined with carbon cloth-phenolic resin composites. The extreme heat and erosion of the burning propellant are controlled by the carbon-phenolic composite by means of ablation, a heat and mass transfer process in which a large amount of heat is dissipated by sacrificailly removing material from a surface. Phenolic materials ablate with the initial formation of a char. The depth of the char is a function of the heat conduction coefficient of the composite. The char layer is a poor conductor so it protects the underlying phenolic composite from the high heat of the burning propellant. The nozzle component ablative liners (carbon cloth-phenolic resin composites) are tape wrapped, hydroclave and/or autoclave cured, machined and assembled. The tape consists of prepreg broadcloth. The materials flow sheet for the nozzle ablative liners is given. The prepreg is a three component system: phenolic resin, carbon cloth, and carbon filler. This is Volume 2 of the report, Test Methods and Specifications.
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Effects of insulator ablation on the operation of a quasi-steady MPD arc
NASA Technical Reports Server (NTRS)
Boyle, M. J.; Jahn, R. G.
1973-01-01
Multimegawatt operation of quasi-steady MPD arcjets can involve serious ablation of the insulator surfaces within the arc discharge chamber. Various degrees of insulator ablation manifest themselves by significantly perturbing the voltage-current characteristics and the exhaust velocity profiles. Voltage-current characteristics for two different insulator materials, Plexiglas and boron nitride, are interpreted in terms of an empirical Ohm's law. Use of the refractory insulator material eliminates the ablation-dominated nature of the terminal voltage, but the exhaust stream is still disturbed by insulator material. An Alfven critical velocity model can be applied to this influence of insulator ablation on exhaust velocity. Appropriate changes in the propellant injection geometry eliminate this influence and result in arcjet operation which is independent of insulator material. A particular combination of propellant injection geometries reduces the terminal voltage for a given current and mass flow while maintaining insulator-independent operation, thus implying an improvement in the overall efficiency of the device.
Microscopic Scale Simulation of the Ablation of Fibrous Materials
NASA Technical Reports Server (NTRS)
Lachaud, Jean Romain; Mansour, Nagi N.
2010-01-01
Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.
TPS Ablator Technologies for Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Curry, Donald M.
2004-01-01
This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.
Influence of the Liquid on Femtosecond Laser Ablation of Iron
NASA Astrophysics Data System (ADS)
Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.
Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.
Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2017-09-01
The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2018-06-01
The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Transport properties associated with carbon-phenolic ablators
NASA Technical Reports Server (NTRS)
Biolsi, L.
1982-01-01
Entry vehicle heat shields designed for entry into the atmosphere of the outer planets are usually made of carbonaceous material such as carbon-phenolic ablator. Ablative injection of this material is an important mechanism for reducing the heat at the surface of the entry vehicle. Conductive transport properties in the shock layer are important for some entry conditions. The kinetic theory of gases has been used to calculate the transport properties for 17 gaseous species obtained from the ablation of carbon-phenolic heat shields. Results are presented for the pure species and for the gas mixture.
NASA Technical Reports Server (NTRS)
Brewer, W. D.
1975-01-01
The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.
Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics
NASA Astrophysics Data System (ADS)
Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.
2017-06-01
This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.
Selective material ablation by the TEA CO2 laser
NASA Astrophysics Data System (ADS)
Sumiyoshi, Tetsumi; Shiratori, Akira; Ninomiya, Yutaka; Obara, Minoru
1995-03-01
This paper reports two topics in the material processing using TEA CO2 lasers. We demonstrated selective ablation of hydrogenated amorphous silicon (a-Si:H) thin layer on a quartz substrate by the second harmonic (SH) radiation of TEA CO2 laser generated by AgGaSe2 nonlinear crystal. Si-H bonds contained in a-Si:H strongly absorb the 5 micrometers SH radiation and resulted in the selective ablation of the a-Si:H layer. The successful ablation processing of ethylenetetrafluoroethylene (ETFE) copolymer by the 9.6 micrometers fundamental wavelength TEA CO2 laser is also reported. Only ETFE thin film adhered to an aluminum substrate can be ablated by the TEA CO2 laser.
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.
Moldable cork ablation material
NASA Technical Reports Server (NTRS)
1977-01-01
A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, D.N.
1996-09-24
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.
Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2017-01-01
Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.
Development of improved ablative materials for ASRM. [Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Canfield, A.; Armour, W.; Clinton, R.
1991-01-01
A program to improve ablative materials for the Advanced Solid Rocket Motor (ASRM) is briefly discussed. The main concerns with the baseline material are summarized along with the measures being undertaken to obtain improvements. The materials involved in the program, all of which have been manufactured and are now being evaluated, are mentioned.
Development of moldable carbonaceous materials for ablative rocket nozzles.
NASA Technical Reports Server (NTRS)
Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.
1972-01-01
Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.
Femtosecond laser ablation of enamel
NASA Astrophysics Data System (ADS)
Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui
2016-06-01
The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.
Modeling of Laser Material Interactions
NASA Astrophysics Data System (ADS)
Garrison, Barbara
2009-03-01
Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.
Ablative Thermal Protection Systems Fundamentals
NASA Technical Reports Server (NTRS)
Beck, Robin A. S.
2017-01-01
This is a presentation of the fundamentals of ablative TPS materials for a short course at TFAWS 2017. It gives an overall description of what an ablator is, the equations that define it, and how to model it.
Production of microscale particles from fish bone by gas flow assisted laser ablation
NASA Astrophysics Data System (ADS)
Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.
2007-12-01
Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.
NASA Astrophysics Data System (ADS)
Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang
2017-12-01
In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.
Paint stripping with a XeCl laser: basic research and processing techniques
NASA Astrophysics Data System (ADS)
Raiber, Armin; Plege, Burkhard; Holbein, Reinhold; Callies, Gert; Dausinger, Friedrich; Huegel, Helmut
1995-03-01
This work investigates the possibility of ablating paint from aerospace material with a XeCl- laser. The main advantage of this type of laser is the low heat generation during the ablation process. This is important when stripping thermally sensitive materials such as polymer composites. The dependence of the ablation process on energy density, pulse frequency as well as other laser parameters are presented. The results show the influence of chemical and UV artificial aging processes on ablation depth. Further, the behavior of the time-averaged transmission of the laser beam through the plasma is described as a function of the energy density. The time-varying temperature in the substrate at the point of ablation was measured during the process. An abrupt change in the temperature variation indicates the end of point ablation. This measured temperature variation is compared with the calculated temperatures, which are derived from the 1D heat equations. Finally, first results of repaintability and ablation rates will be presented.
NASA Astrophysics Data System (ADS)
Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.
2018-06-01
Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.
Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation
NASA Technical Reports Server (NTRS)
Brewer, W. D.
1976-01-01
The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.
Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.
2005-01-01
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
Wu, Po-Hung; Brace, Chris L
2016-08-21
Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR = 1.57 ± 0.73, boundary gradient = 0.7 ± 0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR = 2.04 ± 0.84, boundary gradient = 6.3 ± 1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient = 3.9 ± 1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was highest when contrast is delivered intra-procedurally. Therefore, CECT may be feasible for real-time thermal ablation monitoring.
Effects of Laser Wavelength on Ablator Testing
NASA Technical Reports Server (NTRS)
White, Susan M.
2014-01-01
Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2017-01-01
Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Sampson, Jeffrey W.; Kolody, Mark R.; Curran, Jerome P.; Perusich, Stephen A.; Trejo, David; Whitten, Mary C.;
2009-01-01
A trade study and litera ture survey of refractory materials (fi rebrick. refractory concrete. and si licone and epoxy ablatives) were conducted to identify candidate replacement materials for Launch Complexes 39A and 398 at Kennedy Space Center (KSC). In addition, site vis its and in terviews with industry expens and vendors of refractory materials were conducted. As a result of the si te visits and interviews, several products were identified for launch applications. Firebrick is costly to procure and install and was not used in the si tes studied. Refractory concrete is gunnable. adheres well. and costs less 10 install. Martyte. a ceramic fi lled epoxy. can protect structural stccl but is costly. difficullto apply. and incompatible with silicone ablatives. Havanex, a phenolic ablative material, is easy to apply but is costly and requires frequent replacement. Silicone ablatives are ineJ[pensive, easy to apply. and perl'onn well outside of direct rocket impingement areas. but refractory concrete and epoxy ablatives provide better protection against direcl rocket exhaust. None of the prodUCIS in this trade study can be considered a panacea for these KSC launch complexes. but the refractory products. individually or in combination, may be considered for use provided the appropriate testing requirements and specifications are met.
Sprayable Phase Change Coating Thermal Protection Material
NASA Technical Reports Server (NTRS)
Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj
2005-01-01
NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce the launch and processing costs of a reusable space vehicle to an affordable level, refurbishment costs must be substantially reduced. A key component of such a cost effective approach is the use of a reusable, phase change, thermal protection coating.
Conjugate Analysis of Two-Dimensional Ablation and Pyrolysis in Rocket Nozzles
NASA Astrophysics Data System (ADS)
Cross, Peter G.
The development of a methodology and computational framework for performing conjugate analyses of transient, two-dimensional ablation of pyrolyzing materials in rocket nozzle applications is presented. This new engineering methodology comprehensively incorporates fluid-thermal-chemical processes relevant to nozzles and other high temperature components, making it possible, for the first time, to rigorously capture the strong interactions and interdependencies that exist between the reacting flowfield and the ablating material. By basing thermal protection system engineering more firmly on first principles, improved analysis accuracy can be achieved. The computational framework developed in this work couples a multi-species, reacting flow solver to a two-dimensional material response solver. New capabilities are added to the flow solver in order to be able to model unique aspects of the flow through solid rocket nozzles. The material response solver is also enhanced with new features that enable full modeling of pyrolyzing, anisotropic materials with a true two-dimensional treatment of the porous flow of the pyrolysis gases. Verification and validation studies demonstrating correct implementation of these new models in the flow and material response solvers are also presented. Five different treatments of the surface energy balance at the ablating wall, with increasing levels of fidelity, are investigated. The Integrated Equilibrium Surface Chemistry (IESC) treatment computes the surface energy balance and recession rate directly from the diffusive fluxes at the ablating wall, without making transport coefficient or unity Lewis number assumptions, or requiring pre-computed surface thermochemistry tables. This method provides the highest level of fidelity, and can inherently account for the effects that recession, wall temperature, blowing, and the presence of ablation product species in the boundary layer have on the flowfield and ablation response. Multiple decoupled and conjugate ablation analysis studies for the HIPPO nozzle test case are presented. Results from decoupled simulations show sensitivity to the wall temperature profile used within the flow solver, indicating the need for conjugate analyses. Conjugate simulations show that the thermal response of the nozzle is relatively insensitive to the choice of the surface energy balance treatment. However, the surface energy balance treatment is found to strongly affect the surface recession predictions. Out of all the methods considered, the IESC treatment produces surface recession predictions with the best agreement to experimental data. These results show that the increased fidelity provided by the proposed conjugate ablation modeling methodology produces improved analysis accuracy, as desired.
Modeling the Relationship Between Porosity and Permeability During Oxidation of Ablative Materials
NASA Technical Reports Server (NTRS)
Thornton, John M.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Mansour, Nagi N.
2017-01-01
The ablative materials used in thermal protection systems (TPS) undergo oxidation during atmospheric entry which leads to an in-depth change in both permeability and porosity. These properties have a significant affect on heat transfer in a TPS during entry. X-ray micro-tomography has provided 3D images capturing the micro-structure of TPS materials. In this study, we use micro-tomography based simulations to create high-fidelity models relating permeability to porosity during oxidation of FiberForm, the carbon fiber preform of the Phenolic Impregnated Carbon Ablator (PICA) often used as a TPS material. The goal of this study is to inform full-scale models and reduce uncertainty in TPS modeling.
NASA Astrophysics Data System (ADS)
Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro
2017-07-01
The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
Thermal protection materials: Thermophysical property data
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, Donald M.
1992-01-01
This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias
2014-01-01
RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J
2014-08-15
Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J
2008-08-01
[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.
Thermal Protection and Control
NASA Technical Reports Server (NTRS)
Greene, Effie E.
2013-01-01
During all phases of a spacecraft's mission, a Thermal Protection System (TPS) is needed to protect the vehicle and structure from extreme temperatures and heating. When designing TPS, low weight and cost while ensuring the protection of the vehicle is highly desired. There are two main types of TPS, ablative and reusable. The Apollo missions needed ablators due to the high heat loads from lunar reentry. However, when the desire for a reusable space vehicle emerged, the resultant_ Space Shuttle program propelled a push for the development of reusable TPS. With the growth of reqsable TPS, the need for ablators declined, triggering a drop off of the ablator industry. As a result, the expertise was not heavily maintained within NASA or the industry. When the Orion Program initiated a few years back, a need. for an ablator reemerged. Yet, due to of the lack of industry capability, redeveloping the ablator material took several years and came at a high cost. As NASA looks towards the future with both the Orion and Commercial Crew Programs, a need to preserve reusable, ablative, and other TPS technologies is essential. Research of the different TPS materials alongside their properties, capabilities, and manufacturing process was performed, and the benefits of the materials were analyzed alongside the future of TPS. Knowledge of the different technologies has the ability to help us know what expertise to maintain and ensure a lack in the industry does not occur again.
NASA Astrophysics Data System (ADS)
Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.
2018-02-01
To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.
Wire ablation dynamics model and its application to imploding wire arrays of different geometries.
Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C
2012-10-01
The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.
GCD TechPort Data Sheets Thermal Protection System Materials (TPSM) Project
NASA Technical Reports Server (NTRS)
Chinnapongse, Ronald L.
2014-01-01
The Thermal Protection System Materials (TPSM) Project consists of three distinct project elements: the 3-Dimensional Multifunctional Ablative Thermal Protection System (3D MAT) project element; the Conformal Ablative Thermal Protection System (CA-TPS) project element; and the Heatshield for Extreme Entry Environment Technology (HEEET) project element. 3D MAT seeks to design, develop and deliver a game changing material solution based on 3-dimensional weaving and resin infusion approach for manufacturing a material that can function as a robust structure as well as a thermal protection system. CA-TPS seeks to develop and deliver a conformal ablative material designed to be efficient and capable of withstanding peak heat flux up to 500 W/ sq cm, peak pressure up to 0.4 atm, and shear up to 500 Pa. HEEET is developing a new ablative TPS that takes advantage of state-of-the-art 3D weaving technologies and traditional manufacturing processes to infuse woven preforms with a resin, machine them to shape, and assemble them as a tiled solution on the entry vehicle substructure or heatshield.
Shuttle orbiter TPS flight repair kit development
NASA Technical Reports Server (NTRS)
1979-01-01
The design and application of a TPS repair kit is presented. The repair kit is designed for on orbit use by a crew member working in the manned maneuvering unit (MMU). The kit includes the necessary equipment and materials to accomplish the repair tasks which include the following: HRSI emittance coating repair, damaged tile repair, missing tile repair, and multiple tile repair. Two types of repair materials required to do the small area repair and the large area repair are described. The materials area cure in place, silicone base ablator for small damaged areas and precured ablator tile for repair of larger damaged areas is examined. The cure in place ablator is also used as an adhesive to bond the precured tiles in place. An applicator for the cure in place ablator, designed to contain a two-part silicon compound, mix the two components at correct ratio, and dispense the materials at rates compatible with mission timelines established for the EVA is described.
NASA Astrophysics Data System (ADS)
Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.
1990-04-01
Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.
NASA Technical Reports Server (NTRS)
Spokes, G. N.; Beadle, P. C.; Gac, N. A.; Golden, D. M.; King, K. D.; Benson, S. W.
1971-01-01
Research has been conducted by means of laboratory experiments to enhance understanding of the fundamental mechanisms of heterogeneous and homogeneous chemical reactions taking place during ablative processes that accompany the reentry or manned space vehicles into planetary atmospheres. Fundamental mechanisms of those chemical reactions believed to be important in the thermal degradation of ablative plastic heat shield materials, and the gases evolved, are described.
NASA Technical Reports Server (NTRS)
Noffz, Gregory K.; Bowman, Michael P.
1996-01-01
Flight vehicles are typically instrumented with subsurface thermocouples to estimate heat transfer at the surface using inverse analysis procedures. If the vehicle has an ablating heat shield, however, temperature time histories from subsurface thermocouples no longer provide enough information to estimate heat flux at the surface. In this situation, the geometry changes and thermal energy leaves the surface in the form of ablation products. The ablation rate is required to estimate heat transfer to the surface. A new concept for a capacitive sensor has been developed to measure ablator depth using the ablator's dielectric effect on a capacitor's fringe region. Relying on the capacitor's fringe region enables the gage to be flush mounted in the vehicle's permanent structure and not intrude into the ablative heat shield applied over the gage. This sensor's design allows nonintrusive measurement of the thickness of dielectric materials, in particular, the recession rates of low-temperature ablators applied in thin (0.020 to 0.060 in. (0.05 to 0.15 mm)) layers. Twenty capacitive gages with 13 different sensing element geometries were designed, fabricated, and tested. A two-dimensional finite-element analysis was performed on several candidate geometries. Calibration procedures using ablator-simulating shims are described. A one-to-one correspondence between system output and dielectric material thickness was observed out to a thickness of 0.055 in. (1.4 mm) for a material with a permittivity about three times that of air or vacuum. A novel method of monitoring the change in sensor capacitance was developed. This technical memorandum suggests further improvements in gage design and fabrication techniques.
ABLATIVE COMPOSITES FOR LIFTING REENTRY THERMAL PROTECTION.
MECHANICAL PROPERTIES, THERMAL CONDUCTIVITY, ABLATION, DENSITY, TABLES(DATA), SPECIFIC HEAT, THERMOGRAVIMETRIC ANALYSIS, CORROSION RESISTANCE, COLORIMETRY , HEAT RESISTANT MATERIALS, ATMOSPHERE ENTRY.
Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator
Shi, Liping; Iwan, Bianca; Ripault, Quentin; ...
2018-02-02
Here, we experimentally demonstrate the use of subwavelength optical nanoantennas to assist a direct nanoscale ablation using the ultralow fluence of a Ti:sapphire oscillator through the excitation of surface plasmon waves. The mechanism is attributed to nonthermal transient unbonding and electrostatic ablation, which is triggered by the surface plasmon-enhanced field electron emission and acceleration in vacuum. We show that the electron-driven ablation appears for both nanoscale metallic as well as dielectric materials. While the observed surface plasmon-enhanced local ablation may limit the applications of nanostructured surfaces in extreme nonlinear nanophotonics, it, nevertheless, also provides a method for nanomachining, manipulation, andmore » modification of nanoscale materials. Lastly, collateral thermal damage to the antenna structure can be suitably avoided, and nonlinear conversion processes can be stabilized by a dielectric overcoating of the antenna.« less
NASA Astrophysics Data System (ADS)
George, D. S.; Onischenko, A.; Holmes, A. S.
2004-03-01
Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.
2018-03-01
Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.
Characterization of Particles Created By Laser-Driven Hydrothermal Processing
2016-06-01
created by laser-driven hydrothermal processing, an innovative technique used for the ablation of submerged materials. Two naturally occurring...processing, characterization, obsidian, tektite, natural glass 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...technique used for the ablation of submerged materials. Two naturally occurring materials, obsidian and tektite, were used as targets for this technique
Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).
Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.
2002-01-01
The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.
Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS
NASA Astrophysics Data System (ADS)
Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang
2014-02-01
Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.
Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle
NASA Technical Reports Server (NTRS)
Henline, William D.; Tauber, Michael E.
1994-01-01
A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
Study of critical defects in ablative heat shield systems for the space shuttle
NASA Technical Reports Server (NTRS)
Miller, C. C.; Rummel, W. D.
1974-01-01
Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.
Update on Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions
NASA Astrophysics Data System (ADS)
Beck, R. A. S.; Arnold, J. O.; Gasch, M. J.; Stackpoole, M. M.; Venkatapathy, E.
2014-06-01
In FY13, more advanced testing and modeling of the new NASA conformal ablative TPS material was performed. Most notable were the 3- and 4-point bending tests and the aerothermal testing on seams and joints in shear. The material outperformed PICA.
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, Barbara A.
2014-01-01
In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example, variable vacuum pressure), and c) the ablation is made with hundreds of successive laser pulses. In this work, we aim to understand the effects that occur on LIBS spectra when a homogeneous rock or a mineral is ablated under high vacuum. Understanding these effects is important to define best practices for LIBS measurements and may lead to improved measurement (or possibly prediction) of the ablated volume. We will describe our laboratory approach and first results, and discuss its utility for situ absolute geochronology campaigns.
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
NASA Technical Reports Server (NTRS)
Milos, Frank S.
2011-01-01
In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.
Sola, Daniel; Peña, Jose I.
2013-01-01
In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated. PMID:28788391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J
RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system.more » RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant materials.« less
Optical radiative properties of ablating polymers exposed to high-power arc plasmas
NASA Astrophysics Data System (ADS)
Becerra, Marley; Pettersson, Jonas
2018-03-01
The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.
Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Goekcen, Tahir
2015-01-01
Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.
Water absorption and desorption in shuttle ablator and insulation materials
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.
1982-01-01
Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.
Thermochemical Ablation Analysis of the Orion Heatshield
NASA Technical Reports Server (NTRS)
Sixel, William
2015-01-01
The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas enthalpy and B´c. A MATLAB program was developed to allow for faster, more accurate and automated computation of Arrhenius reaction parameters. These parameters are required for a material model to be used in the CHAR ablation analysis program. This MATLAB program, along with thermogravimetric analysis (TGA) data, was used to generate uncertainties on the Arrhenius parameters for Avcoat. In addition, the TGA fitting program was developed to provide Arrhenius parameters for the ablation model of the gap filler material, RTV silicone.
Feasibility evaluation of the monolithic braided ablative nozzle
NASA Astrophysics Data System (ADS)
Director, Mark N.; McPherson, Douglass J., Sr.
1992-02-01
The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in/sec; these rates are comparable to those for tapewrapped carbon phenolic materials. The maximum temperature rise on the outside surface occurred one inch from the nozzle exit plane and was less than 50 F at the end of the test. Further development for this concept is scheduled as part of phase 2 on the NASA/MSFC LOCCIN Program. During this effort, the nozzle materials, architecture, and processing will be optimized and tested in nozzles with 3- and 10-inch diameter throats. Further, a design and manufacturing plan for a full-scale, 20-inch-diameter throat, nozzle will be developed.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.
2018-01-01
Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.
Capsule physics comparison of different ablators for NIF implosion designs
NASA Astrophysics Data System (ADS)
Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher
2017-10-01
Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Thermal Testing of Ablators in the NASA Johnson Space Center Radiant Heat Test Facility
NASA Technical Reports Server (NTRS)
Del Papa, Steven; Milhoan, Jim; Remark, Brian; Suess, Leonard
2016-01-01
A spacecraft's thermal protection system (TPS) is required to survive the harsh environment experienced during reentry. Accurate thermal modeling of the TPS is required to since uncertainties in the thermal response result in higher design margins and an increase in mass. The Radiant Heat Test Facility (RHTF) located at the NASA Johnson Space Center (JSC) replicates the reentry temperatures and pressures on system level full scale TPS test models for the validation of thermal math models. Reusable TPS, i.e. tile or reinforced carbon-carbon (RCC), have been the primary materials tested in the past. However, current capsule designs for MPCV and commercial programs have required the use of an ablator TPS. The RHTF has successfully completed a pathfinder program on avcoat ablator material to demonstrate the feasibility of ablator testing. The test results and corresponding ablation analysis results are presented in this paper.
X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Kar, A.; Radha, P. B.; Edgell, D. H.; Hu, S. X.; Boehly, T. R.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.
2017-10-01
Side-on x-ray radiography of shock waves transiting through the planar plastic ablator and cryogenic fuel layer will be used to study shock timing, shock coalescence, shock breakout, and hydrodynamic mixing at the ablator-fuel interface. The injection of ablator material into the fuel can potentially compromise implosion target performance. The difference in refractive indices of the ablator and the fuel can be exploited to image shocks transiting the interface. An experiment to probe the ablator-fuel interface and a postprocessor to the hydrodynamic code DRACO that uses refraction enhanced imaging to view shocks are presented. The advantages of this technique to view shocks are explored and additional applications such as viewing the spatial location of multiple shocks, or the evolution of nonuniformity on shock fronts are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response
NASA Astrophysics Data System (ADS)
Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon
2011-11-01
The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.
Wall ablation of heated compound-materials into non-equilibrium discharge plasmas
NASA Astrophysics Data System (ADS)
Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing
2017-02-01
The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.
Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers
NASA Technical Reports Server (NTRS)
Fan, Wendy
2011-01-01
The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, Brandon A.
2017-01-01
Primarily interested in improving ablation modeling for use in inverse reconstruction of flight environments on ablative heat shields. Ablation model is essentially a component of the heat flux sensor, so model uncertainties lead to measurement uncertainties. Non-equilibrium processes have been known to be significant in low density ablators for a long time, but increased accuracy requirements of the reconstruction process necessitates incorporating this physical effect. Attempting to develop a pyrolysis model for implementation in material response based on the PICA data produced by Bessire and Minton. Pyrolysis gas species molar yields as a function of temperature and heating rate. Several problems encountered while trying to fit Arrhenius models to the data led to further investigation of the experimental setup.
Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M
2015-07-15
We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.
Pulse energy dependence of subcellular dissection by femtosecond laser pulses
NASA Technical Reports Server (NTRS)
Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.
2005-01-01
Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.
NASA Astrophysics Data System (ADS)
Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan
2018-03-01
The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump-probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.
Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports
NASA Technical Reports Server (NTRS)
Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug;
2009-01-01
A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.
NASA Astrophysics Data System (ADS)
Ait Oumeziane, Amina; Parisse, Jean-Denis
2018-05-01
Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.
Improved model for the angular dependence of excimer laser ablation rates in polymer materials
NASA Astrophysics Data System (ADS)
Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.
2009-10-01
Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.
Ablation Predictions for Carbonaceous Materials Using Two Databases for Species Thermodynamics
NASA Technical Reports Server (NTRS)
Milos, F. S.; Chen, Y.-K.
2013-01-01
During previous work at NASA Ames Research Center, most ablation predictions were obtained using a species thermodynamics database derived primarily from the JANAF thermochemical tables. However, the chemical equilibrium with applications thermodynamics database, also used by NASA, is considered more up to date. In this work, ablation analyses were performed for carbon and carbon phenolic materials using both sets of species thermodynamics. The ablation predictions are comparable at low and moderate heat fluxes, where the dominant mechanism is carbon oxidation. For high heat fluxes where sublimation is important, the predictions differ, with the chemical equilibrium with applications model predicting a lower ablation rate. The disagreement is greater for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate. Sample calculations for representative Orion and Stardust environments show significant differences only in the sublimation regime. For Stardust, if the calculations include a nominal environmental uncertainty for aeroheating, then the chemical equilibrium with applications model predicts a range of recession that is consistent with measurements for both heatshield cores.
Method for materials deposition by ablation transfer processing
Weiner, Kurt H.
1996-01-01
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.
Advanced Ablative Insulators and Methods of Making Them
NASA Technical Reports Server (NTRS)
Congdon, William M.
2005-01-01
Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2015-07-21
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David; Cousins, Peter
2012-12-04
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.
1998-01-01
A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.
Momentum and velocity of the ablated material in laser machining of carbon fiber preforms
NASA Astrophysics Data System (ADS)
Mucha, P.; Speker, N.; Weber, R.; Graf, T.
2013-11-01
The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.
Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; Matylitsky, Victor
2017-02-01
Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.
1998-02-24
A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.
Assessment of laser ablation techniques in a-si technologies for position-sensor development
NASA Astrophysics Data System (ADS)
Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.
2005-07-01
Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.
Low work function surface layers produced by laser ablation using short-wavelength photons
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2000-01-01
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
NASA Astrophysics Data System (ADS)
Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.
2017-03-01
The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.
Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Milos, F. S.; Chen, Y.-K.
2009-01-01
Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.
Flight and ground tests of a very low density elastomeric ablative material
NASA Technical Reports Server (NTRS)
Olsen, G. C.; Chapman, A. J., III
1972-01-01
A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.
Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.
Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A
2016-01-01
Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.
Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam
NASA Technical Reports Server (NTRS)
Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John
2018-01-01
Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.
Simulations of Radiation-Driven Shock Wave Experiments
NASA Astrophysics Data System (ADS)
Dukart, R. J.; Asay, J. R.; Porter, J. L.; Matzen, M. K.
1997-07-01
For inertial confinement fusion (I.C.F.) target design, we need to understand material properties between 1- and 150-Mbar pressure. In this presentation we will show that we can use radiatively-driven ablation to generate high pressures in a wide variety of materials. PBFA-Z is being developed to generate centimeter scale hohlraums with temperatures from 80 to 150 eV. 1-D radiation/hydrodynamic simulations using these hohlraums predict the generation 1- to 15-Mbar pressures in a wide variety of materials through direct ablation. Through the use of thick ablators, we can obtain 4.5- to 25-Mbar pressures in Aluminum. This pressure regime can be extended to 40 Mbar for 200-eV hohlraums predicted for the X1, next generation, Z-pinch driver.
Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory
2009-02-01
We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.
NASA Astrophysics Data System (ADS)
Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.
2016-01-01
Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
NASA Technical Reports Server (NTRS)
Howe, John T.; Yang, Lily
1991-01-01
A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Yu, Zhishui
2018-06-01
Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.
NASA Technical Reports Server (NTRS)
Moyer, C. B.; Green, K. A.
1972-01-01
Comparisons of ablation calculations with the charring ablation computer code and ablation test data are presented over a wide range of environmental conditions in air for three materials: low-density nylon phenolic, Avcoat 5026-39HC/G, and a filled silicon elastomer. Heat fluxes considered range from over 500 Btu/sq ft-sec to less than 50 Btu/sq ft-sec. Pressures range from 0.5 atm to .004 atm. Enthalpies range from about 2000 Btu/lb to 18000 Btu/lb. Predictions of recession, pyrolysis penetration, and thermocouple responses are considered. Recession predictions for nylon phenolic are good as steady state is approached, but strongly transient cases are underpredicted. Pyrolysis penetrations and thermocouple responses are very well predicted. Recession amounts for Avcoat and silicone elastomer are less well predicted, although high heat flux cases near steady state are fairly satisfactory. Pyrolysis penetrations and thermocouple responses are very well predicted.
NASA Technical Reports Server (NTRS)
deBoer, Gary; Scott, Carl
2003-01-01
Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal atoms survive for several milliseconds while the gaseous carbon atoms and small molecules nucleate more rapidly. Additional experiments and the development of in situ methods for carbon nanotube detection would allow these results to be interpreted from the perspective of carbon nanotube formation.
Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A
2016-12-01
Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.
Schelle, Florian; Polz, Sebastian; Haloui, Hatim; Braun, Andreas; Dehn, Claudia; Frentzen, Matthias; Meister, Jörg
2014-11-01
Modern ultrashort pulse lasers with scanning systems provide a huge set of parameters affecting the suitability for dental applications. The present study investigates thresholds and ablation rates of oral hard tissues and restorative materials with a view towards a clinical application system. The functional system consists of a 10 W Nd:YVO4 laser emitting pulses with a duration of 8 ps at 1,064 nm. Measurements were performed on dentin, enamel, ceramic, composite, and mammoth ivory at a repetition rate of 500 kHz. By employing a scanning system, square-shaped cavities with an edge length of 1 mm were created. Ablation threshold and rate measurements were assessed by variation of the applied fluence. Examinations were carried out employing a scanning electron microscope and optical profilometer. Irradiation time was recorded by the scanner software in order to calculate the overall ablated volume per time. First high power ablation rate measurements were performed employing a laser source with up to 50 W. Threshold values in the range of 0.45 J/cm(2) (composite) to 1.54 J/cm(2) (enamel) were observed. Differences between any two materials are statistically significant (p < 0.05). Preparation speeds up to 37.53 mm(3)/min (composite) were achieved with the 10 W laser source and differed statistically significant for any two materials (p < 0.05) with the exception of dentin and mammoth ivory (p > 0.05). By employing the 50 W laser source, increased rates up to ∼50 mm(3)/min for dentin were obtained. The results indicate that modern USPL systems provide sufficient ablation rates to be seen as a promising technology for dental applications.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
NASA Astrophysics Data System (ADS)
Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.
2017-06-01
Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.
NASA Astrophysics Data System (ADS)
Mahulikar, Shripad P.; Khurana, Shashank; Dungarwal, Ritesh; Shevakari, Sushil G.; Subramanian, Jayakumar; Gujarathi, Amit V.
2008-12-01
The temperature field history of passive Thermal Protection System (TPS) material at the nose-cap (forward stagnation region) of a Reusable Hypersonic Vehicle (RHV) is generated. The 3-D unsteady heat transfer model couples conduction in the solid with external convection and radiation that are modeled as time-varying boundary conditions on the surface. Results are presented for the following two cases: (1) nose-cap comprised of ablative TPS material only (SIRCA/PICA), and (2) nose-cap comprised of a combination of ablative TPS material with moderate thermal conductivity and insulative TPS material. Comparison of the temperature fields of SIRCA and PICA [Case (1)] indicates lowering of the peak stagnation region temperatures for PICA, due to its higher thermal conductivity. Also, the use of PICA and insulative TPS [Case (2)] for the nose-cap has higher potential for weight reduction than the use of ablative TPS alone.
Ablative material testing for low-pressure, low-cost rocket engines
NASA Technical Reports Server (NTRS)
Richter, G. Paul; Smith, Timothy D.
1995-01-01
The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2014-07-22
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.
Zhu, Jinpeng; Ma, Zhuang; Gao, Yinjun; Gao, Lihong; Pervak, Vladimir; Wang, Lijun; Wei, Chenghua; Wang, Fuchi
2017-10-11
Laser protection for optical components, particularly those in high-power laser systems, has been a major concern. La 1-x Sr x TiO 3+δ with its good optical and thermal properties can be potentially applied as a high-temperature optical protective coating or high-reflectivity material for optical components. However, the high-power laser ablation behavior of plasma-sprayed La 1-x Sr x TiO 3+δ (x = 0.1) coatings has rarely been investigated. Thus, in this study, laser irradiation experiments were performed to study the effect of high-intensity continuous laser on the ablation behavior of the La 1-x Sr x TiO 3+δ coating. The results show that the La 1-x Sr x TiO 3+δ coating undergoes three ablation stages during laser irradiation: coating oxidation, formation and growth of new structures (columnar and dendritic crystals), and mechanical failure. A finite-element simulation was also conducted to explore the mechanism of the ablation damage to the La 1-x Sr x TiO 3+δ coating and provided a good understanding of the ablation behavior. The apparent ablation characteristics are attributed to the different temperature gradients determined by the reflectivity and thermal diffusivity of the La 1-x Sr x TiO 3+δ coating material, which are critical factors for improving the antilaser ablation property. Now, the stainless steel substrate deposited by it can effectively work as a protective shield layer against ablation by laser irradiation.
Low temperature ablation models made by pressure/vacuum application
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Heier, W. C.
1970-01-01
Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.
Study of low-cost fabrication of ablative heat shields
NASA Technical Reports Server (NTRS)
Norwood, L. B.
1972-01-01
The major objectives were accomplished in three tasks: (1) modification of the ablative material composition for ease of fabrication as well as thermal and mechanical performance; (2) scaled-up, simplified, manufacturing techniques which resulted in cost reductions; and (3) the identification of a significant design problem caused by the differential pressure buildup imposed on mechanically attached ablative heat shield panels during launch.
NASA Astrophysics Data System (ADS)
Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar
2018-02-01
Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.
Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance
NASA Astrophysics Data System (ADS)
Andrusyak, Oleksiy G.; Bubelnik, Matthew; Mares, Jeremy; McGovern, Theresa; Siders, Craig W.
2005-02-01
Femtosecond ablation has several distinct advantages: the threshold energy fluence for the onset of damage and ablation is orders of magnitude less than for traditional nanosecond laser machining, and by virtue of the rapid material removal of approximately an optical penetration depth per pulse, femtosecond machined cuts can be cleaner and more precise than those made with traditional nanosecond or longer pulse lasers. However, in many materials of interest, especially metals, this limits ablation rates to 10-100 nm/pulse. We present the results of using multiple pulse bursts to significantly increase the per-burst ablation rate compared to a single pulse with the same integrated energy, while keeping the peak intensity of each individual pulse below the air ionization limit. Femtosecond ablation with pulses centered at 800-nm having integrated energy of up to 30 mJ per pulse incident upon thin gold films was measured via resonance frequency shifts in a gold-electrode-coated quartz-crystal oscillator. Measurements were performed using Michelson-interferometer-based burst generators, with up to 2 ns pulse separations, as well as pulse shaping by programmable acousto-optic dispersive filter (Dazzler from FastLite) with up to 2 ps pulse separations.
Influence of different propellant systems on ablation of EPDM insulators in overload state
NASA Astrophysics Data System (ADS)
Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei
2018-04-01
This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.
Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong
2017-01-01
Background The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. Material/Methods HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. Results Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. Conclusions Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency. PMID:28699626
Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong
2017-07-12
BACKGROUND The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. MATERIAL AND METHODS HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. RESULTS Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. CONCLUSIONS Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency.
Method for materials deposition by ablation transfer processing
Weiner, K.H.
1996-04-16
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.
2013-01-01
Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.
Ablative thermal management structural material on the hypersonic vehicles
NASA Astrophysics Data System (ADS)
Shortland, H.; Tsai, C.
A hypersonic vehicle is designed to fly at high Mach number in the earth's atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.
Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions
NASA Technical Reports Server (NTRS)
Tran, Huy K.; Johnson, Christine E.; Rasky, Daniel J.; Hui, Frank C. L.; Hsu, Ming-Ta; Chen, Timothy; Chen, Y. K.; Paragas, Daniel; Kobayashi, Loreen
1997-01-01
This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.
Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Structure
NASA Technical Reports Server (NTRS)
Ko, William L.; Gong, Leslie; Quinn, Robert D.
2007-01-01
Comparative studies were performed on the heat-shielding characteristics of honeycomb-core sandwich panels fabricated with different materials for possible use as wall panels for the proposed crew exploration vehicle. Graphite/epoxy sandwich panel was found to outperform aluminum sandwich panel under the same geometry due to superior heat-shielding qualities and lower material density. Also, representative reentry heat-transfer analysis was performed on the windward wall structures of a generic crew exploration vehicle. The Apollo low Earth orbit reentry trajectory was used to calculate the reentry heating rates. The generic crew exploration vehicle has a graphite/epoxy composite honeycomb sandwich exterior wall and an aluminum honeycomb sandwich interior wall, and is protected with the Apollo thermal protection system ablative material. In the thermal analysis computer program used, the TPS ablation effect was not yet included; however, the results from the nonablation heat-transfer analyses were used to develop a "virtual ablation" method to estimate the ablation heat loads and the thermal protection system recession thicknesses. Depending on the severity of the heating-rate time history, the virtual ablation period was found to last for 87 to 107 seconds and the ablation heat load was estimated to be in the range of 86 to 88 percent of the total heat load for the ablation time period. The thermal protection system recession thickness was estimated to be in the range of 0.08 to 0.11 inches. For the crew exploration vehicle zero-tilt and 18-degree-tilt stagnation points, thermal protection system thicknesses of h = {0.717, 0.733} inches were found to be adequate to keep the substructural composite sandwich temperature below the limit of 300 F.
Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Miller, J. E.; Christiansen, E. L.; Deighton, K. D.
2014-01-01
Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.
Vapor Grown Carbon Fiber/Phenolic Matrix Composites for Rocket Nozzles and Heat Shields
NASA Technical Reports Server (NTRS)
Patton, R. D.; Pittman, C. U., Jr.; Wang, L.; Day, A.; Hill, J. R.
2001-01-01
The ablation and mechanical and thermal properties of vapor grown carbon fiber (VGCF)/phenolic resin composites were evaluated to determine the potential of using this material in solid rocket motor nozzles. Composite specimens with varying VGCF loading (30%-50% wt) including one sample with ex-rayon carbon fiber plies were prepared and exposed to a plasma torch for 20 s with a heat flux of 16.5 MW/sq m at approximately 1650 C. Low erosion rates and little char formation were observed, confirming that these materials were promising for rocket motor nozzle materials. When fiber loadings increased, mechanical properties and ablative properties improved. The VGCF composites had low thermal conductivities (approximately 0.56 W/m-C) indicating they were good insulating materials. If a 65% fiber loading in VGCF composite can be achieved, then ablative properties are projected to be comparable to or better than the composite material currently used on the Space Shuttle Reusable Solid Rocket Motor (RSRM).
From Laser Desorption to Laser Ablation of Biopolymers
NASA Astrophysics Data System (ADS)
Franz, Hillenkamp
1998-03-01
For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.
Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation
Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.
2016-01-01
Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169
Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen
2015-01-26
The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.
Development of Low Density, Flexible Carbon Phenolic Ablators
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim
2012-01-01
Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.
Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material
NASA Technical Reports Server (NTRS)
Kikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B. A.; Waid, M.; Moloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.
2006-01-01
This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials.
Controlled overspray spray nozzle
NASA Technical Reports Server (NTRS)
Prasthofer, W. P. (Inventor)
1981-01-01
A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.
Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi
2011-12-01
We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic ratio measurements in solid materials.
Study of organic ablative thermal-protection coating for solid rocket motor
NASA Astrophysics Data System (ADS)
Hua, Zenggong
1992-06-01
A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.
Method of defining features on materials with a femtosecond laser
Roos, Edward Victor [Los Altos, CA; Roeske, Franklin [Livermore, CA; Lee, Ronald S [Livermore, CA; Benterou, Jerry J [Livermore, CA
2006-05-23
The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.
NASA Technical Reports Server (NTRS)
Covington, M. A.
2005-01-01
New tests and analyses are reported that were carried out to resolve testing uncertainties in the original development and qualification of a lightweight ablative material used for the Stardust spacecraft forebody heat shield. These additional arcjet tests and analyses confirmed the ablative and thermal performance of low density Phenolic Impregnated Carbon Ablator (PICA) material used for the Stardust design. Testing was done under conditions that simulate the peak convective heating conditions (1200 W/cm2 and 0.5 atm) expected during Earth entry of the Stardust Sample Return Capsule. Test data and predictions from an ablative material response computer code for the in-depth temperatures were compared to guide iterative adjustment of material thermophysical properties used in the code so that the measured and predicted temperatures agreed. The PICA recession rates and maximum internal temperatures were satisfactorily predicted by the computer code with the revised properties. Predicted recession rates were also in acceptable agreement with measured rates for heating conditions 37% greater than the nominal peak heating rate of 1200 W/sq cm. The measured in-depth temperature response data show consistent temperature rise deviations that may be caused by an undocumented endothermic process within the PICA material that is not accurately modeled by the computer code. Predictions of the Stardust heat shield performance based on the present evaluation provide evidence that the maximum adhesive bondline temperature will be much lower than the maximum allowable of 250 C and an earlier design prediction. The re-evaluation also suggests that even with a 25 percent increase in peak heating rates, the total recession of the heat shield would be a small fraction of the as-designed thickness. These results give confidence in the Stardust heat shield design and confirm the potential of PICA material for use in new planetary probe and sample return applications.
Ablation of steel by microsecond pulse trains
NASA Astrophysics Data System (ADS)
Windeler, Matthew Karl Ross
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.
Ablation of film stacks in solar cell fabrication processes
Harley, Gabriel; Kim, Taeseok; Cousins, Peter John
2013-04-02
A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.
Mezzapesa, Francesco P; Sibillano, Teresa; Di Niso, Francesca; Ancona, Antonio; Lugarà, Pietro M; Dabbicco, Maurizio; Scamarcio, Gaetano
2012-01-02
We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop
NASA Technical Reports Server (NTRS)
Sharp, John R.; Page, Arthur T.
2007-01-01
The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.
Preparation And Analysis Of Specimens Of Ablative Materials
NASA Technical Reports Server (NTRS)
Solomon, William C.
1994-01-01
Procedure for chemical analysis of specimens of silicone-based ablative thermal-insulation materials SLA-561 and MA25 involves acid digestion of specimens to prepare them for analysis by inductively-coupled-plasma/atomic-emission spectroscopy (ICP/AES). In comparison with atomic-absorption spectroscopy (AAS), ICP/AES is faster and more accurate than AAS. Results of analyses stored in data base, used to trace variations in concentrations of chemical elements in materials during long-term storage, and used in timely manner in investigations of failures. Acid-digestion portion of procedure applied to other thermal-insulation materials containing room-temperature-vulcanizing silicones and enables instrumental analysis of these materials.
In Depth Analysis of AVCOAT TPS Response to a Reentry Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, E. V.; Kumar, Rakesh; Levin, D. A.
2011-05-20
Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work ismore » to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.« less
Femtosecond laser fluence based nanostructuring of W and Mo in ethanol
NASA Astrophysics Data System (ADS)
Bashir, Shazia; Rafique, Muhammad Shahid; Nathala, Chandra Sekher; Ajami, Ali Asghar; Husinsky, Wolfgang
2017-05-01
The effect of femtosecond laser fluence on nanostructuring of Tungsten (W) and Molybdenum (Mo) has been investigated after ablation in ethanol environment. A Ti: Sapphire laser (800 nm, 30 fs) at fluences ranging from 0.6 to 5.7 J cm-2 was employed to ablate targets. The growth of structures on the surface of irradiated targets is investigated by Field Emission Scanning Electron Microscope (FESEM) analysis. The SEM was performed for both central as well as the peripheral ablated regions. It is observed that both the development and shape of nanoscale features is dependent upon deposited energies to the target surface as well as nature of material. Nanostructures grown on Mo are more distinct and well defined as compared to W. At central ablated areas of W, unorganized Laser Induced Periodic Surface Structures (LIPSS) are grown at low fluences, whereas, nonuniform melting along with cracking is observed at higher fluences. In case of Mo, well-defined and organized LIPSS are observed for low fluences. With increasing fluence, LIPSS become unorganized and broken with an appearance of cracks and are completely vanished with the formation of nanoscale cavities and conical structures. In case of peripheral ablated areas broken and bifurcated LIPSS are grown for all fluences for both materials. The, ablated diameter, ablation depth, ablation rate and the dependence of periodicity of LIPSS on the laser fluence are also estimated for both W and Mo. Parametric instabilities of laser-induced plasma along with generation and scattering of surface plasmons is considered as a possible cause for the formation of LIPSS. For ethanol assisted ablation, the role of bubble cavitation, precipitation, confinement and the convective flow is considered to be responsible for inducing increased hydrodynamic instabilities at the liquid-solid interface.
Laser ablation with applied magnetic field for electric propulsion
NASA Astrophysics Data System (ADS)
Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc
2012-10-01
Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C
NASA Astrophysics Data System (ADS)
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-01
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design
NASA Technical Reports Server (NTRS)
Dec, John A.; Braun, Robert D.
2005-01-01
A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.
An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design
NASA Technical Reports Server (NTRS)
Dec, John A.; Braun, Robert D.
2006-01-01
A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-14
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr 0.8 Ti 0.2 C 0.74 B 0.26 ) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-01-01
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000–3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr–Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic’s oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance. PMID:28613275
Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.
2008-11-01
We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1979-01-01
A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.
Investigations on laser hard tissue ablation under various environments
NASA Astrophysics Data System (ADS)
Kang, H. W.; Oh, J.; Welch, A. J.
2008-06-01
The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 µm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Richard H., E-mail: rmars1@lsuhsc.edu; Avila, Edward K., E-mail: avilae@mskcc.org; Solomon, Stephen B., E-mail: solomons@mskcc.org
PurposeTo assess feasibility of intraoperative neurophysiologic monitoring (IONM) during image-guided, percutaneous thermal ablation of tumors.Materials and MethodsFrom February 2009 to October 2013, a retrospective review of all image-guided percutaneous thermal ablation interventions using IONM was performed and data was compiled using electronic medical records and imaging studies.ResultsTwelve patients were treated in 13 ablation interventions. In 4 patients, real-time feedback from the monitoring neurologist was used to adjust applicator placement and ablation settings. IONM was technically feasible in all procedures and there were no complications related to monitoring or ablation. All nerves at risk remained intact and of the 11 patientsmore » who could be followed, none developed new nerve deficit up to a minimum of 2 months after ablation.ConclusionIONM is safe and feasible for use during image-guided thermal ablation of tumors in the vicinity of nerves. Outcomes in this study demonstrate its potential utility in image-guided ablation interventions.« less
NASA Astrophysics Data System (ADS)
Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin
2006-09-01
Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.
Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells
NASA Technical Reports Server (NTRS)
Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, Dinesh; Kazemba, Cole D.; Venkatapathy, E.
2016-01-01
This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles.
Ames Research Center Mars/Pathfinder Heat Shield Design Verification ARC-JET Test
NASA Technical Reports Server (NTRS)
Tran, Huy K.; Hui, Frank; Wercinski, Paul; Cartledge, Alan; Tauber, Mike; Tran, Duoc T.; Chen, Y. K.; Arnold, James O. (Technical Monitor)
1995-01-01
Design verification tests were performed on samples representing the aerobrake of the Mars/Pathfinder vehicle. The test specimens consisted of the SLA-561V ablator bonded to the honeycomb structure. The primary objective was to evaluate the ablation materials performance and to measure temperatures within the ablator, at the structural bondline and at the back sheet of the honeycomb structure. Other objectives were to evaluate the effect of ablative repair plug material treatment and voids in the heat shield. A total of 29 models were provided for testing in the Ames 60MW arc-jet facility. Of these, 23 models were flat-faced and six remaining models were curved edge ones, intended to simulate the conditions on the curved rim of the forebody where the maximum shear occurred. Eight sets of test conditions were used. The stagnation point heating rates varied from 47 to 240 W/cm2 and the stagnation pressures from 0.15 to 0.27 atm. (The maximum flight values are 132 W/cm2 and 0.25 atm) The majority of these runs were made at a nominal stagnation pressure of 0.25 atm. Two higher pressure runs were made to check the current (denser) ablation material for spallation, or other forms of thermal stress failure. Over 60% of the flatfaced models yielded good thermocouple data and all produced useful surface recession information. Of the five curved-edge models that were tested, only one gave good data; the remaining ones experienced model-holder failure. The test results can be summarized by noting that no failure of the ablative material was observed on any model. Also, the bondline temperature design limit of 250 C was never reached within an equivalent flight time despite a stagnation point heat load that exceeded the maximum flight value by up to 130%. At heating rates of over 200W/cm2 and stagnation pressures of 0.25 atm, or greater, the average surface recessions exceeded 0.5 cm on some models. The surface roughness increased dramatically at pressures above 0.25 atm and was four times greater at 0.27 atm than at 0.25 atm. Procured repair plug material performed much better than room-temperature cured plugs, as observed in the previous tests. Voids in the ablator did not increase local temperatures and gaps did not grow during testing.
Apparatus for depositing a low work function material
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2006-10-10
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Synthetic thrombus model for in vitro studies of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, R.E.; Trajkovska, K.
1998-07-01
Laser thrombolysis is the controlled ablation of a thrombus (blood clot) blockage in a living arterial system. Theoretical modeling of the interaction of laser light with thrombi relies on the ability to perform in vitro experiments with well characterized surrogate materials. A synthetic thrombus formulation may offer more accurate results when compared to in vivo clinical experiments. The authors describe the development of new surrogate materials based on formulations incorporating chick egg, guar gum, modified food starch, and a laser light absorbing dye. The sound speed and physical consistency of the materials were very close to porcine (arterial) and humanmore » (venous) thrombi. Photographic and videotape recordings of pulsed dye laser ablation experiments under various experimental conditions were used to evaluate the new material as compared to in vitro tests with human (venous) thrombus. The characteristics of ablation and mass removal were similar to that of real thrombi, and therefore provide a more realistic model for in vitro laser thrombolysis when compared to gelatin.« less
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved down selecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt. In FY13, more advanced testing and modeling of the down selected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Anna J., E-mail: ajmoreland@gmail.com; Lubner, Meghan G., E-mail: mlubner@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org
2015-06-15
PurposeTo evaluate whether thermoreversible poloxamer 407 15.4 % in water (P407) can protect non-target tissues adjacent to microwave (MW) ablation zones in a porcine model.Materials and MethodsMW ablation antennas were placed percutaneously into peripheral liver, spleen, or kidney (target tissues) under US and CT guidance in five swine such that the expected ablation zones would extend into adjacent diaphragm, body wall, or bowel (non-target tissues). For experimental ablations, P407 (a hydrogel that transitions from liquid at room temperature to semi-solid at body temperature) was injected into the potential space between target and non-target tissues, and the presence of a gel barriermore » was verified on CT. No barrier was used for controls. MW ablation was performed at 65 W for 5 min. Thermal damage to target and non-target tissues was evaluated at dissection.ResultsAntennas were placed 7 ± 3 mm from the organ surface for both control and gel-protected ablations (p = 0.95). The volume of gel deployed was 49 ± 27 mL, resulting in a barrier thickness of 0.8 ± 0.5 cm. Ablations extended into non-target tissues in 12/14 control ablations (mean surface area = 3.8 cm{sup 2}) but only 4/14 gel-protected ablations (mean surface area = 0.2 cm{sup 2}; p = 0.0005). The gel barrier remained stable at the injection site throughout power delivery.ConclusionWhen used as a hydrodissection material, P407 protected non-targeted tissues and was successfully maintained at the injection site for the duration of power application. Continued investigations to aid clinical translation appear warranted.« less
Development of Low Density Flexible Carbon Phenolic Ablators
NASA Technical Reports Server (NTRS)
Stackpole, Mairead; Thornton, Jeremy; Fan, Wendy; Agrawal, Parul; Doxtad, Evan; Gasch, Matt
2011-01-01
Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (0.27g/cm3) coupled with efficient ablative capability at high heat fluxes. Under the Orion program, PICA was also shown to be capable of both ISS and lunar return missions however some unresolved issues remain for its application in a tiled configuration for the Orion-specific design. In particular, the problem of developing an appropriate gap filler resulted in the Orion program selecting AVCOAT as the primary heatshield material over PICA. We are currently looking at alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA that will address some of the design issues faced in the application of a tiled PICA heat shield. These new materials are viable TPS candidates for upcoming NASA missions and as material candidates for private sector Commercial Orbital Transportation Services (COTS). This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as arc jet and LHMEL screening test results.
Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy
2016-01-01
Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361
Patterning of OPV modules by ultra-fast laser
NASA Astrophysics Data System (ADS)
Kubiš, Peter; Lucera, Luca; Guo, Fei; Spyropolous, George; Voigt, Monika M.; Brabec, Christoph J.
2014-10-01
A novel production process combining slot-die coating, transparent flexible IMI (ITO-Metal-ITO) electrodes and ultra-fast laser ablation can be used for the realization of P3HT:PCBM based thin film flexible OPV modules. The fast and precise laser ablation allows an overall efficiency over 3 % and a device geometric fill factor (GFF) over 95 %. Three functional layers can be ablated using the same wavelength only with varying the laser fluence and overlap. Different OPV device architectures with multilayers utilizing various materials are challenging for ablation but can be structured by using a systematical approach.
Femtosecond ablation of ultrahard materials
NASA Astrophysics Data System (ADS)
Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.
Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.
Radio-physical properties of radiotransparent thermal protection materials in ablation mode
NASA Astrophysics Data System (ADS)
Petrovskiy, V. P.; Pakhomov, E. P.; Politiko, A. A.; Semenenko, V. N.; Chistyaev, V. A.; Balakirev, B. A.; Pervov, A. Yu; Kamalov, A. D.; Sotskova, L. P.
2018-01-01
Experimental method for assessing the impact of the effects of high-temperature ablation processes on the radio physical characteristics of radiotransparent thermal protection materials (RTPM) is developed. Researches for the following RTPM with various structures of glass fillers are completed: press material (radiotransparent thermal protection press material or RTP-200); glass-fiber laminate (glass-fiber radiotransparent organic ceramic matrix or GFR-CM); reinforced composite material of class SiO2-SiO2 (high-temperature radiotransparent ceramic organic matrix or HTRC-OM). The influence of physicochemical transformations in the surface layer of RTPM on transmission and reflection coefficients of electromagnetic waves of RTPM samples and on the value of their complex permittivity is determined.
Cork-resin ablative insulation for complex surfaces and method for applying the same
NASA Technical Reports Server (NTRS)
Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)
1980-01-01
A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.
Constraints on Meteoric Smoke Composition and Meteoric Influx Using SOFIE Observations With Models
NASA Astrophysics Data System (ADS)
Hervig, Mark E.; Brooke, James S. A.; Feng, Wuhu; Bardeen, Charles G.; Plane, John M. C.
2017-12-01
The composition of meteoric smoke particles in the mesosphere is constrained using measurements from the Solar Occultation For Ice Experiment (SOFIE) in conjunction with models. Comparing the multiwavelength observations with models suggests smoke compositions of magnetite, wüstite, magnesiowüstite, or iron-rich olivine. Smoke compositions of pure pyroxene, hematite, iron-poor olivine, magnesium silicate, and silica are excluded, although this may be because these materials have weak signatures at the SOFIE wavelengths. Information concerning smoke composition allows the SOFIE extinction measurements to be converted to smoke volume density. Comparing the observed volume density with model results for varying meteoric influx (MI) provides constraints on the ablated fraction of incoming meteoric material. The results indicate a global ablated MI of 3.3 ± 1.9 t d-1, which represents only iron, magnesium, and possibly silica, given the smoke compositions indicated here. Considering the optics and iron content of individual smoke compositions gives an ablated Fe influx of 1.8 ± 0.9 t d-1. Finally, the global total meteoric influx (ablated plus surviving) is estimated to be 30 ± 18 t d-1, when considering the present results and a recent description of the speciation of meteoric material.
Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle
Kühler, Paul; Puerto, Daniel; Mosbacher, Mario; Leiderer, Paul; Garcia de Abajo, Francisco Javier
2013-01-01
Summary In this work we analyze the ablation dynamics of crystalline Si in the intense near field generated by a small dielectric particle located at the material surface when being irradiated with an infrared femtosecond laser pulse (800 nm, 120 fs). The presence of the particle (7.9 μm diameter) leads to a strong local enhancement (ca. 40 times) of the incoming intensity of the pulse. The transient optical response of the material has been analyzed by means of fs-resolved optical microscopy in reflection configuration over a time span from 0.1 ps to about 1 ns. Characteristic phenomena like electron plasma formation, ultrafast melting and ablation, along with their characteristic time scales are observed in the region surrounding the particle. The use of a time resolved imaging technique allows us recording simultaneously the material response at ordinary and large peak power densities enabling a direct comparison between both scenarios. The time resolved images of near field exposed regions are consistent with a remarkable temporal shift of the ablation onset which occurs in the sub-picosend regime, from about 500 to 800 fs after excitation. PMID:24062976
Microdrilling of PCB substrate using DPSS 3rd harmonic laser
NASA Astrophysics Data System (ADS)
Kim, J. G.; Chang, Won Seok; Yoon, Kyung Ku; Jeong, Sungho; Shin, Bo Sung; Whang, Kyung Hyun
2003-02-01
Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of through and blind hope in Cu/PI/Cu substrate with the UV DPSSL and a scanning device is investigated by both experimental and numerical methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the multi path for through hole with high energy density and we use Archimedes spiral path for blind hole with different energy densities to ablate different material. Furthermore, Matlab simulations considering the energy threshold of material is performed to anticipate the ablation shape according to the duplication of pulse, and FEM thermal analysis is used to predict the ablation depth of copper. This study would be widely applicable to various laser micromachining applications including through and blind hole micro-drilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzles amongst others.
Development of Processing Techniques for Advanced Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar
1997-01-01
Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.
The Femtosecond Laser Ablation on Ultrafine-Grained Copper
NASA Astrophysics Data System (ADS)
Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi
2018-07-01
To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.
The Femtosecond Laser Ablation on Ultrafine-Grained Copper
NASA Astrophysics Data System (ADS)
Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi
2018-05-01
To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.
NASA Astrophysics Data System (ADS)
Cheng, Joyce Y.; Fan, Kenneth; Fried, Daniel
2006-02-01
One perceived disadvantage of caries removal using lasers is the loss of the tactile feedback associated with the handpiece. However, alternative methods of acoustic and optical feedback become available with the laser that can be exploited to provide information about the chemical composition of the material ablated, the ablation efficiency and rate, the depth of the incision, and the surface and plume temperature during ablation. Such information can be used to increase the selectivity of ablation, avoid peripheral thermal damage and excessive heat deposition in the tooth, and provide a mechanism of robotic automation. The objective of this study was to test the hypothesis that a compact fiberoptic spectrometer could be used to differentiate between the ablation of sound and carious enamel and dentin and between dental hard tissues and composite. Sound and carious tooth surfaces along with composite restorative materials were scanned with λ=0.355, 2.79 and 9.3 μm laser pulses at irradiation intensities ranging from 0.5-100 J/cm2 and spectra were acquired from λ=250-900-nm using a compact fiber-optic spectrometer. Emission spectra varied markedly with the laser wavelength and pulse duration. Optical feedback was not successful in differentiating between sound and carious enamel and dentin even with the addition of various chromophores to carious lesion areas. However, the spectral feedback was successfully used to differentiate between composites and sound enamel and dentin enabling the selective removal of composite from tooth surfaces using a computer controlled λ=9.3-μm pulsed CO II laser and scanning system.
Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement
NASA Technical Reports Server (NTRS)
Harris, Michael F.; Vu, Bruce T.
2012-01-01
CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.
Microscale Modeling of Porous Thermal Protection System Materials
NASA Astrophysics Data System (ADS)
Stern, Eric C.
Ablative thermal protection system (TPS) materials play a vital role in the design of entry vehicles. Most simulation tools for ablative TPS in use today take a macroscopic approach to modeling, which involves heavy empiricism. Recent work has suggested improving the fidelity of the simulations by taking a multi-scale approach to the physics of ablation. In this work, a new approach for modeling ablative TPS at the microscale is proposed, and its feasibility and utility is assessed. This approach uses the Direct Simulation Monte Carlo (DSMC) method to simulate the gas flow through the microstructure, as well as the gas-surface interaction. Application of the DSMC method to this problem allows the gas phase dynamics---which are often rarefied---to be modeled to a high degree of fidelity. Furthermore this method allows for sophisticated gas-surface interaction models to be implemented. In order to test this approach for realistic materials, a method for generating artificial microstructures which emulate those found in spacecraft TPS is developed. Additionally, a novel approach for allowing the surface to move under the influence of chemical reactions at the surface is developed. This approach is shown to be efficient and robust for performing coupled simulation of the oxidation of carbon fibers. The microscale modeling approach is first applied to simulating the steady flow of gas through the porous medium. Predictions of Darcy permeability for an idealized microstructure agree with empirical correlations from the literature, as well as with predictions from computational fluid dynamics (CFD) when the continuum assumption is valid. Expected departures are observed for conditions at which the continuum assumption no longer holds. Comparisons of simulations using a fabricated microstructure to experimental data for a real spacecraft TPS material show good agreement when similar microstructural parameters are used to build the geometry. The approach is then applied to investigating the ablation of porous materials through oxidation. A simple gas surface interaction model is described, and an approach for coupling the surface reconstruction algorithm to the DSMC method is outlined. Simulations of single carbon fibers at representative conditions suggest this approach to be feasible for simulating the ablation of porous TPS materials at scale. Additionally, the effect of various simulation parameters on in-depth morphology is investigated for random fibrous microstructures.
Micrometeoroid ablation simulated in the laboratory
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.
2016-04-01
A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
Reflectivity and laser ablation of ZrB2/Cu ultra high temperature ceramic
NASA Astrophysics Data System (ADS)
Yan, Zhenyu; Ma, Zhuang; Zhu, Shizhen; Liu, Ling; Xu, Qiang
2013-05-01
Ultra high temperature ceramics (UHTCs) were thought to be candidates for laser protective materials due to their high melting point, thermal shock and ablation resistance. The ablation behaviors of UHTCs like ZrB2 and its composite had been intensely investigated by the means of arc, plasma, oxyacetylene ablation. However, the ablation behavior under laser irradiation was still unknown by now. In this paper, the dense bulk composites of ZrB2/Cu were successfully sintered by spark plasma sintering (SPS) at 1650 degree C for 3min. The reflectivity of the composites measured by spectrophotometry achieved 60% in near infrared range and it decreased with the increasing wavelength of incident light. High intensity laser ablation was carried out on the ZrB2/Cu surface. The phase composition and microstructure changes before and after laser irradiation were characterized by X-ray diffraction and SEM respectively. The results revealed that the oxidation and melting were the main mechanisms during the ablation processing.
Morphology and mechanisms of picosecond ablation of metal films on fused silica substrates
NASA Astrophysics Data System (ADS)
Bass, Isaac L.; Negres, Raluca A.; Stanion, Ken; Guss, Gabe; Keller, Wesley J.; Matthews, Manyalibo J.; Rubenchik, Alexander M.; Yoo, Jae Hyuck; Bude, Jeffrey D.
2016-12-01
The ablation of magnetron sputtered metal films on fused silica substrates by a 1053 nm, picosecond class laser was studied as part of a demonstration of its use for in-situ characterization of the laser spot under conditions commonly used at the sample plane for laser machining and damage studies. Film thicknesses were 60 and 120 nm. Depth profiles and SEM images of the ablation sites revealed several striking and unexpected features distinct from those typically observed for ablation of bulk metals. Very sharp thresholds were observed for both partial and complete ablation of the films. Partial film ablation was largely independent of laser fluence with a surface smoothness comparable to that of the unablated surface. Clear evidence of material displacement was seen at the boundary for complete film ablation. These features were common to a number of different metal films including Inconel on commercial neutral density filters, stainless steel, and aluminum. We will present data showing the morphology of the ablation sites on these films as well as a model of the possible physical mechanisms producing the unique features observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akural, Etem; Ojala, Risto O.; Jaervimaeki, Voitto
ObjectiveThe purpose of this study was to evaluate the feasibility, the initial accuracy, and the effects of the MR-guided neurolytic celiac plexus ablation as a method to treat cancer-induced chronic abdominal pain. Thirteen celiac plexus ablations were performed for 12 patients. A 0.23-T open MRI scanner with optical navigation was used for procedural guidance. As an adjunct to the MR-guided needle positioning, the needle location was confirmed with saline injection and consequent MR imaging (STIR sequence). The spread of the ablative injection material (alcohol-lidocaine mix) was observed by repeating this sequence after the therapeutic injection. Pain scores from seven patientsmore » (eight ablations) were used to assess the therapy effect. MR guidance allowed adequate needle positioning and visualization of injection material in all cases. The rest pain scores significantly decreased from 4 (median) at baseline to 1 (median) at 2 weeks (p < 0.05). Average and worst pain experienced during the past week were significantly lower at the 2-week time point compared with the baseline (p < 0.05). However, the intervention did not result in reduction of opioid use at 2 weeks.MR guidance is an accurate and safe method for celiac plexus ablation with positive therapeutic effect.« less
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.
2015-09-01
For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de
2012-08-15
Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less
Effect of ZrO2 Powders on the Pyrolysis of Polycarbosilanes Coating Under Laser Ablation
NASA Astrophysics Data System (ADS)
Cheng, Han; Chen, Zhaofeng; Tao, Jie; Yan, Bo; Li, Cong; Wang, Liangbing; Zhang, Ying; Fang, Dan; Wan, Shuicheng; Wu, Wangping
Aircrafts hold the outstanding mastery of the sky in modern wars, however the laser beam weapons can carry out laser attacking to aircrafts. The purpose of the present paper is to research on a new type laser protective material. Polycarbosilanes (PCS)/divinylbenzene mixtures containing ZrO2 powders were brushed to the surface of the aluminum alloy plates and then cured at 150°C for 6 h. The PCS-coated plates were ablated by laser for 3 s. The phase identification of as-ablated powders was examined by X-ray diffraction. The results indicated that the as-ablated powders of cured PCS were composed of major phase β-SiC and smaller amounts of free carbon. The PCS composite coating played a certain role of laser ablation resistance. The effect of added ZrO2 powders on the pyrolysis of PCS-coating under laser ablation is conspicuous.
NASA Astrophysics Data System (ADS)
Akcaalan, Onder; Kalaycioglu, Hamit; Ilday, F. Omer
Although fs fiber laser systems are powerful technologies for material and tissue processing, limited ablation rates and high energy are drawbacks. Recently, we identified a new regime of laser-material interaction, ablation-cooled laser material removal, where the repetition rate has to be high enough so that the targeted spot size cannot cool down substantially by heat conduction which scales down ablation threshold by several orders of magnitude and reduces thermal effects to the bulk of the target. This opens the door to simplified laser systems for processing. In order to exploit this regime in tissue processing, a compact all-PM-fiber laser amplifier system with an intra-burst repetition rate of 1.5 GHz is developed on a 40 x 65 cm platform. The system is able to produce bursts ranging from 20-ns to 65-ns duration with 20 uJ to 80 uJ total energy, respectively, and pulses with up to 2 uJ individual energy and burst repetition rate ranging from 25 kHz to 200 kHz. The seed signal is generated by a home-built all-normal dispersion oscillator with 385 MHz repetition rate and converted to approximately 1.5 GHz by a multiplier. Amplified pulses are compressed to approximately 250-fs, the shortest pulse width for burst-mode fiber laser systems known to date.
The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.
2007-09-01
Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less
NASA Astrophysics Data System (ADS)
Guan, Yiwen; Li, Jiang; Liu, Yang
2017-07-01
Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.
NASA Astrophysics Data System (ADS)
Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack
2015-03-01
The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-06-27
Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
Overview of the CHarring Ablator Response (CHAR) Code
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin
2016-01-01
An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.
Overview of the CHarring Ablator Response (CHAR) Code
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin
2016-01-01
An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.
Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Kabana, W. P.
1975-01-01
The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.
The effect of elastic modulus on ablation catheter contact area.
Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R
2015-02-21
Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.
Effect of water on dental material ablation of the Er:YAG laser
NASA Astrophysics Data System (ADS)
Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.
1994-09-01
It is understood that if a laser is to replace the dental high speed handpiece it must be able to ablate dental materials which are present in teeth being treated with the laser. It is the intent of this paper to evaluate the effects of the Er:YAG laser on dental composite restorative material concentrating on the etch rate with and without waterspray. Composite dental material is used to form plugs of known thickness and the etch rate of the Er:YAG laser on this material is determined. The results are compared with those obtained from studies of the Er:YAG on dentin and enamel. In these studies the water reduced the efficiency of the Er:YAG laser 15 - 20% on these tissues.
Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.
Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E
2016-06-09
Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale, results from a post-test microscopy analysis are presented.
Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron
Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.
2016-01-01
Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale, results from a post-test microscopy analysis are presented. PMID:27340820
Numerical-experimental analysis of a carbon-phenolic composite via plasma jet ablation test
NASA Astrophysics Data System (ADS)
Guilherme Silva Pesci, Pedro; Araújo Machado, Humberto; Silva, Homero de Paula e.; Cley Paterniani Rita, Cristian; Petraconi Filho, Gilberto; Cocchieri Botelho, Edson
2018-06-01
Materials used in space vehicles components are subjected to thermally aggressive environments when exposed to atmospheric reentry. In order to protect the payload and the vehicle itself, ablative composites are employed as TPS (Thermal Protection System). The development of TPS materials generally go through phases of obtaining, atmospheric reentry tests and comparison with a mathematical model. The state of the art presents some reentry tests in a subsonic or supersonic arc-jet facility, and a complex type of mathematical model, which normally requires large computational cost. This work presents a reliable method for estimate the performance of ablative composites, combining empirical and experimental data. Tests of composite materials used in thermal protection systems through exposure to a plasma jet are performed, where the heat fluxes emulate those present in atmospheric reentry of space vehicles components. The carbon/phenolic material samples have been performed in the hypersonic plasma tunnel of Plasma and Process Laboratory, available in Aeronautics Institute of Technology (ITA), by a plasma torch with a 50 kW DC power source. The plasma tunnel parameters were optimized to reproduce the conditions close to the critical re-entry point of the space vehicles payloads developed by the Aeronautics and Space Institute (IAE). The specimens in study were developed and manufactured in Brazil. Mass loss and specific mass loss rates of the samples and the back surface temperatures, as a function of the exposure time to the thermal flow, were determined. A computational simulation based in a two-front ablation model was performed, in order to compare the tests and the simulation results. The results allowed to estimate the ablative behavior of the tested material and to validate the theoretical model used in the computational simulation for its use in geometries close to the thermal protection systems used in the Brazilian space and suborbital vehicles.
Low cost fabrication of ablative heat shields
NASA Technical Reports Server (NTRS)
Cecka, A. M.; Schofield, W. C.
1972-01-01
A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.
Validation of a Thermo-Ablative Model of Elastomeric Internal Insulation Materials
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2017-01-01
In thermo-ablative material modeling, as in many fields of analysis, the quality of the existing models significantly exceeds that of the experimental data required for their validation. In an effort to narrow this gap, a laboratory-scale internal insulation test bed was developed that exposes insulation samples to realistic solid rocket motor (SRM) internal environments while being instrumented to record real-time rates of both model inputs (i.e., chamber pressure, total surface heat flux, and radiative heat flux) as well as model outputs (i.e., material decomposition depths (MDDs) and in-depth material temperatures). In this work, the measured SRM internal environment parameters were used in conjunction with equilibrium thermochemistry codes as inputs to one-dimensional thermo-ablative models of the PBINBR and CFEPDM insulation samples used in the lab-scale test firings. The computed MDD histories were then compared with those deduced from real-time X-ray radiography of the insulation samples, and the calculated in-depth temperatures were compared with those measured by embedded thermocouples. The results of this exercise emphasize the challenges of modeling and testing elastomeric materials in SRM environments while illuminating the path forward to improved fidelity.
Numerical analysis of laser ablation using the axisymmetric two-temperature model
NASA Astrophysics Data System (ADS)
Dziatkiewicz, Jolanta; Majchrzak, Ewa
2018-01-01
Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.
Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light
Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE
2011-04-26
Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.
Lee, Kyungmouk Steve; Takaki, Haruyuki; Yarmohammadi, Hooman; Srimathveeravalli, Govindarajan; Luchins, Kerith; Monette, Sébastien; Nair, Sreejit; Kishore, Sirish; Erinjeri, Joseph P.
2017-01-01
Purpose To test the hypothesis that the geometry of probe placement with respect to the pleural puncture site affects the risk of pneumothorax after microwave (MW) ablation in the lung. Materials and Methods Computed tomography–guided MW ablation of the lung was performed in 8 swine under general anesthesia and mechanical ventilation. The orientation of the 17-gauge probe was either perpendicular (90°) or parallel (< 30°) with respect to the pleural puncture site, and the ablation power was 30 W or 65 W for 5 minutes. After MW ablation, swine were euthanized, and histopathologic changes were assessed. Frequency and factors affecting pneumothorax were evaluated by multivariate analysis. Results Among 62 lung MW ablations, 13 (21%) pneumothoraces occurred. No statistically significant difference was noted in the rate of pneumothorax between the perpendicular and the parallel orientations of the probe (31% vs 14%; odds ratio [OR], 2.8; P = .11). The pneumothorax rate was equal for 65-W and 30-W ablation powers (21% and 21%; OR, 1.0; P = .94). Under multivariate analysis, 2 factors were independent positive predictors of pneumothorax: ablation zone inclusive of pleural insertion point (OR, 7.7; P = .02) and time since intubation (hours) (OR, 2.7; P = .02). Conclusions Geometries where the pleural puncture site excluded the ablation zone decreased pneumothorax in swine undergoing MW ablation in the lung. Treatment planning to ensure that the pleural puncture site excludes the subsequent ablation zone may reduce the rate of pneumothorax in patients undergoing MW ablation in the lung. PMID:25753501
Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Betti, R.; Gopalaswamy, V.
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less
Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers
Zhang, H.; Betti, R.; Gopalaswamy, V.; ...
2018-01-16
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less
Wu, Hanping; Wilkins, Luke R.; Ziats, Nicholas P.; Haaga, John R.
2014-01-01
Purpose To examine the accuracy of the unenhanced zone at contrast material–enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Materials and methods Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin–stained images were compared. The areas of DiI bubble–negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. Results The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble–negative zone on fluorescence images was noted at all time points. Conclusion The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013 Online supplemental material is available for this article. PMID:23912621
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-01-01
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications. PMID:26965073
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; ...
2016-03-11
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combinationmore » of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Ultimately, our results allow for improved safety during laser ablation in manufacturing and medical applications.« less
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-03-01
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.
Hihath, Sahar; Santala, Melissa K; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus
2016-03-11
Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jonathan K., E-mail: jonathan.park09@gmail.com; Al-Tariq, Quazi Z., E-mail: qat200@gmail.com; Zaw, Taryar M., E-mail: taryar.zaw@gmail.com
PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5more » patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.« less
A study of phase explosion of metal using high power Nd:YAG laser ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoh, Jack J.; Lee, H. H.; Choi, J. H.
2007-12-12
The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less
Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry
NASA Astrophysics Data System (ADS)
Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.
2014-06-01
Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.
Optical aberrations induced by subclinical decentrations of the ablation pattern
NASA Astrophysics Data System (ADS)
Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo
2000-06-01
Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.
NASA Astrophysics Data System (ADS)
Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.
2018-04-01
A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.
Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl
NASA Astrophysics Data System (ADS)
Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.
2015-10-01
The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.
Simulated Reentry Heating by Torching
NASA Technical Reports Server (NTRS)
Harvey, Gale A.
2008-01-01
The two first order reentry heating parameters are peak heating flux (W/cm2) and peak heat load (kJ/cm2). Peak heating flux (and deceleration, gs) is higher for a ballistic reentry and peak heat load is higher for a lifting reentry. Manned vehicle reentries are generally lifting reentries at nominal 1-5 gs so that personnel will not be crushed by high deceleration force. A few off-nominal manned reentries have experienced 8 or more gs with corresponding high heating flux (but below nominal heat load). The Shuttle Orbiter reentries provide about an order of magnitude difference in peak heating flux at mid-bottom (TPS tiles, approximately 6 W/cm2 or 5 BTU/ft2- sec) and leading edge (RCC, approximately 60 W/cm2 or 50 BTU/ft2- sec). Orion lunar return and Mars sample lander are of the same order of magnitude as orbiter leading edge peak heat loads. Flight temperature measurements are available for some orbiter TPS tile and RCC locations. Return-to-Flight on-orbit tile-repair-candidate-material-heating performance was evaluated by matching propane torch heating of candidate-materials temperatures at several depths to orbiter TPS tile flight-temperatures. Char and ash characteristics, heat expansion, and temperature histories at several depths of the cure-in-place ablator were some of the TPS repair material performance characteristics measured. The final char surface was above the initial surface for the primary candidate (silicone based) material, in contrast to a receded surface for the Apollo-type ablative heat shield material. Candidate TPS materials for Orion CEV (LEO and lunar return), and for Mars sample lander are now being evaluated. Torching of a candidate ablator material, PICA, was performed to match the ablation experienced by the STARDUST PICA heat shield. Torching showed that the carbon fiberform skeleton in a sample of PICA was inhomogeneous in that sample, and allowed measurements (of the clumps and voids) of the inhomogeneity. Additional reentry heating-performance characterizations of high temperature insulation materials were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr
A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.
2011-01-01
The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.
NASA Astrophysics Data System (ADS)
Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.
2006-10-01
High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.
Laser ablation in analytical chemistry - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Richard E.; Mao, Xianglei; Liu, Haichen
Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less
Analysis of internal ablation for the thermal control of aerospace vehicles
NASA Technical Reports Server (NTRS)
Camberos, Jose A.; Roberts, Leonard
1989-01-01
A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.
Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gubin, K. V.; Lotov, K. V.; Trunov, V. I.; Pestryakov, E. V.
2016-09-01
Powerful femtosecond laser pulses that propagate through narrow ablating capillaries cause modification of capillary walls, which is studied experimentally and theoretically. At low intensities, the laser-induced periodic surface structures and porous coating composed of sub-micron particles appear on the walls. At higher intensities, the surface is covered by deposited droplets of the size up to 10 μm. In both cases, the ablated material forms a solid plug that completely blocks the capillary after several hundreds or thousands of pulses. The suggested theoretical model indicates that the plug formation is a universal effect. It must take place in any narrow tube subject to ablation under the action of short laser pulses.
NASA Astrophysics Data System (ADS)
Theobald, W.; Bose, A.; Yan, R.; Betti, R.; Lafon, M.; Mangino, D.; Christopherson, A. R.; Stoeckl, C.; Seka, W.; Shang, W.; Michel, D. T.; Ren, C.; Nora, R. C.; Casner, A.; Peebles, J.; Beg, F. N.; Ribeyre, X.; Llor Aisa, E.; Colaïtis, A.; Tikhonchuk, V.; Wei, M. S.
2017-12-01
Experiments were performed with CH, Be, C, and SiO2 ablators interacting with high-intensity UV laser radiation (5 × 1015 W/cm2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ˜13% instantaneous conversion efficiency), while the amount is a factor of ˜2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. The higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presence of light H ions.
Ablative and transport fractionation of trace elements during laser sampling of glass and copper
NASA Astrophysics Data System (ADS)
Outridge, P. M.; Doherty, W.; Gregoire, D. C.
1997-12-01
The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.
Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor
2010-03-15
A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oelmann, J.; Gierse, N.; Li, C.; Brezinsek, S.; Zlobinski, M.; Turan, B.; Haas, S.; Linsmeier, Ch.
2018-06-01
Monitoring a sample's material composition became more and more important over the last years for both - industrial process control as well as for post mortem analysis in research and industrial development. Although material composition identification as well as a comparison with standard samples works fine, there is a lack of diagnostics which can provide quantitative information with depth resolution without any standard samples. We present a novel method utilizing a residual gas analysis with quadrupole mass spectrometry after picosecond laser-induced ablation and release of volatile species. In the present experiment, well characterized multilayer thin film solar cells (μc-Si:H and a-Si:D as p-i-n-junctions on ZnO:Al electrodes) are used as a set of well characterized material samples to demonstrate the capabilities of the new method. The linearity of the spectrometer signal to gas pressure simplifies its calibration and reduces its uncertainties in comparison with other analysis techniques, although high vacuum conditions (10-6 hPa to 10-7 hPa) are required to reach high sensitivity better than the percent-range. Moreover, the laser-ablation based sample analysis requires no preparation of the sample and is flexible regarding ablation rates. The application of a picosecond laser pulse ensures that the thermal penetration depth of the laser is in the same order of magnitude as the ablation rate, which enables to achieve depth resolutions in the order of 100 nm and avoids matrix mixing effects at the edge of the laser-induced crater in the sample.
Material Damage System and Method for Determining Same
NASA Technical Reports Server (NTRS)
Okojie, Robert (Inventor)
2017-01-01
A system and method for determining a change in a thickness and temperature of a surface of a material are disclosed herein. The system and the method are usable in a thermal protection system of a space vehicle, such as an aeroshell of a space vehicle. The system and method may incorporate micro electric sensors arranged in a ladder network and capacitor strip sensors. Corrosion or ablation causes a change in an electrical property of the sensors. An amount of or rate of the corrosion or the ablation and a temperature of the material is determined based on the change of the electrical property of the sensors.
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.
2016-11-01
The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.
Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS
NASA Technical Reports Server (NTRS)
Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt
2016-01-01
Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D K; Prisbrey, S T; Page, R H
2008-05-28
We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. Amore » VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.« less
NASA Astrophysics Data System (ADS)
Mazzaracchio, Antonio; Marchetti, Mario
2010-03-01
Implicit ablation and thermal response software was developed to analyse and size charring ablative thermal protection systems for entry vehicles. A statistical monitor integrated into the tool, which uses the Monte Carlo technique, allows a simulation to run over stochastic series. This performs an uncertainty and sensitivity analysis, which estimates the probability of maintaining the temperature of the underlying material within specified requirements. This approach and the associated software are primarily helpful during the preliminary design phases of spacecraft thermal protection systems. They are proposed as an alternative to traditional approaches, such as the Root-Sum-Square method. The developed tool was verified by comparing the results with those from previous work on thermal protection system probabilistic sizing methodologies, which are based on an industry standard high-fidelity ablation and thermal response program. New case studies were analysed to establish thickness margins on sizing heat shields that are currently proposed for vehicles using rigid aeroshells for future aerocapture missions at Neptune, and identifying the major sources of uncertainty in the material response.
NASA Astrophysics Data System (ADS)
Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.
1996-04-01
Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.
Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.
Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel
2017-04-01
Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.
3D Multifunctional Ablative Thermal Protection System
NASA Technical Reports Server (NTRS)
Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken
2015-01-01
NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
Focused ion beam source method and apparatus
Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.
2000-01-01
A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.
Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.
2012-01-01
Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data
Multiscale Modeling of Ablation and Pyrolysis in PICA-Like materials
NASA Technical Reports Server (NTRS)
Lachaud, Jean; Mansour, Nagi N.
2008-01-01
During atmospheric entry of planetary probes, the thermal protection system (TIPS) of the probe is exposed to high temperatures under low pressures. In these conditions, carbonous fibrous TIPS materials may undergo oxidation leading to mass loss and wall recession called ablation. This work aims to improve the understanding of material/environment interactions through a study of the coupling between oxygen transport in the Knudsen regime, heterogeneous oxidation of carbon, and surface recession. A 3D Random Walk Monte Carlo simulation tool is used for this study. The fibrous architecture of a model material, consisting of high porosity random array of carbon fibers, is numerically represented on a 3D Cartesian grid. Mass transport in the Knudsen regime from the boundary layer to the surface, and inside this porous material is simulated by random walk. A reaction probability is used to simulate the heterogeneous oxidation reaction. The surface recession of the fibers is followed by front tracking using a simplified marching cube approach. The output data of the simulations are ablation velocity and dynamic evolution of the material porosity. A parametric study is carried out to analyze the material behavior as a function of Knudsen number for the porous media (length of the mean free path compared to the mean pore diameter) and the intrinsic reactivity of the carbon fibers. The model is applied to Stardust mission reentry conditions and explains the unexpected behavior of the TIPS material that underwent mass loss in volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicklein, S.; Koehl, A.; Dittmann, R.
2012-09-24
By combining structural and chemical thin film analysis with detailed plume diagnostics and modeling of the laser plume dynamics, we are able to elucidate the different physical mechanisms determining the stoichiometry of the complex oxides model material SrTiO{sub 3} during pulsed laser deposition. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. On the one hand, a progressive preferential ablation of the Ti species with increasing laser fluence leads to a regime ofmore » Ti-rich thin film growth at larger fluences. On the other hand, in the low laser fluence regime, a more effective scattering of the lighter Ti plume species results in Sr rich films.« less
Laser ablation under different electron heat conduction models in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Li, Shuanggui; Ren, Guoli; Huo, Wen Yi
2018-06-01
In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.
Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery
NASA Astrophysics Data System (ADS)
Girard, Guillaume; Zhou, Sheng; Bigaouette, Nicolas; Brunette, Isabelle; Chaker, Mohamed; Germain, Lucie; Lavertu, Pierre-Luc; Martin, François; Olivié, Gilles; Ozaki, Tsuneyuki; Parent, Mireille; Vidal, François; Kieffer, Jean-Claude
2004-10-01
The Femtosecond laser is a very promising tool for performing accurate dissection in various cornea layers. Clearly, the development of this application requires basic knowledge about laser-tissue interaction. One of the most significant parameter in laser applications is the ablation threshold, defined as the minimal laser energy per unit surface required for ablation. This paper investigates the ablation threshold as a function of the laser pulse duration for two corneal layers (endothelium and epithelium) as well as for hydrogel with different hydration degrees. The measured ablation thresholds prove to behave very differently as a function of the pulse duration for the various materials investigated, although the values obtained for the shortest laser pulses are quite similar. Our experimental results are fitted with a simple model for laser-matter interaction in order to determine some intrinsic physical parameters characterizing each target.
Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.
Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F
1991-01-01
The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.
Enhanced ablation of small anodes in a carbon nanotube arc discharge
NASA Astrophysics Data System (ADS)
Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael
2008-11-01
An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).
A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC-Co
NASA Astrophysics Data System (ADS)
See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar
2017-07-01
An investigation on ablation characteristics of 1024 and H10F cobalt cemented tungsten carbide (WC-Co) with a DPSS nanosecond UV laser (50 ns pulse width, 355 nm wavelength, 90 W average power and 10 kHz repetition rate) is presented. The ablation characteristic parameters such as ablation threshold, incubation effect and optical penetration depth were evaluated based on the spot ablation diameter and depth. It was observed that the ablation threshold is significantly influenced by the number of pulses (NOP) and it decreases with increase NOP which is attributed to the incubation effect. Only one ablation region is observed at low laser fluence and an additional molten ablation region is observed at high laser fluence accompanied with cracks. The cracks formation is due to the thermal induced stress and changes in WC microstructure during laser beam irradiation. The crack depth is proportional to the thickness of the molten WC region. The ablation threshold of 1024 WC-Co and H10F WC-Co were found to be Fth1 =4.32 J/cm2 and Fth1 =4.26 J/cm2 respectively. The difference in chemical composition has insignificant effect on the ablation threshold value of the material. The incubation factor and optical penetration depth values of 1024 WC-Co and H10F WC-Co were found to be ξ=0.73, α-1 =411 nm and ξ=0.75, α-1 =397 nm respectively.
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza
2013-01-01
A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.
Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation
Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen
2015-01-01
Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431
Boulyga, Sergei F; Heumann, Klaus G
2005-10-01
Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) was applied to the direct and simultaneous determination of the platinum group elements (PGEs) Pt, Pd, Ru, and Ir in geological and environmental samples. A special laser ablation system with high ablation rates was used, along with sector field ICP-MS. Special attention was paid to deriving the distributions of PGEs in the pulverized samples. IDMS could not be applied to the (mono-isotopic) Rh, but the similar ablation behavior of Ru and Rh allowed Rh to be simultaneously determined via relative sensitivity coefficients. The laser ablation process produces hardly any oxide ions (which usually cause interference in PGE analysis with liquid sample injection), so the ICP-MS can be run in its low mass resolution but high-sensitivity mode. The detection limits obtained for the geological samples were 0.16 ng g(-1), 0.14 ng g(-1), 0.08 ng g(-1), 0.01 ng g(-1) and 0.06 ng g(-1) for Ru, Rh, Pd, Ir and Pt, respectively. LA-ICP-IDMS was applied to different geological reference materials (TDB-1, WGB-1, UMT-1, WMG-1, SARM-7) and the road dust reference material BCR-723, which are only certified for some of the PGEs. Comparisons with certified values as well as with indicative values from the literature demonstrated the validity of the LA-ICP-IDMS method. The PGE concentrations in subsamples of the road dust reference material correspond to a normal distribution, whereas the distributions in the geological reference materials TDB-1, WGB-1, UMT-1, WMG-1, and SARM-7 are more complex. For example, in the case of Ru, a logarithmic normal distribution best fits the analyzed concentrations in TDB-1 subsamples, whereas a pronounced nugget effect was found for Pt in most geological samples.
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Astrophysics Data System (ADS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
First beryllium capsule implosions on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, J. L.; Yi, S. A.; Simakov, A. N.
2016-05-15
The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less
First beryllium capsule implosions on the National Ignition Facility
Kline, J. L.; Yi, S. A.; Simakov, A. N.; ...
2016-05-01
The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less
NASA Technical Reports Server (NTRS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-01-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model
Ahrar, Kamran; Gowda, Ashok; Javadi, Sanaz; Borne, Agatha; Fox, Matthew; McNichols, Roger; Ahrar, Judy U.; Stephens, Clifton; Stafford, R. Jason
2010-01-01
Purpose To characterize the performance of a 980-nm diode laser ablation system in an in vivo tumor model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. The ablation system consisted of a 15-W, 980-nm diode laser, flexible diffusing tipped fiber optic, and 17-gauge internally cooled catheter. Ten immunosuppressed dogs were inoculated subcutaneously with canine transmissible venereal tumor fragments in eight dorsal locations. Laser ablations were performed at 79 sites where inoculations were successful (99%) using powers of 10 W, 12.5 W, and 15 W, with exposure times between 60 and 180 seconds. In 20 cases, multiple overlapping ablations were performed. After the dogs were euthanized, the tumors were harvested, sectioned along the applicator track, measured and photographed. Measurements of ablation zone were performed on gross specimen. Histopathology and viability staining was performed using hematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide hydrogen (NADH) staining. Results Gross pathology confirmed well-circumscribed ablation zone with sharp boundaries between thermally ablated tumor in the center surrounded by viable tumor tissue. When a single applicator was used, the greatest ablation diameters ranged from 12 mm at the lowest dose (10 W, 60 sec) to 26 mm at the highest dose (15 W, 180 sec). Multiple applicators created ablation zones of up to 42 mm in greatest diameter (with the lasers operating at 15 W for 120 sec). Conclusions The new 980-nm diode laser and internally cooled applicator effectively creates large ellipsoid thermal ablations in less than 3 minutes. PMID:20346883
NASA Technical Reports Server (NTRS)
White, Todd Richard; Mahazari, Milad; Bose, Deepak; Santos, Jose Antonio
2013-01-01
The Mars Science Laboratory successfully landed on the Martian surface on August 5th, 2012. The rover was protected from the extreme heating environments of atmospheric entry by an ablative heatshield. This Phenolic Impregnated Carbon Ablator heatshield was instrumented with a suite of embedded thermocouples, isotherm sensors, and pressure transducers. The sensors monitored the in-depth ablator response, as well as the surface pressure at discrete locations throughout the hypersonic deceleration. This paper presents a comparison of the flight data with post-entry estimates. An assessment of the aerothermal environments, as well as the in-depth response of the heatshield material is made, and conclusions regarding the overall performance of the ablator at the suite locations are presented.
Theobald, W.; Bose, A.; Yan, R.; ...
2017-12-08
Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theobald, W.; Bose, A.; Yan, R.
Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less
New Experimental Results of Simulating Micrometeoroid Ablation in the Laboratory
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Thomas, Evan; DeLuca, Michael; Janches, Diego; Munsat, Tobin; Plane, John
2017-04-01
A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A new optical observation setup using a 64 channel PMT system was added to the setup to allow the observation of the ablating particle and deceleration of the particle from the neutral drag. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The new experimental data using aluminum particles suggest that the neutral drag acting of the particle is smaller than expected.
Anode sheath transition in an anodic arc for synthesis of nanomaterials
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2016-06-01
The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.
2006-01-01
As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.
Smolock, Amanda R; Cristescu, Mircea M; Vlaisavljevich, Eli; Gendron-Fitzpatrick, Annette; Green, Chelsey; Cannata, Jonathan; Ziemlewicz, Timothy J; Lee, Fred T
2018-05-01
Purpose To determine the feasibility of creating a clinically relevant hepatic ablation (ie, an ablation zone capable of treating a 2-cm liver tumor) by using robotically assisted sonic therapy (RAST), a noninvasive and nonthermal focused ultrasound therapy based on histotripsy. Materials and Methods This study was approved by the institutional animal use and care committee. Ten female pigs were treated with RAST in a single session with a prescribed 3-cm spherical treatment region and immediately underwent abdominal magnetic resonance (MR) imaging. Three pigs (acute group) were sacrificed immediately following MR imaging. Seven pigs (chronic group) were survived for approximately 4 weeks and were reimaged with MR imaging immediately before sacrifice. Animals underwent necropsy and harvesting of the liver for histologic evaluation of the ablation zone. RAST ablations were performed with a 700-kHz therapy transducer. Student t tests were performed to compare prescribed versus achieved ablation diameter, difference of sphericity from 1, and change in ablation zone volume from acute to chronic imaging. Results Ablation zones had a sphericity index of 0.99 ± 0.01 (standard deviation) (P < .001 vs sphericity index of 1). Anteroposterior and transverse dimensions were not significantly different from prescribed (3.4 ± 0.7; P = .08 and 3.2 ± 0.8; P = .29, respectively). The craniocaudal dimension was significantly larger than prescribed (3.8 ± 1.1; P = .04), likely because of respiratory motion. The central ablation zone demonstrated complete cell destruction and a zone of partial necrosis. A fibrous capsule surrounded the ablation zone by 4 weeks. On 4-week follow-up images, ablation zone volumes decreased by 64% (P < .001). Conclusion RAST is capable of producing clinically relevant ablation zones in a noninvasive manner in a porcine model. © RSNA, 2018.
2011-06-01
recession rate prediction of carbon based, camphor and dry ice at hypersonic velocities...paradichlorobenzene, naphthalene, camphor , and ammonium chloride (Kohlman & Richardson, 1969). Except for dry ice, these materials require stagnation temperatures... Camphor , for example, sublimates at ~170C. With the reestablished interest in expendable ablative heat shields, these past experiences have
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
NASA Astrophysics Data System (ADS)
Winfrey, A. Leigh
Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.
Comparison of the Three NIF Ablators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kritcher, A. L.; Clark, D. S.; Haan, S. W.
Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed sincemore » NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to the respective shots. Each was then scaled to a “full NIF” experiment that could be done using the respective ablators at full NIF power and/or energy, and these scaled-up designs were simulated in detail. (ii) The report also contains a general survey of experimental and simulated results as pertinent to comparing and evaluating the three ablators.« less
Suppression of the Rayleigh Taylor instability and its implication for the impact ignition
NASA Astrophysics Data System (ADS)
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.
2004-12-01
The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.
The effect of asteroid topography on surface ablation deflection
NASA Astrophysics Data System (ADS)
McMahon, Jay W.; Scheeres, Daniel J.
2017-02-01
Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.
Sydnor, Malcolm; Mavropoulos, John; Slobodnik, Natalia; Wolfe, Luke; Strife, Brian; Komorowski, Daniel
2017-07-01
Purpose To compare the short- and long-term (>1 year) efficacy and safety of radiofrequency ablation (ClosureFAST™) versus endovenous laser ablation (980 nm diode laser) for the treatment of superficial venous insufficiency of the great saphenous vein. Materials and methods Two hundred patients with superficial venous insufficiency of the great saphenous vein were randomized to receive either radiofrequency ablation or endovenous laser ablation (and simultaneous adjunctive therapies for surface varicosities when appropriate). Post-treatment sonographic and clinical assessment was conducted at one week, six weeks, and six months for closure, complications, and patient satisfaction. Clinical assessment of each patient was conducted at one year and then at yearly intervals for patient satisfaction. Results Post-procedure pain ( p < 0.0001) and objective post-procedure bruising ( p = 0.0114) were significantly lower in the radiofrequency ablation group. Improvements in venous clinical severity score were noted through six months in both groups (endovenous laser ablation 6.6 to 1; radiofrequency ablation 6.2 to 1) with no significant difference in venous clinical severity score ( p = 0.4066) or measured adverse effects; 89 endovenous laser ablation and 87 radiofrequency patients were interviewed at least 12 months out with a mean long-term follow-up of 44 and 42 months ( p = 0.1096), respectively. There were four treatment failures in each group, and every case was correctable with further treatment. Overall, there were no significant differences with regard to patient satisfaction between radiofrequency ablation and endovenous laser ablation ( p = 0.3009). There were no cases of deep venous thrombosis in either group at any time during this study. Conclusions Radiofrequency ablation and endovenous laser ablation are highly effective and safe from both anatomic and clinical standpoints over a multi-year period and neither modality achieved superiority over the other.
O'Brien, Jeremy T; Williams, Evan R; Holman, Hoi-Ying N
2015-03-03
A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.
NASA Astrophysics Data System (ADS)
Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.
2017-10-01
In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
Microprocessing of ITO and a-Si thin films using ns laser sources
NASA Astrophysics Data System (ADS)
Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.
2005-06-01
Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.
Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)
2002-01-01
The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.
NASA Technical Reports Server (NTRS)
Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj
2013-01-01
The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket and tile materials on shuttle) should be significantly reduced. The conformal ablator design will include a simplified design of seams between gore panels, which should eliminate the need for gap filler design, and should accommodate a wider range of allowable carrier structure imperfections when compared to a rigid material such as PICA.The Conformal TPS development project leverages the past investments made by earlier projects with a goal to develop and deliver a TRL 5 conformal TPS capable of 250 Wcm2 for missions such as MSL or COTS missions. The capabilities goal for the conformal TPS is similar to an MSL design reference mission (250 Wcm2) with matching pressures and shear environments. Both conformal and flexible carbon-felt based materials were successfully tested in stagnation aerothermal environments above 500 Wcm2 under earlier programs. Results on a myriad of materials developed during FY11 were used to determine which materials to start with in FY12. In FY12, the conformal TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a Conformal Ablative TPS. In FY13, development and refining metrics for mission utilization of conformal ablator technology along with assessment for potential mission stakeholders will be carried out.
A Short Review of Ablative-Material Response Models and Simulation Tools
NASA Technical Reports Server (NTRS)
Lachaud, Jean; Magin, Thierry E.; Cozmuta, Ioana; Mansour, Nagi N.
2011-01-01
A review of the governing equations and boundary conditions used to model the response of ablative materials submitted to a high-enthalpy flow is proposed. The heritage of model-development efforts undertaken in the 1960s is extremely clear: the bases of the models used in the community are mathematically equivalent. Most of the material-response codes implement a single model in which the equation parameters may be modified to model different materials or conditions. The level of fidelity of the models implemented in design tools only slightly varies. Research and development codes are generally more advanced but often not as robust. The capabilities of each of these codes are summarized in a color-coded table along with research and development efforts currently in progress.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.
2011-04-01
Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.
Measurement and Control of Electroosmotic Flow in Plastic Microchannels
NASA Astrophysics Data System (ADS)
Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie
2000-11-01
We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.
NASA Astrophysics Data System (ADS)
Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan
2018-01-01
Be-C-W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
Sutcliffe, G D; Milanese, L M; Orozco, D; Lahmann, B; Gatu Johnson, M; Séguin, F H; Sio, H; Frenje, J A; Li, C K; Petrasso, R D; Park, H-S; Rygg, J R; Casey, D T; Bionta, R; Turnbull, D P; Huntington, C M; Ross, J S; Zylstra, A B; Rosenberg, M J; Glebov, V Yu
2016-11-01
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.
Carbon Nanotube-enhanced Carbon-phenolic Ablator Material
NASA Technical Reports Server (NTRS)
Nikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B.; Waid, M.; Maloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.
2006-01-01
Phenolic impregnated carbon ablator (PICA) is a thermal protection system (TPS) material developed at NASA Ames Research Center in the mid-90 s for Discovery missions. It was used on the Stardust return capsule heat shield which successfully executed the highest speed Earth entry to date on January 15, 2006. PICA is a porous fibrous carbon insulation infiltrated with phenolic resin, and is an excellent ablator that is effective for heating rates up to 1000 W/sq cm. It is one of several candidate TPS materials for the next generation of crewed spacecraft for Lunar and Mars missions. We will describe an ongoing research effort at NASA to improve mechanical properties of the phenolic matrix with carbon nanotubes. The aim is two-fold: to increase overall TPS strength during reentry and to improve Micrometeoroid/Orbital Debris (MMOD) protection in space. The former requires at least a good dispersion of nanotubes in phenolic, while the latter also requires covalent bonding between them to couple and transfer impact energy effectively from matrix to nanotubes. We will discuss the required chemical functionalization of nanotubes, processing issues and test results.
Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation
NASA Astrophysics Data System (ADS)
Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.
2006-03-01
Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.
Process for laser machining and surface treatment
Neil, George R.; Shinn, Michelle D.
2004-10-26
An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.
LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.
2015-01-01
We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294
Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite
NASA Astrophysics Data System (ADS)
Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying
2011-06-01
Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.
General Model for Multicomponent Ablation Thermochemistry
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)
1994-01-01
A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).
An Analysis of Ablation-Shield Requirements for Manned Reentry Vehicles
NASA Technical Reports Server (NTRS)
Roberts, Leonard
1960-01-01
The problem of sublimation of material and accumulation of heat in an ablation shield is analyzed and the results are applied to the reentry of manned vehicles into the earth's atmosphere. The parameters which control the amount of sublimation and the temperature distribution within the ablation shield are determined and presented in a manner useful for engineering calculation. It is shown that the total mass loss from the shield during reentry and the insulation requirements may be given very simply in terms of the maximum deceleration of the vehicle or the total reentry time.
Laboratory Simulations of Micrometeoroid Ablation
NASA Astrophysics Data System (ADS)
Thomas, Evan Williamson
Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.
Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi
2018-07-01
A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.
Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn
The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less
Vogl, Thomas J; Nour-Eldin, Nour-Eldin A; Hammerstingl, Renate Maria; Panahi, Bita; Naguib, Nagy N N
2017-11-01
Purpose The locoregional interventional oncological treatment approach is an accepted modality for liver neoplasms, especially for hepatocellular carcinoma (HCC) and oligonodular liver metastases. Materials and Methods The main aim of ablation therapies like microwave ablation (MWA) is to eradicate all malignant cells in a minimally invasive technique under imaging guidance while preserving the healthy tissue with a sufficient safety margin (at least 5 mm) surrounding the ablated lesion. Results Ablation therapy can be performed via a percutaneous, laparoscopic or intraoperative approach under ultrasound, MRI or CT guidance for adequate localization and monitoring of the ablation process. Conclusion Ablation is the method of choice for oligonodular HCCs ≤ 3 cm. The technical success rate varies from 88 % to 98 % and progression-free survival (PFS) at 3 years from 27 % to 91.7 %. The same criteria apply to the therapy of liver metastases. Key Points · Careful selection of patients proves to be essential for optimum results of MWA. · Interventionists should be familiar with all aspects of complication and rapid assessment of imaging methods in order to evaluate induced damage by thermal ablation. · MWA seems to have some advantages over radiofrequency ablation, like shorter ablation time, less pain, less heat sink effect; however, scientific proof is needed. Citation Format · Vogl TJ, Nour-Eldin A, Hammerstingl RM et al. Microwave Ablation (MWA): Basics, Technique and Results in Primary and Metastatic Liver Neoplasms - Review Article. Fortschr Röntgenstr 2017; 189: 1055 - 1066. © Georg Thieme Verlag KG Stuttgart · New York.
Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders
NASA Astrophysics Data System (ADS)
Girard, G.; Rooney, T. O.
2013-12-01
Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and synthetic basalt glasses. Instrumental drift is monitored during each run using two fused standards analyzed multiple times as unknowns. We routinely achieve an external precision of <5% on multiple replicates of standards run as unknowns, which are also within <5% of certified values. Elements analyzed include most first row transition metals, large ion lithophile elements, high field strength elements, lanthanide and actinide rare earth elements.
Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow
NASA Technical Reports Server (NTRS)
Akyuzlu, Kazim M.; Coote, David
2013-01-01
A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.
Effects of Nonequilibrium Chemistry and Darcy-Forchheimer Pyrolysis Flow for Charring Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.
2013-01-01
The fully implicit ablation and thermal response code simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid.This work describes new modeling capabilities that are added to a special version of code. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Two groups of parametric studies of the phenolic impregnated carbon ablator are performed. In the first group, an Orion flight environment for a proposed lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results indicate that the presence of chemical nonequilibrium pyrolysis gas flow does not significantly alter the in-depth thermal response performance predicted using the chemical equilibrium gas model.
193nm high power lasers for the wide bandgap material processing
NASA Astrophysics Data System (ADS)
Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru
2017-02-01
Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.
Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling
NASA Astrophysics Data System (ADS)
Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.
2017-09-01
Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.
Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling.
Donnarumma, Fabrizio; Camp, Eden E; Cao, Fan; Murray, Kermit K
2017-09-01
Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. Graphical Abstract ᅟ.
Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Fliegel, Daniel; Günther, Detlef
2006-07-01
The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of ejected spherical particles. The expansion of the laser aerosol was also investigated using polished brass substrates in the expansion path-way for particle collection.
Influence of ablation wavelength and time on optical properties of laser ablated carbon dots
NASA Astrophysics Data System (ADS)
Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.
2017-01-01
Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.
Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof
2009-02-01
To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.
Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates
NASA Astrophysics Data System (ADS)
Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather
2016-09-01
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.
Doping of silicon with carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.
2006-12-01
The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
Spallation modeling in the Charring Material Thermal Response and Ablation (CMA) computer program
NASA Astrophysics Data System (ADS)
Sullivan, J. M.; Kobayashi, W. S.
1987-06-01
It has been observed during tests of certain laminated composite materials exposed to relatively high continuous wave laser irradiation, that the heated surface will spall. To model this phenomenon, the Charring Material Thermal Response and Ablation code has been updated. In addition to temperature response, in-depth decomposition, and surface recession, thermal and mechanical stresses are calculated. Spall is modeled as a discrete mass removal event occurring when the stresses exceed the ultimate strength of the char through a critical depth. Comparisons are made with test data for a carbon phenolic cylinder exposed to a shock tube environment and for a flat plate Kevlar epoxy test specimen exposed to high intensity laser irradiation. Good agreement is shown; however, the results indicate a requirement for more comprehensive elevated-temperature material properties for further validation.
Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation
NASA Technical Reports Server (NTRS)
Park, Sang-Young; Mazanek, Daniel D.
2005-01-01
This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is likely needed for the propulsion system as well. The spacecraft would station-keep with the object at a small standoff distance while the laser ablation is performed.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee; Chyu, Minking K.
2008-11-01
Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH) 2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10 nm and length as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.
Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Sasoh, Akihiro
Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literaturemore » data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Bykovskii, N. E.; Senatskii, Yu. V.
2018-02-01
The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.
Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Samareh, Jamshid A.
2015-01-01
Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
Calcified lesion modeling for excimer laser ablation
NASA Astrophysics Data System (ADS)
Scott, Holly A.; Archuleta, Andrew; Splinter, Robert
2009-06-01
Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.
NASA Astrophysics Data System (ADS)
Celardo, G. L.; Archetti, D.; Ferrini, G.; Gavioli, L.; Pingue, P.; Cavaliere, E.
2017-01-01
The specific mechanisms which lead to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We compare a theoretical model of fractal formation with experimental data. The comparison of theory and experiment confirms that fractal aggregates are formed after landing of the ablated material on the substrate surface by a simple diffusive mechanism. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: TiO2 nanoparticles arrive already formed on the substrate, then they diffuse in a size/mass independent way and stick irreversibly upon touching, thus forming fractal clusters. Despite its simplicity, our model explains the main features of the fractal structures arising from the complex interaction of large TiO2 nanoparticles with different substrates. Indeed our model is able to reproduce both the fractal dimensions and the area distributions of the nanostructures for different densities of the ablated material. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.
Femtosecond laser lithotripsy: feasibility and ablation mechanism.
Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E
2010-01-01
Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.
Richter, Michael; Aloia, Thomas A.; Conrad, Claudius; Ahrar, Kamran; Gupta, Sanjay; Vauthey, Jean-Nicolas; Huang, Steven Y.
2016-01-01
Introduction Prior enterobiliary manipulation confers a high risk for liver abscess formation after hepatic ablation. We aimed to determine if prophylactic antibiotics could prevent post-ablation abscess in patients with a history of hepaticojejunostomy. Materials and Methods This single-institution retrospective study identified 262 patients who underwent 307 percutaneous liver ablation sessions between January 2010 and August 2014. Twelve (4.6%) patients with prior hepaticojejunostomy were included in this analysis. Ten (83>%) had received an aggressive prophylactic antibiotic regimen consisting of levofloxacin, metronidazole, neomycin, and erythromycin base. Two (16.6%) had received other antibiotic regimens. Clinical, laboratory, and imaging findings were used to identify abscess formation and antibiotic-related side effects. Results Twelve ablation sessions were performed during the period studied. During a mean follow-up period of 440 days (range, 77–1784 days), post-ablation abscesses had developed in 2 (16.6 %) patients, who both received the alternative antibiotic regimens. None of the 10 patients who received the aggressive prophylactic antibiotic regimen developed liver abscess. One of the 10 patients who received the aggressive prophylactic antibiotic regimen developed grade 2 antibiotic-related diarrhea and arthralgia. Conclusion An aggressive regimen of prophylactic antibiotics may be effective in preventing liver abscess formation after liver ablation in patients with prior hepaticojejunostomy. PMID:26984694
Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy
NASA Astrophysics Data System (ADS)
Renz, Günther
2015-02-01
An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.
High-power picosecond laser with 400W average power for large scale applications
NASA Astrophysics Data System (ADS)
Du, Keming; Brüning, Stephan; Gillner, Arnold
2012-03-01
Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.
NASA Astrophysics Data System (ADS)
Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.
2017-05-01
A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.
A Statistics-Based Material Property Analysis to Support TPS Characterization
NASA Technical Reports Server (NTRS)
Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.
2012-01-01
Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.
Lubner, Meghan G.; Ziemlewicz, Tim J; Hinshaw, J. Louis; Lee, Fred T.; Sampson, Lisa J.; Brace, Chris L.
2014-01-01
Purpose To characterize modified triaxial microwave antennas configured to produce short ablation zones. Materials and Methods 50 single- and 27 paired-antenna hepatic ablations were performed in domestic swine (n=11) with 17-gauge, gas-cooled modified triaxial antennas powered at 65W from a 2.45 GHz generator. Single-antenna ablations were performed at 2 (n=16), 5 (n=21), and 10 (n=13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n=7, n=8) and 10 minutes (n=7, n=5). Mean transverse width, length and aspect ratio of sectioned ablation zones were measured and compared. Results For single antennas, mean ablation zone length was 2.9±0.45, 3.5±0.55 and 4.2±0.40 cm at 2, 5, and 10 minutes respectively. Mean width was 1.8±0.3, 2.0±0.32, 2.5±0.25 cm at 2, 5, and 10 minutes. For paired antennas, mean length at 5 min 1 and 2 cm and 10 min 1 and 2 cm spacing was 4.2±0.9, 4.4±0.9, 4.8±0.5 and 4.3±0.9 cm respectively. Mean width was 3.1±1.0, 4.0±0.8 and 3.8±0.4, 4.2±0.6 cm respectively. Paired-antenna ablations were more spherical (aspect ratios 0.72-0.79 for 5-10 min) than single-antenna ablations (0.57-0.59). For paired-antenna ablations, 1 cm spacing appeared optimal, with improved circularity and decreased clefting compared to 2 cm spacing (circ 1 cm 0.85, 2 cm 0.78). Conclusion Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension compared to single antenna ablations, with 1 cm spacing optimal for confluence of the ablation zone. PMID:25156644
Laser Micro and Nano Processing of Metals , Ceramics , and Polymers
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus
Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.
NASA Technical Reports Server (NTRS)
Sepka, Steve; Vander Kam, Jeremy; McGuire, Kathy
2018-01-01
The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bond line temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; McGuire, Mary Kathleen; Vander Kam, Jeremy C.
2018-01-01
The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bondline temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.
Nocerino, Elisabetta; Mason, Peter J.; Schwahn, Denise J.; Hetzel, Scott; Turnquist, Alyssa M.; Lee, Fred T.; Brace, Christopher L.
2017-01-01
Purpose To determine how close to the heart pulmonary microwave ablation can be performed without causing cardiac tissue injury or significant arrhythmia. Materials and Methods The study was performed with approval from the institutional animal care and use committee. Computed tomographic fluoroscopically guided microwave ablation of the lung was performed in 12 swine. Antennas were randomized to either parallel (180° ± 20°) or perpendicular (90° ± 20°) orientation relative to the heart surface and to distances of 0–10 mm from the heart. Ablations were performed at 65 W for 5 minutes or until a significant arrhythmia (asystole, heart block, bradycardia, supraventricular or ventricular tachycardia) developed. Heart tissue was evaluated with vital staining and histologic examination. Data were analyzed with mixed effects logistic regression, receiver operating characteristic curves, and the Fisher exact test. Results Thirty-four pulmonary microwave ablations were performed with the antenna a median distance of 4 mm from the heart in both perpendicular (n = 17) and parallel (n = 17) orientation. Significant arrhythmias developed during six (18%) ablations. Cardiac tissue injury occurred with 17 ablations (50%). Risk of arrhythmia and tissue injury decreased with increasing antenna distance from the heart with both antenna orientations. No cardiac complication occurred with a distance of greater than or equal to 4.4 mm from the heart. The ablation zone extended to the pleural surface adjacent to the heart in 71% of parallel and 17% of perpendicular ablations performed 5–10 mm from the heart. Conclusion Microwave lung ablations performed more than or equal to 5 mm from the heart were associated with a low risk of cardiac complications. © RSNA, 2016 PMID:27732159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Scott M., E-mail: Thompson.scott@mayo.edu; Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu; McKusick, Michael A., E-mail: mckusick.michael@mayo.edu
PurposeThe purpose of this study was to determine the feasibility, safety, and early effectiveness of percutaneous image-guided ablation as second-line treatment for symptomatic soft-tissue vascular anomalies (VA).Materials and MethodsAn IRB-approved retrospective review was undertaken of all patients who underwent percutaneous image-guided ablation as second-line therapy for treatment of symptomatic soft-tissue VA during the period from 1/1/2008 to 5/20/2014. US/CT- or MRI-guided and monitored cryoablation or MRI-guided and monitored laser ablation was performed. Clinical follow-up began at one-month post-ablation.ResultsEight patients with nine torso or lower extremity VA were treated with US/CT (N = 4) or MRI-guided (N = 2) cryoablation or MRI-guided laser ablation (N = 5)more » for moderate to severe pain (N = 7) or diffuse bleeding secondary to hemangioma–thrombocytopenia syndrome (N = 1). The median maximal diameter was 9.0 cm (6.5–11.1 cm) and 2.5 cm (2.3–5.3 cm) for VA undergoing cryoablation and laser ablation, respectively. Seven VA were ablated in one session, one VA initially treated with MRI-guided cryoablation for severe pain was re-treated with MRI-guided laser ablation due to persistent moderate pain, and one VA was treated in a planned two-stage session due to large VA size. At an average follow-up of 19.8 months (range 2–62 months), 7 of 7 patients with painful VA reported symptomatic pain relief. There was no recurrence of bleeding at five-year post-ablation in the patient with hemangioma–thrombocytopenia syndrome. There were two minor complications and no major complications.ConclusionImage-guided percutaneous ablation is a feasible, safe, and effective second-line treatment option for symptomatic VA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.
2015-03-14
In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less
NASA Astrophysics Data System (ADS)
Domke, Matthias; Gavrilova, Anna; Rapp, Stephan; Frentzen, Matthias; Meister, Joerg; Huber, Heinz P.
2015-07-01
In dental health care, the application of ultrashort laser pulses enables dental tissue ablation free from thermal side effects, such as melting and cracking. However, these laser types create undesired micro- and nanoparticles, which might cause a health risk for the patient or surgeon. The aim of this study was to investigate the driving mechanisms of micro- and nanoparticle formation during ultrashort pulse laser ablation of dental tissue. Time-resolved microscopy was chosen to observe the ablation dynamics of mammoth ivory after irradiation with 660 fs laser pulses. The results suggest that nanoparticles might arise in the excited region. The thermal expansion of the excited material induces high pressure in the surrounding bulk tissue, generating a pressure wave. The rarefaction wave behind this pressure wave causes spallation, leading to ejection of microparticles.
Meteoric Material: An Important Component of Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.
Pulsed Laser Ablation Synthesis of Diamond Molecules in Supercritical Fluids
NASA Astrophysics Data System (ADS)
Nakahara, Sho; Stauss, Sven; Miyazoe, Hiroyuki; Shizuno, Tomoki; Suzuki, Minoru; Kataoka, Hiroshi; Sasaki, Takehiko; Terashima, Kazuo
2010-09-01
Nanocarbon materials have been synthesized by pulsed laser ablation (532 nm; 52 J/cm2; 7 ns; 10 Hz) of highly oriented pyrolytic graphite in adamantane-dissolved supercritical xenon at a temperature T = 290.2 K and pressure p = 5.86 MPa. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3 hybridized bonds also found in diamond structures. The synthesis of diamantane was confirmed by gas chromatography-mass spectrometry. The same measurements also indicate the possible synthesis of other diamondoids up to octamantane. Thus, laser ablation in supercritical fluids is proposed as one practical method of synthesizing diamondoids.
Ultrashort-pulse laser generated nanoparticles of energetic materials
Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM
2010-08-03
A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.
Laser ablation mechanism of transparent layers on semiconductors with ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Rublack, Tino; Hartnauer, Stefan; Mergner, Michael; Muchow, Markus; Seifert, Gerhard
2011-12-01
Transparent dielectric layers on semiconductors are used as anti-reflection coatings both for photovoltaic applications and for mid-infrared optical elements. We have shown recently that selective ablation of such layers is possible using ultrashort laser pulses at wavelengths being absorbed by the semiconductor. To get a deeper understanding of the ablation mechanism, we have done ablation experiments for different transparent materials, in particular SiO2 and SixNy on silicon, using a broad range of wavelengths ranging from UV to IR, and pulse durations between 50 and 2000 fs. The characterization of the ablated regions was done by light microscopy and atomic force microscopy (AFM). Utilizing laser wavelengths above the silicon band gap, selective ablation of the dielectric layer without noticeable damage of the opened silicon surface is possible. In contrast, ultrashort pulses (1-2 ps) at mid-infrared wavelengths already cause damage in the silicon at lower intensities than in the dielectric layer, even when a vibrational resonance (e.g. at λ = 9.26 μm for SiO2) is addressed. The physical processes behind this, on the first glance counterintuitive, observation will be discussed.
Ahmed, Muneeb; Solbiati, Luigi; Brace, Christopher L; Breen, David J; Callstrom, Matthew R; Charboneau, J William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra A; Gianfelice, David; Gillams, Alice R; Lee, Fred T; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J; Livraghi, Tito; Lu, David S; McGahan, John P; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L; Liang, Ping; Rhim, Hyunchul; Rose, Steven C; Salem, Riad; Sofocleous, Constantinos T; Solomon, Stephen B; Soulen, Michael C; Tanaka, Masatoshi; Vogl, Thomas J; Wood, Bradford J; Goldberg, S Nahum
2014-10-01
Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. Online supplemental material is available for this article . © RSNA, 2014.
CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendivil, M.I.; García, L.V.; Krishnan, B.
2015-12-15
Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electronmore » microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.« less
Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation
Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.
2016-08-09
Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown
Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-01-01
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses. PMID:27991543
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown
NASA Astrophysics Data System (ADS)
Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-12-01
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.
Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown.
Mirza, Inam; Bulgakova, Nadezhda M; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš
2016-12-19
In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.
Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update
Solbiati, Luigi; Brace, Christopher L.; Breen, David J.; Callstrom, Matthew R.; Charboneau, J. William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D.; Dupuy, Damian E.; Gervais, Debra A.; Gianfelice, David; Gillams, Alice R.; Lee, Fred T.; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J.; Livraghi, Tito; Lu, David S.; McGahan, John P.; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L.; Liang, Ping; Rhim, Hyunchul; Rose, Steven C.; Salem, Riad; Sofocleous, Constantinos T.; Solomon, Stephen B.; Soulen, Michael C.; Tanaka, Masatoshi; Vogl, Thomas J.; Wood, Bradford J.; Goldberg, S. Nahum
2014-01-01
Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. © RSNA, 2014 Online supplemental material is available for this article. PMID:24927329
How cores grow by pebble accretion. I. Direct core growth
NASA Astrophysics Data System (ADS)
Brouwers, M. G.; Vazan, A.; Ormel, C. W.
2018-03-01
Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.
Glossary of terms and table of conversion factors used in design of chemical propulsion systems
NASA Technical Reports Server (NTRS)
Keller, R. B., Jr. (Compiler)
1979-01-01
The glossary presented is based entirely on terms used in the monographs on Chemical Propulsion. Significant terms relating to material properties and to material fabrication are presented. The terms are arranged in alphabetical order, with multiple word terms appearing in the normal sequence of usage; for example, ablative cooling appears as such, not as cooling, ablative, and lip seal appears as such, not as seal, lip. Conversion Factors for converting U.S. customary units to the International System of Units are presented in alphabetical order of the physical quantity (e.g., density, heat flux, specific impulse) involved.
Applications of picosecond lasers and pulse-bursts in precision manufacturing
NASA Astrophysics Data System (ADS)
Knappe, Ralf
2012-03-01
Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.
Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System
NASA Astrophysics Data System (ADS)
Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan
2018-04-01
This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.
NASA Astrophysics Data System (ADS)
Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis
2014-03-01
Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA
Laser comminution of submerged samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariella, R. Jr.; Rubenchik, A.; Norton, M.
With the long-term goal in mind of investigating possible designs for a 'universal, solid-sample comminution technique' for elemental analysis of debris and rubble, we have studied pulsed-laser ablation of solid samples that were submerged in water. Using 351-nm, 15-ns laser pulses with energy between 1 J and 0.35 J, intensities between 500 MW/cm{sup 2} and 30 MW/cm{sup 2}, and samples of broken rock [quartzite] and concrete debris, we have observed conditions in which the laser-driven process can remove material from the solid target substrate, dissolving it and/or converting it into ultrafine particles in a controlled manner. Our study used impure,more » non-metallic substrates and investigated both the rate of material removal as well as the size distribution of particles that were ablated from the process. We studied ablation at lower regimes of intensity and fluence [below 100 MW/cm{sup 2} and 0.4 J/cm{sup 2}, respectively] than has previously attracted attention and discovered that there appears to be a new regime for energy-efficient material removal [Q* < 4000 J/g, for quartzite and <2000 J/g for concrete] and for the generation of ultrafine particles.« less
Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air
NASA Astrophysics Data System (ADS)
Lasemi, N.; Pacher, U.; Zhigilei, L. V.; Bomatí-Miguel, O.; Lahoz, R.; Kautek, W.
2018-03-01
Incubation effects in the nanosecond laser ablation of metals exhibit a strong dependence on the thermal and mechanical properties of both the target material and the background gas or liquid. The incubation in air is controlled mainly by thermal properties such as the heat of vaporization. In liquid, the correlation of the incubation and the ultimate tensile stress of the metals suggests that incubation may be related to the mechanical impact on the solid material by the cavitation bubble collapse, causing accumulation of voids and cracks in the subsurface region of the ablation craters. At high ultimate tensile stress, however, the low sensitivity to the environment suggests that the mechanical impact is likely to play a negligible role in the incubation. Finally, the correlation between the incubation and the carbon content of alcoholic liquids may be explained by an absorptivity increase of the cavity surfaces due to carbonaceous deposits generated by laser-induced pyrolysis, or by the mechanical impact of long-living bubbles at higher dynamic viscosity of liquids.
Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; ...
2016-08-05
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutcliffe, G. D., E-mail: gdsut@mit.edu; Milanese, L. M.; Orozco, D.
2016-11-15
CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less
Thermal Convection on an Irradiated Target
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva
2016-11-01
The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.
NASA Technical Reports Server (NTRS)
Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.; Li, Z.-H.; Miller, J. S.
2014-01-01
In planetary exploration, in situ absolute geochronology is one of the main important measurements that needs to be accomplished. Until now, on Mars, the age of the surface is only determined by crater density counting, which gives relative ages. These ages can have a lot of uncertainty as they depend on many parameters. More than that, the curves must be ties to absolute ages. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible and should be strongly encouraged for future flight. Experimental: The Potassium (K)-Argon Laser Experiment (KArLE) is being developed at MSFC through the NASA Planetary Instrument Definition and Development Program (PIDDP). The goal of this experiment is to provide in situ geochronology based on the K-Ar method. A laser ablates a rock under high vacuum, creating a plasma which is sensed by an optical spectrometer to do Laser Induced Breakdown Spectroscopy (LIBS). The ablated material frees gases, including radiogenic 40Ar,which is measured by a mass spectrometer (MS). As the potassium is a content and the 40Ar is a quantity, the ablated mass needed in order to relate them. The mass is given by the product of the ablated volume by the density of this material. So we determine the mineralogy of the ablated material with the LIBS spectra and images and calculate its density. The volume of the pit is measured by using microscopy. LIBS measurement of K under high vacuum: Three independant projects [1, 2, 3] including KArLE, are developing geochronological instruments based on this LA-LIBS-MS method. Despite several differences in their setup, all of them have validated the methods with analyses and ages. However, they all described difficulties with the LIBS measurements of K [3,4]. At ambient pressure, the quantification of K by LIBS on geological materials can be accurate [5]. However the protocol of the LA-LIBS-MS experiment required hundreds of shots under high vacuum in order to free enough 40Ar* to be measured by the QMS. This long duration of ablation may induces significant changes in the LIBS spectra. The pressure may increases by orders of magnitudewithin the chamber and the laser pit geometry can change the effectiveness of ablation and intensity of plasma light received. These effects introduce variation between the first and last spectra and so the quantification of K is more complex. The ablation of one crater can give, depending on the protocol of acquisition, from tens to hundreds of spectra. Protocol and results: We are in the process of further characterizing the variation introduced into LIBS spectra by the use of hundreds of laser shots, and definining a protocol that can be used to ensure accuracy and reporoducibility in the results.We are using natural rock powder standards fused in a furnace, as well as mars analog samples with known K content. We will show the result of the calibration and some new statistical approaches in order to apprehend the effects of the long time ablation on rocks under high vacuum.
Investigation of Chemical Processes Involving Laser-generated Nanoenergetic Materials
2010-02-01
nanoparticle formation, nanoenergetic materials, laser ablation, plasma chemistry , optical emission 16. SECURITY CLASSIFICATION OF: 17...alloys with known trace metal concentrations. In addition to observing the effect of trace metals on the plasma chemistry , commercially available
NASA Technical Reports Server (NTRS)
Puster, R. L.; Chapman, A. J.
1977-01-01
An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.
NASA Technical Reports Server (NTRS)
Hill, W. F.; Sharpe, M. H.; Lester, C. N.; Echols, Sherman; Simpson, W. G.; Lambert, J. D.; Norton, W. F.; Mclemore, J. P.; Patel, A. K.; Patel, S. V.;
1992-01-01
MSA-2 and MSA-2A, two similar improved versions of Marshall sprayable ablator, insulating material developed at Marshall Space Flight Center to replace both sheets of cork and MSA-1. Suitable for use on large vehicles and structures exposed to fire or other sources of heat by design or accident. Ablative insulation turns into strong char when exposed to high temperature; highly desireable property in original spacecraft application and possibly in some terrestrial applications.
NASA Astrophysics Data System (ADS)
Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.
2013-05-01
Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.
Kronenberg, Peter; Traxer, Olivier
2015-03-01
We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p <0.00001) regardless of cleaving scissor type, stone material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p <0.00001). Harder stone material decreased ablation volume (p <0.00001). Low frequency-high pulse energy settings were an average of 3 times more ablative than high frequency-low pulse energy settings (p <0.00001). Stripping the fibers, a harder stone material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Effects of Perfusion on Radiofrequency Ablation in Swine Kidneys1
Chang, Isaac; Mikityansky, Igor; Wray-Cahen, Diane; Pritchard, William F.; Karanian, John W.; Wood, Bradford J.
2008-01-01
PURPOSE: To evaluate the effect of vascular occlusion on the size of radiofrequency (RF) ablation lesions and to evaluate embolization as an occlusion method. MATERIALS AND METHODS: The kidneys of six swine were surgically exposed. Fifteen RF ablation lesions were created in nine kidneys by using a 2-cm-tip single-needle ablation probe in varying conditions: Seven lesions were created with normal blood flow and eight were created with blood flow obstructed by means of vascular clamping (n = 5) or renal artery embolization (n = 3). The temperature, applied voltage, current, and impedance were recorded during RF ablation. Tissue-cooling curves acquired for 2 minutes immediately after the ablation were compared by using regression analysis. Lesions were bisected, and their maximum diameters were measured and compared by using analysis of variance. RESULTS: The mean diameter of ablation lesions created when blood flow was obstructed was 60% greater than that of lesions created when blood flow was normal (1.38 cm ± 0.05 [standard error of mean] vs 0.86 cm ± 0.07, P < .001). The two methods of flow obstruction yielded lesions of similar mean sizes: 1.40 cm ± 0.06 with vascular clamping and 1.33 cm ± 0.07 with embolization. The temperature at the probe tip when lesions were ablated with normal blood flow decreased more rapidly than did the temperature when lesions were ablated after flow obstruction (P < .001), but no significant differences in tissue-cooling curves between the two flow obstruction methods were observed. CONCLUSION: Obstruction of renal blood flow before and during RF ablation resulted in larger thermal lesions with potentially less variation in size compared with the lesions created with normal nonobstructed blood flow. Selective arterial embolization of the kidney vessels may be a useful adjunct to RF ablation of kidney tumors. PMID:15128994
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Specific Impulse Definition for Ablative Laser Propulsion
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2004-01-01
The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.
NASA Astrophysics Data System (ADS)
Choi, Tae-Youl
Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).
Optical Property Measurements on the Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Finckenor, Miria
2007-01-01
The Advanced Materials for Exploration (AME) task Materials Analysis of Returned Hardware from Stardust received funding to perform non-destructive analyses of the non-primary science hardware components of the Stardust sample return capsule. These components were (a) the blunt body reentry heatshield, encased in Phenolic Impregnated Carbon Ablator (PICA); (b) the backshell of Super Lightweight Ablator 561 (SLA-561) material handpacked into phenolic Flexcore and coated with CV-1100 silicone; (c) the rope seal used in between the heatshield and backshell; (d) the internal multi-layer insulation (MLI) blankets; and (e) parts of the Kevlar straps left attached to the backshell. These components were analyzed to determine the materials' durability in the space environment. The goals of the task were (a) to determine how the various materials from which the components were built weathered the extreme temperatures and harsh space environment during the capsule's nearly 7-year voyage to and from its rendezvous with Comet Wild 2 and (b) to provide lessons-learned data for designers of future missions.
Thermal Protection System (Heat Shield) Development - Advanced Development Project
NASA Technical Reports Server (NTRS)
Kowal, T. John
2010-01-01
The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.
Flexible Ablators: Applications and Arcjet Testing
NASA Technical Reports Server (NTRS)
Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey
2011-01-01
Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.
NASA Astrophysics Data System (ADS)
Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi
1995-05-01
A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.
NASA Astrophysics Data System (ADS)
Basiev, T. T.; Garnov, S. V.; Klimentov, S. M.; Pivovarov, P. A.; Gavrilov, A. V.; Smetanin, S. N.; Solokhin, S. A.; Fedin, A. V.
2007-10-01
Parameters of high-speed ablation of ultradeep channels by controlled pulse trains from a single-mode phase-conjugate dynamic cavity Nd:YAG laser emitting 20-200-ns, 70-250-mJ pulses at a pulse repetition rate in a train of 40-250 kHz are studied. The optimal parameters of ablation are found, for which a long-lived region of a hot rarefied gas was maintained in the ultradeep channel, which suppressed the shielding action of the surface plasma. The control of the lasing process during ablation optimises not only the heating and plasma formation, but also the removal of the processed material in the pause between laser pulses. Adaptive regulation of lasing parameters during ablation made it possible to obtain ultradeep channels of length 8-27 mm and diameters 80-300 μm of the input and output holes in metals (aluminium, steel and Inconel 718 nickel superalloy) and ultrahard ceramics (Al2O3, AlN, SiC).
NASA Astrophysics Data System (ADS)
Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Ottevaere, Heidi; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.
2000-06-01
Laser ablation is extremely well suited for rapid prototyping and proves to be a versatile technique delivering high accuracy dimensioning and repeatability of features in a wide diversity of materials. In this paper, we present laser ablation as a fabrication method for micro machining in of arrays consisting of precisely dimensioned U-grooves in dedicated polycarbonate and polymethylmetacrylate plates. The dependency of the performance on various parameters is discussed. The fabricated plates are used to hold optical fibers by means of a UV-curable adhesive. Stacking and gluing of the plates allows the assembly of a 2D connector of plastic optical fibers for short distance optical interconnects.
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.
2016-01-01
With the recent development of multi-dimensional thermal protection system (TPS) material response codes, the capability to account for surface-to-surface radiation exchange in complex geometries is critical. This paper presents recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute geometric view factors for radiation problems involving multiple surfaces. Verification of the code's radiation capabilities and results of a code-to-code comparison are presented. Finally, a demonstration case of a two-dimensional ablating cavity with enclosure radiation accounting for a changing geometry is shown.
Computational Modeling of Ablation on an Irradiated Target
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva
2017-11-01
Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.
Hot-spot mix in ignition-scale inertial confinement fusion targets.
Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J
2013-07-26
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.
Hot-spot mix in ignition-scale inertial confinement fusion targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.
Hot-spot mix in ignition-scale inertial confinement fusion targets
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2013-07-22
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.
Investigation of low-cost fabrication of ablative heat shields
NASA Technical Reports Server (NTRS)
Massions, V. P.; Mach, R. W.
1973-01-01
The fabrication, testing, and evaluation of materials and techniques employed in the fabrication of ablative heat shield panels are described. Results of this effort show projected reductions in labor man-hours for dielectric curing of panels when compared to panels molded in a steam-heated press. In addition, panels were fabricated with more than one density within the cross-section. These dual-density panels show significant weight and cost reduction potentials.
Kimm, Simon Y.; Tarin, Tatum V.; Monette, Sébastien; Srimathveeravalli, Govindarajan; Gerber, Daniel; Durack, Jeremy C.; Solomon, Stephen B.; Scardino, Peter T.; Scherz, Avigdor
2016-01-01
Purpose To examine the hypothesis that vascular-targeted photodynamic therapy (VTP) with WST11 and clinically relevant parameters can be used to ablate target tissues in a non–tumor-bearing large-animal model while selectively sparing blood vessels and collagen. Materials and Methods By using an institutional animal care and use committee–approved protocol, 68 ablations were performed in the kidneys (cortex and medulla) and livers of 27 adult pigs. Posttreatment evaluation was conducted with contrast material–enhanced computed tomography in the live animals at 24 hours. Immunohistochemistry was evaluated and histologic examination with hematoxylin-eosin staining was performed at 4 hours, 24 hours, and 7 days. Intravenous infusion of WST11 (4 mg per kilogram of body weight) was followed by using near-infrared illumination (753 nm for 20 minutes) through optical fibers prepositioned in target tissues by using a fixed template. Treated areas were scanned, measured, and statistically analyzed by using the Student t test and two-way analysis of variance. Results Focal WST11 VTP treatment in the liver and kidney by using a single optical fiber resulted in well-demarcated cylindrical zones of nonthermal necrosis concentrically oriented around the light-emitting diffuser, with no intervening viable parenchymal cells. The radius of ablated tissue increased from approximately 5 mm at 150 mW to approximately 7 mm at 415 mW (P < .01). Illumination through fiber triads at 1-cm separation resulted in confluent homogeneous necrosis. Patterns of acute injury within 24 hours were consistent with microcirculatory flow arrest and collagen preservation (demonstrated with trichrome staining). In the peripheral ablation zone, blood vessels at least 40 μm in diameter were selectively preserved and remained functional at 7 days. Ablated tissues exhibited progressive fibrosis and chronic inflammatory cell infiltrates. No histologic changes consistent with thermal injury were observed in blood vessels or collagen. The renal hilum and collecting system did not show treatment effect, despite treatment proximity. Conclusion WST11 VTP induces nonthermal tissue ablation in target tissue while preserving critical organ structures and bystander blood vessels within solid organs. © RSNA, 2016 Online supplemental material is available for this article. PMID:26986047
Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells
NASA Technical Reports Server (NTRS)
Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, D.; Kazemba, C.; Venkatapathy, E.
2015-01-01
The new conformal ablator C-PICA, which was developed under STMD GCD, is an optimal candidate for use on the backshells for high velocity entry vehicles at both Venus and Saturn. The material has been tested at heat fluxes up to 400 Wcm2 in shear and over 1800 Wcm2 and 1.5 atm in stagnation with good results. C-PICA has similar density to PICA, but shows half the thermal penetration and similar recession at the same conditions, allowing for a lighter weight TPS to be flown. This poster for VEXAG will show the progress made in the development of the material and why it should be considered for use.
Global microwave endometrial ablation for menorrhagia treatment
NASA Astrophysics Data System (ADS)
Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit
2017-02-01
Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.
Qian, Pierre; Barry, Michael Anthony; Nguyen, Trang; Ross, David; Kovoor, Pramesh; McEwan, Alistair; Thomas, Stuart; Thiagalingam, Aravinda
2015-07-01
Pulmonary vein isolation is an effective treatment for atrial fibrillation. Current endocardial ablation techniques require catheter contact for lesion formation. Inadequate or inconsistent catheter contact results in difficulty with achieving acute and long-term isolation and consequent atrial arrhythmia recurrence. Microwave energy produces radiant heating and therefore can be used for noncontact catheter ablation. We hypothesized that it is possible to design a microwave catheter to produce a circumferential transmural thermal lesion in an in vitro model of a pulmonary vein antrum. A monopole microwave catheter with a sideways firing axially symmetrical heating pattern was designed. Noncontact ablations were performed in a perfused pulmonary vein model constructed from microwave myocardial phantom embedded with a sheet of thermochromic liquid crystal to permit visualization and measurement of thermal lesions from color changes. 1200 J ablations were performed at 150 W for 80 seconds and 120 W for 100 seconds at high (0.8 L/min) and low (0.06 L/min) flow through the modeled pulmonary vein. Myocardial tissue was substituted for the phantom material and ablations repeated at 150 W for 180 seconds and stained with nitro-blue tetrazolium. The catheter was able to induce deep circumferential antral lesions in myocardial phantom and myocardial tissue. Higher power and shorter ablations delivering the same amount of microwave energy resulted in larger lesions with less surface sparing. A microwave catheter can be designed to produce a circumferential thermal lesion on noncontact ablation and may have possible applications for pulmonary vein isolation. © 2015 Wiley Periodicals, Inc.
Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deodhar, Ajita; Monette, Sebastien; Single, Gordon W.
2011-12-15
Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent 'pores' in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized withmore » the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.« less
NASA Astrophysics Data System (ADS)
Martinez, David
2015-11-01
We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Time resolved quantitative imaging of charring in materials at temperatures above 1000 K
NASA Astrophysics Data System (ADS)
Böhrk, Hannah; Jemmali, Raouf
2016-07-01
A device is presented allowing for in situ investigation of chemically changing materials by means of X-ray imaging. A representative cork ablator sample, additionally instrumented with thermocouples, is encapsulated in an evacuated cell heating a sample surface with a heat flux of 230 kW/m2. The images show the sample surface and the in-depth progression of the char front dividing the char layer from the virgin material. Correlating the images to thermocouple data allows for the deduction of a reaction temperature. For the representative cork ablator investigated at the present conditions, the progression rate of the pyrolysis layer is determined to 0.0285 mm/s and pyrolysis temperature is 770 or 737 K, depending on the pre-existing conditions. It is found that the novel device is ideally suited for volume process imaging.
Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji
2017-01-01
Introduction: There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. Materials and Methods: A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. Results: At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t-test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Conclusion: Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation. PMID:28539864
Deposition of functional nanoparticle thin films by resonant infrared laser ablation.
NASA Astrophysics Data System (ADS)
Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen
2008-03-01
We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.
Level 3 material characterization of NARC HRPF, HRHU, HRHF, and HRPU
NASA Technical Reports Server (NTRS)
Tobias, Mark E.
1993-01-01
The North American Rayon Corporation (NARC) precursor was developed, qualified, and characterized for Space Shuttle nozzle carbon-cloth phenolic ablative materials in three distinct phases. The characterization phase includes thermal and structural material property analysis and comparisons. This report documents the thermal and structural material property characterization performed by Southern Research Institute (SRI) on the two NARC baseline and two crossover materials.
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M. (Inventor); Ghandehari, Ehson M. (Inventor); Thornton, Jeremy J. (Inventor); Covington, Melmoth Alan (Inventor)
2017-01-01
A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.
UV solid state laser ablation of intraocular lenses
NASA Astrophysics Data System (ADS)
Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.
2013-06-01
Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a smooth optical surface on the intraocular lens with no irregularities, observed with other wavelengths.
Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.
2011-01-01
Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159
Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, Frank S.
2003-01-01
A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also examined.
Ortega-Usobiaga, Julio; Llovet-Osuna, Fernando; Djodeyre, Mohammad Reza; Llovet-Rausell, Andrea; Beltran, Jaime; Baviera, Julio
2015-06-01
To assess the incidence, culture results, and visual outcomes of infectious keratitis after laser in situ keratomileusis (LASIK) and surface ablation when topical moxifloxacin was added to postoperative prophylaxis with tobramycin. Clínica Baviera, Instituto Oftalmológico Europeo, Bilbao, Spain. Retrospective case series review. The medical records of 55 255 patients (108 014 eyes) who had LASIK and surface ablation were reviewed to identify cases of infectious keratitis. The incidence, risk factors, clinical course, days to diagnosis, treatment, and final visual outcomes were recorded. These data were compared with previously published data of 221 437 eyes that received postoperative tobramycin alone. Post-LASIK infectious keratitis was diagnosed in 10 eyes (9 patients) and post-surface ablation infectious keratitis in 11 eyes (10 patients). The onset of infection was early in 40.00% of cases after LASIK and in 36.36% after surface ablation. Cultures were positive in 2 cases after surface ablation. Immediate flap lifting and irrigation with antibiotics were performed in all eyes after LASIK. The final corrected distance visual acuity was 20/20 or better in 7 cases after LASIK (70.00%) and 7 cases after surface ablation (63.64%) and 20/40 or better in all cases after LASIK or surface ablation. The incidence of infectious keratitis decreased from 0.025% to 0.011% (P < .001) per procedure after LASIK and from 0.200% to 0.066% (P < .001) after surface ablation. Infectious keratitis was less frequent after LASIK than after surface ablation. The frequency of infection, mainly early-onset infection, was lower when the postoperative treatment was tobramycin and moxifloxacin rather than tobramycin alone. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, Mircea, E-mail: mcristescu@uwhealth.org; Abel, E. Jason, E-mail: abel@urology.wisc.edu; Wells, Shane, E-mail: swells@uwhealth.org
PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complicationsmore » were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.« less
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
The influence of physical characteristics on ablation effects in UV laser assisted micro-engineering
NASA Astrophysics Data System (ADS)
Ostendorf, Andreas; Kulik, Christian J.; Temme, Thorsten; Otte, Frank; Samm, Katja
2004-10-01
The development of the recent years led to an increased importance of frequency-converted diode-pumped solid-state lasers (DPSSL) for industrial drilling, cutting and structuring applications. The UV laser systems show favorable beam absorption in a broad range of MEMS and MOEMS relevant materials like ceramics, metals and polymers. Their short pulses in the range of tH = 20 nanoseconds and the excellent beam quality offer the possibility of manufacturing with a minimum heat affected zone (HAZ) in the surrounding material and thereby a decreasing of initial fusing and debris. To obtain the reachable ablation quality, especially on metals, in this paper copper, tungsten, tantalum, molybdenum, nickel, iron, aluminum and titanium were machined under identical conditions. Material properties like heat conductivity, optical and thermal penetration depth, are decisive for the magnitude of the mentioned side-effects. The correlation of these physical values of different metals to those effects is the subject of this paper. Results of systematically accomplished experiences using a frequency tripled DPSSL with a wavelength of λ = 355 nm in order to investigate this correlation are presented. Due to thermal effects, the ablation quality of metals differ from each other extremely. These information enable a prediction of the reachable quality of the desired structure.
Wu, Hanping; Wilkins, Luke R; Ziats, Nicholas P; Haaga, John R; Exner, Agata A
2014-01-01
To examine the accuracy of the unenhanced zone at contrast material-enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin-stained images were compared. The areas of DiI bubble-negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble-negative zone on fluorescence images was noted at all time points. The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013.
1967-12-01
Equipment 62 2. Gas Analysis 62 3. Chemical Analysis for Titanium and Boron 63 4. Tensile Strength Determinations 64 5. Density Determinations 64 6. X-ray...mils, and its density was about 4. 45 g/cm 3. Elastic modulus values averaged about 71 x 106 psi for the filament. -X- I. INTRODUCTION Ablative liner...20 4 /50 percent N 2H 4 -50 percent UDMH or L0 2 /LH. The more-energetic propellant systems, using fluorine or FLOX, demand more-effective abla- tive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambo, Patrick; Schwarz, Jens; Kimmel, Mark
We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.
Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...
2016-09-27
We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.
Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments
NASA Astrophysics Data System (ADS)
Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.
2012-10-01
We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.
Current Developments in Future Planetary Probe Sensors for TPS
NASA Technical Reports Server (NTRS)
Martinez, Ed; Venkatapathy, Ethiraj; Oishu, Tomo
2003-01-01
In-situ Thermal Protection System (TPS) sensors are required to provide traceability of TPS performance and sizing tools. Traceability will lead to higher fidelity design tools, which in turn will lead to lower design safety margins, and decreased heatshield mass. Decreasing TPS mass will enable certain missions that are not otherwise feasible, and directly increase science payload. NASA Ames is currently developing two flight measurements as essential to advancing the state of TPS traceability for material modeling and aerothermal simulation: heat flux and surface recession (for ablators). The heat flux gage is applicable to both ablators and non-ablators and is therefore the more generalized sensor concept of the two with wider applicability to mission scenarios. This paper describes the development of a microsensor capable of surface and in-depth temperature and heat flux measurements for TPS materials appropriate to Titan, Neptune, and Mars aerocapture, and direct entry. The thermal sensor will be monolithic solid state devices composed of thick film platinum RTD on an alumina substrate. Choice of materials and critical dimensions are used to tailor gage response, determined during calibration activities, to specific (forebody vs. aftbody) heating environments. Current design has maximum operating temperature of 1500 K, and allowable constant heat flux of q=28.7 watts per square centimeter, and time constants between 0.05 and 0.2 seconds. The catalytic and radiative response of these heat flux gages can also be changed through the use of appropriate coatings. By using several co-located gages with various surface coatings, data can be obtained to isolate surface heat flux components due to radiation, catalycity and convection. Selectivity to radiative heat flux is a useful feature even for an in-depth gage, as radiative transport may be a significant heat transport mechanism for porous TPS materials in Titan aerocapture. This paper also reports on progress to adapt a previously flown surface recession sensor, based on the Jupiter probe Galileo Analog Resistance Ablation Detector (ARAD), to appropriate aerocapture conditions.
Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles
NASA Astrophysics Data System (ADS)
Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.
2007-07-01
During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.
Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology
NASA Astrophysics Data System (ADS)
Horstwood, M.
2016-12-01
Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise this goal. This study will highlight these changes and efforts towards reducing the uncertainty contribution for LA-ICP-MS U-Pb geochronology.
NASA Technical Reports Server (NTRS)
Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.
2015-01-01
In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the same design, build the aeroshell and TPS, with instrumentation, for a small probe flight test article, due to fly in 2017. At the end of the year, the C-PICA will be at TRL 5+, and with the flight data in 2017, it will be at TRL 9 for missions needs with C-PICA at a small scale (12 diameter). The scale-up and small probe efforts will be de-scribed in this presentation.
Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta
2018-03-01
Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Romero-Aburto, Rebeca; Mitcham, Trevor; Mitchel, Keith A; Nagaoka, Yutaka; Bouchard, Richard R; Ajayan, Pulickel M; Maekawa, Toru; Sakthikumar, Dasappan Nair
2017-02-28
We have designed versatile polymeric nanoparticles with cancer cell specific targeting capabilities via aptamer conjugation after the successful encapsulation of curcumin and superparamagnetic iron oxide nanoparticles (SPIONs) inside a PLGA nanocapsule. These targeted nanocomposites were selectively taken up by tumor cells, under in vitro conditions, demonstrating the effectiveness of the aptamer targeting mechanism. Moreover, the nanocomposite potentially functioned as efficient multiprobes for optical, magnetic resonance imaging (MRI) and photoacoustic imaging contrast agents in the field of cancer diagnostics. The hyperthermic ability of these nanocomposites was mediated by SPIONs upon NIR-laser irradiation. In vitro cytotoxicity was shown by curcumin-loaded nanoparticles as well as the photothermal ablation of cancer cells mediated by the drug-encapsulated nanocomposite demonstrated the potential therapeutic effect of the nanocomposite. In short, we portray the aptamer-conjugated nanocomposite as a multimodal material capable of serving as a contrast agent for MR, photoacoustic and optical imaging. Furthermore, the nanocomposite functions as a targetable drug nanocarrier and a NIR-laser inducible hyperthermic material that is capable of ablating PANC-1 and MIA PaCa-2 cancer cell lines.
Meteors: A Delivery Mechanism of Organic Matter to The Early Earth
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.
Evaluation of pressure in a plasma produced by laser ablation of steel
NASA Astrophysics Data System (ADS)
Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric
2018-05-01
We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.
NASA Astrophysics Data System (ADS)
Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.; Cochrane, Kyle R.; Mattsson, Thomas R.; Jordan, Nicholas M.; McBride, Ryan D.; Lau, Y. Y.; Gilgenbach, Ronald M.
2018-03-01
Presented are the results from the liner ablation experiments conducted at 550 kA on the Michigan Accelerator for Inductive Z-Pinch Experiments. These experiments were performed to evaluate a hypothesis that the electrothermal instability (ETI) is responsible for the seeding of magnetohydrodynamic instabilities and that the cumulative growth of ETI is primarily dependent on the material-specific ratio of critical temperature to melting temperature. This ratio is lower in refractory metals (e.g., tantalum) than in non-refractory metals (e.g., aluminum or titanium). The experimental observations presented herein reveal that the plasma-vacuum interface is remarkably stable in tantalum liner ablations. This stability is particularly evident when contrasted with the observations from aluminum and titanium experiments. These results are important to various programs in pulsed-power-driven plasma physics that depend on liner implosion stability. Examples include the magnetized liner inertial fusion (MagLIF) program and the cylindrical dynamic material properties program at Sandia National Laboratories, where liner experiments are conducted on the 27-MA Z facility.
Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials
Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.
1989-01-01
Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.
Review of technological advancements in calibration systems for laser vision correction
NASA Astrophysics Data System (ADS)
Arba-Mosquera, Samuel; Vinciguerra, Paolo; Verma, Shwetabh
2018-02-01
Using PubMed and our internal database, we extensively reviewed the literature on the technological advancements in calibration systems, with a motive to present an account of the development history, and latest developments in calibration systems used in refractive surgery laser systems. As a second motive, we explored the clinical impact of the error introduced due to the roughness in ablation and its corresponding effect on system calibration. The inclusion criterion for this review was strict relevance to the clinical questions under research. The existing calibration methods, including various plastic models, are highly affected by various factors involved in refractive surgery, such as temperature, airflow, and hydration. Surface roughness plays an important role in accurate measurement of ablation performance on calibration materials. The ratio of ablation efficiency between the human cornea and calibration material is very critical and highly dependent on the laser beam characteristics and test conditions. Objective evaluation of the calibration data and corresponding adjustment of the laser systems at regular intervals are essential for the continuing success and further improvements in outcomes of laser vision correction procedures.
Evaluation of laser ablation crater relief by white light micro interferometer
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana
2017-06-01
A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippiadis, D., E-mail: dfilippiadis@yahoo.gr; Gkizas, C., E-mail: chgkizas@gmail.com; Kostantos, C., E-mail: drkarpen@yahoo.gr
PurposeTo report our experience with the use of a battery-powered drill in biopsy and radiofrequency ablation of osteoid osteoma with excess reactive new bone formation. The battery-powered drill enables obtaining the sample while drilling.Materials and MethodsDuring the last 18 months, 14 patients suffering from painful osteoid osteoma with excess reactive new bone formation underwent CT-guided biopsy and radiofrequency ablation. In order to assess and sample the nidus of the osteoid osteoma, a battery-powered drill was used. Biopsy was performed in all cases. Then, coaxially, a radiofrequency electrode was inserted and ablation was performed with osteoid osteoma protocol. Procedure time (i.e., drillingmore » including local anesthesia), amount of scans, technical and clinical success, and the results of biopsy are reported.ResultsAccess to the nidus through the excess reactive new bone formation was feasible in all cases. Median procedure time was 50.5 min. Histologic verification of osteoid osteoma was performed in all cases. Radiofrequency electrode was coaxially inserted within the nidus and ablation was successfully performed in all lesions. Median amount CT scans, performed to control correct positioning of the drill and precise electrode placement within the nidus was 11. There were no complications or material failure reported in our study.ConclusionsThe use of battery-powered drill facilitates access to the osteoid osteoma nidus in cases where excess reactive new bone formation is present. Biopsy needle can be used for channel creation during the access offering at the same time the possibility to extract bone samples.« less
Incidence and Risk Factors for Liver Abscess After Thermal Ablation of Liver Neoplasm
Su, Xiu-Feng; Li, Na; Chen, Xu-Fang; Zhang, Lei; Yan, Ming
2016-01-01
Background Radiofrequency ablation (RFA) and microwave ablation (MWA) are the most frequently used thermal ablation methods for the treatment of liver cancer. Liver abscess is a common and severe complication of thermal ablation treatment. Objectives The objective of this study was to determine the incidence and risk factors of liver abscess formation after thermal ablation of liver cancer. Materials and Methods The clinical data of 423 patients who underwent 691 thermal ablation procedures for liver cancer were collected in order to retrospectively analyze the basic characteristics, incidence, and risk factors associated with liver abscess formation. Patients with multiple risk factors for liver abscess formation were enrolled in a risk factor group, and patients with no risk factors were enrolled in a control group. The chi-square test and multiple logistic regression analysis were used to analyze the relationship between the occurrence of liver abscesses and potential risk factors. Results Two hundred and eight patients underwent 385 RFA procedures, and 185 patients underwent 306 MWA procedures. The total incidence of liver abscesses was 1.7%, while the rates in the RFA group (1.8%) and MWA groups (1.6%) were similar (P > 0.05). The rates of liver abscesses in patients who had child-pugh class B and class C cirrhosis (P = 0.0486), biliary tract disease (P = 0.0305), diabetes mellitus (P = 0.0344), and porta hepatis tumors (P = 0.0123) were 4.0%, 6.7%, 6.5%, and 13.0%, respectively. There was a statistically significant difference between these four groups and the control group (all P < 0.05). The incidence of liver abscesses in the combined ablation and percutaneous ethanol injection (PEI) group (P = 0.0026) was significantly lower than that of the ablation group (P < 0.05). Conclusions The incidence of liver abscesses after liver cancer thermal ablation is low. Child-Pugh Class B and Class C cirrhosis, biliary tract disease, diabetes mellitus, and porta hepatis tumors are four significant risk factors. Combined ablation and PEI reduces the rate of liver abscesses. PMID:27642345
Arc Jet Testing of Thermal Protection Materials: 3 Case Studies
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Conley, Joe
2015-01-01
Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.
Fire-Resistant Reinforcement Makes Steel Structures Sturdier
NASA Technical Reports Server (NTRS)
2006-01-01
Built and designed by Avco Corporation, the Apollo heat shield was coated with an ablative material whose purpose was to burn and, thus, dissipate energy. The material charred to form a protective coating which blocked heat penetration beyond the outer surface. Avco Corporation subsequently entered into a contract with Ames Research Center to develop spinoff applications of the heat shield in the arena of fire protection, specifically for the development of fire-retardant paints and foams for aircraft. This experience led to the production of Chartek 59, manufactured by Avco Specialty Materials (a subsidiary of Avco Corporation eventually acquired by Textron, Inc.) and marketed as the world s first intumescent epoxy material. As an intumescent coating, Chartek 59 expanded in volume when exposed to heat or flames and acted as an insulating barrier. It also retained its space-age ablative properties and dissipated heat through burn-off. Further applications were discovered, and the fireproofing formulation found its way into oil refineries, chemical plants, and other industrial facilities working with highly flammable products.
Equation of state and shock compression of carbon-hydrogen and other ablator materials
NASA Astrophysics Data System (ADS)
Zhang, S.; Militzer, B.; Whitley, H.
2017-12-01
Dynamic compression experiments in planetary interior studies and fusion sciences often implement carbon-hydrogen or other low-Z elements or compounds as ablators. Accurate quantum simulations of these materials enables theoretical investigation of the equation of state (EOS) over temperatures and pressures that are difficult to access experimentally, and can help guide the design of targets for future experiments. In this work, we use path integral Monte Carlo and density functional molecular dynamics to calculate the equation of state of a series of hydrocarbons and other low-Z materials (B, B4C, and BN). For the hydrocarbon with C:H=1:1, we predict the pressure-compression profile to agree remarkably with experiments at low pressures. At high pressures, we find the Hugoniot curve displays a single compression maximum of 4.7 that corresponds to K-shell ionization. This is slightly higher than that of glow-discharge polymers but both occur at the same pressure (0.47 Gbar). We study the linear mixing approximation for the EOS of hydrocarbons and demonstrate its validity at stellar core conditions. We examine the sensitivity of the fusion yield to the EOS of these candidate ablator materials in radiation-hydrodynamic simulations of a direct-drive implosion. We also make detailed comparisons of the EOS and atomic and electronic structure of C and BN, which is useful for systematic improvement of existing EOS models. Prepared by LLNL under Contract DE-AC52-07NA27344.
Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.
2014-01-01
In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Ya Ruth, E-mail: ruth.huo@gmail.com; Pillai, Krishna, E-mail: panthera6444@yahoo.com.au; Akhter, Javed, E-mail: s8603151@unsw.edu.au
BackgroundThe dual-electrode bipolar-RFA (B-RFA) is increasingly used to ablate large liver tumours (3–7 cm). However, the challenging aspect of B-RFA is the placement of the two electrodes around the tumour. Realignment often requires the electrodes to be extracted and reinserted.AimThe aim of this study is to examine “Edgeboost”, a novel technique to increase the lateral ablation dimension without requiring any realignment of the electrodes.Methods and MaterialsAn egg-white model and an ex vivo calf liver model were used compare the standard bipolar mode ablation to Edgeboost-1 (reaching full impedance in bipolar mode initially, then cycling in unipolar mode between left and rightmore » probes) and Edgeboost-2 (similar to Edgeboost-1 but not reaching full impedance initially in bipolar mode in order to minimize charring and, thus, to increase total ablation time).ResultsA significantly larger outer lateral ablation dimension to the probe was achieved with Edgeboost-1 compared to the standard method in the liver model (1.14 cm, SD: 0.16 vs. 0.44 cm, SD: 0.24, p = 0.04). Edgeboost-2 achieved the largest outer lateral ablation dimension of 1.75 cm (SD: 0.35). A similar association was seen in the egg model. Edgeboost-2 almost doubled the mass ablated with standard bipolar alone (mass ratio: 1:1.94 in egg white and 1:1.84 in liver).ConclusionThis study demonstrates that the novel “Edgeboost” technique can increase the outer lateral ablation dimension without requiring the two inserted electrodes to be reinserted. This would be beneficial for interventionists who use the dual B-RFA.« less
Chang, Won; Lee, Sang Min; Han, Joon Koo
2017-01-01
Objective To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. Materials and Methods A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Results Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. Conclusion The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries. PMID:28246508
Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boas, F. Edward, E-mail: boasf@mskcc.org; Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org; Durack, Jeremy C., E-mail: durackj@mskcc.org
PurposeTo create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated.Materials and MethodsIce ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1–6 cryoablation probes and 1–2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements weremore » obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions.ResultsAverage absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm.ConclusionCryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.« less
Radiofrequency Cauterization with Biopsy Introducer Needle
Pritchard, William F.; Wray-Cahen, Diane; Karanian, John W.; Hilbert, Stephen; Wood, Bradford J.
2014-01-01
PURPOSE The principal risks of needle biopsy are hemorrhage and implantation of tumor cells in the needle tract. This study compared hemorrhage after liver and kidney biopsy with and without radiofrequency (RF) ablation of the needle tract. MATERIALS AND METHODS Biopsies of liver and kidney were performed in swine through introducer needles modified to allow RF ablation with the distal 2 cm of the needle. After each biopsy, randomization determined whether the site was to undergo RF ablation during withdrawal of the introducer needle. Temperature was measured with a thermistor stylet near the needle tip, with a target temperature of 70°C–100°C with RF ablation. Blood loss was measured as grams of blood absorbed in gauze at the puncture site for 2 minutes after needle withdrawal. Selected specimens were cut for gross examination. RESULTS RF ablation reduced bleeding compared with absence of RF ablation in liver and kidney (P < .01), with mean blood loss reduced 63% and 97%, respectively. Mean amounts of blood loss (±SD) in the liver in the RF and no-RF groups were 2.03 g ± 4.03 (CI, 0.53–3.54 g) and 5.50 g ± 5.58 (CI, 3.33–7.66 g), respectively. Mean amounts of blood loss in the kidney in the RF and no-RF groups were 0.26 g ± 0.32 (CI, −0.01 to 0.53 g) and 8.79 g ± 7.72 (CI, 2.34–15.24 g), respectively. With RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed. CONCLUSION RF ablation of needle biopsy tracts reduced hemorrhage after biopsy in the liver and kidney and may reduce complications of hemorrhage as well as implantation of tumor cells in the tract. PMID:14963187
Method for continuous control of composition and doping of pulsed laser deposited films
Lowndes, Douglas H.; McCamy, James W.
1995-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Lowndes, Douglas H.; McCamy, James W.
1996-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Kaye, Elena A; Monette, Sebastien; Srimathveeravalli, Govindarajan; Maybody, Majid; Solomon, Stephen B; Gulati, Amitabh
2016-01-01
Purpose About 10–40% of chronic low back pain cases involve facet joints, which are commonly treated with lumbar medial branch (MB) radiofrequency neurotomy. Magnetic Resonance Imaging-guided Focused Ultrasound (MRgFUS), a non-invasive, non-ionizing ablation modality used to treat tumors, neuropathic pain and painful bone metastasis, can also be used to disrupt nerve conduction. This work’s purpose was to study the feasibility and safety of direct MRgFUS ablation of the lumbar MB nerve in acute and subacute swine models. Materials and Methods In vivo MRgFUS ablation was performed in six swine (3 acute and 3 subacute) using a clinical MRgFUS system (ExAblate 2000®; InSightec Ltd., Haifa, Israel) and 3 T MRI scanner (SIGNA; GE Healthcare, Waukesha, WI, USA) combination. Behavioral assessment was performed, and imaging and histology were used to assess the treatment. Results and Conclusions Histological analysis of the in vivo studies confirmed thermal necrosis of the MB nerve could be achieved without damaging the spinal cord or adjacent nerve roots. MRgFUS did not cause changes in the animals’ behavior and ambulation. PMID:27443328
Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues
NASA Astrophysics Data System (ADS)
Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.
2015-06-01
Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.
Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John
2016-01-01
Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.
NASA Technical Reports Server (NTRS)
Devismes, Damien; Cohen, Barbara
2016-01-01
Since these techniques are very new and as they have never been used or this purpose. they will need to be replicated by several independent studies. These techniques may be very important if the optical imaging encounters difficulties, for example, if a sample is made of very dark or monochromatic material and in the case of very deep pits (>500 microns) Based on the preliminary results, the LIBS continuum technique is more appropriate to the large pits produced by long ablations The relationship may work best homogeneous samples, but the continuum is collected with every LIBS analysis so does not require any addition to the experimental suite of techniques. The integration of a QCMB in the ablation chamber may be a very interesting solution to determine the ablated mass. Even if it only measures a fraction of the total mass, its sensitivity should be able to weigh hundreds of nanograms accumulated on the crystal during ablation and relate it to the actual ablated mass. In the future. these options may help in situ K-Ar dating to give the age of the rock with the best accuracy and precision.
Perfluorocarbon compounds: transmitting liquids for infrared laser tissue ablation
NASA Astrophysics Data System (ADS)
Frenz, Martin; Pratisto, Hans S.; Toth, Cynthia A.; Jansen, E. Duco; Altermatt, Hans J.; Welch, Ashley J.; Weber, Heinz P.
1996-05-01
One concern during IR-laser ablation of tissue under water is the mechanical injury that may be induced in tissue due to rapid bubble expansion and collapse or due to strong laser-induced pressure waves. The objective of this study was to evaluate the feasibility of using a liquid which is transparent to the IR-region of the spectrum in order to minimize these undesired mechanical side-effects. As transmitting medium perfluorocarbon liquid was used. Free- running Er:YAG and Ho:YAG laser pulses were delivered into the liquid via a 400 micrometers fiber. Bubble formation during the ablation process was recorded with fast flash photography while pressure transients were measured with a needle hydrophone. The effect of the surrounding material (air, water, perfluorooctane) on the tissue response of chicken breast was evaluated in vitro using histology. It was observed that a large bubble (up to 6 mm in diameter) was formed under perfluorooctane driven by the ablation products. This bubble, however, does not generate a pressure wave when collapsing. Although perfluorooctane only shows a weak absorption for infrared radiation, laser-induced thermal lensing in the liquid strongly decreases the radiant exposure and therefore the ablation efficiency.
NASA Astrophysics Data System (ADS)
Laude, Lucien D.; Rauscher, Gerhard
The use of lasers in industrial material processing is discussed in reviews and reports. Sections are devoted to high-precision laser machining, deposition methods, ablation and polymers, and synthesis and oxidation. Particular attention is given to laser cutting of steel sheets, laser micromachining of material surfaces, process control in laser soldering, laser-induced CVD of doped Si stripes on SOS and their characterization by piezoresistivity measurements, laser CVD of Pt spots on glass, laser deposition of GaAs, UV-laser photoablation of polymers, ArF excimer-laser ablation of HgCdTe semiconductor, pulsed laser synthesis of Ti silicides and nitrides, the kinetics of laser-assisted oxidation of metallic films, and excimer-laser-assisted etching of solids for microelectronics.
Thermal protection system ablation sensor
NASA Technical Reports Server (NTRS)
Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)
2011-01-01
An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.
FY17 LLNL Omega Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Albert, F.; Ali, S. J.
The Capseed campaign goal is to measure shock front velocity non-uniformities in Inertial Confinement Fusion (ICF) ablator materials and quantify the level of non-uniformity caused by intrinsic effects. This is done using the Omega High Resolution Velocimeter (OHRV) to obtain velocity maps of the optically reflecting shock front following release of the ablator material into either PMMA for the warm experiments or cryogenic deuterium for the cryo experiments. For the three half-days in FY17 the focus was twofold: complete measurements on the impact of oxygen heterogeneity and oxygen mitigation layers for glow discharge polymer (GDP), and begin measuring velocity non-uniformitiesmore » on deep release from Be, GDP, and highdensity carbon (HDC) into D2 with improved velocity sensitivity.« less
Doping of silicon by carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.
2007-04-01
Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
NASA Astrophysics Data System (ADS)
Anjana, R.; Kurias, K. M.; Jayaraj, M. K.
2017-10-01
Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.
Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio
This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, themore » low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.« less
Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Cuellar, M.; Flowers, O.
1983-01-01
An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.
Bärsch, Niko; Jakobi, Jurij; Weiler, Sascha; Barcikowski, Stephan
2009-11-04
The generation of colloids by laser ablation of solids in a liquid offers a nearly unlimited material variety and a high purity as no chemical precursors are required. The use of novel high-power ultra-short-pulsed laser systems significantly increases the production rates even in inflammable organic solvents. By applying an average laser power of 50 W and pulse durations below 10 ps, up to 5 mg min(-1) of nanoparticles have been generated directly in acetone, marking a breakthrough in productivity of ultra-short-pulsed laser ablation in liquids. The produced colloids remain stable for more than six months. In the case of yttria-stabilized zirconia ceramic, the nanoparticles retain the tetragonal crystal structure of the ablated target. Laser beam self-focusing plays an important role, as a beam radius change of 2% on the liquid surface can lead to a decrease of nanoparticle production rates of 90% if the target position is not re-adjusted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhenghong; Xu Rongkun; Chu Yanyun
Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the totalmore » current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 Multiplication-Sign 10{sup 7} cm/s.« less
Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen
2015-01-28
As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.
Laser heating and ablation at high repetition rate in thermal confinement regime
NASA Astrophysics Data System (ADS)
Brygo, François; Semerok, A.; Oltra, R.; Weulersse, J.-M.; Fomichev, S.
2006-09-01
Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.
Ablation layers to prevent pitting in laser peening
Hackel, Lloyd A
2016-08-09
A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.
NASA Technical Reports Server (NTRS)
Mcleod, A.
1977-01-01
Marshall Experimental Sprayable Ablator (MXSA) ingredients were compounded into a two part system which requires a minimum of handling by the user. Preweighed two part kits were developed which require that the user supply only the solvent. The kits consist of all of the powdery materials in Part A, and the epoxy resin (AA397) in Part B. Recent aging data on the kits indicates that they are useable for at least 6 months. The acronym MXSA has recently been replaced with MSA (Marshall sprayable ablator).
Effects of nonequilibrium ablation chemistry on Viking radio blackout.
NASA Technical Reports Server (NTRS)
Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.
1973-01-01
The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.
Shock wave as a probe of flux-dimited thermal transport in laser-heated solids
NASA Astrophysics Data System (ADS)
Smith, K.; Forsman, A.; Chiu, G.
1996-11-01
Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.
NASA Astrophysics Data System (ADS)
Santagata, A.; Guarnaccio, A.; Pietrangeli, D.; Szegedi, Á.; Valyon, J.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Sansone, M.; Mollica, D.; Parisi, G. P.
2015-05-01
Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm pulse duration: 120 fs repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm - 2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV-vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV-vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure adopted here. In presence of SBA-15 the silver-silica core-shell nanoparticles observed by TEM are smaller and more homogeneously dispersed if compared with the core-shell system obtained when the MCM-41 mesoporous silica was used. The outcomes show that the choice of the mesoporous silica material can affect the silica shell thickness in addition to the Ag NPs size distribution. With this regard, TEM images evidence that in MCM-41 the silver-silica core-shell nanostructures display a silica layer thickness between 1-10 nm conversely, for SBA-15, the silver-silica core-shell nanoparticles are finely dispersed and the silica shell shows, when present, an average thickness of about 5 nm.
NASA Technical Reports Server (NTRS)
Fujimura, A.; Abe, M.; Yada, T.; Nakamura, T.; Noguchi, T.; Okazaki, R.; Ishibashi, Y.; Shirai, K.; Okada, T.; Yano, H.;
2011-01-01
Japanese spacecraft Hayabusa, which returned from near-Earth-asteroid Itokawa, successfully returned its reentry capsule to the Earth, the Woomera Prohibited Area in Australia in Jun 13th, 2010, as detailed in another paper [1]. The capsule introduced into the Planetary Material Sample Curation Facility in the Sagamihara campus of JAXA in the early morning of June 18th. Hereafter, we describe a series of processes for the returned capsule and the container to recover gas and materials in there. A transportation box of the recovered capsule was cleaned up on its outer surface beforehand and introduced into the class 10,000 clean room of the facility. Then, the capsule was extracted from the box and its plastic bag was opened and checked and photographed the outer surface of the capsule. The capsule was composed of the container, a backside ablator, a side ablator, an electronic box and a supporting frame. The container consists of an outer lid, an inner lid, a frame for latches, a container and a sample catcher, which is composed of room A and B and a rotational cylinder. After the first check, the capsule was packed in a plastic bag with N2 again, and transferred to the Chofu campus in JAXA, where the X-ray CT instrument is situated. The first X-ray CT analysis was performed on the whole returned capsule for confirming the conditions of latches and O-ring seal of the container. The analysis showed that the latches of the container should have worked normally, and that the double Orings of the container seemed to be sealed its sample catcher with no problem. After the first X-ray CT, the capsule was sent back to Sagamihara and introduced in the clean room to exclude the electronic box and the side ablator from the container by hand tools. Then the container with the backside ablator was set firmly to special jigs to fix the lid of container tightly to the container and set to a milling machine. The backside ablator was drilled by the machine to expose heads of bolts, which combined the ablator to the outer lid of the container, and after the drilling had been finished, all the bolts were unscrewed and the backside ablator was removed from the container. Then, the container was sent to the Chofu X-ray facility again to examine in detail by a micro X-ray CT instrument in order to reconfirm that the condition of the latches of the lid of container was normal and that its double O-ring seemed to have been sealed after the last X-ray CT analysis.
Coedo, A G; Padilla, I; Dorado, M T
2004-12-01
This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.
Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting
NASA Astrophysics Data System (ADS)
Ali, Muddassir; Henda, Redhouane
2017-12-01
Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.
NASA Astrophysics Data System (ADS)
Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin
2018-06-01
Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Riedo, Andreas; Meyer, Stefan; Mezger, Klaus; Tulej, Marek; Wurz, Peter
2013-04-01
The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. For cosmochemistry, the elemental and isotopic composition of the surface material is essential information to investigate origin, differentiation and evolution processes of the body and therefore the history of our Solar System [1]. We show that the use of laser-based mass spectrometers is essential in such research because of their high sensitivity in the ppm range and their capability for quantitative elemental and isotopic analysis. A miniaturised Laser Ablation Time-of-Flight Mass Spectrometer (LMS) was developed in our group to study the elemental composition of solid samples [2]. The instrument's small size and light weight make it suitable for an application on a space mission to determine the elemental composition of a planetary surface for example [3]. Meteorites offer the excellent possibility to study extraterrestrial material in the laboratory. To demonstrate the sensitivity and functionality of the LMS instrument, a sample of the Allende meteorite has been investigated with a high spatial resolution. The LMS measurements allowed investigations of the elemental abundances in the Allende meteorite and detailed studies of the mineralogy and volatility [4]. These approaches can be of considerable interest for in situ investigation of grains and inhomogeneous materials with high sensitivity on a planetary surface. [1] Wurz, P., Whitby, J., Managadze, G., 2009, Laser Mass Spectrometry in Planetary Science, AIP Conf. Proc. CP1144, 70-75. [2] Tulej, M., Riedo, A., Iakovleva, M., Wurz, P., 2012, Int. J. Spec., On Applicability of a Miniaturized Laser Ablation Time of Flight Mass Spectrometer for Trace Element Measurements, article ID 234949. [3] Riedo, A., Bieler, A., Neuland, M., Tulej, M., Wurz, P., 2012, Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in-situ investigations in planetary space research, J. Mass Spectrom., in press. [4] Neuland, M.B., Meyer, S., Mezger, K., Riedo, A., Tulej, M., Wurz, P., Probing the Allende meteorite with a miniature Laser-Ablation Mass Analyser for space application, Planetary and Space Science, Special Issue: Terrestrial Planets II, submitted
Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities
Guan, Liming; Xu, Gang
2017-01-01
Objectives To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Materials and Methods Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion. SPSS 19.0 software was used for statistical analyses. Results Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. Conclusion High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer. PMID:28121624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Cheng William, E-mail: williamhongcheng@gmail.com; Chow, Lucy, E-mail: lucychow282@gmail.com; Turkbey, Evrim B., E-mail: evrimbengi@yahoo.com
2016-03-15
IntroductionThe imaging features of unresectable hepatic malignancies in patients who underwent radiofrequency ablation (RFA) in combination with lyso-thermosensitive liposomal doxorubicin (LTLD) were determined.Materials and MethodsA phase I dose escalation study combining RFA with LTLD was performed with peri- and post- procedural CT and MRI. Imaging features were analyzed and measured in terms of ablative zone size and surrounding penumbra size. The dynamic imaging appearance was described qualitatively immediately following the procedure and at 1-month follow-up. The control group receiving liver RFA without LTLD was compared to the study group in terms of imaging features and post-ablative zone size dynamics atmore » follow-up.ResultsPost-treatment scans of hepatic lesions treated with RFA and LTLD have distinctive imaging characteristics when compared to those treated with RFA alone. The addition of LTLD resulted in a regular or smooth enhancing rim on T1W MRI which often correlated with increased attenuation on CT. The LTLD-treated ablation zones were stable or enlarged at follow-up four weeks later in 69 % of study subjects as opposed to conventional RFA where the ablation zone underwent involution compared to imaging acquired immediately after the procedure.ConclusionThe imaging features following RFA with LTLD were different from those after standard RFA and can mimic residual or recurrent tumor. Knowledge of the subtle findings between the two groups can help avoid misinterpretation and proper identification of treatment failure in this setting. Increased size of the LTLD-treated ablation zone after RFA suggests the ongoing drug-induced biological effects.« less
Zhang, Lu; Zhou, Wei; Zhan, WeiWei
2018-04-01
Background Few studies have examined the feasibility and efficiency of performing ultrasound and contrast-enhanced ultrasound (CEUS) after percutaneous laser ablation (PLA) of cervical metastatic lymph nodes from thyroid cancer. Purpose To investigate and describe the use of conventional ultrasound and CEUS in evaluating PLA of metastatic lymph nodes. Material and Methods PLA was performed in a small, prospective, observational study of 21 metastatic lymph nodes in 17 thyroid cancer patients who underwent radical thyroid resection. CEUS was conducted prior to PLA and 1 h and seven days after ablation. Conventional ultrasound examination of all nodes was performed during follow-up after ablation. We observed contrast agent perfusion in the lymph nodes, calculated perfusion defect volumes using CEUS and determined the rates of reduction for metastatic lymph nodes for a mean duration of 17.86 ± 4.704 months (range = 12-27 months). Results CEUS demonstrated that the perfusion defect volume was larger on day 7 than on day 1 post-ablation in 47% of the ablated nodes. Compared to the largest diameters and volumes pre-PLA, the corresponding post-PLA values significantly decreased ( P < 0.05 versus baseline). No statistically significant change in thyroglobulin (Tg) levels before and after PLA was observed in this study ( P > 0.05 versus baseline). Conclusion CEUS can be effectively used to distinguish the margins of ablated regions, assess the accuracy of PLA, and monitor short-term changes in necrotic areas. However, long-term follow-up assessments of the curative effect of PLA will predominantly rely on conventional ultrasonography.
Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S
2016-06-01
High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.