Science.gov

Sample records for ablative radiotherapy sabr

  1. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2014-09-01

    Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W...CONTRACT NUMBER Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer 5b. GRANT NUMBER W81XWH-12-1-0236 5c...NOTES 14. ABSTRACT Purpose and scope: Stereotactic ablative radiotherapy ( SABR ) has become a new standard of care for early stage lung

  2. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2016-09-01

    Radiotherapy ( SABR ) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W. Loo, Jr., M.D., Ph.D CONTRACTING ORGANIZATION: Leland Stanford Junior University...CONTRACT NUMBER W81XWH-12-1-0236 Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer 5b. GRANT NUMBER 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Purpose and scope: Stereotactic ablative radiotherapy ( SABR ) has become a new standard

  3. Patient specific quality control for Stereotactic Ablative Body Radiotherapy (SABR): it takes more than one phantom

    NASA Astrophysics Data System (ADS)

    Kron, T.; Ungureanu, E.; Antony, R.; Hardcastle, N.; Clements, N.; Ukath, J.; Fox, C.; Lonski, P.; Wanigaratne, D.; Haworth, A.

    2017-01-01

    Stereotactic Ablative Body Radiotherapy (SABR) is an extension of the concepts of Stereotactic Radiosurgery from intracranial procedures to extracranial targets. This brings with it new technological challenges for set-up of a SABR program and continuing quality assurance. Compared with intracranial procedures SABR requires consideration of motion and inhomogeneities and has to deal with a much larger variety of targets ranging from lung to liver, kidney and bone. To meet many of the challenges virtually all advances in modern radiotherapy, such as Intensity Modulated and Image Guided Radiation Therapy (IMRT and IGRT) are used. Considering the few fractions and high doses per fraction delivered to complex targets it is not surprising that patient specific quality control is considered essential for safe delivery. Given the variety of targets and clinical scenarios we employ different strategies for different patients to ensure that the most important aspects of the treatment are appropriately tested, be it steep dose gradients, inhomogeneities or the delivery of dose in the presence of motion. The current paper reviews the different approaches and phantoms utilised at Peter MacCallum Cancer Centre for SABR QA.

  4. Pelvic re-irradiation using stereotactic ablative radiotherapy (SABR): A systematic review.

    PubMed

    Murray, Louise Janet; Lilley, John; Hawkins, Maria A; Henry, Ann M; Dickinson, Peter; Sebag-Montefiore, David

    2017-11-01

    To perform a systematic review regarding the use of stereotactic ablative radiotherapy (SABR) for the re-irradiation of recurrent malignant disease within the pelvis, to guide the clinical implementation of this technique. A systematic search strategy was adopted using the MEDLINE, EMBASE and Cochrane Library databases. 195 articles were identified, of which 17 were appropriate for inclusion. Studies were small and data largely retrospective. In total, 205 patients are reported to have received pelvic SABR re-irradiation. Dose and fractionation schedules and re-irradiated volumes are highly variable. Little information is provided regarding organ at risk constraints adopted in the re-irradiation setting. Treatment appears well-tolerated overall, with nine grade 3 and six grade 4 toxicities amongst thirteen re-irradiated patients. Local control at one year ranged from 51% to 100%. Symptomatic improvements were also noted. For previously irradiated patients with recurrent pelvic disease, SABR re-irradiation could be a feasible intervention for those who otherwise have limited options. Evidence to support this technique is limited but shows initial promise. Based on the available literature, suggestions for a more formal SABR re-irradiation pathway are proposed. Prospective studies and a multidisciplinary approach are required to optimise future treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2015-09-01

    SABR ) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W. Loo, Jr., M.D., Ph.D CONTRACTING ORGANIZATION: Stanford University Stanford, CA...CONTRACT NUMBER W81XWH-12-1-0236 Response to Stereotactic Ablative Radiotherapy ( SABR ) for Early Lung Cancer 5b. GRANT NUMBER 5c. PROGRAM...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Purpose and scope: Stereotactic ablative radiotherapy ( SABR ) has become a new standard of care for early

  6. Recommendations for dose calculations of lung cancer treatment plans treated with stereotactic ablative body radiotherapy (SABR)

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.

    2014-03-01

    The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte

  7. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2017-11-01

    SABR) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W Loo Jr, MD PhD CONTRACTING ORGANIZATION: The Leland Stanford Junior University...Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Billy W Loo Jr, MD...for early stage lung cancer in patients who are not candidates for surgery because of excessive surgical risk, and will be an important treatment option

  8. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer

    SciTech Connect

    Mattonen, Sarah A.; Palma, David A.; Department of Oncology, The University of Western Ontario, London, Ontario N6A 4L6

    Purpose: Benign computed tomography (CT) changes due to radiation induced lung injury (RILI) are common following stereotactic ablative radiotherapy (SABR) and can be difficult to differentiate from tumor recurrence. The authors measured the ability of CT image texture analysis, compared to more traditional measures of response, to predict eventual cancer recurrence based on CT images acquired within 5 months of treatment. Methods: A total of 24 lesions from 22 patients treated with SABR were selected for this study: 13 with moderate to severe benign RILI, and 11 with recurrence. Three-dimensional (3D) consolidative and ground-glass opacity (GGO) changes were manually delineatedmore » on all follow-up CT scans. Two size measures of the consolidation regions (longest axial diameter and 3D volume) and nine appearance features of the GGO were calculated: 2 first-order features [mean density and standard deviation of density (first-order texture)], and 7 second-order texture features [energy, entropy, correlation, inverse difference moment (IDM), inertia, cluster shade, and cluster prominence]. For comparison, the corresponding response evaluation criteria in solid tumors measures were also taken for the consolidation regions. Prediction accuracy was determined using the area under the receiver operating characteristic curve (AUC) and two-fold cross validation (CV). Results: For this analysis, 46 diagnostic CT scans scheduled for approximately 3 and 6 months post-treatment were binned based on their recorded scan dates into 2–5 month and 5–8 month follow-up time ranges. At 2–5 months post-treatment, first-order texture, energy, and entropy provided AUCs of 0.79–0.81 using a linear classifier. On two-fold CV, first-order texture yielded 73% accuracy versus 76%–77% with the second-order features. The size measures of the consolidative region, longest axial diameter and 3D volume, gave two-fold CV accuracies of 60% and 57%, and AUCs of 0.72 and 0

  9. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments.

    PubMed

    Tyler, Madelaine K

    2016-01-08

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.

  10. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments

    PubMed Central

    2016-01-01

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5–30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ±2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ±15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ±3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI. PACS numbers: 87.55.km, 87.56.Fc PMID:26894347

  11. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  12. Technical Note: Dosimetric evaluation of Monte Carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters.

    PubMed

    Pokhrel, Damodar; Badkul, Rajeev; Jiang, Hongyu; Kumar, Pravesh; Wang, Fen

    2015-01-08

    For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non-Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC-based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose-volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I-II non-small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC-based lung SABR with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100% = 95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV + 5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean = 36.8 ± 20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non-coplanar conformal arcs and beams for the Novalis-TX consisting of high definition multileaf collimators (MLCs) and 6 MV-SRS (1000 MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2 cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs-at-risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to < 15 cc of heart, and dose to <5 cc of

  13. Short report: interim safety results for a phase II trial measuring the integration of stereotactic ablative radiotherapy (SABR) plus surgery for early stage non-small cell lung cancer (MISSILE-NSCLC).

    PubMed

    Palma, David A; Nguyen, Timothy K; Kwan, Keith; Gaede, Stewart; Landis, Mark; Malthaner, Richard; Fortin, Dalilah; Louie, Alexander V; Frechette, Eric; Rodrigues, George B; Yaremko, Brian; Yu, Edward; Dar, A Rashid; Lee, Ting-Yim; Gratton, Al; Warner, Andrew; Ward, Aaron; Inculet, Richard

    2017-01-27

    A phase II trial was launched to evaluate if neoadjuvant stereotactic ablative radiotherapy (SABR) before surgery improves oncologic outcomes in patients with stage I non-small cell lung cancer (NSCLC). We report a mandated interim safety analysis for the first 10 patients who completed protocol treatment. Operable patients with biopsy-proven T1-2 N0 NSCLC were eligible. SABR was delivered using a risk-adapted fractionation (54Gy/3 fractions, 55/5 or 60/8). Surgical resection was planned 10 weeks later at a high-volume center (>200 lung cancer resections annually). Patients were imaged with dynamic positron emission tomography-computed tomography scans using 18 F-fludeoxyglucose ( 18 F-FDG-PET CT) and dynamic contrast-enhanced CT before SABR and again before surgery. Toxicity was recorded using CTCAE version 4.0. Twelve patients were enrolled between 09/2014 and 09/2015. Two did not undergo surgery, due to patient or surgeon preference; neither patient has developed toxicity or recurrence. For the 10 patients completing both treatments, median age was 70 (range: 54-76), 60% had T1 disease, and 60% had adenocarcinoma. Median FEV 1 was 73% predicted (range: 54-87%). Median time to surgery post-SABR was 10.1 weeks (range: 9.3-15.6 weeks). Surgery consisted of lobectomy (n = 8) or wedge resection (n = 2). Median follow-up post-SABR was 6.3 months. After combined treatment, the rate of acute grade 3-4 toxicity was 10%. There was no post-operative mortality at 90 days. The small sample size included herein precludes any definitive conclusions regarding overall toxicity rates until larger datasets are available. However, these data may inform others who are designing or conducting similar trials. NCT02136355 . Registered 8 May 2014.

  14. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    SciTech Connect

    Lonski, P; Kron, T; RMIT University, Melbourne, Victoria

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. Themore » variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU

  15. Stereotactic ablative radiotherapy (SABR) using 70 Gy in 10 fractions for non-small cell lung cancer: exploration of clinical indications.

    PubMed

    Li, Qiaoqiao; Swanick, Cameron W; Allen, Pamela K; Gomez, Daniel R; Welsh, James W; Liao, Zhongxing; Balter, Peter A; Chang, Joe Y

    2014-08-01

    We report our outcomes for patients with NSCLC treated with SABR to 70 Gy in 10 fractions and propose indications for this regimen as well as new dose-volume constraints. Volumetric image-guided SABR was used to treat 82 patients with clinical challenging NSCLC, not suitable for 50 Gy in 4 fractions, to a final dose of 70 Gy in 10 fractions. Endpoints included overall survival (OS), toxicity, and disease control. At a median follow-up time of 21.1 months, 2-year OS and local control rates were 66.9% and 96.2%, respectively. The most common side effects were radiation pneumonitis (14.6% grade 2, 2.4% grade 3), followed by chest wall pain (4.9% grade 2, 1.2% grade 3). Multivariate analysis revealed chest wall V50>60 cm(3) to be associated with chest wall pain. No patient developed brachial plexopathy. One patient with bronchial tree tumor invasion died of hemoptysis. SABR with 70 Gy in 10 fractions appears to achieve excellent local control and acceptable toxicity for clinically challenging cases with improved tolerance of the chest wall and brachial plexus as compared with 50 Gy in 4 fractions. This regimen may not be suitable in patients with tumor invading critical central structures. More studies are needed to validate our conclusions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    PubMed

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  17. Stereotactic ablative radiotherapy for oligometastatic disease in liver.

    PubMed

    Kim, Myungsoo; Son, Seok Hyun; Won, Yong Kyun; Kay, Chul Seung

    2014-01-01

    Liver metastasis in solid tumors, including colorectal cancer, is the most frequent and lethal complication. The development of systemic therapy has led to prolonged survival. However, in selected patients with a finite number of discrete lesions in liver, defined as oligometastatic state, additional local therapies such as surgical resection, radiofrequency ablation, cryotherapy, and radiotherapy can lead to permanent local disease control and improve survival. Among these, an advance in radiation therapy made it possible to deliver high dose radiation to the tumor more accurately, without impairing the liver function. In recent years, the introduction of stereotactic ablative radiotherapy (SABR) has offered even more intensive tumor dose escalation in a few fractions with reduced dose to the adjacent normal liver. Many studies have shown that SABR for oligometastases is effective and safe, with local control rates widely ranging from 50% to 100% at one or two years. And actuarial survival at one and two years has been reported ranging from 72% to 94% and from 30% to 62%, respectively, without severe toxicities. In this paper, we described the definition and technical aspects of SABR, clinical outcomes including efficacy and toxicity, and related parameters after SABR in liver oligometastases from colorectal cancer.

  18. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?

    PubMed

    Bernstein, Michael B; Krishnan, Sunil; Hodge, James W; Chang, Joe Y

    2016-08-01

    Conventional radiotherapy, in addition to its well-established tumoricidal effects, can also activate the host immune system. Radiation therapy modulates tumour phenotypes, enhances antigen presentation and tumour immunogenicity, increases production of cytokines and alters the tumour microenvironment, enabling destruction of the tumour by the immune system. Investigating the combination of radiotherapy with immunotherapeutic agents, which also promote the host antitumour immune response is, therefore, a logical progression. As the spectrum of clinical use of stereotactic radiotherapy continues to broaden, the question arose as to whether the ablative radiation doses used can also stimulate immune responses and, if so, whether we can amplify these effects by combining immunotherapy and stereotactic ablative radiotherapy (SABR). In this Perspectives article, we explore the preclinical and clinical evidence supporting activation of the immune system following SABR. We then examine studies that provide data on the effectiveness of combining these two techniques - immunotherapy and SABR - in an approach that we have termed 'ISABR'. Lastly, we provide general guiding principles for the development of future clinical trials to investigate the efficacy of ISABR in the hope of generating further interest in these exciting developments.

  19. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    PubMed Central

    Finkelstein, Steven Eric; Timmerman, Robert; McBride, William H.; Schaue, Dörthe; Hoffe, Sarah E.; Mantz, Constantine A.; Wilson, George D.

    2011-01-01

    Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses. PMID:22162711

  1. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    PubMed

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A national dosimetry audit for stereotactic ablative radiotherapy in lung.

    PubMed

    Distefano, Gail; Lee, Jonny; Jafari, Shakardokht; Gouldstone, Clare; Baker, Colin; Mayles, Helen; Clark, Catharine H

    2017-03-01

    A UK national dosimetry audit was carried out to assess the accuracy of Stereotactic Ablative Body Radiotherapy (SABR) lung treatment delivery. This mail-based audit used an anthropomorphic thorax phantom containing nine alanine pellets positioned in the lung region for dosimetry, as well as EBT3 film in the axial plane for isodose comparison. Centres used their local planning protocol/technique, creating 27 SABR plans. A range of delivery techniques including conformal, volumetric modulated arc therapy (VMAT) and Cyberknife (CK) were used with six different calculation algorithms (collapsed cone, superposition, pencil-beam (PB), AAA, Acuros and Monte Carlo). The mean difference between measured and calculated dose (excluding PB results) was 0.4±1.4% for alanine and 1.4±3.4% for film. PB differences were -6.1% and -12.9% respectively. The median of the absolute maximum isodose-to-isodose distances was 3mm (-6mm to 7mm) and 5mm (-10mm to +19mm) for the 100% and 50% isodose lines respectively. Alanine and film is an effective combination for verifying dosimetric and geometric accuracy. There were some differences across dose algorithms, and geometric accuracy was better for VMAT and CK compared with conformal techniques. The alanine dosimetry results showed that planned and delivered doses were within ±3.0% for 25/27 SABR plans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mathematical modelling of tumour volume dynamics in response to stereotactic ablative radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Tariq, Imran; Humbert-Vidan, Laia; Chen, Tao; South, Christopher P.; Ezhil, Veni; Kirkby, Norman F.; Jena, Rajesh; Nisbet, Andrew

    2015-05-01

    This paper reports a modelling study of tumour volume dynamics in response to stereotactic ablative radiotherapy (SABR). The main objective was to develop a model that is adequate to describe tumour volume change measured during SABR, and at the same time is not excessively complex as lacking support from clinical data. To this end, various modelling options were explored, and a rigorous statistical method, the Akaike information criterion, was used to help determine a trade-off between model accuracy and complexity. The models were calibrated to the data from 11 non-small cell lung cancer patients treated with SABR. The results showed that it is feasible to model the tumour volume dynamics during SABR, opening up the potential for using such models in a clinical environment in the future.

  4. Forecasting the impact of stereotactic ablative radiotherapy for early-stage lung cancer on the thoracic surgery workforce.

    PubMed

    Edwards, Janet P; Datta, Indraneel; Hunt, John Douglas; Stefan, Kevin; Ball, Chad G; Dixon, Elijah; Grondin, Sean C

    2016-06-01

    To predict variation in thoracic surgery workforce requirements with the introduction of stereotactic ablative radiotherapy (SABR) for the treatment of early-stage non-small-cell lung cancer (NSCLC). Using Canadian census microdata and the Canadian Community Health Survey, a microsimulation model representing the national population was developed. The demand component simulates the incidence of lung cancer, incorporating the impact of computed tomography (CT) screening for high-risk individuals (>30 pack-year smoking history; age 55-74 years). The supply component simulates the number of thoracic surgeons. SABR was introduced into the model to predict changes in the number of operable NSCLC cases per thoracic surgeon, modelling 30, 60 and 90% compliance with SABR for Stage IA and then for both Stage IA and IB NSCLC. In the absence of SABR, the volume of operative NSCLC per surgeon increases by a peak of 49.4% (by 2027) and then gradually declines to the present day volume by 2049. More dramatic decreases are seen with increasing compliance with SABR for Stage IA/IB NSCLCs. If the number of new surgeons entering the workforce per year were reduced by 33%, the operative volume per surgeon would increase by a peak of 57.1% (30% Stage IA SABR compliance) and would decrease by up to 49.1% (90% Stage IA SABR compliance). With the implementation of SABR for treatment of early NSCLC, there would be a decrease in operative volume. The impact would depend on the stage of NSCLC for which SABR is recommended and on compliance. A national strategy for thoracic surgery workforce planning is necessary, given the complex interaction of CT screening and the treatment of medically operable early NSCLC with SABR. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. Survey of the Patterns of Using Stereotactic Ablative Radiotherapy for Early-Stage Non-small Cell Lung Cancer in Korea.

    PubMed

    Song, Sanghyuk; Chang, Ji Hyun; Kim, Hak Jae; Kim, Yeon Sil; Kim, Jin Hee; Ahn, Yong Chan; Kim, Jae-Sung; Song, Si Yeol; Moon, Sung Ho; Cho, Moon June; Youn, Seon Min

    2017-07-01

    Stereotactic ablative radiotherapy (SABR) is an effective emerging technique for early-stage non-small cell lung cancer (NSCLC). We investigated the current practice of SABR for early-stage NSCLC in Korea. We conducted a nationwide survey of SABR for NSCLC by sending e-mails to all board-certified members of the Korean Society for Radiation Oncology. The survey included 23 questions focusing on the technical aspects of SABR and 18 questions seeking the participants' opinions on specific clinical scenarios in the use of SABR for early-stage NSCLC. Overall, 79 radiation oncologists at 61/85 specialist hospitals in Korea (71.8%) responded to the survey. SABR was used at 33 institutions (54%) to treat NSCLC. Regarding technical aspects, the most common planning methods were the rotational intensity-modulated technique (59%) and the static intensity-modulated technique (49%). Respiratory motion was managed by gating (54%) or abdominal compression (51%), and 86% of the planning scans were obtained using 4-dimensional computed tomography. In the clinical scenarios, the most commonly chosen fractionation schedule for peripherally located T1 NSCLC was 60 Gy in four fractions. For centrally located tumors and T2 NSCLC, the oncologists tended to avoid SABR for radiotherapy, and extended the fractionation schedule. The results of our survey indicated that SABR is increasingly being used to treat NSCLC in Korea. However, there were wide variations in the technical protocols and fractionation schedules of SABR for early-stage NSCLC among institutions. Standardization of SABR is necessary before implementing nationwide, multicenter, randomized studies.

  6. Low Hepatic Toxicity in Primary and Metastatic Liver Cancers after Stereotactic Ablative Radiotherapy Using 3 Fractions.

    PubMed

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Cho, Chul Koo; Yoo, Hyung Jun; Kim, Kum Bae; Han, Chul Ju; Park, Su Cheol; Lee, Dong Han

    2015-08-01

    This study evaluated the incidence of hepatic toxicity after stereotactic ablative radiotherapy (SABR) using 3 fractions to the liver, and identified the predictors for hepatic toxicity. We retrospectively reviewed 78 patients with primary and metastatic liver cancers, who underwent SABR using 3 fractions between 2003 and 2011. To examine the incidence of hepatic toxicity, we defined newly developed hepatic toxicity≥grade 2 according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 within 3 months after the end of SABR as a significant adverse event. To identify the predictors for hepatic toxicity, we analyzed several clinical and dosimetric parameters (rV5Gy-rV35Gy: normal liver volume receiving SABR using 3 fractions in primary and metastatic liver cancers produces low hepatic toxicity, especially in patients with a baseline CP score of 5. However, further studies are needed to minimize hepatic toxicity in patients with baseline CP scores≥6.

  7. Stereotactic ablative radiotherapy: a potentially curable approach to early stage multiple primary lung cancer.

    PubMed

    Chang, Joe Y; Liu, Yung-Hsien; Zhu, Zhengfei; Welsh, James W; Gomez, Daniel R; Komaki, Ritsuko; Roth, Jack A; Swisher, Stephen G

    2013-09-15

    Surgical resection has been the standard treatment for early stage multiple primary lung cancer (MPLC). However, a significant proportion of patients with MPLC cannot undergo surgery. For this report, the authors explored the role of stereotactic ablative radiotherapy (SABR) for patients with MPLC. Patients with MPLC who received SABR (50 grays [Gy] in 4 fractions or 70 Gy in 10 fractions) for the second tumor were reviewed. Four-dimensional, computed tomography-based, planning/volumetric image-guided treatment was used for all patients. Treatment outcomes/toxicities were analyzed. For the 101 patients who received SABR, at a median follow-up of 36 months and with a median overall survival (OS) of 46 months, the 2-year and 4-year in-field local control rates were 97.4% and 95.7%, respectively. The 2-year and 4-year OS rates were 73.2% and 47.5%, respectively; and the progression-free survival (PFS) rates were 67% and 58%, respectively. Patients who had metachronous tumors had better OS and PFS than patients who had synchronous tumors (2-year OS: 80.6% metachronous vs 61.5% synchronous; 4-year OS: 52.7% vs 39.7%, respectively; P = .047; 2-year PFS: 84.7% vs 49.4%, respectively; 4-year PFS: 75.6% vs 30.4%, respectively; P = .0001). For patients who either underwent surgery or received SABR for an index tumor, the incidence of grade ≥ 3 radiation pneumonitis was 3% (2 of 71 patients); however, this increased to 17% (5 of 30 patients) for those who received conventional radiotherapy for an index tumor. Other grade ≥ 3 toxicities included grade 3 chest wall pain (3 of 101 patients; 3%) and grade 3 skin toxicity (1 of 101 patients; 1%). SABR achieves promising long-term tumor control and survival and may be a potential curative treatment for early stage MPLC. © 2013 American Cancer Society.

  8. Is stereotactic ablative radiotherapy equivalent to sublobar resection in high-risk surgical patients with stage I non-small-cell lung cancer?

    PubMed

    Mahmood, Sarah; Bilal, Haris; Faivre-Finn, Corinne; Shah, Rajesh

    2013-11-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'Is stereotactic ablative radiotherapy equivalent to sublobar resection in high-risk surgical patients with Stage I non-small cell lung cancer?'. Altogether over 318 papers were found, of which 18 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Stereotactic ablative radiotherapy (SABR) and sublobar resection (SLR) offer clear survival benefit in the treatment of early-stage non-small-cell lung cancer (NSCLC) in high-risk patients unsuitable for lobectomy and SABR has shown good results in medically operable patients. No randomized data are available comparing SLR and SABR, and therefore, data from prospective studies were compared. Overall survival at 1 year was similar between patients treated with SABR and SLR (81-85.7 vs 92%); however, overall 3-year survival was higher following SLR (87.1 vs 45.1-57.1%). There was no statistically significant difference in local recurrence in patients treated with SABR compared with SLR (3.5-14.5 vs 4.8-20%). Both treatment modalities are associated with complications. Fatigue (31-32.6%), pneumonitis (2.1-12.5%) and chest wall pain (3.1-12%) were common following SABR; however, serious grade 3 and 4 toxicity were rare. Morbidity following SLR was reported between 7.3 and 33.7%. Thirty-day mortality following SABR was 0%, while predicted 30-day mortality following a lung resection, using the thoracoscore predictive model ranges between 1 and 2.6%. Treatment for early-stage NSCLC should be tailored to individual patients. SABR is an acceptable alternative to SLR in high-risk patients but comparative data are required.

  9. Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy

    NASA Astrophysics Data System (ADS)

    Olding, T.; Alexander, KM

    2017-05-01

    The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.

  10. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    PubMed

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  11. SU-F-T-558: ArcCheck for Patient Specific QA in Stereotactic Ablative Radiotherapy

    SciTech Connect

    Ramachandran, P; RMIT University, Bundoora; Tajaldeen, A

    2016-06-15

    Purpose: Stereotactic Ablative Radiotherapy (SABR) is one of the most preferred treatment techniques for early stage lung cancer. This technique has been extended to other treatment sites like Spine, Liver, Scapula, Sternum etc., This has resulted in increased physics QA time on machine. In this study, we’ve tested the feasibility of using ArcCheck as an alternative method to replace film dosimetry. Methods: Twelve patients with varied diagnosis of Lung, Liver, scapula, sternum and Spine undergoing SABR were selected for this study. Pre-treatment QA was performed for all the patients which include ionization chamber and film dosimetry. The required gamma criteriamore » for each SABR plan to pass QA and proceed to treatment is 95% (3%,1mm). In addition to this routine process, the treatment plans were exported on to an ArcCheck phantom. The planned and measured dose from the ArcCheck device were compared using four different gamma criteria: 2%,2 mm, 3%,2 mm, 3%,1 mm and 3%, 3 mm. In addition to this, we’ve also introduced errors to gantry, collimator and couch angle to assess sensitivity of the ArcCheck with potential delivery errors. Results: The ArcCheck mean passing rates for all twelve cases were 76.1%±9.7% for gamma criteria 3%,1 mm, 89.5%±5.3% for 2%,2 mm, 92.6%±4.2% for 3%,2 mm, and 97.6%±2.4% for 3%,3 mm gamma criteria. When SABR spine cases are excluded, we observe ArcCheck passing rates higher than 95% for all the studied cases with 3%, 3mm, and ArcCheck results in acceptable agreement with the film gamma results. Conclusion: Our ArcCheck results at 3%, 3 mm were found to correlate well with our non-SABR spine routine patient specific QA results (3%,1 mm). We observed significant reduction in QA time on using ArcCheck for SABR QA. This study shows that ArcCheck could replace film dosimetry for all sites except SABR spine.« less

  12. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99m)Tc-DMSA SPECT/CT.

    PubMed

    Jackson, Price; Foroudi, Farshad; Pham, Daniel; Hofman, Michael S; Hardcastle, Nicholas; Callahan, Jason; Kron, Tomas; Siva, Shankar

    2014-11-26

    Stereotactic ablative body radiotherapy (SABR) has been proposed as a definitive treatment for patients with inoperable primary renal cell carcinoma. However, there is little documentation detailing the radiobiological effects of hypofractionated radiation on healthy renal tissue. In this study we describe a methodology for assessment of regional change in renal function in response to single fraction SABR of 26 Gy. In a patient with a solitary kidney, detailed follow-up of kidney function post-treatment was determined through 3-dimensional SPECT/CT imaging and (51)Cr-EDTA measurements. Based on measurements of glomerular filtration rate, renal function declined rapidly by 34% at 3 months, plateaued at 43% loss at 12 months, with minimal further decrease to 49% of baseline by 18 months. The pattern of renal functional change in (99m)Tc-DMSA uptake on SPECT/CT imaging correlates with dose delivered. This study demonstrates a dose effect relationship of SABR with loss of kidney function.

  13. Pooled analysis of stereotactic ablative radiotherapy for primary renal cell carcinoma: A report from the International Radiosurgery Oncology Consortium for Kidney (IROCK).

    PubMed

    Siva, Shankar; Louie, Alexander V; Warner, Andrew; Muacevic, Alexander; Gandhidasan, Senthilkumar; Ponsky, Lee; Ellis, Rodney; Kaplan, Irving; Mahadevan, Anand; Chu, William; Swaminath, Anand; Onishi, Hiroshi; Teh, Bin; Correa, Rohann J; Lo, Simon S; Staehler, Michael

    2018-03-01

    Stereotactic ablative radiotherapy (SABR) is an emerging therapy for primary renal cell carcinoma. The authors assessed safety, efficacy, and survival in a multi-institutional setting. Outcomes between single-fraction and multifraction SABR were compared. Individual patient data sets from 9 International Radiosurgery Oncology Consortium for Kidney institutions across Germany, Australia, the United States, Canada, and Japan were pooled. Toxicities were recorded using Common Terminology Criteria for Adverse Events, version 4.0. Patient, tumor, and treatment characteristics were stratified according to the number of radiotherapy fractions (single vs multiple). Survival outcomes were examined using Kaplan-Meier estimates and Cox proportional-hazards regression. Of 223 patients, 118 received single-fraction SABR, and 105 received multifraction SABR. The mean patient age was 72 years, and 69.5% of patients were men. There were 83 patients with grade 1 and 2 toxicity (35.6%) and 3 with grade 3 and 4 toxicities (1.3%). The rates of local control, cancer-specific survival, and progression-free survival were 97.8%, 95.7%, and 77.4%, respectively, at 2 years; and they were 97.8%, 91.9%, and 65.4%, respectively, at 4 years. On multivariable analysis, tumors with a larger maximum dimension and the receipt of multifraction SABR were associated with poorer progression-free survival (hazard ratio, 1.16 [P < .01] and 1.13 [P = .02], respectively) and poorer cancer-specific survival (hazard ratio, 1.28 [P < .01] and 1.33 [P = .01], respectively). There were no differences in local failure between the single-fraction cohort (n = 1) and the multifraction cohort (n = 2; P = .60). The mean ( ± standard deviation) estimated glomerular filtration rate at baseline was 59.9 ± 21.9 mL per minute, and it decreased by 5.5 ± 13.3 mL per minute (P < .01). SABR is well tolerated and locally effective for treating patients who have primary renal

  14. Credentialing of radiotherapy centres in Australasia for TROG 09.02 (Chisel), a Phase III clinical trial on stereotactic ablative body radiotherapy of early stage lung cancer.

    PubMed

    Kron, Tomas; Chesson, Brent; Hardcastle, Nicholas; Crain, Melissa; Clements, Natalie; Burns, Mark; Ball, David

    2018-05-01

    A randomised clinical trial comparing stereotactic ablative body radiotherapy (SABR) with conventional radiotherapy for early stage lung cancer has been conducted in Australia and New Zealand under the auspices of the TransTasman Radiation Oncology Group (NCT01014130). We report on the technical credentialing program as prerequisite for centres joining the trial. Participating centres were asked to develop treatment plans for two test cases to assess their ability to create plans according to protocol. Dose delivery in the presence of inhomogeneity and motion was assessed during a site visit using a phantom with moving inserts. Site visits for the trial were conducted in 16 Australian and 3 New Zealand radiotherapy facilities. The tests with low density inhomogeneities confirmed shortcomings of the AAA algorithm for dose calculation. Dose was assessed for a typical treatment delivery including at least one non-coplanar beam in a stationary and moving phantom. This end-to-end test confirmed that all participating centres were able to deliver stereotactic ablative body radiotherapy with the required accuracy while the planning study demonstrated that they were able to produce acceptable plans for both test cases. The credentialing process documented that participating centres were able to deliver dose as required in the trial protocol. It also gave an opportunity to provide education about the trial and discuss technical issues such as four-dimensional CT, small field dosimetry and patient immobilisation with staff in participating centres. Advances in knowledge: Credentialing is an important quality assurance tool for radiotherapy trials using advanced technology. In addition to confirming technical competence, it provides an opportunity for education and discussion about the trial.

  15. Residual {sup 18}F-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control

    SciTech Connect

    Bollineni, Vikram Rao, E-mail: v.r.bollineni@umcg.nl; Widder, Joachim; Pruim, Jan

    2012-07-15

    Purpose: To investigate the prognostic value of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) uptake at 12 weeks after stereotactic ablative radiotherapy (SABR) for stage I non-small-cell lung cancer (NSCLC). Methods and Materials: From November 2006 to February 2010, 132 medically inoperable patients with proven Stage I NSCLC or FDG-PET-positive primary lung tumors were analyzed retrospectively. SABR consisted of 60 Gy delivered in 3 to 8 fractions. Maximum standardized uptake value (SUV{sub max}) of the treated lesion was assessed 12 weeks after SABR, using FDG-PET. Patients were subsequently followed at regular intervals using computed tomography (CT) scans. Association between post-SABR SUV{submore » max} and local control (LC), mediastinal failure, distant failure, overall survival (OS), and disease-specific survival (DSS) was examined. Results: Median follow-up time was 17 months (range, 3-40 months). Median lesion size was 25 mm (range, 9-70 mm). There were 6 local failures: 15 mediastinal failures, 15 distant failures, 13 disease-related deaths, and 16 deaths from intercurrent diseases. Glucose corrected post-SABR median SUV{sub max} was 3.0 (range, 0.55-14.50). Using SUV{sub max} 5.0 as a cutoff, the 2-year LC was 80% versus 97.7% for high versus low SUV{sub max}, yielding an adjusted subhazard ratio (SHR) for high post-SABR SUV{sub max} of 7.3 (95% confidence interval [CI], 1.4-38.5; p = 0.019). Two-year DSS rates were 74% versus 91%, respectively, for high and low SUV{sub max} values (SHR, 2.2; 95% CI, 0.8-6.3; p = 0.113). Two-year OS was 62% versus 81% (hazard ratio [HR], 1.6; 95% CI, 0.7-3.7; p = 0.268). Conclusions: Residual FDG uptake (SUV{sub max} {>=}5.0) 12 weeks after SABR signifies increased risk of local failure. A single FDG-PET scan at 12 weeks could be used to tailor further follow-up according to the risk of failure, especially in patients potentially eligible for salvage surgery.« less

  16. The role of technology in clinical trials using stereotactic body radiotherapy

    PubMed Central

    Romero, Alejandra Méndez; Heijmen, Ben J M

    2017-01-01

    Stereotactic body radiotherapy is a highly technology-driven treatment modality. The wider availability of in-room imaging and advanced radiotherapy delivery techniques has led to more institutions offering stereotactic ablative therapy (SABR). While some technological challenges remain, the crucial point for the next generation of SABR clinical trials is that today's technology is used correctly and close to its optimal potential for accuracy. The credentialing procedure of SABR needs to be extensive, but this investment will benefit the trial itself, the patients and the professionals involved. PMID:28055252

  17. SABrE User's Guide

    SciTech Connect

    Brown, S.A.

    In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less

  18. Stereotactic ablative radiotherapy after concomitant chemoradiotherapy in non-small cell lung cancer: A TITE-CRM phase 1 trial.

    PubMed

    Doyen, Jérôme; Poudenx, Michel; Gal, Jocelyn; Otto, Josiane; Guerder, Caroline; Naghavi, Arash O; Gérard, Anais; Leysalle, Axel; Cohen, Charlotte; Padovani, Bernard; Ianessi, Antoine; Schiappa, Renaud; Chamorey, Emmanuel; Bondiau, Pierre-Yves

    2018-05-01

    Platinum based chemoradiotherapy is the standard of care for inoperable non-small cell lung cancer (NSCLC). With evidence that NSCLC can have a dose dependent response with stereotactic ablative radiotherapy (SABR), we hypothesize that a SABR boost on residual tumor treated with chemoradiotherapy could increase treatment efficacy. The purpose of this study was to determine feasibility of such an approach. A prospective phase I trial was performed including 26 patients. Time-to-event continual reassessment method (TITE-CRM) was used for dose escalation which ranged from 3 × 7 to 3 × 12 Gy for the stereotactic boost, after 46 Gy (2 Gy per day) of chemoradiotherapy. Median follow-up was of 37.1 months (1.7-60.7), and 3, 4, 3, 3, 9 and 4 patients were included at the dose levels 1, 2, 3, 4, 5 and 6, respectively. During chemoradiotherapy, 9 patients experienced grade 3 toxicity. After stereotactic radiotherapy, 1 patient experienced an esophageal fistula (with local relapse) at the 3 × 11 Gy level, and 1 patient died from hemoptysis at the 3 × 12 Gy level. The 2-year rate of local control, locoregional free survival, metastasis-free survival, and overall survival was 70.3%, 55.5%, 44.5% and 50.8%, respectively. In the treatment of NSCLC with chemoradiotherapy followed by a stereotactic boost, the safe recommended dose in our protocol was a boost dose of 3 × 11 Gy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dosimetric comparison of a 6-MV flattening-filter and a flattening-filter-free beam for lung stereotactic ablative radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Kim, Jin-Young; Kang, Sang-Won; Suh, Tae-Suk

    2015-11-01

    The purpose of this study was to test the feasibility of clinical usage of a flattening-filter-free (FFF) beam for treatment with lung stereotactic ablative radiotherapy (SABR). Ten patients were treated with SABR and a 6-MV FFF beam for this study. All plans using volumetric modulated arc therapy (VMAT) were optimized in the Eclipse treatment planning system (TPS) by using the Acuros XB (AXB) dose calculation algorithm and were delivered by using a Varian TrueBeam ™ linear accelerator equipped with a high-definition (HD) multi-leaf collimator. The prescription dose used was 48 Gy in 4 fractions. In order to compare the plan using a conventional 6-MV flattening-filter (FF) beam, the SABR plan was recalculated under the condition of the same beam settings used in the plan employing the 6-MV FFF beam. All dose distributions were calculated by using Acuros XB (AXB, version 11) and a 2.5-mm isotropic dose grid. The cumulative dosevolume histograms (DVH) for the planning target volume (PTV) and all organs at risk (OARs) were analyzed. Technical parameters, such as total monitor units (MUs) and the delivery time, were also recorded and assessed. All plans for target volumes met the planning objectives for the PTV ( i.e., V95% > 95%) and the maximum dose ( i.e., Dmax < 110%) revealing adequate target coverage for the 6-MV FF and FFF beams. Differences in DVH for target volumes (PTV and clinical target volume (CTV)) and OARs on the lung SABR plans from the interchange of the treatment beams were small, but showed a marked reduction (52.97%) in the treatment delivery time. The SABR plan with a FFF beam required a larger number of MUs than the plan with the FF beam, and the mean difference in MUs was 4.65%. This study demonstrated that the use of the FFF beam for lung SABR plan provided better treatment efficiency relative to 6-MV FF beam. This strategy should be particularly beneficial for high dose conformity to the lung and decreased intra-fraction movements because of

  20. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    SciTech Connect

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fastmore » superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice

  1. 7-year follow-up after stereotactic ablative radiotherapy for patients with stage I non-small cell lung cancer: Results of a phase 2 clinical trial.

    PubMed

    Sun, Bing; Brooks, Eric D; Komaki, Ritsuko U; Liao, Zhongxing; Jeter, Melenda D; McAleer, Mary F; Allen, Pamela K; Balter, Peter A; Welsh, James D; O'Reilly, Michael S; Gomez, Daniel; Hahn, Stephen M; Roth, Jack A; Mehran, Reza J; Heymach, John V; Chang, Joe Y

    2017-08-15

    The authors evaluated the efficacy, patterns of failure, and toxicity of stereotactic ablative radiotherapy (SABR) for patients with medically inoperable, clinical stage I non-small cell lung cancer (NSCLC) in a prospective clinical trial with 7 years of follow-up. Clinical staging was performed according to the seventh edition of the American Joint Committee on Cancer TNM staging system. Eligible patients with histologically confirmed NSCLC of clinical stage I as determined using positron emission tomography staging were treated with SABR (50 grays in 4 fractions). The primary endpoint was progression-free survival. Patients were followed with computed tomography and/or positron emission tomography/computed tomography every 3 months for the first 2 years, every 6 months for the next 3 years, and then annually thereafter. A total of 65 patients were eligible for analysis. The median age of the patients was 71 years, and the median follow-up was 7.2 years. A total of 18 patients (27.7%) developed disease recurrence at a median of 14.5 months (range, 4.3-71.5 months) after SABR. Estimated incidences of local, regional, and distant disease recurrence using competing risk analysis were 8.1%, 10.9%, and 11.0%, respectively, at 5 years and 8.1%, 13.6%, and 13.8%, respectively, at 7 years. A second primary lung carcinoma developed in 12 patients (18.5%) at a median of 35 months (range, 5-67 months) after SABR. Estimated 5-year and 7-year progression-free survival rates were 49.5% and 38.2%, respectively; the corresponding overall survival rates were 55.7% and 47.5%, respectively. Three patients (4.6%) experienced grade 3 treatment-related adverse events. No patients developed grade 4 or 5 adverse events (toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events [version 3.0]). With long-term follow-up, the results of the current prospective study demonstrated outstanding local control and low toxicity after SABR in

  2. Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver

    SciTech Connect

    James, Joshua, E-mail: joshua.james@louisville.edu; Dunlap, Neal E.; Nguyen, Vi Nhan

    Purpose: Tracking soft-tissue targets has recently been cleared as a new application of Calypso, an electromagnetic wireless transponder tracking system, allowing for gated treatment of the liver based on the motion of the target volume itself. The purpose of this study is to describe the details of validating the Calypso system for wireless transponder tracking of the liver and to present the clinical workflow for using it to deliver gated stereotactic ablative radiotherapy (SABR). Methods: A commercial 3D diode array motion system was used to evaluate the dynamic tracking accuracy of Calypso when tracking continuous large amplitude motion. It wasmore » then used to perform end-to-end tests to evaluate the dosimetric accuracy of gated beam delivery for liver SABR. In addition, gating limits were investigated to determine how large the gating window can be while still maintaining dosimetric accuracy. The gating latency of the Calypso system was also measured using a customized motion phantom. Results: The average absolute difference between the measured and expected positional offset was 0.3 mm. The 2%/2 mm gamma pass rates for the gated treatment delivery were greater than 97%. When increasing the gating limits beyond the known extent of planned motion, the gamma pass rates decreased as expected. The 2%/2 mm gamma pass rate for a 1, 2, and 3 mm increase in gating limits was measured to be 97.8%, 82.9%, and 61.4%, respectively. The average gating latency was measured to be 63.8 ms for beam-hold and 195.8 ms for beam-on. Four liver patients with 17 total fractions have been successfully treated at our institution. Conclusions: Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer’s specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam

  3. Stereotactic Ablative Radiotherapy for stage I histologically proven non-small cell lung cancer: an Italian multicenter observational study.

    PubMed

    Ricardi, Umberto; Frezza, Giovanni; Filippi, Andrea Riccardo; Badellino, Serena; Levis, Mario; Navarria, Piera; Salvi, Fabrizio; Marcenaro, Michela; Trovò, Marco; Guarneri, Alessia; Corvò, Renzo; Scorsetti, Marta

    2014-06-01

    Aim of this retrospective multicenter observational study was to provide data on outcomes and prognostic factors in patients affected with stage I histologically confirmed NSCLC treated with Stereotactic Ablative Radiotherapy (SABR, or Stereotactic Body Radiotherapy, SBRT) outside clinical trials. We analyzed a cohort of 196 patients with histological/cytological diagnosis of NSCLC. Median age at treatment was 75 years old; median tumor diameter was 2.48 cm, and median GTV 13.3 cc. One hundred fifty-five patients had stage IA disease (79.1%) and 41 patients stage IB disease (20.9%). Total doses ranged from 48 to 60 Gy in 3-8 fractions. Primary endpoints of the study were safety (acute and late toxicity) and efficacy (Local Control, Disease-Free Survival, Overall and Cancer-Specific Survival). Median follow-up time was 30 months. The percentage of grade ≥2 pulmonary toxicity was 3%, and the 30 and 60 days mortality rate was 0%. Local Recurrence-Free Survival was 89.7% at 3 years. Fifty-nine patients (30.1%) had at least one failure (local and/or nodal and/or distant), with a Disease-Free Survival (DFS) rate at 3 years of 65.5%. Overall Survival (OS) and Cancer-Specific Survival (CSS) rates were 68% and 82.1% at 3 years, respectively. Median time to any recurrence was 15 months, while median overall survival time was 54 months. At multivariate analysis, stage IB was the only variable associated to a decrease in DFS, OS and CSS (HR 2.77, p = 0.006; HR 2.38, p = 0.009; HR 4.06, p ≤ 0.001, respectively). A difference in survival according to stage was also evident at the log-rank test (p ≤ 0.0001 for CSS and OS). The results of the present study support the routine use of SABR for stage I NSCLC in a daily practice environment. The only prognostic factor that has been confirmed by our analysis was tumor stage (IA vs. IB). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Critical Structure Sparing in Stereotactic Ablative Radiotherapy for Central Lung Lesions: Helical Tomotherapy vs. Volumetric Modulated Arc Therapy

    PubMed Central

    Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko

    2013-01-01

    Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071

  5. SABrE User`s Guide

    SciTech Connect

    Brown, S.A.

    In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less

  6. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    SciTech Connect

    Pham, Daniel, E-mail: Daniel.Pham@petermac.org; Kron, Tomas; Foroudi, Farshad

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist'smore » discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.« less

  7. Correlation of biologically effective dose and the tumor control in Stage I (<5 cm) non-small cell lung cancer with stereotactic ablative radiotherapy: a single institutional cohort study.

    PubMed

    Jeon, Wan; Ahn, Sung-Ja; Kim, Young-Chul; Oh, In-Jae; Park, Chul-Kyu; Jeong, Jae-Uk; Yoon, Mee Sun; Song, Ju-Young; Nam, Taek-Keun; Chung, Woong-Ki

    2018-02-01

    Stereotactic ablative radiotherapy (SABR) is one of the newly developed innovative radiotherapy and of which optimal dose prescription needs to be standardized. We aimed to investigate the dose-response relationship for patients with SABR. Fifty-three patients with Stage I non-small cell lung cancer patients, who underwent SABR between November 2006 and January 2015, were evaluated retrospectively. Thirteen patients (24.5%), who refused the surgery were included and 40 patients (75.5%) were medically inoperable at diagnosis. The median age was 74 years. The median SABR dose was 50 Gy in 3-8 fractions and the median biologically effective dose (BED;α/β = 10) was 105.6 Gy (range: 60-160.53 Gy). The median follow-up was 37.1 months. The 1 and 3 year local control rates were 91.7% and 85.1%. The 3 year overall and progression-free survival rate were 63.3% and 47.5%, respectively, and freedom from progression was 62.2%. Local control rate and 3-year overall survival according to tumor size was 100% and 79.4% in T1 tumors in a while 61.8% and 45% in T2a tumors. The 3-year local and regional control by BED10 was 79.4% and 69.4% in ≤100 Gy vs. 89.1% and 100% in >100 Gy (P = 0.526, 0.004). Dyspnea more than Grade 3 was reported in six (11.3%) patients and Grade 1 chest pain was shown in five (9.4%) patients. The excellent regional control was conferred with a prescription of more than BED10 of 100 Gy, which also might be needed to achieve better local tumor control in T2a patients with tolerable lung function. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target

  9. New techniques for assessing response after hypofractionated radiotherapy for lung cancer

    PubMed Central

    Mattonen, Sarah A.; Huang, Kitty; Ward, Aaron D.; Senan, Suresh

    2014-01-01

    Hypofractionated radiotherapy (HFRT) is an effective and increasingly-used treatment for early stage non-small cell lung cancer (NSCLC). Stereotactic ablative radiotherapy (SABR) is a form of HFRT and delivers biologically effective doses (BEDs) in excess of 100 Gy10 in 3-8 fractions. Excellent long-term outcomes have been reported; however, response assessment following SABR is complicated as radiation induced lung injury can appear similar to a recurring tumor on CT. Current approaches to scoring treatment responses include Response Evaluation Criteria in Solid Tumors (RECIST) and positron emission tomography (PET), both of which appear to have a limited role in detecting recurrences following SABR. Novel approaches to assess response are required, but new techniques should be easily standardized across centers, cost effective, with sensitivity and specificity that improves on current CT and PET approaches. This review examines potential novel approaches, focusing on the emerging field of quantitative image feature analysis, to distinguish recurrence from fibrosis after SABR. PMID:24688782

  10. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  11. Early prediction of lung cancer recurrence after stereotactic radiotherapy using second order texture statistics

    NASA Astrophysics Data System (ADS)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2014-03-01

    Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.

  12. A phase II randomized trial of Observation versus stereotactic ablative RadiatIon for OLigometastatic prostate CancEr (ORIOLE).

    PubMed

    Radwan, Noura; Phillips, Ryan; Ross, Ashley; Rowe, Steven P; Gorin, Michael A; Antonarakis, Emmanuel S; Deville, Curtiland; Greco, Stephen; Denmeade, Samuel; Paller, Channing; Song, Daniel Y; Diehn, Maximilian; Wang, Hao; Carducci, Michael; Pienta, Kenneth J; Pomper, Martin G; DeWeese, Theodore L; Dicker, Adam; Eisenberger, Mario; Tran, Phuoc T

    2017-06-29

    We describe a randomized, non-blinded Phase II interventional study to assess the safety and efficacy of stereotactic ablative radiotherapy (SABR) for hormone-sensitive oligometastatic prostate adenocarcinoma, and to describe the biology of the oligometastatic state using immunologic, cellular, molecular, and functional imaging correlates. 54 men with oligometastatic prostate adenocarcinoma will be accrued. The primary clinical endpoint will be progression at 6 months from randomization with the hypothesis that SABR to all metastases will forestall progression by disrupting the metastatic process. Secondary clinical endpoints will include local control at 6 months post-SABR, toxicity and quality of life, and androgen deprivation therapy (ADT)-free survival (ADT-FS). Further fundamental analysis of the oligometastatic state with be achieved through correlation with investigational 18 F-DCFPyL PET/CT imaging and measurement of circulating tumor cells, circulating tumor DNA, and circulating T-cell receptor repertoires, facilitating an unprecedented opportunity to characterize, in isolation, the effects of SABR on the dynamics of and immunologic response to oligometastatic disease. Patients will be randomized 2:1 to SABR or observation with minimization to balance assignment by primary intervention, prior hormonal therapy, and PSA doubling time. Progression after 6 months will be compared using Fisher's exact test. Hazard ratios and Kaplan-Meier estimates of progression free survival (PFS), ADT free survival (ADT-FS), time to locoregional progression (TTLP) and time to distant progression (TTDP) will be calculated based on an intention-to-treat. Local control will be assessed using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria. Withdrawal from the study prior to 6 months will be counted as progression. Adverse events will be summarized by type and grade. Quality of life pre- and post- SABR will be measured by Brief Pain Inventory. The ORIOLE

  13. SU-G-BRB-07: Developing a QA Procedure for Gated VMAT SABR Treatments Using 10 MV Beam in Flattening-Filter Free Mode

    SciTech Connect

    Chitsazzadeh, S; Wells, D; Mestrovic, A

    2016-06-15

    Purpose: To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in sizemore » from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  14. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  15. Out-of-field in vivo dosimetry using TLD in SABR for primary kidney cancer involving mixed photon fields.

    PubMed

    Lonski, P; Keehan, S; Siva, S; Pham, D; Franich, R D; Taylor, M L; Kron, T

    2017-05-01

    To assess out-of-field dose using three different variants of LiF thermoluminescence dosimeters (TLD) for ten patients who underwent stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) and compare with treatment planning system (TPS) dose calculations. Thermoluminescent dosimeter (TLD) measurements were conducted at 20, 30, 40 and 50cm from isocentre on ten patients undergoing SABR for primary RCC. Three types of high-sensitivity LiF:Mg,Cu,P TLD material with different 6 Li/ 7 Li isotope ratios were used. Patient plans were calculated using Eclipse Anisotropic Analytical Algorithm (AAA) for clinical evaluation and recalculated using Pencil Beam Convolution (PBC) algorithm for comparison. Both AAA and PBC showed diminished accuracy for photon doses at increasing distance out-of-field. At 50cm, measured photon dose was 0.3cGy normalised to a 10Gy prescription on average with only small variation across all patients. This is likely due to the leakage component of the out-of-field dose. The 6 Li-enriched TLD materials showed increased signal attributable to additional neutron contribution. LiF:Mg,Cu,P TLD containing 6 Li is sensitive enough to measure out-of-field dose 50cm from isocentre however will over-estimate the photon component of out-of-field dose in high energy treatments due to the presence of thermal neutrons. 7 Li enriched materials which are insensitive to neutrons are therefore required for accurate photon dosimetry. Neutron signal has been shown here to increase with MUs and is higher for patients treated using certain non coplanar beam arrangements. Further work is required to convert this additional neutron signal to dose. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR.

    PubMed

    Choi, Chang Heon; Park, So-Yeon; Kim, Jung-In; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel; Park, Jong Min

    2017-02-01

    To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx ™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay ™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm 3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system.

  17. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR

    PubMed Central

    Choi, Chang Heon; Park, So-Yeon; Kim, Jung-in; Kim, Jin Ho; Kim, Kyubo; Carlson, Joel

    2017-01-01

    Objective: To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) plans for spine stereotactic ablative radiotherapy (SABR). Methods: A total of 20 patients with spine metastasis were retrospectively selected. For each patient, a tri-Co-60 IMRT plan and a volumetric-modulated arc therapy (VMAT) plan were generated. The spinal cords were defined based on MR images for the tri-Co-60 IMRT, while isotropic 1-mm margins were added to the spinal cords for the VMAT plans. The VMAT plans were generated with 10-MV flattening filter-free photon beams of TrueBeam STx™ (Varian Medical Systems, Palo Alto, CA), while the tri-Co-60 IMRT plans were generated with the ViewRay™ system (ViewRay inc., Cleveland, OH). The initial prescription dose was 18 Gy (1 fraction). If the tolerance dose of the spinal cord was not met, the prescription dose was reduced until the spinal cord tolerance dose was satisfied. Results: The mean dose to the target volumes, conformity index and homogeneity index of the VMAT and tri-Co-60 IMRT were 17.8 ± 0.8 vs 13.7 ± 3.9 Gy, 0.85 ± 0.20 vs 1.58 ± 1.29 and 0.09 ± 0.04 vs 0.24 ± 0.19, respectively. The integral doses and beam-on times were 16,570 ± 1768 vs 22,087 ± 2.986 Gy cm3 and 3.95 ± 1.13 vs 48.82 ± 10.44 min, respectively. Conclusion: The tri-Co-60 IMRT seems inappropriate for spine SABR compared with VMAT. Advances in knowledge: For spine SABR, the tri-Co-60 IMRT is inappropriate owing to the large penumbra, large leaf width and low dose rate of the ViewRay system. PMID:27781486

  18. Metamaterial-based "sabre" antenna

    NASA Astrophysics Data System (ADS)

    Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume

    2014-05-01

    The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.

  19. Early detection of lung cancer recurrence after stereotactic ablative radiation therapy: radiomics system design

    NASA Astrophysics Data System (ADS)

    Dammak, Salma; Palma, David; Mattonen, Sarah; Senan, Suresh; Ward, Aaron D.

    2018-02-01

    Stereotactic ablative radiotherapy (SABR) is the standard treatment recommendation for Stage I non-small cell lung cancer (NSCLC) patients who are inoperable or who refuse surgery. This option is well tolerated by even unfit patients and has a low recurrence risk post-treatment. However, SABR induces changes in the lung parenchyma that can appear similar to those of recurrence, and the difference between the two at an early follow-up time point is not easily distinguishable for an expert physician. We hypothesized that a radiomics signature derived from standard-of-care computed tomography (CT) imaging can detect cancer recurrence within six months of SABR treatment. This study reports on the design phase of our work, with external validation planned in future work. In this study, we performed cross-validation experiments with four feature selection approaches and seven classifiers on an 81-patient data set. We extracted 104 radiomics features from the consolidative and the peri-consolidative regions on the follow-up CT scans. The best results were achieved using the sum of estimated Mahalanobis distances (Maha) for supervised forward feature selection and a trainable automatic radial basis support vector classifier (RBSVC). This system produced an area under the receiver operating characteristic curve (AUC) of 0.84, an error rate of 16.4%, a false negative rate of 12.7%, and a false positive rate of 20.0% for leaveone patient out cross-validation. This suggests that once validated on an external data set, radiomics could reliably detect post-SABR recurrence and form the basis of a tool assisting physicians in making salvage treatment decisions.

  20. SABRE, a 10-MV linear induction accelerator

    SciTech Connect

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  1. The STARE/SABRE story

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Schmidt, W.

    2014-03-01

    In January 1977 a new type of radar aurora experiment named STARE (Scandinavian Twin Aurora Radar Experiment) commenced operation in northern Scandinavia. The purpose of the experiment was two-fold: to make observations of the nature of radar auroras, and to contribute to the study of solar-terrestrial relationships (or space weather). The experiment was designed for automatic continuous operation, and for nearly two and a half decades it provided estimates of electron flows with good spatial coverage and resolution and good time resolution. It was a successful experiment that yielded a wealth of observations and results, pertaining to, and based on, the observed time variations of the electron flows and to the spatial flow pattern observed at any given time. This radar system inspired the creation of a similar system, SABRE (Sweden And Britain Radar Experiment), which increased the field of view towards the southwest of STARE. This system commenced operation in 1982.

  2. A Phase 1 Trial of an Immune Checkpoint Inhibitor plus Stereotactic Ablative Radiotherapy in Patients with Inoperable Stage I Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2017-10-01

    with Inoperable Stage I Non-Small Cell Lung Cancer PRINCIPAL INVESTIGATOR: Karen Kelly, MD CONTRACTING ORGANIZATION: University of California...Inhibitor plus Stereotactic Ablative Radiotherapy in Patients with Inoperable Stage I Non-Small Cell Lung Cancer 5b. GRANT NUMBER W81XWH-15-2-0063...immune checkpoint inhibitor MPDL3280A (atezolizumab) in early stage inoperable non-small cell lung cancer . The trial is comprised of a traditional 3 + 3

  3. Stereotactic ablative body radiotherapy combined with immunotherapy: present status and future perspectives.

    PubMed

    Rekers, N H; Troost, E G C; Zegers, C M L; Germeraad, W T V; Dubois, L J; Lambin, P

    2014-10-01

    Radiotherapy is along with surgery and chemotherapy one of the prime treatment modalities in cancer. It is applied in the primary, neoadjuvant as well as the adjuvant setting. Radiation techniques have rapidly evolved during the past decade enabling the delivery of high radiation doses, reducing side-effects in tumour-adjacent normal tissues. While increasing local tumour control, current and future efforts ought to deal with microscopic disease at a distance of the primary tumour, ultimately responsible for disease-progression. This review explores the possibility of bimodal treatment combining radiotherapy with immunotherapy. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Lung density change after SABR: A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator

    PubMed Central

    Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-in; Kim, Hak Jae

    2018-01-01

    Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings. PMID:29608606

  5. Study design and early result of a phase I study of SABR for early-stage glottic cancer.

    PubMed

    Yu, Tosol; Wee, Chan Woo; Choi, Noorie; Wu, Hong-Gyun; Kang, Hyun-Cheol; Park, Jong Min; Kim, Jung-In; Kim, Jin Ho; Kwon, Tack-Kyun; Chung, Eun-Jae

    2018-05-14

    Avoidance of organs at risk has become possible with advances in image-guided volumetric-modulated arc therapy (VMAT) techniques. This study was designed to evaluate the safety and feasibility of stereotactic ablative radiotherapy (SABR) for early stage glottic cancer. This report presents the preliminary result of the first and second dose level. Fraction size was increased from 3.5 gray (Gy) (total dose 59.5 Gy) to 9 Gy (total dose 45 Gy). Dose-limiting toxicities were defined as grade 3 or higher treatment-related toxicities. Voice outcome was assessed with electroglottography, and quality of life (QoL) was measured with the Head and Neck Cancer Inventory (HNCI). Seven patients received 59.5 Gy at 3.5 Gy per fraction as the first dose level, and five patients received 55 Gy at 5 Gy per fraction as the second dose level. None of the patients developed grade 3+ toxicity throughout a median follow-up of 17.5 months (range, 1.7-30.6 months). One patient in the second dose level recurred in the primary site at 4 months after radiotherapy (RT) and received total laryngectomy. The rest of participants were disease-free at locoregional and distant sites. Jitter, shimmer, mean phonation time, and noise-to-harmony ratio did not change significantly at 6 months after RT. HNCI scores between pretreatment and posttreatment were not significantly different (P = 0.221). This study revealed acceptable toxicity, voice outcome, and QoL in patients treated with hypofractionated VMAT of 3.5 Gy and 5 Gy per fraction. This phase I study is currently ongoing with a dose of 55 Gy in 11 fractions and 45 Gy in five fractions. 2b. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  7. NMR signal enhancement by effective SABRE labeling of oligopeptides.

    PubMed

    Ratajczyk, Tomasz; Gutmann, Torsten; Bernatowicz, Piotr; Buntkowsky, Gerd; Frydel, Jaroslaw; Fedorczyk, Bartlomiej

    2015-09-01

    Signal amplification by reversible exchange (SABRE) can enhance nuclear magnetic resonance signals by several orders of magnitude. However, until now this was limited to a small number of model target molecules. Here, a new convenient method for SABRE activation applicable to a variety of synthetic model oligopeptides is demonstrated. For the first time, a highly SABRE-active pyridine-based biocompatible molecular framework is incorporated into synthetic oligopeptides. The SABRE activity is preserved, demonstrating the importance of such earmarking. Finally, a crucial exchange process responsible for SABRE activity is identified and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Improved therapeutic outcomes of thermal ablation on rat orthotopic liver allograft sarcoma models by radioiodinated hypericin induced necrosis targeted radiotherapy

    PubMed Central

    Gao, Long; Zhang, Jian; Ma, Tengchuang; Yao, Nan; Gao, Meng; Shan, Xin; Ni, Yicheng; Shao, Haibo; Xu, Ke

    2016-01-01

    Residual tumor resulting in tumor recurrence after various anticancer therapies is an unmet challenge in current clinical oncology. This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models. Thirty Sprague-Dawley (SD) rats with hepatic tumors were divided into three groups: Group A received laparotomy MWA and sequential intravenous injection (i.v.) of 131I labelled hypericin (131I-Hyp) in a time interval of 24 h; Group B received only laparotomy MWA; Group C was a blank control. Tumor inhibitory effects were monitored with in vivo magnetic resonance imaging (MRI) and these findings were compared to histopathology data before (baseline, day 0) and 1, 4, and 8 days after MWA. In addition, biodistribution of 131I-Hyp was assessed with in vivo single-photon emission computed tomography-computed tomography (SPECT-CT) imaging, in vitro autoradiography, fluorescent microscopy, and gamma counting. A fast clearance of 131I-Hyp and increasing deposit in necrotic tumors appeared over time, with a significantly higher radioactivity than other organs (0.9169 ± 1.1138 % ID/g, P < 0.01) on day 9. Tumor growth was significantly slowed down in group A compared to group B and C according to MRI images and corresponding tumor doubling time (12.13 ± 1.99, 4.09 ± 0.97, 3.36 ± 0.72 days respectively). The crescent tagerability of 131I-Hyp to necrosis was visualized consistently by autoradiography and fluorescence microscopy. In conclusion, 131I-Hyp induced necrosis targeted radiotherapy improved therapeutic outcomes of MWA on rat orthotopic liver allograft sarcoma models. PMID:27285983

  9. Radiotherapy.

    PubMed

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  10. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    PubMed

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SU-C-BRA-07: Virtual Bronchoscopy-Guided IMRT Planning for Mapping and Avoiding Radiation Injury to the Airway Tree in Lung SAbR

    SciTech Connect

    Sawant, A; Modiri, A; Bland, R

    Purpose: Post-treatment radiation injury to central and peripheral airways is a potentially important, yet under-investigated determinant of toxicity in lung stereotactic ablative radiotherapy (SAbR). We integrate virtual bronchoscopy technology into the radiotherapy planning process to spatially map and quantify the radiosensitivity of bronchial segments, and propose novel IMRT planning that limits airway dose through non-isotropic intermediate- and low-dose spillage. Methods: Pre- and ∼8.5 months post-SAbR diagnostic-quality CT scans were retrospectively collected from six NSCLC patients (50–60Gy in 3–5 fractions). From each scan, ∼5 branching levels of the bronchial tree were segmented using LungPoint, a virtual bronchoscopic navigation system. The pre-SAbRmore » CT and the segmented bronchial tree were imported into the Eclipse treatment planning system and deformably registered to the planning CT. The five-fraction equivalent dose from the clinically-delivered plan was calculated for each segment using the Universal Survival Curve model. The pre- and post-SAbR CTs were used to evaluate radiation-induced segmental collapse. Two of six patients exhibited significant segmental collapse with associated atelectasis and fibrosis, and were re-planned using IMRT. Results: Multivariate stepwise logistic regression over six patients (81 segments) showed that D0.01cc (minimum point dose within the 0.01cc receiving highest dose) was a significant independent factor associated with collapse (odds-ratio=1.17, p=0.010). The D0.01cc threshold for collapse was 57Gy, above which, collapse rate was 45%. In the two patients exhibiting segmental collapse, 22 out of 32 segments showed D0.01cc >57Gy. IMRT re-planning reduced D0.01cc below 57Gy in 15 of the 22 segments (68%) while simultaneously achieving the original clinical plan objectives for PTV coverage and OAR-sparing. Conclusion: Our results indicate that the administration of lung SAbR can Result in significant

  12. Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study

    PubMed Central

    Manoharan, Anand; Rayner, Peter J.; Iali, Wissam; Burns, Michael J.; Perry, V. Hugh

    2018-01-01

    Abstract Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion‐exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study. PMID:29232489

  13. WE-AB-207B-01: Dose Tolerance for SBRT/SABR

    SciTech Connect

    Grimm, J

    Purpose: Stereotactic body radiation therapy (SBRT) / stereotactic ablative body radiotherapy (SABR) is gaining popularity, but quantitative dose tolerance has still been lacking. To improve this, the April 2016 issue of Seminars in Radiation Oncology will have normal tissue complication probability (NTCP) models for 10 critical structures: optic pathway, cochlea, oral mucosa, esophagus, chestwall, aorta, bronchi, duodenum, small bowel, and spinal cord. Methods: The project included more than 1500 treatments in 1–5 fractions using CyberKnife, Gamma Knife, or LINAC, with 60 authors from 15 institutions. NTCP models were constructed from the 97 grade 2–3 complications, predominantly scored using the commonmore » terminology criteria for adverse events (CTCAEv4). Dose volume histogram (DVH) data from each institutional dataset was loaded into the DVH Evaluator software (DiversiLabs, LLC, Huntingdon Valley, Pa) for modeling. The current state of the literature for the critical structures was depicted using DVH Risk Maps: comparative graphs of dose tolerance limits that can include estimated risk levels, reported complications, DVH data for study patients, as well as high- and low-risk dose tolerance limits. Results: For relatively acceptable toxicity like grade 1–3 rib fractures and chestwall pain, the high-risk limits have 50% risk and the low-risk limits have 5% risk. Emami et al (IJROBP 1991 May 15;21(1):109–22) used 50% and 5% risk levels for all structures, whereas this effort used clinically acceptable ranges for each: in structures like aorta or spinal cord where complications must be avoided, the high- and low-risk limits have about 3% and 1% risk, respectively, in this issue of Seminars. These statistically based guidelines can help ensure plan quality for each patient. Conclusion: NTCP for SBRT is now becoming available. Hypofractionated dose tolerance can be dramatically different than extrapolations of conventional fractionation so NTCP analysis

  14. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 06: Patient-specific QA Procedure for Gated VMAT SABR Treatments using 10x Beam in Flattening-Filter Free Mode

    SciTech Connect

    Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek

    2016-08-15

    Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novelmore » approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  15. Complete magnetic field dependence of SABRE-derived polarization.

    PubMed

    Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H 2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation.

    PubMed

    Takeda, Atsuya; Sanuki, Naoko; Tsurugai, Yuichiro; Iwabuchi, Shogo; Matsunaga, Kotaro; Ebinuma, Hirotoshi; Imajo, Kento; Aoki, Yousuke; Saito, Hidetsugu; Kunieda, Etsuo

    2016-07-01

    Curative treatment options for patients with early stage hepatocellular carcinoma (HCC) include resection, liver transplantation, and percutaneous ablation therapy. However, even patients with solitary HCC are not always amenable to these treatments. The authors prospectively investigated the clinical outcomes of patients who received stereotactic body radiotherapy (SBRT) for solitary HCC. A phase 2 study involving SBRT and optional transarterial chemoembolization (TACE) was conducted in patients with Child-Pugh grade A or B and underlying, solitary HCC (greatest tumor dimension, ≤4 cm) who were unsuitable candidates for resection and radiofrequency ablation. The prescription dose was 35 to 40 grays in 5 fractions. The primary endpoint was 3-year local tumor control. From 2007 to 2012, 101 patients were enrolled, and 90 were evaluable with a median follow-up of 41.7 months (range, 6.8-96.2 months). Thirty-two patients were treatment-naïve, 20 were treated for newly diagnosed intrahepatic failure, and 38 were treated for residual or recurrent HCC as salvage therapy. Thirty-two patients did not receive TACE, 48 received insufficient TACE, and 10 attained full lipiodol accumulation. The 3-year local control rate was 96.3%, the 3-year liver-related cause-specific survival rate was 72.5%, and the overall survival rate was 66.7%. Grade 3 laboratory abnormalities were observed in 6 patients, and 8 patients had Child-Pugh scores that worsened by 2 points. SBRT achieved high local control and overall survival with feasible toxicities for patients with solitary HCC, despite rather stringent conditions. SBRT can be effective against solitary HCC in treatment-naive, intrahepatic failure, residual disease, and recurrent settings, taking advantage of its distinctive characteristics. Cancer 2016;122:2041-9. © 2016 American Cancer Society. © 2016 American Cancer Society.

  17. Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study.

    PubMed

    Manoharan, Anand; Rayner, Peter J; Iali, Wissam; Burns, Michael J; Perry, V Hugh; Duckett, Simon B

    2018-02-20

    Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2015-01-26

    Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Parry-romberg syndrome with en coup de sabre.

    PubMed

    Jun, Jae Hun; Kim, Ho Youn; Jung, Han Jin; Lee, Weon Ju; Lee, Seok-Jong; Kim, Do Won; Kim, Moon Bum; Kim, Byung Soo

    2011-08-01

    Parry-Romberg syndrome (PRS) is a relatively rare degenerative disorder that is poorly understood. PRS is characterized by slowly progressing atrophy affecting one side of the face, and is frequently associated with localized scleroderma, especially linear scleroderma, which is known as en coup de sabre. This is a report of the author's experiences with PRS accompanying en coup de sabre, and a review of the ongoing considerable debate associated with these two entities. Case 1 was a 37-year-old woman who had right hemifacial atrophy with unilateral en coup de sabre for seven years. Fat grafting to her atrophic lip had been conducted, and steroid injection had been performed on the indurated plaque of the forehead. Case 2 was a 29-year-old woman who had suffered from right hemifacial atrophy and bilateral en coup de sabre for 18 years. Surgical corrections such as scapular osteocutaneous flap and mandible/maxilla distraction showed unsatisfying results.

  20. Heterogeneous Microtesla SABRE Enhancement of 15 N NMR Signals.

    PubMed

    Kovtunov, Kirill V; Kovtunova, Larisa M; Gemeinhardt, Max E; Bukhtiyarov, Andrey V; Gesiorski, Jonathan; Bukhtiyarov, Valerii I; Chekmenev, Eduard Y; Koptyug, Igor V; Goodson, Boyd M

    2017-08-21

    The hyperpolarization of heteronuclei via signal amplification by reversible exchange (SABRE) was investigated under conditions of heterogeneous catalysis and microtesla magnetic fields. Immobilization of [IrCl(COD)(IMes)], [IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene] catalyst onto silica particles modified with amine linkers engenders an effective heterogeneous SABRE (HET-SABRE) catalyst that was used to demonstrate a circa 100-fold enhancement of 15 N NMR signals in 15 N-pyridine at 9.4 T following parahydrogen bubbling within a magnetic shield. No 15 N NMR enhancement was observed from the supernatant liquid following catalyst separation, which along with XPS characterization supports the fact that the effects result from SABRE under heterogeneous catalytic conditions. The technique can be developed further for producing catalyst-free agents via SABRE with hyperpolarized heteronuclear spins, and thus is promising for biomedical NMR and MRI applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. F-86 Sabre on lakebed, front view

    NASA Technical Reports Server (NTRS)

    1954-01-01

    With the NACA High-Speed Flight Station (HSFS) main building (4800) in the background the North American F-86F (Serial #52-5426) Sabre sits on the Rogers Dry lakebed just off the NACA ramp in 1954. This was soon after the National Advisory Committee for Aeronautics unit moved from South Base at Edwards Air Force Base to the new building that still houses the NASA Dryden Flight Research Center, successor to the HSFS. The F-86F performed both pitch-up research and duties as a chase aircraft for the D-558-2. Its stay at the HSFS was brief. It arrived on June 23, 1954, and left on September 10 the same year. The F-86 had a 35 degree sweptwing and a wing span of 37 feet 1 inch with a General Electric J47-GE engine. It was the first U.S. sweptwing fighter and saw extensive action in the Korean War. It could slightly exceed Mach 1 in a dive.

  2. Toward nanomolar detection by NMR through SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; Hermkens, Niels; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2014-02-19

    SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (μM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 μM in a single scan.

  3. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization.

    PubMed

    Theis, Thomas; Truong, Milton L; Coffey, Aaron M; Shchepin, Roman V; Waddell, Kevin W; Shi, Fan; Goodson, Boyd M; Warren, Warren S; Chekmenev, Eduard Y

    2015-02-04

    Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed "SABRE in shield enables alignment transfer to heteronuclei" or "SABRE-SHEATH", promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species.

  4. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization.

    PubMed

    Theis, Thomas; Truong, Milton; Coffey, Aaron M; Chekmenev, Eduard Y; Warren, Warren S

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Microtesla SABRE Enables 10% Nitrogen-15 Nuclear Spin Polarization

    PubMed Central

    2016-01-01

    Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B3 amide) by conducting “signal amplification by reversible exchange” (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the 15N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed “SABRE in shield enables alignment transfer to heteronuclei” or “SABRE-SHEATH”, promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species. PMID:25583142

  6. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization

    NASA Astrophysics Data System (ADS)

    Theis, Thomas; Truong, Milton; Coffey, Aaron M.; Chekmenev, Eduard Y.; Warren, Warren S.

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.

  7. SABRE observations of Pi2 pulsations: case studies

    NASA Astrophysics Data System (ADS)

    Bradshaw, E. G.; Lester, M.

    1997-01-01

    The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood

  8. Late-onset en coup de sabre of the skull.

    PubMed

    Mohan, Shaun V; Nittur, Vinay; Stevens, Kathryn J

    2013-10-01

    En coup de sabre is a rare subtype of linear scleroderma that characteristically affects the skin, underlying muscle, and bone of the frontoparietal region of the face and scalp. It typically presents in the first two decades of life, and may be associated with focal neurological deficits. We present a case of late-onset en coup de sabre of the frontal bone where the diagnosis was further complicated by a history of breast cancer, prior trauma to the region, and use of topical medication.

  9. Predictive Parameters of Symptomatic Hematochezia Following 5-Fraction Gantry-Based SABR in Prostate Cancer

    SciTech Connect

    Musunuru, Hima Bindu; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Davidson, Melanie

    2016-04-01

    Purpose: This study identified predictors of high-grade late hematochezia (HH) following 5-fraction gantry-based stereotactic ablative radiation therapy (SABR). Methods and Materials: Hematochezia data for 258 patients who received 35 to 40 Gy SABR in 5-fractions as part of sequential phase 2 prospective trials was retrieved. Grade 2 or higher late rectal bleeding was labeled HH. Hematochezia needing steroid suppositories, 4% formalin, or 1 to 2 sessions of argon plasma coagulation (APC) was labeled grade 2. More than 2 sessions of APC, blood transfusion, or a course of hyperbaric oxygen was grade 3 and development of visceral fistula, grade 4. Various dosimetricmore » and clinical factors were analyzed using univariate and multivariate analyses. Receiver operating characteristic (ROC) curve analysis and recursive partitioning analysis were used to determine clinically valid cut-off points and identify risk groups, respectively. Results: HH was observed in 19.4%, grade ≥3 toxicity in 3.1%. Median follow-up was 29.7 months (interquartile range [IQR]: 20.6-61.7) Median time to develop HH was 11.7 months (IQR: 9.0-15.2) from the start of radiation. At 2 years, cumulative HH was 4.9%, 27.2%, and 42.1% in patients who received 35 Gy to prostate (4-mm planning target volume [PTV] margin), 40 Gy to prostate (5-mm PTV margin), and 40 Gy to prostate/seminal vesicles (5-mm PTV margin), respectively (P<.0001). In the ROC analysis, volume of rectum receiving radiation dose of 38 Gy (V38) was a strong predictor of HH with an area under the curve of 0.65. In multivariate analysis, rectal V38 (≥2.0 cm{sup 3}; odds ratio [OR]: 4.7); use of anticoagulants in the follow-up period (OR: 6.5) and presence of hemorrhoids (OR: 2.7) were the strongest predictors. Recursive partitioning analysis showed rectal V38 < 2.0 cm{sup 3}, and use of anticoagulants or rectal V38 ≥ 2.0 cm{sup 3} plus 1 other risk factor resulted in an HH risk of >30%. Conclusions: Rectal V38

  10. SU-E-T-220: A Web-Based Research System for Outcome Analysis of NSCLC Treated with SABR.

    PubMed

    Le, A; Yang, Y; Michalski, D; Heron, D; Huq, M

    2012-06-01

    To establish a web-based software system, an electronic patient record (ePR), to consolidate and evaluate clinical data, dose delivery and treatment outcomes for non small cell lung cancer (NSCLC) patients treated with hypofractionated stereotactic ablative radiation therapy (SABR) across institutions. The new trend of information technology in medical imaging and informatics is towards the development of an electronic patient record (ePR), in which all health and medical information of each patient are organized under the patient's name and identification number. The system has been developed using the Wamp Server, a package of Apache web server, PHP and MySQL database to facilitate patient data input and management, and evaluation of patient clinical data and dose delivery across institution using web technology. The data of each patient to be recorded in the database include pre-treatment clinical data, treatment plan in DICOM-RT format and follow-up data. The pre-treatment data include demographics data, pathology condition, cancer staging. The follow-up data include the survival status, local tumor control condition and toxicity. The clinical data are entered to the system through the web page while the treatment plan data will be imported from the treatment planning system (TPS) using DICOM communication. The collection of data of NSCLC patients treated with SABR stored in the ePR is always accessible and can be retrieved and processed in the future. The core of the ePR is the database which integrates all patient data in one location. The web-based DICOM RT ePR system utilizes the current state-of-the-art medical informatics approach to investigate the combination and consolidation of patient data and outcome results. This will allow clinically-driven data mining for dose distributions and resulting treatment outcome in connection with biological modeling of the treatment parameters to quantify the efficacy of SABR in treating NSCLC patients. © 2012

  11. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis.

    PubMed

    Rayner, Peter J; Duckett, Simon B

    2018-06-04

    Signal amplification by reversible exchange (SABRE) turns typically weak magnetic resonance responses into strong signals making previously impractical measurements possible. This technique has gained significant popularity because of its speed and simplicity. This Minireview tracks the development of SABRE from the initial hyperpolarization of pyridine in 2009 to the point in which 50 % 1 H polarization levels have been achieved in a di-deuterio-nicotinate, a key step in the pathway to potential clinical use. Simple routes to highly efficient 15 N hyperpolarization and the creation of hyperpolarized long-lived magnetic states are illustrated. To conclude, we describe how the recently reported SABRE-RELAY approach offers a route for parahydrogen to hyperpolarize a much wider array of molecular scaffolds, such as amides, alcohols, carboxylic acids, and phosphates, than was previously thought possible. We predict that collectively these developments ensure that SABRE will significantly impact on both chemical analysis and the diagnosis of disease in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. METRICS OF PERFORMANCE FOR THE SABRE MICROCOSM STUDY (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, a laboratory microcosm study was conducted to provide...

  13. CHARACTERIZING THE MICROBIAL COMMUNITY IN SABRE MICROCOSM STUDIES (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, laboratory microcosm and column studies were conducte...

  14. Developing SABRE as an analytical tool in NMR

    NASA Astrophysics Data System (ADS)

    Lloyd, Lyrelle Stacey

    Work presented in this thesis centres around the application of the new hyperpolarisation technique, SABRE, within nuclear magnetic resonance spectroscopy, focusing on optimisation of the technique to characterise small organic molecules. While pyridine was employed as a model substrate, studies on a range of molecules are investigated including substituted pyridines, quinolines, thiazoles and indoles are detailed. Initial investigations explored how the properties of the SABRE catalyst effect the extent of polarisation transfer exhibited. The most important of these properties proved to be the rate constants for loss of pyridine and hydrides as these define the contact time of pyridine with the parahydrogen derived hydride ligands in the metal template. The effect of changing the temperature, solvent or concentration of substrate or catalyst are rationalised. For instance, the catalyst ICy(a) exhibits relatively slow ligand exchange rates and increasing the temperature during hyperpolarisation increases the observed signal enhancements. These studies have revealed a second polarisation transfer template can be used with SABRE in which two substrate molecules are bound. This allows the possibility of investigation of larger substrates which might otherwise be too sterically encumbered to bind. Another significant advance relates to the first demonstration that SABRE can be used in conjunction with an automated system designed with Bruker allowing the acquisition of scan averaged, phase cycled and traditional 2D spectra. The system also allowed investigations into the effect of the polarisation transfer field and application of that knowledge to collect single-scan 13C data for characterisation. The successful acquisition of 1H NOESY, 1H-1H COSY, 1H-13C 2D and ultrafast 1H-1H COSY NMR sequences is detailed for a 10 mM concentration sample, with 1H data collected for a 1 mM sample. A range of studies which aim to demonstrate the applicability of SABRE to the

  15. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity

    PubMed Central

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534

  16. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity.

    PubMed

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N; Alonso, Jose M; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.

  17. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Scleroderma en coup de sabre treated with polymethylmethacrylate - Case report.

    PubMed

    Franco, Joanna Pimenta de Araujo; Serra, Márcio Soares; Lima, Ricardo Barbosa; D'Acri, Antônio Macedo; Martins, Carlos José

    2016-04-01

    The scleroderma en coup de sabre is a variant of localized scleroderma that occurs preferentially in children. The disease progresses with a proliferative and inflammatory phase and later atrophy and residual deformity, which are treated with surgical techniques such as injectable fillers, transplanted or autologous fat grafting and resection of the lesion. Among the most widely used fillers is hyaluronic acid. However, there are limitations that motivate the search for alternatives, such as polymethylmethacrylate, a permanent filler that is biocompatible, non-toxic, non-mutagenic and immunologically inert. In order to illustrate its application, a case of scleroderma en coup de sabre in a 17-year-old patient, who was treated with polymethylmethacrylate with excellent aesthetic results, is reported.

  19. Atypical Neuroimaging Manifestations of Linear Scleroderma "en coup de sabre".

    PubMed

    M Allmendinger, Andrew; A Ricci, Joseph; S Desai, Naman; Viswanadhan, Narayan; Rodriguez, Diana

    2015-01-01

    Linear scleroderma "en coup de sabre" is a subset of localized scleroderma with band-like sclerotic lesions typically involving the fronto-parietal regions of the scalp. Patients often present with neurologic symptoms. On imaging, patients may have lesions in the cerebrum ipsilateral to the scalp abnormality. Infratentorial lesions and other lesions not closely associated with the overlying scalp abnormality, such as those found in the cerebellum, have been reported, but are extremely uncommon. We present a case of an 8-year-old boy with a left fronto-parietal "en coup de sabre" scalp lesion and describe the neuroimaging findings of a progressively enlarging left cerebellar lesion discovered incidentally on routine magnetic resonance imaging. Interestingly, the patient had no neurologic symptoms given the size of the mass identified.

  20. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    DTIC Science & Technology

    2015-10-01

    2012, patients who received stereotactic ablative radiotherapy ( SABR ) for early stage non-small cell lung cancer were included in this study. All...comparing the elasticities of malignant PNs treated with stereotactic ablative radiotherapy ( SABR ) with those of the lung. Methods: We analyzed...breath-hold images of 30 patients with malignant PNs who underwent SABR in our department. A parametric nonrigid transformation model based on multi

  1. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    DTIC Science & Technology

    2015-10-01

    malignant PNs treated with stereotactic ablative radiotherapy ( SABR ) with those of the lung. Methods: We analyzed breath-hold images of 30...patients with malignant PNs who underwent SABR in our department. A parametric nonrigid transformation model based on multi-level B-spline guided by Sum of...and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy ( SABR ). The

  2. Confirmation of Models for Interpretation and Use of the Social and Academic Behavior Risk Screener (SABRS)

    ERIC Educational Resources Information Center

    Kilgus, Stephen P.; Sims, Wesley A.; von der Embse, Nathaniel P.; Riley-Tillman, T. Chris

    2015-01-01

    The purpose of this investigation was to evaluate the models for interpretation and use that serve as the foundation of an interpretation/use argument for the Social and Academic Behavior Risk Screener (SABRS). The SABRS was completed by 34 teachers with regard to 488 students in a Midwestern high school during the winter portion of the academic…

  3. Endometrial Ablation

    MedlinePlus

    ... or lighter levels. If ablation does not control heavy bleeding, further treatment or surgery may be needed. ... ablation is used to treat many causes of heavy bleeding. In most cases, women with heavy bleeding ...

  4. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Yurkovskaya, Alexandra V.; Petrov, Pavel A.; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the 1H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a 31P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7 Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2 Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  5. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  6. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH.

    PubMed

    Truong, Milton L; Theis, Thomas; Coffey, Aaron M; Shchepin, Roman V; Waddell, Kevin W; Shi, Fan; Goodson, Boyd M; Warren, Warren S; Chekmenev, Eduard Y

    2015-04-23

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15 N-polarization (Theis, T.; et al. J. Am. Chem. Soc. 2015 , 137 , 1404). Hyperpolarization on 15 N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15 N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15 N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15 N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time ( T 1 ), and reversible oxygen quenching are studied on a test system of 15 N-pyridine in methanol- d 4 . Moreover, we demonstrate the first proof-of-principle 13 C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15 N images (2 × 2 mm 2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T 1 relaxation times suitable for biomedical imaging and spectroscopy.

  7. Stereotactic Ablative Radiation Therapy as First Local Therapy for Lung Oligometastases From Colorectal Cancer: A Single-Institution Cohort Study

    SciTech Connect

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it; Badellino, Serena; Ceccarelli, Manuela

    2015-03-01

    Purpose: To estimate stereotactic ablative radiation therapy (SABR) efficacy and its potential role as an alternative to surgery for the treatment of lung metastases from colorectal cancer. Methods and Materials: Forty consecutive patients who received SABR as first local therapy at the time of lung progression were included, from 2004 to 2014. The primary study endpoint was overall survival. Secondary endpoints were progression-free survival and safety. Results: A single nodule was treated in 26 patients (65%), 2 nodules in 10 patients (25%), 3 in 3 patients (7.5%), and 4 in 1 patient (2.5%), for a total of 59 lesions. The medianmore » delivered biological effective dose was 96 Gy, in 1 to 8 daily fractions. Median follow-up time was 20 months (range, 3-72 months). Overall survival rates at 1, 2, and 5 years were, respectively, 84%, 73%, and 39%, with 14 patients (35%) dead. Median overall survival was 46 months. Progression occurred in 25 patients (62.5%), at a median interval of 8 months; failure at SABR site was observed in 3 patients (7.5%). Progression-free survival rates were 49% and 27% at 1 and 2 years, respectively. Discussion: The results of this retrospective exploratory analysis suggest safety and efficacy of SABR in patients affected with colorectal cancer lung oligometastases and urge inclusion of SABR in prospective clinical trials.« less

  8. SU-G-JeP1-09: Evaluation of Transperineal Ultrasound Imaging as a Potential Solution for Target Tracking During Ablative Body Radiotherapy for Prostate Cancer

    SciTech Connect

    Najafi, M; Han, B; Hancock, S

    Purpose: Prostate SABR is emerging as a clinically viable, potentially cost effective alternative to prostate IMRT but its adoption is contingent on providing solutions for accurate tracking during beam delivery. Our goal is to evaluate the performance of the Clarity Autoscan ultrasound monitoring system for inter-fractional prostate motion tracking in both phantoms and in-vivo. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. The probe was placed before KV imaging and real-time tracking was started and continued until the endmore » of treatment. Initial absolute 3D positions of fiducials were estimated from KV images. Fiducial positions in MV images subsequently acquired during beam delivery were compared with predicted positions based on Clarity estimated motion. Results: Phantom studies with motion amplitudes of ±1.5, ±3, ±6 mm in lateral direction and ±2 mm in longitudinal direction resulted in tracking errors of −0.03 ± 0.3, −0.04 ± 0.6, −0.2 ± 0.9 mm, respectively, in lateral direction and −0.05 ± 0.30 mm in longitudinal direction. In phantom, measured and predicted fiducial positions in MV images were within 0.1 ± 0.6 mm. Four patients consented to participate in the study and data was acquired over a total of 140 fractions. MV imaging tracking was possible in about 75% of the time (due to occlusion of fiducials) compared to 100% with Clarity. Overall range of estimated motion by Clarity was 0 to 4.0 mm. In-vivo fiducial localization error was 1.2 ± 1.0 mm compared to 1.8 ± 1.9 mm if not taking Clarity estimated motion into account. Conclusion: Real-time transperineal ultrasound tracking reduces uncertainty in prostate position due to intrafractional motion. Research was supported by Elekta.« less

  9. SABRE-Relay: A Versatile Route to Hyperpolarization.

    PubMed

    Roy, Soumya S; Appleby, Kate M; Fear, Elizabeth J; Duckett, Simon B

    2018-03-01

    Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H 2 ) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf) 2 (bis-diphenylphosphinopropane)] by displacing OTf - to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31 P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31 P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H 2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method.

  10. SABRE observations of a sequence of Pc 5 micropulsations

    SciTech Connect

    Waldock, J.A.; Thomas, E.C.

    Observations of a Pc 5 micropulsation event, using the Wick half of the new SABRE auroral radar, are presented. During a 3-hour period in the early morning of September 18, 1981, a train of pulsations were recorded. Analysis revealed that there were three main events, rather than one continuous disturbance. The first event appeared as a perturbation of only one or two cycles, extending throughout the latitude of the viewing area. It was also visible in the STARE region, but the perturbation drift velocity was in the north-south direction as opposed to the east-west perturbation drift of a more conventional,more » toroidal mode field line resonance. The second disturbance was an isolated, one-cycle perturbation, also visible throughout both SABRE and STARE viewing areas and also having a dominant north-south velocity component. Finally, a very localized monochromatic event, lasting five cycles or more, with a period of about 5 min, was recorded. The characteristics of the third event were found to be consistent with those predicted by field line resonance theory. 18 references.« less

  11. Linear scleroderma en coup de sabre including abnormal dental development.

    PubMed

    Hørberg, M; Lauesen, S R; Daugaard-Jensen, J; Kjær, I

    2015-04-01

    Linear scleroderma en coup de sabre (SCS) is a rare skin condition, where dense collagen is deposited in a localised groove of the head and neck area resembling the stroke of a sabre. The SCS may involve the oral cavity, but the severity and relation to this skin abnormality is unknown. A paediatric dentist may be the first medical person to identify SCS by its involvement in dentition. It is assumed that the malformation of a dentition could be associated with the severity of the skin deviation. A 6-year and 10-month-old Turkish girl with a history of SCS was referred for dental diagnostics and treatment. The SCS skin lesion affected the left side of her hairline over the forehead and nose, involving the left orbit proceeding towards the left oral region. Dental clinical/radiographic examination revealed malformed left maxillary incisors with short roots and lack of eruption. The patient has been regularly controlled and treated since she was first diagnosed. A surgical and orthodontic treatment was performed to ensure optimal occlusion, space and alveolar bone development. The present age of the patient is 14 years and 10 months. This case demonstrated a patient with a left-sided skin defect (SCS) and a left-sided local malformation in her dentition. It is possible that there is a developmental connection between these two left-sided defects, both with an ectodermal origin.

  12. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  13. Similarity of SABRE field dependence in chemically different substrates

    NASA Astrophysics Data System (ADS)

    Dücker, Eibe B.; Kuhn, Lars T.; Münnemann, Kerstin; Griesinger, Christian

    2012-01-01

    The Non-Hydrogenative Parahydrogen-Induced Polarization (NH-PHIP) technique, which is referred to as Signal Amplification by Reversible Exchange (SABRE), has been reported to be applicable to various substrates and catalysts. For more detailed studies, pyridine was mainly examined in the past. Here, we examined several pyrazole derivatives towards their amenability to this method using Crabtree's Catalyst, which is the polarization transfer catalyst that is best documented. Additionally, the dependence of the signal enhancement on the field strength, at which the polarization step takes place, was examined for pyridine and four different pyrazoles. To achieve this, the polarization step was performed at numerous previously determined magnetic fields in the stray field of the NMR spectrometer. The substrate dependence of the field dependence proved to be relatively small for the different pyrazoles and a strong correlation to the field dependence for pyridine was observed. Reducing the number of spins in the catalyst by deuteration leads to increased enhancement. This indicates that more work has to be invested in order to be able to reproduce the SABRE field dependence by simulations.

  14. SABRE-Relay: A Versatile Route to Hyperpolarization

    PubMed Central

    2018-01-01

    Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf– to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method. PMID:29432020

  15. SABRE - A test of DAMA with high-purity NaI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Calaprice, Frank; Froborg, Francis; Shields, Emily; Suerfu, Burkhant

    2015-08-01

    The dark matter claim by DAMA is both significant and controversial. Several experiments have claimed to rule out DAMA/LIBRA, but the comparisons are made based on dark matter halo and dark matter-interaction models that are currently unknown. Therefore, an unambiguous test of DAMA/LIBRA is best made using NaI(Tl) crystals with lower residual background than that of DAMA/LIBRA, and the SABRE experiment is designed to achieve this goal. In this paper we will discuss the development of high-purity SABRE NaI(Tl) crystals and detectors, and progress of the SABRE experiment toward testing DAMA/LIBRA.

  16. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  17. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    SciTech Connect

    Maxim, P; Wheeler, M; Loo, B

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformalmore » arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach

  18. Brain cavernomas associated with en coup de sabre linear scleroderma: Two case reports.

    PubMed

    Fain, Emily T; Mannion, Melissa; Pope, Elena; Young, Daniel W; Laxer, Ronald M; Cron, Randy Q

    2011-07-29

    Linear scleroderma is a form of localized scleroderma that primarily affects the pediatric population. When it occurs on the scalp or forehead, it is termed "en coup de sabre". In the en coup de sabre subtype, many extracutaneous associations, mostly neurological, have been described. A patient with linear scleroderma en coup de sabre was noted to have ipsilateral brain cavernomas by magnetic resonance imaging. Using a worldwide pediatric rheumatology electronic list-serve, another patient with the same 2 conditions was identified. These two patients are reported in this study. Consideration of neuroimaging studies to disclose abnormal findings in patients with linear scleroderma en coup de sabre is important for potentially preventing and treating neurological manifestations associated with this condition.

  19. Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected 60 degrees for increased lift with boundary=layer control; takeoff preformance was improved 10% (mar 1960)

  20. A case report of coup de sabre patient with hair transplantation.

    PubMed

    Dai, Yeqin; Xu, Ai-E; He, Junhua

    2017-09-01

    Treatment of coup de sabre must remain conservative until the disease is no longer in an active state. When activity has ceased, some operative intervention is safe and effective for the correction of deformity. While hair transplantation showed high survival rates for the correction of cicatricial alopecia, it has rarely reported to be performed for the correction of coup de sabre. To assess the therapeutic possibility of hair transplantation for the correction of coup de sabre. Follicular units consisting of two to three hairs from the patient's occipital scalp were transplanted and followed-up for 12 months. After 12 months of follow-up, treatment outcomes showed an 86.7% survival rate and 12-16 cm (mean 14 cm) length of the transplanted hairs. When coup de sabre is no longer in an active state, hair transplantation is a useful method for cosmetic improvement of the alopecia.

  1. Brain cavernomas associated with en coup de sabre linear scleroderma: Two case reports

    PubMed Central

    2011-01-01

    Linear scleroderma is a form of localized scleroderma that primarily affects the pediatric population. When it occurs on the scalp or forehead, it is termed "en coup de sabre". In the en coup de sabre subtype, many extracutaneous associations, mostly neurological, have been described. A patient with linear scleroderma en coup de sabre was noted to have ipsilateral brain cavernomas by magnetic resonance imaging. Using a worldwide pediatric rheumatology electronic list-serve, another patient with the same 2 conditions was identified. These two patients are reported in this study. Consideration of neuroimaging studies to disclose abnormal findings in patients with linear scleroderma en coup de sabre is important for potentially preventing and treating neurological manifestations associated with this condition. PMID:21801349

  2. SABRE MULTI-LAB, STATISTICALLY-BASED MICROCOSM STUDY FOR TCE SOURCE ZONE REMEDIATION (ABSTRACT ONLY)

    EPA Science Inventory

    SABRE (source area bioremediation) is a public/private consortium of twelve companies, two government agencies, and three research institutions whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated sol...

  3. A simple analytical model for signal amplification by reversible exchange (SABRE) process.

    PubMed

    Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V

    2016-01-07

    We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.

  4. Long-lived states to sustain SABRE hyperpolarised magnetisation.

    PubMed

    Roy, Soumya S; Rayner, Peter J; Norcott, Philip; Green, Gary G R; Duckett, Simon B

    2016-09-14

    The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4% net 1 H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the future.

  5. Neurologic Involvement in Scleroderma en Coup de Sabre

    PubMed Central

    Amaral, Tiago Nardi; Marques Neto, João Francisco; Lapa, Aline Tamires; Peres, Fernando Augusto; Guirau, Caio Rodrigues; Appenzeller, Simone

    2012-01-01

    Localized scleroderma is a rare disease, characterized by sclerotic lesions. A variety of presentations have been described, with different clinical characteristics and specific prognosis. In scleroderma en coup de sabre (LScs) the atrophic lesion in frontoparietal area is the disease hallmark. Skin and subcutaneous are the mainly affected tissues, but case reports of muscle, cartilage, and bone involvement are frequent. These cases pose a difficult differential diagnosis with Parry-Romberg syndrome. Once considered an exclusive cutaneous disorder, the neurologic involvement present in LScs has been described in several case reports. Seizures are most frequently observed, but focal neurologic deficits, movement disorders, trigeminal neuralgia, and mimics of hemiplegic migraines have been reported. Computed tomography and magnetic resonance imaging have aided the characterization of central nervous system lesions, and cerebral angiograms have pointed to vasculitis as a part of disease pathogenesis. In this paper we describe the clinical and radiologic aspects of neurologic involvement in LScs. PMID:22319646

  6. Hyperpolarized NMR: d-DNP, PHIP, and SABRE.

    PubMed

    Kovtunov, Kirill Viktorovich; Pokochueva, Ekaterina; Salnikov, Oleg; Cousin, Samuel; Kurzbach, Dennis; Vuichoud, Basile; Jannin, Sami; Chekmenev, Eduard; Goodson, Boyd; Barskiy, Danila; Koptyug, Igor

    2018-05-23

    NMR signals intensities can be enhanced by several orders of magnitude via utilization of techniques for hyperpolarization of different molecules, and it allows one to overcome the main sensitivity challenge of modern NMR/MRI techniques. Hyperpolarized fluids can be successfully used in different applications of material science and biomedicine. This focus review covers the fundamentals of the preparation of hyperpolarized liquids and gases via dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP) in both heterogeneous and homogeneous processes. The different novel aspects of hyperpolarized fluids formation and utilization along with the possibility of NMR signal enhancement observation are described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Predicting Overall Survival After Stereotactic Ablative Radiation Therapy in Early-Stage Lung Cancer: Development and External Validation of the Amsterdam Prognostic Model

    SciTech Connect

    Louie, Alexander V., E-mail: Dr.alexlouie@gmail.com; Department of Radiation Oncology, London Regional Cancer Program, University of Western Ontario, London, Ontario; Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts

    Purpose: A prognostic model for 5-year overall survival (OS), consisting of recursive partitioning analysis (RPA) and a nomogram, was developed for patients with early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic ablative radiation therapy (SABR). Methods and Materials: A primary dataset of 703 ES-NSCLC SABR patients was randomly divided into a training (67%) and an internal validation (33%) dataset. In the former group, 21 unique parameters consisting of patient, treatment, and tumor factors were entered into an RPA model to predict OS. Univariate and multivariate models were constructed for RPA-selected factors to evaluate their relationship with OS. A nomogrammore » for OS was constructed based on factors significant in multivariate modeling and validated with calibration plots. Both the RPA and the nomogram were externally validated in independent surgical (n=193) and SABR (n=543) datasets. Results: RPA identified 2 distinct risk classes based on tumor diameter, age, World Health Organization performance status (PS) and Charlson comorbidity index. This RPA had moderate discrimination in SABR datasets (c-index range: 0.52-0.60) but was of limited value in the surgical validation cohort. The nomogram predicting OS included smoking history in addition to RPA-identified factors. In contrast to RPA, validation of the nomogram performed well in internal validation (r{sup 2}=0.97) and external SABR (r{sup 2}=0.79) and surgical cohorts (r{sup 2}=0.91). Conclusions: The Amsterdam prognostic model is the first externally validated prognostication tool for OS in ES-NSCLC treated with SABR available to individualize patient decision making. The nomogram retained strong performance across surgical and SABR external validation datasets. RPA performance was poor in surgical patients, suggesting that 2 different distinct patient populations are being treated with these 2 effective modalities.« less

  8. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity

  9. An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT.

    PubMed

    Munoz, Luis; Ziebell, Amy; Morton, Jason; Bhat, Madhava

    2016-12-01

    An in-house solution for the verification of dose delivered to a moving phantom as required for the clinical implementation of lung stereotactic ablative body radiation therapy was developed. The superior-inferior movement required to simulate tumour motion during a normal breathing cycle was achieved via the novel use of an Arduino Uno™, a low-cost open-source microcontroller board connected to a high torque servo motor. Slow CT imaging was used to acquire the image set and a 4D cone beam CT (4D-CBCT) verified the efficacy of contoured margins before treatment on the moving phantom. Treatment fields were delivered to a section of a CIRS™ anthropomorphic phantom. Dose verification to the dynamic phantom with Gafchromic EBT3 film using 3 %-1 mm gamma analysis acceptance criteria registered an absolute dose pass rate for IMRT and VMAT of 98 and 96.6 %, respectively. It was verified that 100 % of the PTV received the prescribed dose of 12 Gy per fraction using the dynamic phantom, and no major discrepancy between planned and measured results due to interplay between multileaf collimator sequences and target motion was observed. This study confirmed that the use of an in-house solution using open source hardware and software with existing quality assurance equipment was appropriate in validating a new treatment technique.

  10. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  11. Characterisation and novel applications of glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, Shakardokht

    The intent of external beam radiotherapy is to deliver as high a radiation dose as possible to tumour volume whilst minimizing the dose to surrounding normal tissues. Recent development of techniques such as intensity modulated radiation therapy (IMRT) and stereotactic ablative body radiotherapy (SABR) aim to extend this capability. The main feature of these techniques is to use beams which often contain small fields and very steep dose gradients. These present several dosimetric challenges including loss of charge particle equilibrium (CPE), partial occlusion of the direct-beam source and steep fall-off in dose in the penumbra. Dosimeters which are small in size relative to the radiation field dimensions are recommended for such conditions. The particular glass beads studied herein have several potentially favourable physical characteristics; they are small in size (1 to 3 mm diameter), chemically inert, inexpensive, readily available and reusable. The dosimetric characterisation of glass beads has been obtained by irradiating them in various radiotherapy beams of kilo-voltage and mega-voltage photons, megavoltage electrons, protons and carbon ions. They exhibit minimal fading compared with commercial LiF thermo-luminescent (TL) dosimeters, have high TL light transparency, high sensitivity and a large dynamic dose range that remains linear from 1 cGy to 100 Gy They have also been shown to be independent of dose rate and beam incidence angle, as well as having a low variation in response with energy over a range of megavoltage photon and electron beams. The latter characteristic is of importance, where spectral changes may occur as a function of field size and off axis location and for the use of dosimeters in postal audit situations where each institution may have slightly different quality index (QI) for their respective photon energies thus ensuring that the calibration is still valid. These properties suggest their practical use as TL dosimeters for

  12. Definitive Management of Oligometastatic Melanoma in a Murine Model Using Combined Ablative Radiation Therapy and Viral Immunotherapy

    SciTech Connect

    Blanchard, Miran; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Shim, Kevin G.

    Purpose: The oligometastatic state is an intermediate state between a malignancy that can be completely eradicated with conventional modalities and one in which a palliative approach is undertaken. Clinically, high rates of local tumor control are possible with stereotactic ablative radiation therapy (SABR), using precisely targeted, high-dose, low-fraction radiation therapy. However, in oligometastatic melanoma, virtually all patients develop progression systemically at sites not initially treated with ablative radiation therapy that cannot be managed with conventional chemotherapy and immunotherapy. We have demonstrated in mice that intravenous administration of vesicular stomatitis virus (VSV) expressing defined tumor-associated antigens (TAAs) generates systemic immune responsesmore » capable of clearing established tumors. Therefore, in the present preclinical study, we tested whether the combination of systemic VSV-mediated antigen delivery and SABR would be effective against oligometastatic disease. Methods and Materials: We generated a model of oligometastatic melanoma in C57BL/6 immunocompetent mice and then used a combination of SABR and systemically administered VSV-TAA viral immunotherapy to treat both local and systemic disease. Results: Our data showed that SABR generates excellent control or cure of local, clinically detectable, and accessible tumor through direct cell ablation. Also, the immunotherapeutic activity of systemically administered VSV-TAA generated T-cell responses that cleared subclinical metastatic tumors. We also showed that SABR induced weak T-cell-mediated tumor responses, which, particularly if boosted by VSV-TAA, might contribute to control of local and systemic disease. In addition, VSV-TAA therapy alone had significant effects on control of both local and metastatic tumors. Conclusions: We have shown in the present preliminary murine study using a single tumor model that this approach represents an effective, complementary

  13. Safety and Efficacy of Stereotactic Ablative Radiation Therapy for Renal Cell Carcinoma Extracranial Metastases

    SciTech Connect

    Wang, Chiachien Jake; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; Christie, Alana

    Purpose: Renal cell carcinoma is refractory to conventional radiation therapy but responds to higher doses per fraction. However, the dosimetric data and clinical factors affecting local control (LC) are largely unknown. We aimed to evaluate the safety and efficacy of stereotactic ablative radiation therapy (SAbR) for extracranial renal cell carcinoma metastases. Methods and Materials: We reviewed 175 metastatic lesions from 84 patients treated with SAbR between 2005 and 2015. LC and toxicity after SAbR were assessed with Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Predictors of local failure weremore » analyzed with χ{sup 2}, Kaplan-Meier, and log-rank tests. Results: In most cases (74%), SAbR was delivered with total doses of 40 to 60 Gy, 30 to 54 Gy, and 20 to 40 Gy in 5 fractions, 3 fractions, and a single fraction, respectively. The median biologically effective dose (BED) using the universal survival model was 134.5 Gy. The 1-year LC rate after SAbR was 91.2% (95% confidence interval, 84.9%-95.0%; median follow-up, 16.7 months). Local failures were associated with prior radiation therapy (hazard ratio [HR], 10.49; P<.0001), palliative-intent radiation therapy (HR, 4.63; P=.0189), spinal location (HR, 5.36; P=.0041), previous systemic therapy status (0-1 vs >1; HR, 3.52; P=.0217), and BED <115 Gy (HR, 3.45; P=.0254). Dose received by 99% of the target volume was the strongest dosimetric predictor for LC. Upon multivariate analysis, dose received by 99% of the target volume greater than BED of 98.7 Gy and systemic therapy status remained significant (HR, 0.12 and 3.64, with P=.0014 and P=.0472, respectively). Acute and late grade 3 toxicities attributed to SAbR were observed in 3 patients (1.7%) and 5 patients (2.9%), respectively. Conclusions: SAbR demonstrated excellent LC of metastatic renal cell carcinoma with a favorable safety profile when an adequate

  14. PCM-SABRE: a platform for benchmarking and comparing outcome prediction methods in precision cancer medicine.

    PubMed

    Eyal-Altman, Noah; Last, Mark; Rubin, Eitan

    2017-01-17

    Numerous publications attempt to predict cancer survival outcome from gene expression data using machine-learning methods. A direct comparison of these works is challenging for the following reasons: (1) inconsistent measures used to evaluate the performance of different models, and (2) incomplete specification of critical stages in the process of knowledge discovery. There is a need for a platform that would allow researchers to replicate previous works and to test the impact of changes in the knowledge discovery process on the accuracy of the induced models. We developed the PCM-SABRE platform, which supports the entire knowledge discovery process for cancer outcome analysis. PCM-SABRE was developed using KNIME. By using PCM-SABRE to reproduce the results of previously published works on breast cancer survival, we define a baseline for evaluating future attempts to predict cancer outcome with machine learning. We used PCM-SABRE to replicate previous work that describe predictive models of breast cancer recurrence, and tested the performance of all possible combinations of feature selection methods and data mining algorithms that was used in either of the works. We reconstructed the work of Chou et al. observing similar trends - superior performance of Probabilistic Neural Network (PNN) and logistic regression (LR) algorithms and inconclusive impact of feature pre-selection with the decision tree algorithm on subsequent analysis. PCM-SABRE is a software tool that provides an intuitive environment for rapid development of predictive models in cancer precision medicine.

  15. The efficacy of methotrexate in the treatment of en coup de sabre (linear morphea subtype).

    PubMed

    Rattanakaemakorn, Ploysyne; Jorizzo, Joseph L

    2018-03-01

    En coup de sabre is a rare subtype of linear morphea, located on the forehead or frontoparietal scalp. Systemic treatment of localised morphea with methotrexate has been reported in a few clinical reports. However, there are no case series using methotrexate treatment for En coup de sabre. To evaluate the efficacy and tolerability of methotrexate in the treatment of en coup de sabre linear morphea subtype. A retrospective chart review was performed for paediatric and the adult patients with en coup de sabre evaluated in the Dermatology Clinic at Wake Forest University School of Medicine treated with methotrexate. There were 7 patients who met criteria for inclusion in the study. The mean age at the onset of disease was 11.8 years (ranging from 4 to 38 years). The mean duration of disease before receiving methotrexate therapy was 9.4 months (ranging from 3 to 24 months). Seven (100%) patients improved with methotrexate therapy, in an average of 2 months to disease inactivity, and 16 months to discontinuation of methotrexate. Methotrexate appeared to be an effective and safe therapy for en coup de sabre patients.

  16. Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control

    NASA Astrophysics Data System (ADS)

    Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel

    2014-08-01

    We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.

  17. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    SciTech Connect

    Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent

  18. Localized scleroderma en coup de sabre in the Neurology Clinic.

    PubMed

    Pinho, João; Rocha, João; Sousa, Filipa; Macedo, Cristiana; Soares-Fernandes, João; Cerqueira, João; Maré, Ricardo; Lourenço, Esmeralda; Pereira, João

    2016-07-01

    Localized scleroderma en coup de sabre (LScs) is a form of localized scleroderma thought to be an autoimmune disorder. Central nervous system involvement is not rare and neurological manifestations include seizures, focal neurological deficits, headache and neuropsychiatric changes. Patients attending the Neurology Clinic with the final diagnosis of LScs with neurological manifestations were identified and clinical and imagiological records reviewed. Five patients (0.024%) had LScs with neurological involvement, presenting with transient focal neurologic deficits, seizures, headache or migraine with aura. Neuroimaging studies confirmed localized skin depression and showed bone thinning, white matter lesions, brain calcifications, sulcal effacement and meningeal enhancement. Three patients experienced clinical improvement after immunosuppressive therapy, and in two of these patients neuroimaging findings also improved. Recognizing typical dermatologic changes is keystone for the diagnosis of LScs with neurological involvement. It is a diagnosis of exclusion and extensive etiological diagnostic evaluation should be performed. Treatment options, including conservative follow-up or immunosuppressive therapy, should be carefully considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. SABRE: WIMP modulation detection in the northern and southern hemisphere

    NASA Astrophysics Data System (ADS)

    Froborg, F.; SABRE Collaboration

    2016-05-01

    Measuring an annual modulation in a direct Dark Matter detection experiment is not only a proof of the existence of WIMPs but can also tell us more about their interaction with standard matter and maybe even their density and velocity in the halo. Such a modulation has been measured by the DAMA/LIBRA experiment in NaI(Tl) crystals. However, the interpretation as WIMP signal is controversial due to contradicting results by other experiments. The SABRE experiment aims to shed light on this controversy by detecting the annual modulation in the same target material as DAMA with twin detectors at LNGS in Italy and at SUPL in Australia. The two locations in the northern and southern hemisphere allow to verify if other seasonal effects or the site have an influence on the measurement, thus reducing systematic effects. This paper will give an overview on the experimental design, the current status of the proof of principle phase mainly devoted to high-purity crystal growing, and an outlook on future plans.

  20. Self-pinched lithium beam transport experiments on SABRE

    SciTech Connect

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollowmore » annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r {le} 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented.« less

  1. Self-Pinched Transport Theory for the SABRE Ion Diode

    NASA Astrophysics Data System (ADS)

    Welch, Dale R.; Olson, Craig L.; Hanson, David L.

    1997-05-01

    In anticipation of a 90 kA 4 MV SABRE ion diode experiment, we have been examining self-pinch transport of ions for application to ion-driven inertial confinement fusion. The Li^+3 beam will exit the diode with a 30-40 mradian divergence and a shallow focusing angle of 75 mradians. The beam is annular with an 4.6-cm inner radius and a 6.8-cm outer radius. Self-pinch theory and simulation predict that large residual currents are possible in 2-20 mtorr argon gas. The simulations suggest that ≈ 50 kA of Li particle current is necessary to contain the beam's transverse momentum. Some non-ideal effects include large beam divergence, large focusing angle and beam annularity. To address these problems, we have been studying the benefits of beam conditioning in the focus region between the diode and the self pinch region after the beam has reached a small radius. We have found some benefit from including a passive conical structure and a low-pressure gas. A significant lens effect can be attained using only the beam fields in vacuum or a low pressure gas. In this configuration, a large focusing force, that keeps the ions off an inner cone and outer wall as the beam converges, has been calculated using the numerical simulation code uc(iprop.) Results from integrated simulation of the condition cell and self-pinch region look encouraging.

  2. Alopecia with perineural lymphocytes: a clue to linear scleroderma en coup de sabre.

    PubMed

    Goh, Carolyn; Biswas, Asok; Goldberg, Lynne J

    2012-05-01

    Linear scleroderma en coup de sabre ('the stroke of the sword') is an uncommon form of morphea with onset typically in childhood or adolescence. Involvement is usually located on the paramedian forehead and is associated with alopecia. It is microscopically indistinguishable from other forms of scleroderma. We present a 51-year-old woman who presented with alopecia and subsequently developed linear scleroderma en coup de sabre on her adjacent forehead. Histopathology revealed a strikingly perineural lymphocytic and plasmacytic infiltrate, extending deeply into the subcutis and fascia. To our knowledge, this is the first report of alopecia with perineural lymphocytic inflammation as a presenting sign of linear scleroderma en coup de sabre. Copyright © 2012 John Wiley & Sons A/S.

  3. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE

    NASA Astrophysics Data System (ADS)

    Roy, Soumya S.; Stevanato, Gabriele; Rayner, Peter J.; Duckett, Simon B.

    2017-12-01

    Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼ 3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.

  4. Neuroimaging and clinical findings in a case of linear scleroderma en coup de sabre.

    PubMed

    Duman, Ikram E; Ekinci, Gazanfer

    2018-06-01

    Linear scleroderma "en coup de sabre" is a subset of localized scleroderma with band-like sclerotic lesions typically involving the frontoparietal regions of the scalp. En coup de sabre and Parry-Romberg syndrome are variants of linear morphea on the head and neck that can be associated with neurologic manifestations. On imaging, patients may have lesions in the cerebrum ipsilateral to the scalp abnormality. We present a case of an 8-year-old girl with a left frontoparietal "en coup de sabre" scalp lesion and describe the neuroimaging findings of frontoparietal white matter lesion discovered incidentally on routine magnetic resonance imaging. The patient had no neurologic symptoms given the lesion identified.

  5. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE.

    PubMed

    Roy, Soumya S; Stevanato, Gabriele; Rayner, Peter J; Duckett, Simon B

    2017-12-01

    Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15 N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15 N signal enhancement within 2 s of RF pulsing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  7. Lithium ion beam divergence on SABRE extraction ion diode experiments

    SciTech Connect

    Hanson, D.L.; Cuneo, M.E.; Johnson, D.J.

    Intense lithium beams are of particular interest for light ion inertial confinement fusion applications because lithium ions can be accelerated at high voltage in a single charge state (Li{sup +}) with a high mass-to-charge ratio and appropriate range for efficient focusing and heating of a hohlraum ICF target. Scaling to ion power densities adequate to drive high gain pellet implosions (600 TW at 30 MeV) will require a large number of beams transported, temporally bunched, and focused onto a target, with the necessary target standoff to ensure survival of the driver modules. For efficient long distance transport and focusing tomore » a small pellet, lithium beam divergence must be reduced to about 12 mrad or less (depending on the transport scheme). To support the eventual development of a light ion driver module for ICF applications, the authors are currently working to improve the composition, uniformity, and divergence of lithium ion beams produced by both passive LiF and active laser-generated lithium ion sources on extraction applied-B ion diodes on the SABRE accelerator (1 TW, 5 MV, 250 kA). While lithium beam divergence accounting and control are an essential goal of these experiments, divergence measurements for lithium beams present some unique problems not encountered to the same degree in divergence measurements on proton sources. To avoid these difficulties, the authors have developed a large aperture ion imaging diagnostic for time-resolved lithium divergence measurements. The authors will report on the operation of this lithium beam divergence diagnostic and on results of time-resolved divergence measurements in progress for passive LiF ion sources and laser-produced active lithium sources operated in diode configurations designed to control divergence growth. Comparisons will also be made with time-integrated divergence results obtained with small entrance aperture ultracompact pinhole cameras.« less

  8. Achieving 1% NMR polarization in water in less than 1 min using SABRE

    NASA Astrophysics Data System (ADS)

    Zeng, Haifeng; Xu, Jiadi; McMahon, Michael T.; Lohman, Joost A. B.; van Zijl, Peter C. M.

    2014-09-01

    The development of biocompatible hyperpolarized media is a crucial step towards application of hyperpolarization in vivo. This article describes the achievement of 1% hyperpolarization of 3-amino-1,2,4-triazine protons in water using the parahydrogen induced polarization technique based on signal amplification by reversible exchange (SABRE). Polarization was achieved in less than 1 min.

  9. Re-polarization of nuclear spins using selective SABRE-INEPT.

    PubMed

    Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH 2 , the H 2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15 N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Re-polarization of nuclear spins using selective SABRE-INEPT

    NASA Astrophysics Data System (ADS)

    Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2018-02-01

    A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε . For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε ≈ 260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε > 2000 . We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.

  11. SABRE--A Novel Software Tool for Bibliographic Post-Processing.

    ERIC Educational Resources Information Center

    Burge, Cecil D.

    1989-01-01

    Describes the software architecture and application of SABRE (Semi-Automated Bibliographic Environment), which is one of the first products to provide a semi-automatic environment for relevancy ranking of citations obtained from searches of bibliographic databases. Features designed to meet the review, categorization, culling, and reporting needs…

  12. Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...

  13. Spatial And Temporal Distribution Of Microbial Communities In A TCE DNAPL Site: SABRE Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project was conducted to evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. To study performance of this technology, a test cell was constructed with a longitudi...

  14. [Percutaneous lung thermo-ablation].

    PubMed

    Palussière, Jean; Catena, Vittorio; Gaubert, Jean-Yves; Buy, Xavier; de Baere, Thierry

    2017-05-01

    Percutaneous lung thermo-ablation has steadily been developed over the past 15years. Main indications are early stage non-small cell lung carcinoma (NSCLC) for non-surgical patients and slow evolving localized metastatic disease, either spontaneous or following a general treatment. Radiofrequency, being the most evaluated technique, offers a local control rate of about 80-90% for tumors <3 cm in diameter. With excellent tolerance and very few complications, radiofrequency may be proposed for patients with a chronic disease. Other ablation techniques under investigation such as microwaves and cryotherapy could allow overcoming radiofrequency limits. Furthermore, stereotactic radiotherapy proposed for the same indications is efficient. Comparative studies are warranted to differentiate these techniques in terms of efficacy, tolerance and cost-effectiveness. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  15. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  16. Very High Dose-Rate Radiobiology and Radiation Therapy for Lung Cancer

    DTIC Science & Technology

    2015-02-01

    most dramatic example is stereotactic ablative radiotherapy ( SABR )/ stereotactic body radiation therapy (SBRT), highly focused and accurate...significant motion, thus increasing the precision and accuracy of lung SABR /SBRT. Objective: We propose to develop a new type of RT system for early stage

  17. SABRE hyperpolarisation of vitamin B3 as a function of pH.

    PubMed

    Olaru, A M; Burns, M J; Green, G G R; Duckett, S B

    2017-03-01

    In this work we describe how the signal enhancements obtained through the SABRE process in methanol- d 4 solution are significantly affected by pH. Nicotinic acid (vitamin B3, NA ) is used as the agent, and changing pH is shown to modify the level of polarisation transfer by over an order of magnitude, with significant improvements being seen in terms of the signal amplitude and relaxation rate at high pH values. These observations reveal that manipulating pH to improve SABRE enhancements levels may improve the potential of this method to quantify low concentrations of analytes in mixtures. 1 H NMR spectroscopy results link this change to the form of the SABRE catalyst, which changes with pH, resulting in dramatic changes in the magnitude of the ligand exchange rates. The presented data also uses the fact that the chemical shifts of the nicotinic acids NMR resonances are affected by pH to establish that hyperpolarised 1 H-based pH mapping with SABRE is possible. Moreover, the strong polarisation transfer field dependence shown in the amplitudes of the associated higher order longitudinal terms offers significant opportunities for the rapid detection of hyperpolarised NA in H 2 O itself without solvent suppression. 1 H and 13 C MRI images of hyperpolarised vitamin B3 in a series of test phantoms are presented that show pH dependent intensity and contrast. This study therefore establishes that when the pH sensitivity of NA is combined with the increase in signal gain provided for by SABRE hyperpolarisation, a versatile pH probe results.

  18. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.

    PubMed

    Wei, Ning-Ning; Hamza, Adel

    2014-01-27

    We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (∼95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request.

  19. RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2015-10-29

    A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.

  20. TU-AB-201-06: Evaluation of Electromagnetically Guided High- Dose Rate Brachytherapy for Ablative Treatment of Lung Metastases

    SciTech Connect

    Pinkham, D.W.; Shultz, D.; Loo, B.W.

    Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less

  1. Single-Scan Multidimensional NMR Analysis of Mixtures at Sub-Millimolar Concentrations by using SABRE Hyperpolarization.

    PubMed

    Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard

    2015-11-16

    Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling

    PubMed Central

    Yu, Hailan; Luo, Nan; Sun, Lichao; Liu, Dong

    2012-01-01

    The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency. PMID:22615140

  3. Physical picture of immersed diode experiments on HERMES III and SABRE

    SciTech Connect

    Olson, C.L.; Mazarakis, M.G.; Menge, P.R.

    A needle-like, high-current, electron beam has been produced on the Hermes III and SABRE accelerators at SNL using inductive voltage adder (IVA) technology, and a diode consisting of a needle cathode and a planar anode/bremmstrahlung converter which are both fully immersed in a strong solenoidal magnetic field (12--50 T). Desired nominal parameters are 10 MV, 40 kA, 0.5 mm radius cathode, and 5--35 cm anode-cathode gaps. High dose and small x-ray spot size are required for radiography applications. Results are presented of initial experiments on Hermes III and SABRE, which have produced doses up to 1 kRad {at} 1 meter,more » and at lower doses, spot sizes as small as 1.7 mm diameter.« less

  4. SABRE: A New NaI(T1) Dark Matter Direct Detection Experiment

    NASA Astrophysics Data System (ADS)

    Shields, Emily; Xu, Jingke; Calaprice, Frank

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to test the DAMA/LIBRA claim for a positive WIMP-dark matter annual modulation signal. SABRE will consist of highly pure NaI(Tl) crystals in an active liquid scintillator veto that will be placed deep underground. The scintillator vessel will provide a veto against external backgrounds and those arising from detector components, especially the 3 keV signature from the decay of 40K in the crystal. Through the use of crystal purification techniques and the veto, we aim for a 40K background significantly lower than that of the DAMA/LIBRA experiment. We present our work developing low-background NaI(Tl) crystals using a highly pure NaI powder and the development of the veto.

  5. Changes in Treatment Patterns and Overall Survival in Patients With Early-Stage Non-Small Cell Lung Cancer in the United States After the Incorporation of Stereotactic Ablative Radiation Therapy: A Population-based Analysis.

    PubMed

    Haque, Waqar; Szeja, Sean; Tann, Anne; Kalra, Sarathi; Teh, Bin S

    2018-03-01

    Technologic developments have made radiation therapy (RT) more effective and have introduced new treatment options, such as stereotactic ablative radiation therapy (SABR). This study sought to determine changes in practice patterns for treatment of stage IA non-small cell lung cancer (NSCLC) after the introduction of SABR into the United States. This population-based study also examined changes in survival during this time period for all patients and specifically for patients treated with RT, surgery, or observation. We included patients in the Surveillance, Epidemiology, and End Results database diagnosed with stage IA NSCLC diagnosed between 2004 and 2012. Changes in treatment patterns were assessed. Outcomes were compared across 2 time periods: 2004 to 2008 (pre-SABR) and 2009 to 2012 (post-SABR). Kaplan-Meier and Cox regression were performed to compare overall survival (OS) for patients treated with surgery, RT, or observation. A total of 32,249 patients met the specified criteria. Comparing patients diagnosed in 2004 to those diagnosed in 2012, RT use increased from 13% to 29% (P<0.001), surgery use decreased from 76% to 61% (P<0.001), and patients observed decreased from 11% to 10% (P=0.3). There was no significant OS improvement in all patients or those patients who were observed; there were significant improvements in OS for patients treated with RT (hazard ratio=0.768; 95% confidence interval, 0.711-0.829) and those patients treated with surgery (hazard ratio=0.9; 95% confidence interval, 0.855-0.962). There has been an increase in RT utilization and decrease in surgical utilization after the incorporation of SABR by radiation oncologists within the United States. In addition, there has been an improvement in OS for patients treated with definitive RT for early-stage NSCLC between 2004 and 2012 that may be associated with increased utilization of SABR.

  6. Progressive Hemifacial Atrophy and Linear Scleroderma En Coup de Sabre: A Spectrum of the Same Disease?

    PubMed

    Khamaganova, Irina

    2017-01-01

    Similar clinical and histhopathological features in progressive hemifacial atrophy and linear scleroderma en coup de sabre are well known. Trauma may predispose to the development of both diseases. The lack of association with anti-Borrelia antibodies was shown in both cases as well. The otolaryngological and endocrine disorders may be associated findings in both diseases. However, there are certain differences in neurological and ophthalmological changes in the diseases.

  7. SABRE: a method for assessing the stability of gene modules in complex tissues and subject populations.

    PubMed

    Shannon, Casey P; Chen, Virginia; Takhar, Mandeep; Hollander, Zsuzsanna; Balshaw, Robert; McManus, Bruce M; Tebbutt, Scott J; Sin, Don D; Ng, Raymond T

    2016-11-14

    Gene network inference (GNI) algorithms can be used to identify sets of coordinately expressed genes, termed network modules from whole transcriptome gene expression data. The identification of such modules has become a popular approach to systems biology, with important applications in translational research. Although diverse computational and statistical approaches have been devised to identify such modules, their performance behavior is still not fully understood, particularly in complex human tissues. Given human heterogeneity, one important question is how the outputs of these computational methods are sensitive to the input sample set, or stability. A related question is how this sensitivity depends on the size of the sample set. We describe here the SABRE (Similarity Across Bootstrap RE-sampling) procedure for assessing the stability of gene network modules using a re-sampling strategy, introduce a novel criterion for identifying stable modules, and demonstrate the utility of this approach in a clinically-relevant cohort, using two different gene network module discovery algorithms. The stability of modules increased as sample size increased and stable modules were more likely to be replicated in larger sets of samples. Random modules derived from permutated gene expression data were consistently unstable, as assessed by SABRE, and provide a useful baseline value for our proposed stability criterion. Gene module sets identified by different algorithms varied with respect to their stability, as assessed by SABRE. Finally, stable modules were more readily annotated in various curated gene set databases. The SABRE procedure and proposed stability criterion may provide guidance when designing systems biology studies in complex human disease and tissues.

  8. Achieving 1% NMR polarization in water in less than 1min using SABRE.

    PubMed

    Zeng, Haifeng; Xu, Jiadi; McMahon, Michael T; Lohman, Joost A B; van Zijl, Peter C M

    2014-09-01

    The development of biocompatible hyperpolarized media is a crucial step towards application of hyperpolarization in vivo. This article describes the achievement of 1% hyperpolarization of 3-amino-1,2,4-triazine protons in water using the parahydrogen induced polarization technique based on signal amplification by reversible exchange (SABRE). Polarization was achieved in less than 1 min. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Surveillance of Australian workplace Based Respiratory Events (SABRE) in New South Wales.

    PubMed

    Hannaford-Turner, K; Elder, D; Sim, M R; Abramson, M J; Johnson, A R; Yates, D H

    2010-08-01

    The Surveillance of Australian workplace Based Respiratory Events (SABRE) New South Wales (NSW) scheme is a voluntary notification scheme established to determine the incidence of occupational lung diseases in NSW Australia. Data presented in this paper summarize the last 7 years of reporting to SABRE (June 2001 to December 2008). Every 2 months, participating occupational physicians, respiratory physicians and general practitioners (accredited by the NSW WorkCover Authority) reported new cases of occupational lung disease seen in their practices. Data collected include gender, age, causal agent and the occupations and industries believed responsible. Estimated incidence was calculated for each disease. Three thousand six hundred and fifty-four cases were notified to the scheme, consisting of 3856 diagnoses. Most of the cases were males (76%). Pleural plaques [1218 (28%)] were the most frequently reported condition, followed by mesothelioma [919 (24%)]. Silicosis [90 (2%)] and occupational asthma [OA; 89 (2%)] were the most frequently reported non-asbestos-related diseases. Estimated rates for mesothelioma, diffuse pleural thickening (DPT) and OA were 83, 83 and 5 cases per million employed males per year, respectively. Trades such as carpenters and electricians associated with the building industry, electricity supply and asbestos product manufacture were the most common occupations and industries reported. Asbestos-related diseases are the most frequently reported conditions to SABRE NSW. The very low incidence of OA for NSW most likely reflects under-diagnosis as well as under-reporting. Occupational lung disease is still occurring in NSW despite current preventative strategies. The SABRE scheme currently provides the only available information in this area.

  10. Progressive Hemifacial Atrophy and Linear Scleroderma En Coup de Sabre: A Spectrum of the Same Disease?

    PubMed Central

    Khamaganova, Irina

    2018-01-01

    Similar clinical and histhopathological features in progressive hemifacial atrophy and linear scleroderma en coup de sabre are well known. Trauma may predispose to the development of both diseases. The lack of association with anti-Borrelia antibodies was shown in both cases as well. The otolaryngological and endocrine disorders may be associated findings in both diseases. However, there are certain differences in neurological and ophthalmological changes in the diseases. PMID:29445726

  11. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE).

    PubMed

    Moreno, Karlos X; Nasr, Khaled; Milne, Mark; Sherry, A Dean; Goux, Warren J

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes.

    PubMed

    Hermkens, Niels K J; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2017-03-01

    SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H 2 ) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H 2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes

    NASA Astrophysics Data System (ADS)

    Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2017-03-01

    SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.

  14. SABRE: Dark matter annual modulation detection in the northern and southern hemispheres

    NASA Astrophysics Data System (ADS)

    Tomei, C.

    2017-02-01

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to search for galactic Dark Matter through the annual modulation signature. SABRE will consist of highly pure NaI(Tl) crystals operated in an active liquid scintillator veto. The SABRE experiment will follow a two-phase approach. In the first phase, one high-purity NaI(Tl) crystal will be operated at LNGS in an active liquid scintillator veto with the goal of demonstrating backgrounds low enough for a sensitive test of the DAMA/LIBRA result. An unprecedented radio-purity for both the NaI powder and the crystal growth will be needed to achieve this goal. The second phase will consist in building two high-purity NaI(Tl) detector arrays, with a total mass of about 50 kg each, located at LNGS and in the Stawell Gold Mine in Australia. The operation of twin full-scale experiments in both the northern and the southern hemispheres will strengthen the reliability of the result against any possible seasonal systematic effect.

  15. Mechanism of spontaneous polarization transfer in high-field SABRE experiments

    NASA Astrophysics Data System (ADS)

    Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2018-02-01

    We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH2, the H2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î1zÎ2z spin order of catalyst-bound H2; (ii) spin order conversion Î1zÎ2z → (Î1z +Î2z) due to cross-correlated relaxation, leading to net polarization of H2; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T0 mixing in the catalyst-bound form of H2, while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH2 and thermally polarized H2.

  16. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE)

    NASA Astrophysics Data System (ADS)

    Moreno, Karlos X.; Nasr, Khaled; Milne, Mark; Sherry, A. Dean; Goux, Warren J.

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20 s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging.

  17. Mechanism of spontaneous polarization transfer in high-field SABRE experiments.

    PubMed

    Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L

    2018-02-01

    We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH 2 , the H 2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î 1z Î 2z spin order of catalyst-bound H 2 ; (ii) spin order conversion Î 1z Î 2z →(Î 1z +Î 2z ) due to cross-correlated relaxation, leading to net polarization of H 2 ; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T 0 mixing in the catalyst-bound form of H 2 , while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH 2 and thermally polarized H 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Directional selection in the evolution of elongated upper canines in clouded leopards and sabre-toothed cats.

    PubMed

    Harano, Tomohiro; Kutsukake, Nobuyuki

    2018-06-14

    Extremely developed or specialised traits such as the elongated upper canines of extinct sabre-toothed cats are often not analogous to those of any extant species, which limits our understanding of their evolutionary cause. However, an extant species may have undergone directional selection for a similar extreme phenotype. Among living felids, the clouded leopard, Neofelis nebulosa, has exceptionally long upper canines for its body size. We hypothesised that directional selection generated the elongated upper canines of clouded leopards in a manner similar to the process in extinct sabre-toothed cats. To test this, we developed an approach that compared the effect of directional selection among lineages in a phylogeny using a simulation of trait evolution and approximate Bayesian computation. This approach was applied to analyse the evolution of upper canine length in the Felidae phylogeny. Our analyses consistently showed directional selection favouring longer upper canines in the clouded leopard lineage and a lineage leading to the sabre-toothed cat with the longest upper canines, Smilodon. Most of our analyses detected an effect of directional selection for longer upper canines in the lineage leading to another sabre-toothed cat, Homotherium, although this selection may have occurred exclusively in the primitive species. In all the analyses, the clouded leopard and Smilodon lineages showed comparable directional selection. This implies that clouded leopards share a selection advantage with sabre-toothed cats in having elongated upper canines. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Application of the π-accepting ability parameter of N-heterocyclic carbene ligands in iridium complexes for signal amplification by reversible exchange (SABRE).

    PubMed

    van Weerdenburg, Bram J A; Eshuis, Nan; Tessari, Marco; Rutjes, Floris P J T; Feiters, Martin C

    2015-09-21

    The new π-accepting ability parameter (PAAP) appears to be the best tool to analyse the electronic properties of NHC ligands in [Ir(H)2(NHC)(Py)3](+) complexes for SABRE. Together with the buried volume, the efficiency of hyperpolarisation transfer in SABRE, depending on the exchange rate of pyridine, can be described.

  20. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment

    SciTech Connect

    Mattonen, Sarah A.; Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario; Palma, David A., E-mail: david.palma@lhsc.on.ca

    Purpose: Stereotactic ablative radiation therapy (SABR) is a guideline-specified treatment option for early-stage lung cancer. However, significant posttreatment fibrosis can occur and obfuscate the detection of local recurrence. The goal of this study was to assess physician ability to detect timely local recurrence and to compare physician performance with a radiomics tool. Methods and Materials: Posttreatment computed tomography (CT) scans (n=182) from 45 patients treated with SABR (15 with local recurrence matched to 30 with no local recurrence) were used to measure physician and radiomic performance in assessing response. Scans were individually scored by 3 thoracic radiation oncologists and 3more » thoracic radiologists, all of whom were blinded to clinical outcomes. Radiomic features were extracted from the same images. Performances of the physician assessors and the radiomics signature were compared. Results: When taking into account all CT scans during the whole follow-up period, median sensitivity for physician assessment of local recurrence was 83% (range, 67%-100%), and specificity was 75% (range, 67%-87%), with only moderate interobserver agreement (κ = 0.54) and a median time to detection of recurrence of 15.5 months. When determining the early prediction of recurrence within <6 months after SABR, physicians assessed the majority of images as benign injury/no recurrence, with a mean error of 35%, false positive rate (FPR) of 1%, and false negative rate (FNR) of 99%. At the same time point, a radiomic signature consisting of 5 image-appearance features demonstrated excellent discrimination, with an area under the receiver operating characteristic curve of 0.85, classification error of 24%, FPR of 24%, and FNR of 23%. Conclusions: These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. This decision support system could potentially allow for early salvage

  1. Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2014-12-07

    A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.

  2. A simple hand‐held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking

    PubMed Central

    Richardson, Peter M.; Jackson, Scott; Parrott, Andrew J.; Nordon, Alison; Duckett, Simon B.

    2018-01-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H2, to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand‐held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF‐dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. PMID:29193324

  3. A simple hand-held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking.

    PubMed

    Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  4. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  5. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.

    PubMed

    Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco

    2017-07-24

    DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Autologous fat transplantation for the treatment of linear scleroderma en coup de sabre.

    PubMed

    Ibler, Kristina S; Gramkow, Christina; Siemssen, Peter A

    2015-01-01

    Scleroderma en coup de sabre is a disfiguring disease for which only limited therapeutic options exist. Three cases of facial linear scleroderma treated with autologous fat transplantation with acceptable results are presented. Autologous fat transplantation was preferred to corrective surgery because of the extent of the lesions and absence of any associated facial distortion. Fat as a filler was chosen to reduce the risk of adverse effects. Adipocytes are suggested to have wider biological effects than other fillers and may offer more durable results. At least two transplantations were needed to evoke a significant effect.

  7. Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR

    SciTech Connect

    Rose, S.D.; Carbajo, J.J.

    The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.

  8. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  9. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    SciTech Connect

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, andmore » even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations.« less

  10. Achieving High Levels of NMR-Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE.

    PubMed

    Iali, Wissam; Olaru, Alexandra M; Green, Gary G R; Duckett, Simon B

    2017-08-04

    Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10 -6  mol dm -3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d 2 -methyl nicotinate, 4,6-d 2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  13. Time-resolved magnetic spectrometer measurements of the SABRE positive polarity magnetically insulated transmission line voltage

    SciTech Connect

    Menge, P.R.; Cuneo, M.E.; Hanson, D.L.

    A magnetic spectrometer has been fielded on the coaxial magnetically insulated transmission line (MITL) of the SABRE ten-cavity inductive voltage adder operated in positive polarity (6 MV, 300 kA, 50 ns). Located 1 m upstream from an extraction ion diode, this diagnostic is capable of measuring the SABRE voltage pulse with a 2 ns resolution. Ions (protons and carbon) from either a flashover or plasma gun source are accelerated from the inner anode across the gap to the outer cathode and into a drift tube terminated by the magnetic spectrometer. The magnetically deflected ions are recorded on up to sixteenmore » PIN diodes (diameter = 1 mm, thickness = 35 {mu}). The voltage waveform is produced from the time-of-flight information. Results confirm previous observations of a vacuum wave precursor separated from the magnetically insulated wave. Verification of upstream precursor erosion techniques are possible with this instrument. Measurements of peak voltage show good agreement with other time-integrated voltage diagnostics. Comparisons with theoretical voltage predictions derived from a flow impedance model of MITL behavior will be presented.« less

  14. Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves.

    PubMed

    Brown, Caitlin; Balisi, Mairin; Shaw, Christopher A; Van Valkenburgh, Blaire

    2017-04-10

    Skeletal-injury frequency and distribution are likely to reflect hunting behaviour in predatory vertebrates and might therefore differ between species with distinct hunting modes. Two Pleistocene predators from the Rancho La Brea asphalt seeps, the sabre-tooth cat, Smilodon fatalis, and dire wolf, Canis dirus, represent ambush and pursuit predators, respectively. On the basis of a collection of over 1,900 pathological elements, the frequency of traumatic injury across skeletal elements in these two species was calculated. Here we show that the frequency of trauma in the sabre-tooth cat exceeds that of the dire wolf (4.3% compared to 2.8%), implying that the killing behaviour of S. fatalis entailed greater risk of injury. The distribution of traumatic injuries also differed between the two species. S. fatalis, an ambush predator, was injured more often than expected across the lumbar vertebrae and shoulders whereas C. dirus, a pursuit predator, had higher than expected levels of injury in the limbs and cervical vertebrae. Spatial analysis was used to quantify differences in the distribution of putative hunting injuries. Analysis of injury locations discriminated true hotspots from injury-dense areas and facilitated interpretation of predatory behaviour, demonstrating the use of spatial analyses in the study of vertebrate behaviour and evolution. These results suggest that differences in trauma distribution reflect distinct hazards of each species' hunting mode.

  15. Level anti-crossings are a key factor for understanding para-hydrogen-induced hyperpolarization in SABRE experiments.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L; Kaptein, Robert

    2013-10-07

    Various hyperpolarization methods are able to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) by several orders of magnitude. Among these methods are para-hydrogen-induced polarization (PHIP) and signal amplification by reversible exchange (SABRE), which exploit the strong nuclear alignment of para-hydrogen. Several SABRE experiments have been reported but, so far, it has not been possible to account for the experimentally observed sign and magnetic-field dependence of substrate polarization. Herein, we present an analysis based on level anti-crossings (LACs), which provides a complete understanding of the SABRE effect. The field-dependence of both net and anti-phase polarization is measured for several ligands, which can be reproduced by the theory. The similar SABRE field-dependence for different ligands is also explained. In general, the LAC concept allows complex spin dynamics to be unraveled, and is crucial for optimizing the performance of novel hyperpolarization methods in NMR and MRI techniques. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Analysis of the Implementation of the Standard Accounting, Budgeting and Reporting System (SABRS) in the 4th Marine Division.

    DTIC Science & Technology

    1980-12-01

    REPOR DOCUMENTATION PAGE - 33703 COMPLZT!Nc PORN I.RPRNUM69M L. GOV"T ACCESSION NO. I. RECIPIEN4TS CATALOG NUNS9R a. TITLE (mds ume An Anaiysi s of th...wagging the dog ." The development schedule for SABRS envisions the three phases of concept formulation, Automated Data Systems (ADS) development and

  17. Transgenic Reproductive Cell Ablation.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A

    2017-01-01

    Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.

  18. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  19. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy

    SciTech Connect

    Zhao, Lina; Zhou, Shouhao; Balter, Peter

    Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD

  20. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  1. Stereotactic Ablative Radiation Therapy for Pulmonary Metastases: Histology, Dose, and Indication Matter

    SciTech Connect

    Helou, Joelle; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario; Thibault, Isabelle

    Purpose: To assess the association between colorectal cancer (CRC) histology, dose, and local failure (LF) after stereotactic ablative radiation therapy (SABR) for pulmonary metastases, and to describe subsequent cancer progression, change of systemic therapy (CST), survival, and their association with treatment indications. Methods and Materials: From a prospective SABR cohort, 180 pulmonary metastases in 120 patients were identified. Treatment indications were single metastasis, oligometastases, oligoprogression, and dominant areas of progression. Doses of 48 to 52 Gy/4 to 5 fractions were delivered. Since 2010 the dose for peripheral CRC metastases was increased to 60 Gy/4 fractions. Cumulative incidence function (CIF) was used tomore » report LF, progression probability, and CST. The Kaplan-Meier method estimated overall survival (OS). Univariate and multivariable analyses to assess variable associations were conducted. Results: Median follow-up was 22 months (interquartile range, 14-33 months). At 24 months, the CIF of LF was 23.6% (95% confidence interval [CI] 15.1%-33.3%) and 8.3% (95% CI 2.6%-18.6%), respectively, for CRC and non-CRC metastases (P<.001). This association remained significant after adjusting for confounders (subdistribution hazard ratio [SHR] 13.6, 95% CI 4.2-44.1, P<.001). Among CRC metastases, 56 and 45 received <60 Gy and 60 Gy, respectively. Delivering 60 Gy was independently associated with a lower hazard of LF (SHR 0.271, 95% CI 0.078-0.940, P=.040). At 12 months the CIF of progression was 41.67% (95% CI 21.69%-60.56%), 42.51% (95% CI 29.09%-55.29%), 62.96% (95% CI 41.25%-78.53%), and 78.57% (95% CI 42.20%-93.48%), respectively, for patients treated for single metastasis, oligometastases, oligoprogression, and dominant area of progression (P<.001). A CST was observed, respectively, in 4 (17%), 17 (31%), 12 (44%), and 10 (71%) patients with a median time of 13.1, 11.1, 8.4, and 8.4 months. Conclusion: Colorectal cancer lung

  2. Multi-Institutional Experience of Stereotactic Ablative Radiation Therapy for Stage I Small Cell Lung Cancer

    SciTech Connect

    Verma, Vivek; Simone, Charles B.; Allen, Pamela K.

    Purpose: For inoperable stage I (T1-T2N0) small cell lung cancer (SCLC), national guidelines recommend chemotherapy with or without conventionally fractionated radiation therapy. The present multi-institutional cohort study investigated the role of stereotactic ablative radiation therapy (SABR) for this population. Methods and Materials: The clinical and treatment characteristics, toxicities, outcomes, and patterns of failure were assessed in patients with histologically confirmed stage T1-T2N0M0 SCLC. Kaplan-Meier analysis was used to evaluate the survival outcomes. Univariate and multivariate analyses identified predictors of outcomes. Results: From 24 institutions, 76 lesions were treated in 74 patients (median follow-up 18 months). The median age and tumor sizemore » was 72 years and 2.5 cm, respectively. Chemotherapy and prophylactic cranial irradiation were delivered in 56% and 23% of cases, respectively. The median SABR dose and fractionation was 50 Gy and 5 fractions. The 1- and 3-year local control rate was 97.4% and 96.1%, respectively. The median disease-free survival (DFS) duration was 49.7 months. The DFS rate was 58.3% and 53.2% at 1 and 3 years, respectively. The median, 1-year, and 3-year disease-specific survival was 52.3 months, 84.5%, and 64.4%, respectively. The median, 1-year, and 3-year overall survival (OS) was 17.8 months, 69.9%, and 34.0% respectively. Patients receiving chemotherapy experienced an increased median DFS (61.3 vs 9.0 months; P=.02) and OS (31.4 vs 14.3 months; P=.02). The receipt of chemotherapy independently predicted better outcomes for DFS/OS on multivariate analysis (P=.01). Toxicities were uncommon; 5.2% experienced grade ≥2 pneumonitis. Post-treatment failure was most commonly distant (45.8% of recurrence), followed by nodal (25.0%) and “elsewhere lung” (20.8%). The median time to each was 5 to 7 months. Conclusions: From the findings of the largest report of SABR for stage T1-T2N0 SCLC to date, SABR

  3. Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid

    NASA Astrophysics Data System (ADS)

    Zeng, Haifeng; Xu, Jiadi; Gillen, Joseph; McMahon, Michael T.; Artemov, Dmitri; Tyburn, Jean-Max; Lohman, Joost A. B.; Mewis, Ryan E.; Atkinson, Kevin D.; Green, Gary G. R.; Duckett, Simon B.; van Zijl, Peter C. M.

    2013-12-01

    Hyperpolarization produces nuclear spin polarization that is several orders of magnitude larger than that achieved at thermal equilibrium thus providing extraordinary contrast and sensitivity. As a parahydrogen induced polarization (PHIP) technique that does not require chemical modification of the substrate to polarize, Signal Amplification by Reversible Exchange (SABRE) has attracted a lot of attention. Using a prototype parahydrogen polarizer, we polarize two drugs used in the treatment of tuberculosis, namely pyrazinamide and isoniazid. We examine this approach in four solvents, methanol-d4, methanol, ethanol and DMSO and optimize the polarization transfer magnetic field strength, the temperature as well as intensity and duration of hydrogen bubbling to achieve the best overall signal enhancement and hence hyperpolarization level.

  4. Creating a hyperpolarised pseudo singlet state through polarisation transfer from parahydrogen under SABRE.

    PubMed

    Olaru, Alexandra M; Roy, Soumya S; Lloyd, Lyrelle S; Coombes, Steven; Green, Gary G R; Duckett, Simon B

    2016-06-14

    The creation of magnetic states that have long lifetimes has been the subject of intense investigation, in part because of their potential to survive the time taken to travel from the point of injection in a patient to the point where a clinically diagnostic MRI trace is collected. We show here that it is possible to harness the signal amplification by reversible exchange (SABRE) process to create such states in a hyperpolarised form that improves their detectability in seconds without the need for any chemical change by reference to the model substrate 2-aminothiazole. We achieve this by transferring Zeeman derived polarisation that is 1500 times larger than that normally available at 400 MHz with greater than 90% efficiency into the new state, which in this case has a 27 second lifetime.

  5. Treatment of Linear Scleroderma (en Coup de Sabre) With Dermal Fat Grafting.

    PubMed

    Barin, Ensar Zafer; Cinal, Hakan; Cakmak, Mehmet Akif; Tan, Onder

    2016-05-01

    Linear scleroderma, also known as "en coup de sabre," is a subtype of localized scleroderma that warrants aesthetic correction because it appears on the forehead region in children. To report dermal fat grafting as a novel and effective surgical treatment option in linear scleroderma. Under local anesthesia, a dermal fat graft was successfully placed into a subcutaneous pocket that was prepared underneath the depressed scar. The donor site was closed primarily. No early or late complications developed postoperatively. After 1-year follow-up, the dermal fat graft was viable, the depressed scar was adequately augmented, and a good aesthetic result and patient satisfaction were obtained. We believe that dermal fat grafting is a cost-effective option and provides a long-lasting aesthetic outcome in the management of linear scleroderma. © The Author(s) 2015.

  6. Headaches as a presenting symptom of linear morphea en coup de sabre.

    PubMed

    Polcari, Ingrid; Moon, Amanda; Mathes, Erin F; Gilmore, Elaine S; Paller, Amy S

    2014-12-01

    Linear morphea en coup de sabre (ECDS) is a form of localized scleroderma that predominantly affects the pediatric population, with a median age of 10 years at presentation. The existence of neurologic findings in association with ECDS has been well described in the literature. Here we describe 4 patients with ECDS who presented with headaches, which were typical migraines in 3 of the patients. The headaches preceded the onset of cutaneous findings by at least 6 months. Our patients' cases emphasize both the importance of recognizing headaches as a harbinger of ECDS and the necessity of performing thorough cutaneous examination in patients with unexplained headaches or other neurologic disease. Copyright © 2014 by the American Academy of Pediatrics.

  7. Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid

    PubMed Central

    Zeng, Haifeng; Xu, Jiadi; Gillen, Joseph; McMahon, Michael T.; Artemov, Dmitri; Tyburn, Jean-Max; Lohman, Joost A.B.; Mewis, Ryan E.; Atkinson, Kevin D.; Green, Gary G.R.; Duckett, Simon B.; van Zijl, Peter C.M.

    2013-01-01

    Hyperpolarization produces nuclear spin polarization that is several orders of magnitude larger than that achieved at thermal equilibrium thus providing extraordinary contrast and sensitivity. As a parahydrogen induced polarization (PHIP) technique that does not require chemical modification of the substrate to polarize, Signal Amplification by Reversible Exchange (SABRE) has attracted a lot of attention. Using a prototype parahydrogen polarizer, we polarize two drugs used in the treatment of tuberculosis, namely pyrazinamide and isoniazid. We examine this approach in four solvents, methanol-d4, methanol, ethanol and DMSO and optimize the polarization transfer magnetic field strength, the temperature as well as intensity and duration of hydrogen bubbling to achieve the best overall signal enhancement and hence hyperpolarization level. PMID:24140625

  8. Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid.

    PubMed

    Zeng, Haifeng; Xu, Jiadi; Gillen, Joseph; McMahon, Michael T; Artemov, Dmitri; Tyburn, Jean-Max; Lohman, Joost A B; Mewis, Ryan E; Atkinson, Kevin D; Green, Gary G R; Duckett, Simon B; van Zijl, Peter C M

    2013-12-01

    Hyperpolarization produces nuclear spin polarization that is several orders of magnitude larger than that achieved at thermal equilibrium thus providing extraordinary contrast and sensitivity. As a parahydrogen induced polarization (PHIP) technique that does not require chemical modification of the substrate to polarize, Signal Amplification by Reversible Exchange (SABRE) has attracted a lot of attention. Using a prototype parahydrogen polarizer, we polarize two drugs used in the treatment of tuberculosis, namely pyrazinamide and isoniazid. We examine this approach in four solvents, methanol-d4, methanol, ethanol and DMSO and optimize the polarization transfer magnetic field strength, the temperature as well as intensity and duration of hydrogen bubbling to achieve the best overall signal enhancement and hence hyperpolarization level. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Cryogenic Cathode Cooling Techniques for Improved SABRE Extraction Ion Diode Li Beam Generation

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Johnston, R. R.; Cuneo, M. E.; Menge, P. R.; Fowler, W. E.; Armijo, J.; Nielsen, D. S.; Petmecky, D.

    1997-11-01

    We are developing techniques for cryogenic cooling of the SABRE extraction ion diode cathode that, combined with source cleaning, should improve the purity and brightness of Li beams for ICF light ion fusion. By liquid helium (LHe) cathode cooling, we have been able to maintain A-K gap base pressures in the range of 5 - 7x10-8 Torr for about 45 minutes. These base pressures extend the monolayer formation time for the worst beam contaminants (H2 and water vapor) to 10 - 100 sec or longer, which should allow the accelerator to be fired without significant Li source recontamination. This technique is compatible with He glow discharge cleaning, laser cleaning, and in situ Li deposition. We are also developing techniques for Ti-gettering of H2 and for cryogenic cooling of cathode electrodes to delay cathode plasma expansion.

  10. Scleroderma en coup de sabre with recurrent episodes of brain hemorrhage.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Oka, Tomonori; Miyagaki, Tomomitsu; Tamaki, Zenshiro; Nonaka, Senshu; Sato, Shinichi

    2016-02-01

    We report a 39-year-old man referred to our facility with linear sclerotic lesions along the several Blaschko's lines of the scalp. A year before the referral, he had had an episode of brain hemorrhage, although there was no evidence of vascular malformation or any other risk factors of brain hemorrhage for his young age. On the diagnosis of scleroderma en coup de sabre, prednisolone intake was initiated, and the skin lesions were well controlled. However, in the course of our follow up, he had another episode of brain hemorrhage, again without any evidence of cerebral vascular abnormalities. Organic intracranial abnormalities in this disease are well-documented, but there have been few reports on comorbid recurrent brain hemorrhages. We herein discuss the possible relationship of the skin lesions with the brain hemorrhages in our case, taking notice of the implication of developmental abnormalities behind these apparently independent phenomena inside and outside the cranium. © 2015 Japanese Dermatological Association.

  11. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  12. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT

  13. Properties of body composition of female representatives of the Polish national fencing team - the sabre event.

    PubMed

    Jagiełło, Władysław; Marina, Jagiełło; Maciej, Kalina Roman; Jan, Barczyński Bartłomiej; Artur, Litwiniuk; Jarosław, Klimczak

    2017-12-01

    Fencing is a combat sport whose form of direct confrontation involves hitting the opponent with a weapon. The purpose of the study was to determine the properties of body composition of female representatives of the Polish national fencing team. The study involved 11 female athletes of the Polish national fencing team. Their age was 16-22 years (19±2.32), body weight 52-78 kg (59.7±7.4), body height 158-183 cm (167.46±6.10) and the training experience 7.64±3.47 years. The reference group consisted of 153 students of Warsaw University of Technology (Poland). Twenty basic somatic characteristics were measured. The following indices were calculated: slenderness, Rohrer's, BMI, Manouvrier's, and pelvic-shoulder indices. Density of the body, total body fat, active tissue, the overall profile of body composition and internal proportions of the body were determined. Analysis of internal proportions of factors of the athletes' body composition revealed significant differences in particular groups of features. The total size of the athletes' bodies is due to less-than-average magnitude of the length and stoutness characteristics and a high magnitude of adiposity (M = 0.63) in the Polish female national team of fencers (sabre) calculated from the normalized values for the control group. The proportions of features within the analysed factors revealed a significant advantage of the length of the upper extremity over the lower one and a distinct advantage of forearm musculature. The specific profile of body composition of female athletes practising sabre fencing is most likely due to long-term effects of training as well as the system of selection of persons with specific somatic prerequisites developed in the course of many years of training practice.

  14. The development of stereotactic body radiotherapy in the past decade: a global perspective.

    PubMed

    Lo, Simon S; Slotman, Ben J; Lock, Michael; Nagata, Yasushi; Guckenberger, Matthias; Siva, Shankar; Foote, Matthew; Tan, Daniel; Teh, Bin S; Mayr, Nina A; Chang, Eric L; Timmerman, Robert D; Sahgal, Arjun

    2015-09-04

    In the past 10 years, there has been an exponential increase in the incorporation of stereotactic body radiotherapy, also known as stereotactic ablative radiotherapy, into the armamentarium against various types of cancer in different settings worldwide. In this article in the 10th year anniversary issue of Future Oncology, representatives from the USA, Canada, Japan, Germany, The Netherlands, Australia and Singapore will provide individual perspectives of the development of stereotactic body radiotherapy in their respective countries.

  15. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  16. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation.

    PubMed

    Keisari, Yona

    2017-01-01

    Tumor ablation by thermal, chemical and radiological sources has received substantial attention for the treatment of many localized malignancies. The primary goal of most ablation procedures is to eradicate all viable malignant cells within a designated target volume through the application of energy or chemicals. Methods such as radiotherapy, chemical and biological ablation, photodynamic therapy, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and electric-based ablation have been developed for focal malignancies. In recent years a large volume of data emerged on the effect of in situ tumor destruction (ablation) on inflammatory and immune components resulting in systemic anti-tumor reactions. It is evident that in situ tumor ablation can involve tumor antigen release, cross presentation and the release of DAMPS and make the tumor its own cellular vaccine. Tumor tissue destruction by in situ ablation may stimulate antigen-specific cellular immunity engendered by an inflammatory milieu. Dendritic cells (DCs) attracted to this microenvironment, will undergo maturation after internalizing cellular debris containing tumor antigens and will be exposed to damage associated molecular pattern (DAMP). Mature DCs can mediate antigen-specific cellular immunity via presentation of processed antigens to T cells. The immunomodulatory properties, exhibited by in situ ablation could portend a future collaboration with immunotherapeutic measures. In this review are summarized and discuss the preclinical and clinical studies pertinent to the phenomena of stimulation of specific anti-tumor immunity by various ablation modalities and the immunology related measures used to boost this response.

  17. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  18. 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH

    PubMed Central

    2016-01-01

    15N nuclear spins of imidazole-15N2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole-15N2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15N site of imidazole occurs at physiological pH (pKa ∼ 7.0), and the binding event changes the 15N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms. PMID:27379344

  19. Diazirines as Potential Molecular Imaging Tags: Probing the Requirements for Efficient and Long-Lived SABRE-Induced Hyperpolarization.

    PubMed

    Shen, Kun; Logan, Angus W J; Colell, Johannes F P; Bae, Junu; Ortiz, Gerardo X; Theis, Thomas; Warren, Warren S; Malcolmson, Steven J; Wang, Qiu

    2017-09-25

    Diazirines are an attractive class of potential molecular tags for magnetic resonance imaging owing to their biocompatibility and ease of incorporation into a large variety of molecules. As recently reported, 15 N 2 -diazirine can be hyperpolarized by the SABRE-SHEATH method, sustaining both singlet and magnetization states, thus offering a path to long-lived polarization storage. Herein, we show the generality of this approach by illustrating that the diazirine tag alone is sufficient for achieving excellent signal enhancements with long-lasting polarization. Our investigations reveal the critical role of Lewis basic additives, including water, on achieving SABRE-promoted hyperpolarization. The application of this strategy to a 15 N 2 -diazirine-containing choline derivative demonstrates the potential of 15 N 2 -diazirines as molecular imaging tags for biomedical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH.

    PubMed

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Theis, Thomas; Shi, Fan; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-06-24

    15 N nuclear spins of imidazole- 15 N 2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15 N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole- 15 N 2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15 N site of imidazole occurs at physiological pH (p K a ∼ 7.0), and the binding event changes the 15 N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15 N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.

  1. Utilization of SABRE-derived hyperpolarization to detect low-concentration analytes via 1D and 2D NMR methods.

    PubMed

    Lloyd, Lyrelle S; Adams, Ralph W; Bernstein, Michael; Coombes, Steven; Duckett, Simon B; Green, Gary G R; Lewis, Richard J; Mewis, Ryan E; Sleigh, Christopher J

    2012-08-08

    The characterization of materials by the inherently insensitive method of NMR spectroscopy plays a vital role in chemistry. Increasingly, hyperpolarization is being used to address the sensitivity limitation. Here, by reference to quinoline, we illustrate that the SABRE hyperpolarization technique, which uses para-hydrogen as the source of polarization, enables the rapid completion of a range of NMR measurements. These include the collection of (13)C, (13)C{(1)H}, and NOE data in addition to more complex 2D COSY, ultrafast 2D COSY and 2D HMBC spectra. The observations are made possible by the use of a flow probe and external sample preparation cell to re-hyperpolarize the substrate between transients, allowing repeat measurements to be made within seconds. The potential benefit of the combination of SABRE and 2D NMR methods for rapid characterization of low-concentration analytes is therefore established.

  2. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  3. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Colorectal Histology Is Associated With an Increased Risk of Local Failure in Lung Metastases Treated With Stereotactic Ablative Radiation Therapy

    SciTech Connect

    Binkley, Michael S.; Trakul, Nicholas; Jacobs, Lisa Rose

    Purpose: Stereotactic ablative radiation therapy (SABR) is increasingly used to treat lung oligometastases. We set out to determine the safety and efficacy of this approach and to identify factors associated with outcomes. Methods and Materials: We conducted a retrospective study of patients treated with SABR for metastatic lung tumors at our institution from 2003 to 2014. We assessed the association between various patient and treatment factors with local failure (LF), progression, subsequent treatment, systemic treatment, and overall survival (OS), using univariate and multivariate analyses. Results: We identified 122 tumors in 77 patients meeting inclusion criteria for this study. Median follow-upmore » was 22 months. The 12- and 24-month cumulative incidence rates of LF were 8.7% and 16.2%, respectively; the 24-month cumulative incidence rates of progression, subsequent treatment, and subsequent systemic treatment were 75.2%, 64.5%, and 35.1%, respectively. Twenty-four-month OS was 74.6%, and median OS was 36 months. Colorectal metastases had a significantly higher cumulative incidence of LF at 12 and 24 months (25.5% and 42.2%, respectively), than all other histologies (4.4% and 9.9%, respectively; P<.0004). The 24-month cumulative incidences of LF for colorectal metastases treated with a biologically effective dose at α/β = 10 (BED{sub 10}) of <100 Gy versus BED{sub 10} of ≥100 Gy were 62.5% and 16.7%, respectively (P=.08). Toxicity was minimal, with only a single grade 3 or higher event observed. Conclusions: SABR for metastatic lung tumors appears to be safe and effective with excellent local control, treatment-free intervals, and OS. An exception is metastases from colorectal cancer, which have a high LF rate consistent with a radioresistant phenotype, suggesting a potential role for dose escalation.« less

  5. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  6. Preventing penetrating hand injuries in sabre fencing: an application and critique of the van Mechelen model by the Fédération Internationale d'Escrime.

    PubMed

    Harmer, Peter A

    2015-09-01

    To address the unusual phenomenon of unbroken blades causing penetrating hand injuries in sabre fencing by applying the van Mechelen model of the 'sequence of prevention'. Cases were collected from three surveillance systems and snowball sampling, and examined for potential aetiological factors. Presumed contributing factors were evaluated against the available evidence to compile a viable list for change. Determining a prevention strategy was guided by the philosophy of developing an approach that was most likely to produce a meaningful reduction in these injuries with the least disruption to the current norms of competitive sabre fencing. Nine factors which contributed, either individually or in some combination, to these injuries were grouped under three headings relating to: (1) the nature of modern sabre fencing, (2) the design of the sabre blade and (3) the vulnerability of the hand. Changes to the design and integrity of sabre gloves were selected as the most feasible option and new standards were introduced as compulsory in international competitions from 1 April 2014. The effect of this change is now being monitored via available surveillance systems. The van Mechelen model is a useful framework for sports federations to apply to reduce injury risk, even for rare injuries. However, this research model has limitations in guiding the realities of sometimes competing interests among the scientific, political, financial and technical aspects of injury prevention interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Functional anatomy of the forelimb in Promegantereon* ogygia (Felidae, Machairodontinae, Smilodontini) from the late miocene of spain and the origins of the sabre-toothed felid model.

    PubMed

    Salesa, Manuel J; Antón, Mauricio; Turner, Alan; Morales, Jorge

    2010-03-01

    We examine the functional anatomy of the forelimb in the primitive sabre-toothed cat Promegantereon ogygia in comparison with that of the extant pantherins, other felids and canids. The study reveals that this early machairodontine had already developed strong forelimbs and a short and robust thumb, a combination that probably allowed P. ogygia to exert relatively greater forces than extant pantherins. These features can be clearly related to the evolution of the sabre-toothed cat hunting method, in which the rapid killing of prey was achieved with a precise canine shear-bite to the throat. In this early sabre-toothed cat from the Late Miocene, the strong forelimbs and thumb were adapted to achieve the rapid immobilization of prey, thus decreasing the risk of injury and minimizing energy expenditure. We suggest that these were the major evolutionary pressures that led to the appearance of the sabre-toothed cat model from the primitive forms of the Middle Miocene, rather than the hunting of very large prey, although these adaptations reached their highest development in the more advanced sabre-toothed cats of the Plio-Pleistocene, such as Smilodon and Homotherium. Although having very different body proportions, these later animals developed such extremely powerful forelimbs that they were probably able to capture relatively larger prey than extant pantherins.

  8. Stereotactic Ablative Radiation Therapy is Highly Safe and Effective for Elderly Patients With Early-stage Non-Small Cell Lung Cancer.

    PubMed

    Brooks, Eric D; Sun, Bing; Zhao, Lina; Komaki, Ritsuko; Liao, Zhonxing; Jeter, Melenda; Welsh, James W; O'Reilly, Michael S; Gomez, Daniel R; Hahn, Stephen M; Heymach, John V; Rice, David C; Chang, Joe Y

    2017-07-15

    To discern the effectiveness and toxicity of stereotactic ablative radiation therapy (SABR) in the elderly population (aged ≥75 years) and to consider how SABR outcomes compare with surgical outcomes historically reported in the elderly. A total of 772 patients with clinical early-stage I-II non-small cell lung cancer (NSCLC; stage T1-T3N0M0) underwent SABR (50 Gy in 4 fractions or 70 Gy in 10 fractions) from 2004 to 2014 at our center (n=442, aged <75 years; n=330, aged ≥75 years). The primary endpoints included overall survival (OS), time-to-progression, and grade ≥3 toxicity. The median follow-up time was approximately 55 months. Compared with patients aged <75 years, those aged ≥75 years had no difference in the time-to-progression (P=.419), lung cancer-specific survival (P=.275), or toxicity (P=.536). OS was the same between both age groups at 2 years of follow-up but diverged thereafter, with patients aged <75 years when treatment began having greater OS rates at 5 years. The median OS rates for patients aged ≥75 years were 86% at 1 year, 57.5% at 3 years, and 39.5% at 5 years. The median OS rates for patients aged <75 years were 87.3% at 1 year, 67.6% at 3 years, and 51.5% at 5 years. No patient aged ≥75 years experienced any grade 4 or 5 toxicity. The effectiveness of SABR was the same for the elderly as for the average-age population according to lung cancer-specific survival and time-to-progression. It also poses no increased toxicity. Compared with the historical outcomes with surgery in the elderly, SABR outcomes can be considered comparable for stage I-II disease but with less morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. SABRE modification to a higher voltage high impedance inductive voltage adder (IVA)

    SciTech Connect

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.

    The SABRE accelerator was originally designed to operate as low impedance voltage adder with 40-ohm maximum output impedance in negative polarity operation and approximately 20 ohm in positive polarity. Because of the low impedance and higher than expected energy losses in the pulse forming network, the operating input cavity voltage is of the order of 800 kV which limits the total output voltage to {approximately} 8 MV for negative polarity and 5 to 6 MV for positive polarity. The modifications presented here aim to increase the output voltage in both polarities. A new high impedance central electrode was designed capablemore » of operating both in negative and positive polarities, and the number of pulse forming lines feeding the inductively isolated cavities was reduced to half. These modifications were recently tested in positive polarity. An increase in the total accelerating voltage from 5.5 MV to 9 MV was observed while stressing all components to the level required to achieve 12 MV in negative polarity. In these experiments only 65% of the usual operating intermediate store capacitor voltage was necessary (1.7 MV instead of 2.6 MV). Currently, the device is reconfigured for negative polarity tests. The cavities are rotated by 180{degree} and a 17-inch spool is added at the base of the cantilevered center electrode (cathode electrode). Positive and negative polarity results are presented and compared with simulations.« less

  10. X-ray diagnostic development for measurement of electron deposition to the SABRE anode

    SciTech Connect

    Lash, J.S.; Derzon, M.S.; Cuneo, M.E.

    Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less

  11. Histological features of localized scleroderma 'en coup de sabre': a study of 16 cases.

    PubMed

    Taniguchi, T; Asano, Y; Tamaki, Z; Akamata, K; Aozasa, N; Noda, S; Takahashi, T; Ichimura, Y; Toyama, T; Sugita, M; Sumida, H; Kuwano, Y; Miyazaki, M; Yanaba, K; Sato, S

    2014-12-01

    Early lesions of localized scleroderma are histologically characterized by perivascular lymphocytic infiltrate in the reticular dermis and swollen endothelial cells. However, there have been few information regarding histological features other than these findings in localized scleroderma. Since en coup de sabre (ECDS) is a certain subset of localized scleroderma with a relatively uniform clinical manifestation, we focused on this disease subset and evaluated its histopathological features. A total of 16 patients with ECDS were retrospectively evaluated on the basis of clinical and histological findings. Regardless of clinical manifestations, vacuolar degeneration was found in all of the ECDS patients. Importantly, keratinocyte necroses were restricted to early and active ECDS lesions. In early ECDS patients (disease duration of <3 years), moderate to severe perivascular and/or periappendageal lymphocytic infiltrate and vacuolar changes in follicular epithelium were more prominent, whereas epidermal atrophy was less frequently observed, than in late ECDS patients (disease duration of ≥6 years). Vacuolar degeneration at the dermoepidermal junction is a common histological feature in ECDS and perivascular and/or periappendageal lymphocytic infiltrate and vacuolar degeneration of follicular epithelium are characteristic especially in early ECDS, further supporting a canonical idea that the elimination of mutated epidermal cells by immune surveillance contributes to tissue damage and resultant fibrosis in localized scleroderma. © 2013 European Academy of Dermatology and Venereology.

  12. VUV spectroscopic observations on the SABRE applied-B ion diode

    SciTech Connect

    Filuk, A.B.; Nash, T.J.; Noack, D.D.

    We are using VUV spectroscopy to study the ion source region on the SABRE applied-B extraction ion diode. The VUV diagnostic views the anode-cathode gap perpendicular to the ion acceleration direction, and images a region 0--1 mm from the anode onto the entrance slit of a I m normal-incidence spectrometer. Time resolution is obtained by gating multiple striplines of a CuI- or MgF{sub 2} -coated micro-channel plate intensifier. We report on results with a passive proton/carbon ion source. Lines of carbon and oxygen are observed over 900--1600 {angstrom}. The optical depths of most of the lines are less than ormore » of order 1. Unfolding the Doppler broadening of the ion lines in the source plasma, we calculate the contribution of the source to the accelerated C IV ion micro-divergence as 4 mrad at peak power. Collisional-radiative modeling of oxygen line intensities provides the source plasma average electron density of 7{times}10{sup 16} cm{sup {minus}3} and temperature of 10 eV Measurements are planned with a lithium ion source and with VUV absorption spectroscopy.« less

  13. Using signal amplification by reversible exchange (SABRE) to hyperpolarise 119Sn and 29Si NMR nuclei.

    PubMed

    Olaru, Alexandra M; Burt, Alister; Rayner, Peter J; Hart, Sam J; Whitwood, Adrian C; Green, Gary G R; Duckett, Simon B

    2016-12-13

    The hyperpolarisation of the 119 Sn and 29 Si nuclei in 5-(tributylstannyl)pyrimidine (A Sn ) and 5-(trimethylsilyl)pyrimidine (B Si ) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process. 1a exhibits superior activity in both cases. The two inequivalent pyrimidine proton environments of A Sn readily yielded signal enhancements totalling ∼2300-fold in its 1 H NMR spectrum at a field strength of 9.4 T, with the corresponding 119 Sn signal being 700 times stronger than normal. In contrast, B Si produced analogous 1 H signal gains of ∼2400-fold and a 29 Si signal that could be detected with a signal to noise ratio of 200 in a single scan. These sensitivity improvements allow NMR detection within seconds using micromole amounts of substrate and illustrate the analytical potential of this approach for high-sensitivity screening. Furthermore, after extended reaction times, a series of novel iridium trimers of general form [Ir(H) 2 Cl(NHC)(μ-pyrimidine-κN:κN')] 3 precipitate from these solutions whose identity was confirmed crystallographically for B Si .

  14. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    PubMed

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  15. Ablative Thermal Protection Systems Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2017-01-01

    This is a presentation of the fundamentals of ablative TPS materials for a short course at TFAWS 2017. It gives an overall description of what an ablator is, the equations that define it, and how to model it.

  16. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  17. SU-E-J-84: Quantitative Dosimetry Assessment of the Impact of Image Artifacts of Metal Implants in Spinal SABR Treatment

    SciTech Connect

    Chen, T; Zhang, M; Hanft, S

    2015-06-15

    Purpose: Metal rods are frequently used to stabilize the spine in patients with metastatic disease. The high Z material causes imaging artifacts in the surrounding tissue in CT scans, which introduces dosimetric uncertainty when inhomogeneity correction is enabled for radiation treatment planning. The purpose of this study is to quantify the dosimetric deviations caused by the imaging artifacts and to evaluate the effectiveness of using Hounsfield units (HU) overwriting to reduce dosimetric uncertainties. Methods: We retrospectively reviewed treatment plans for 4 patients with metal implants who received stereotactic ablative radiation therapy (SABR) for metastatic disease to the spine on Tomotherapymore » HiArt. For all four patients, the region of imaging artifact surrounding the metal implants was contoured and the pixel HU’s were overwritten to be water equivalent. We then generated adaptive treatment plans for these patients using the MVCT pretreatment set up images and batched beamlets in the original treatment plans. The dosimetry deviation between the adaptive and original plans were compared and quantitatively analyzed. Results: For three out of four patient, the major OAR (spinal cord) dose (0.35cc or 10% according to protocols and fractionation) increased (2.7%, 5.5%, 0%, 3.9%, mean=3.0±2.3%, p=0.04), and the PTV dose (D90 or D95 as per prescription) increased for all four patients ( 2%, 5%, 0.7%, 3.6%, mean=2.8±1.9%, p=0.03) in the adaptive plan with HU overwriting. The average point dose deviation of the Tomotherapy DQA for the same patients was −1.0±1.0%. For plans without HU overwriting, the dose deviation from the treatment plan will increase. Conclusion: The metal implant and the imaging artifacts may cause a significant dosimetric impact on radiation treatment plans for spinal disease. The dose to the PTV and the spinal cord was under-calculated in treatment plans without considering the imaging artifacts. HU overwriting can reduce the

  18. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    SciTech Connect

    Beaudry, J; Bergman, A; British Columbia Cancer Agency, Vancouver, BC

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based onmore » total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.« less

  19. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  20. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  1. NACA Photographer North American F-100A (NACA-200) Super Sabre Airplane take-off. The blowing-tupe

    NASA Technical Reports Server (NTRS)

    1957-01-01

    NACA Photographer North American F-100A (NACA-200) Super Sabre Airplane take-off. The blowing-tupe boundary-layer control on the leading- and trailing-edge provided large reductions in takeoff and landing approach speeds. Approach speeds were reduced by about 10 knots (Mar 1960). Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 102 and and Memoirs of a Flight Test Engneer NASA SP-2002-4525

  2. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes

    NASA Astrophysics Data System (ADS)

    Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.

  3. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

    PubMed Central

    2014-01-01

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H–1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol. PMID:25539423

  4. Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE.

    PubMed

    Mewis, Ryan E; Green, Richard A; Cockett, Martin C R; Cowley, Michael J; Duckett, Simon B; Green, Gary G R; John, Richard O; Rayner, Peter J; Williamson, David C

    2015-01-29

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.

  5. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  6. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.

  7. Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

    SciTech Connect

    Murray, Louise J.; University of Leeds, Leeds; Lilley, John

    2014-06-01

    Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV)more » prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal

  8. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  10. Full scale remediation of an explosives-contaminated site at Yorktown Naval Weapons Station using the SABRE{trademark} process

    SciTech Connect

    Kaake, R.H.; Bono, J.; Yergovich, T.

    Characterization of a former weapons loading and assembly facility identified soil contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The site contains of a variety of discrete soil types that include clay, sand, and humus. A portion of the site is also periodically submerged due to tidal action. Treatability studies were performed in conjunction with the Army Corps of Engineers Waterways Experiment Station. Studies indicated the SABRE Process could successfully treat the soil to the specified treatment goals. A full scale demonstration of the Simplot Anaerobic Biological Remediation (SABRE{trademark}) Process was carried out at the Yorktown, Virginia Naval Weaponsmore » Station. Over 650 yd{sup 3} of soil was treated to less than 2.5 mg/kg TNT in approximately 30 days. Initial concentrations were estimated to be 450 mg/kg. The soil was screened and placed into an in-ground, double-lined biocell using a soil fluidizing system.« less

  11. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  12. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  13. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  14. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  15. Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA.

    PubMed

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose-volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Improved Ablative Materials

    DTIC Science & Technology

    1967-12-01

    Equipment 62 2. Gas Analysis 62 3. Chemical Analysis for Titanium and Boron 63 4. Tensile Strength Determinations 64 5. Density Determinations 64 6. X-ray...mils, and its density was about 4. 45 g/cm 3. Elastic modulus values averaged about 71 x 106 psi for the filament. -X- I. INTRODUCTION Ablative liner...20 4 /50 percent N 2H 4 -50 percent UDMH or L0 2 /LH. The more-energetic propellant systems, using fluorine or FLOX, demand more-effective abla- tive

  17. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  18. [Radiofrequency ablation of hepatocellular carcinoma].

    PubMed

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  19. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  20. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  1. Operation of a high impedance applied-B extraction ion diode on the SABRE positive polarity linear induction accelerator

    SciTech Connect

    Hanson, D.L.; Cuneo, M.E.; McKay, P.F.

    We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less

  2. Statistical average estimates of high latitude field-aligned currents from the STARE and SABRE coherent VHF radar systems

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Nielsen, E.

    Two bistatic VHF radar systems, STARE and SABRE, have been employed to estimate ionospheric electric fields in the geomagnetic latitude range 61.1 - 69.3° (geographic latitude range 63.8 - 72.6°) over northern Scandinavia. 173 days of good backscatter from all four radars have been analysed during the period 1982 to 1986, from which the average ionospheric divergence electric field versus latitude and time is calculated. The average magnetic field-aligned currents are computed using an AE-dependent empirical model of the ionospheric conductance. Statistical Birkeland current estimates are presented for high and low values of the Kp and AE indices as well as positive and negative orientations of the IMF B z component. The results compare very favourably to other ground-based and satellite measurements.

  3. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  4. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  5. SU-F-T-617: Remotely Pre-Planned Stereotactic Ablative Radiation Therapy: Validation of Treatment Plan Quality

    SciTech Connect

    Juang, T; Bush, K; Loo, B

    Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT;more » a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging

  6. The Chronic Encephalopathy of Parry Romberg Syndrome and En Coupe De Sabre with a 31-Year-History in a West Indian Woman: Clinical, Immunologic and Neuroimaging Abnormalities.

    PubMed

    Seegobin, Karan; Abdool, Kamille; Ramcharan, Kanterpersad; Dyaanand, Haramnauth; Rampersad, Fidel

    2016-09-30

    We describe a case of Parry Romberg syndrome/ en coupe de sabre in a woman whose disease started as seizures at age 8 but was diagnosed at the age 39. During these 31 years she got married, completed a first degree at university, had two successful pregnancies and has been gainfully employed. The features of generalized tonic-clonic seizures, autoimmune abnormalities, ocular abnormalities, morphea en coup de sabre and brain imaging abnormalities were present. Areas of parietal lobe cerebral calcification were encountered on the computed tomographic scan and bilateral periventricular white matter changes on the magnetic resonance imaging with frontal, temporal and parietal lobe brain atrophy ipsilateral to the facial hemiatrophy. Clinical, immunologic and neuroradiological abnormalities are discussed. In some cases, this illness can run a benign and stable course.

  7. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  8. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  9. Enhanced laser proton acceleration by target ablation on a femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Wu, M. J.; Gong, Z.; Geng, Y. X.; Xu, X. H.; Li, D. Y.; Shou, Y. R.; Zhu, J. G.; Li, C. C.; Yang, M.; Li, T. S.; Lu, H. Y.; Ma, W. J.; Zhao, Y. Y.; Lin, C.; Yan, X. Q.

    2018-06-01

    Proton acceleration during the interaction of an ultraintense (6 × 1019 W/cm2) femtosecond (fs) laser pulse with a thin (2.5 μm) foil target pre-ablated by a picosecond (ps) pulse is experimentally and numerically investigated. Enhancements in both proton cut-off energy and charge are observed with the target ablation due to a large number of energetic electrons generated from the preformed preplasma in front of the target. The enhanced proton beams are successfully collected at 4-9 MeV with ±4% energy spread and then transported to the irradiating platform. The results show that for the interaction between fs laser pulse and μm-thickness target, proton energy and charge can be enhanced by target ablation using a ps laser pulse, which is valuable for application like cancer radiotherapy.

  10. The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)

    PubMed Central

    2015-01-01

    1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process. PMID:24528143

  11. The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T).

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-03-05

    (1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.

  12. "Scleroderma linearis: hemiatrophia faciei progressiva (Parry-Romberg syndrom) without any changes in CNS and linear scleroderma "en coup de sabre" with CNS tumor

    PubMed Central

    Bergler-Czop, Beata; Lis-Święty, Anna; Brzezińska-Wcisło, Ligia

    2009-01-01

    Background Hemifacial atrophy (Parry-Romberg syndrome) is a relatively rare disease. The etiology of the disease is not clear. Some authors postulate its relation with limited scleroderma linearis. Linear scleroderma "en coup de sabre" is characterized by clinical presence of most commonly one-sided linear syndrome. In a number of patients, neurological affection is the medium of the disease. The treatment of both scleroderma varieties is similar to the treatment of limited systemic sclerosis. Case presentation We present two cases of a disease: a case of a 49-year-old woman with a typical image of hemifacial atrophy, without any changes of the nervous system and a case of a 33-year-old patient with an "en coup de sabre" scleroderma and with CNS tumor. Conclusion We described typical cases of a rare diseases, hemifacial atrophy and "en coup de sabre" scleroderma. In the patient diagnosed with Parry-Romberg syndrome, with Borrelia burgdoferi infection and with minor neurological symptoms, despite a four-year case history, there was a lack of proper diagnosis and treatment. In the second patient only skin changes without any neurological symptoms could be observed and only a precise neurological diagnosis revealed the presence of CNS tumor. PMID:19635150

  13. [Oligometastatic bone disease. Can limited metastatic bone disease be cured? Is there room for local ablative treatments?].

    PubMed

    Thariat, J; Leysalle, A; Vignot, S; Marcy, P-Y; Lacout, A; Bera, G; Lagrange, J-L; Clezardin, P; Chiras, J

    2012-09-01

    Solitary metastases have been reported in up to 30% of cases in imaging series. Local treatment aims at consolidating the injured bone and to prevent neurologic complications. Since the prognosis of bony metastatic disease is about 30 months and includes some long survivors, the multisdisciplinary committee in charge of the patient should ask the question and decide on the type of radical/ablative intervention in case of oligometastases. A literature search was performed using MESH terms (bone, metastases, radiotherapy, radiology, cement, radiofrequency ablation, chemoembolisation). Local ablative treatments can yield symptomatic relief and local control rates of about 90%. Stereotactic hypofractionated irradiation and cementoplasty are increasingly used. In conclusion, local ablative treatment of bony oligometastases is an efficient treatment. Its potential impact on survival remains to be demonstrated prospectively in clinical trials. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  15. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  16. Cerebral peduncle tumor ablated by novel 3-mm laser tip.

    PubMed

    Xu, David S; Rosenfeld, Amy; Ponce, Francisco A; Nakaji, Peter; Bhardwaj, Ratan D

    2015-01-01

    Decisions to use open surgery or radiotherapy in pediatric patients with familial neoplastic syndromes must consider not only the symptomatic benefits of treatment, but also future limitations these treatments may impose. Specifically, open surgical resection of noncurable tumors may preclude or encumber future lesion resections, while radiotherapy has detrimental effects on pediatric cognitive development and increases the risk of future malignancy development. We provide the first report of using a novel 3.0-mm diffusing laser tip with laser-induced thermal therapy (LiTT) to treat a pediatric patient with neurofibromatosis type 1 (NF-1). A 12-year-old boy with NF-1 presented with a progressively enlarging lesion in the right midbrain. A stereotactic biopsy was performed, followed by LiTT with a novel 3.0-mm laser applicator. MRI 1 week after LiTT showed stable gross total ablation of the lesion with reduction in fluid-attenuated inversion recovery signal. The patient remained neurologically intact 6 months after his procedure, and follow-up MRI showed no evidence of recurrence. LiTT is a powerful adjunct to conventional open surgical and radiotherapy modalities in the treatment of patients with familial neoplastic syndromes or incurable lesions. The novel laser applicator tip described expands the treatment scope of this technique. © 2015 S. Karger AG, Basel.

  17. SU-E-T-215: Comparison of VMAT-SABR Treatment Plans with Flattened Filter (FF) Beam and Flattening Filter-Free (FFF) Beam for Localized Prostate Cancer

    SciTech Connect

    Chung, J; Kim, J; Kang, S

    2015-06-15

    Purpose: The purpose of this study is to access VMAT-SABR plan using flattening filter (FF) and flattening filter-free (FFF) beam, and compare the verification results for all pretreatment plans. Methods: SABR plans for 20 prostate patients were optimized in the Eclipse treatment planning system. A prescription dose was 42.7 Gy/7 fractions. Four SABR plans for each patient were calculated using Acuros XB algorithm with both FF and FFF beams of 6- and 10-MV. The dose-volume histograms (DVH) and technical parameters were recorded and compared. A pretreatment verification was performed and the gamma analysis was used to quantify the agreement betweenmore » calculations and measurements. Results: For each patient, the DVHs are closely similar for plans of four different beams. There are small differences showed in dose distributions and corresponding DVHs when comparing the each plan related to the same patient. Sparing on bladder and rectum was slightly better on plans with 10-MV FF and FFF than with 6-MV FF and FFF, but this difference was negligible. However, there was no significance in the other OARs. The mean agreement of 3%/3mm criteria was higher than 97% in all plans. The mean MUs and deliver time employed was 1701±101 and 3.02±0.17 min for 6-MV FF, 1870±116 and 1.69±0.08 min for 6-MV FFF, 1471±86 and 2.68±0.14 min for 10-MV FF, and 1619±101 and 0.98±0.04 min for 10-MV FFF, respectively. Conclusion: Dose distributions on prostate SABR plans using FFF beams were similar to those generated by FF beams. However, the use of FFF beam offers a clear benefit in delivery time when compared to FF beam. Verification of pretreatment also represented the acceptable and comparable results in all plans using FF beam as well as FFF beam. Therefore, this study suggests that the use of FFF beam is feasible and efficient technique for prostate SABR.« less

  18. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  19. Enraged about radiotherapy.

    PubMed Central

    Sikora, K.

    1994-01-01

    The use of radiotherapy in treating breast cancer has meant that many women are able to avoid mastectomy, which is both physically and psychologically damaging. The side effects of radiotherapy, however, are given little attention. Many women have developed brachial plexus injury after radiotherapy for breast cancer, often resulting in severe pain and loss of use of the arm. There is no effective treatment for this injury and little help can be offered. In addition, many of the women did not require radiotherapy of nodal areas. A pressure group has been formed to support these women, to establish the right to compensation, and to ensure that radiotherapy regimens given to future patients will not damage the brachial plexus. Images p188-a PMID:8312773

  20. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. CNS imaging findings associated with Parry-Romberg syndrome and en coup de sabre: correlation to dermatologic and neurologic abnormalities.

    PubMed

    Doolittle, Derrick A; Lehman, Vance T; Schwartz, Kara M; Wong-Kisiel, Lily C; Lehman, Julia S; Tollefson, Megha M

    2015-01-01

    Parry-Romberg syndrome (PRS) and en coup de sabre (ECS) are variants of morphea. Although numerous findings on central nervous system (CNS) imaging of PRS and ECS have been reported, the spectrum and frequency of CNS imaging findings and relation to cutaneous and neurologic abnormalities have not been fully characterized. We retrospectively reviewed patients younger than 50 years at our institution over a 16-year interval who had clinical diagnosis of PRS and ECS by a skin or facial subspecialist. Two neuroradiologists evaluated available imaging and characterized CNS imaging findings. Eighty-eight patients with PRS or ECS were identified (62 women [70.4 %]; mean age 28.8 years). Of the 43 patients with CNS imaging, 19 (44 %) had abnormal findings. The only finding in 1 of these 19 patients was lateral ventricle asymmetry; of the other 18, findings were bilateral in 11 (61 %), ipsilateral to the side of facial involvement in 6 (33 %), and contralateral in 1 (6 %). Sixteen patients had serial imaging examinations over an average of 632 days; 13 (81 %) had stable imaging findings, and 3 (19 %) had change over time. Of six patients with progressive cutaneous findings, five (83 %) had stable imaging findings over time. Among the 23 patients with clinical neurologic abnormality and imaging, 12 (52 %) had abnormal imaging findings. All seven patients with seizures (100 %) had abnormal imaging studies. In PRS and ECS, imaging findings often are bilateral and often do not progress, regardless of cutaneous disease activity. Findings are inconsistently associated with clinical abnormalities.

  2. [Radiofrequency ablation in the multimodal treatment of liver metastases--preliminary report].

    PubMed

    Burcoveanu, C; Dogaru, C; Diaconu, C; Grecu, F; Dragomir, Cr; Pricop, Adriana; Balan, G; Drug, V L

    2007-01-01

    Although the "gold standard" in the multimodal treatment of liver primary and secondary tumors is the surgical ablation, the rate of resection, despite the last decades advances, remains still low (10 - 20%). In addition, the interest for non-surgical ablation therapies is increasing. Among them, regional or systemic chemotherapy, intra-arterial radiotherapy as well as locally targeted therapies--cryotherapy, alcohol instillation and radiofrequency (RF) are the most valuable options as alternative to the surgical approach. Between February 2005 - January 2007, 9 patients with liver metastases underwent open RF ablation of their secondaries in the III-rd Surgical Unit, "St. Spiridon" Hospital. An Elektrotom 106 HiTT Berchtold device with a 60W power generator and a 15 mm monopolar active electrode was used. Destruction of the tumors was certified with intraoperative ultrasound examination. Pre- and postoperative CarcinoEmbryonic Antigen (CEA) together with imaging follow-up was carried out, in order to determine local or systemic recurrencies. Six patients died between 6 month - 4 years after the RF ablation. Median survival is 29.2 months. RF ablation is a challenge alternative in non-resectable liver tumors.

  3. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  4. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  5. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  6. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  7. Ablative Therapies for Barrett's Esophagus

    PubMed Central

    Garman, Katherine S.; Shaheen, Nicholas J.

    2011-01-01

    Barrett's esophagus has gained increased clinical attention because of its association with esophageal adenocarcinoma, a cancer with increasing incidence and poor survival rates. The goals of ablating Barrett's esophagus are to decrease esophageal cancer rates and to improve overall survival and quality of life. Different techniques have been developed and tested for their effectiveness eradicating Barrett's epithelium. This review assesses the literature associated with different ablative techniques. The safety and efficacy of different techniques are discussed. This review concludes with recommendations for the clinician, including specific strategies for patient care decisions for patients with Barrett's esophagus with varying degrees of dysplasia. PMID:21373836

  8. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  9. Ablative therapy for liver tumours

    PubMed Central

    Dick, E A; Taylor-Robinson, S D; Thomas, H C; Gedroyc, W M W

    2002-01-01

    Established ablative therapies for the treatment of primary and secondary liver tumours, including percutaneous ethanol injection, cryotherapy, and radiofrequency ablation, are discussed. Newer techniques such as magnetic resonance imaging guided laser interstitial thermal therapy of liver tumours has produced a median survival rate of 40.8 months after treatment. The merits of this newly emerging technique are discussed, together with future developments, such as focused ultrasound therapy, which holds the promise of non-invasive thermoablation treatment on an outpatient basis. PMID:11950826

  10. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  11. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  12. Brain Emboli After Left Ventricular Endocardial Ablation.

    PubMed

    Whitman, Isaac R; Gladstone, Rachel A; Badhwar, Nitish; Hsia, Henry H; Lee, Byron K; Josephson, S Andrew; Meisel, Karl M; Dillon, William P; Hess, Christopher P; Gerstenfeld, Edward P; Marcus, Gregory M

    2017-02-28

    Catheter ablation for ventricular tachycardia and premature ventricular complexes (PVCs) is common. Catheter ablation of atrial fibrillation is associated with a risk of cerebral emboli attributed to cardioversions and numerous ablation lesions in the low-flow left atrium, but cerebral embolic risk in ventricular ablation has not been evaluated. We enrolled 18 consecutive patients meeting study criteria scheduled for ventricular tachycardia or PVC ablation over a 9-month period. Patients undergoing left ventricular (LV) ablation were compared with a control group of those undergoing right ventricular ablation only. Patients were excluded if they had implantable cardioverter defibrillators or permanent pacemakers. Radiofrequency energy was used for ablation in all cases and heparin was administered with goal-activated clotting times of 300 to 400 seconds for all LV procedures. Pre- and postprocedural brain MRI was performed on each patient within a week of the ablation procedure. Embolic infarcts were defined as new foci of reduced diffusion and high signal intensity on fluid-attenuated inversion recovery brain MRI within a vascular distribution. The mean age was 58 years, half of the patients were men, half had a history of hypertension, and the majority had no known vascular disease or heart failure. LV ablation was performed in 12 patients (ventricular tachycardia, n=2; PVC, n=10) and right ventricular ablation was performed exclusively in 6 patients (ventricular tachycardia, n=1; PVC, n=5). Seven patients (58%) undergoing LV ablation experienced a total of 16 cerebral emboli, in comparison with zero patients undergoing right ventricular ablation ( P =0.04). Seven of 11 patients (63%) undergoing a retrograde approach to the LV developed at least 1 new brain lesion. More than half of patients undergoing routine LV ablation procedures (predominately PVC ablations) experienced new brain emboli after the procedure. Future research is critical to understanding the

  13. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  14. Mucosal ablation in Barrett's esophagus.

    PubMed

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  15. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  16. Post-test analysis of dryout test 7B' of the W-1 Sodium Loop Safety Facility Experiment with the SABRE-2P code. [LMFBR

    SciTech Connect

    Rose, S.D.; Dearing, J.F.

    An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.

  17. An overlap case of Parry-Romberg syndrome and en coup de sabre with striking ocular involvement and anti-double-stranded DNA positivity.

    PubMed

    Ataş, Hatice; Gönül, Müzeyyen; Gökçe, Aysun; Acar, Mutlu; Gürdal, Canan

    2018-02-01

    Parry-Romberg syndrome (PRS) may overlap localized scleroderma (morphea) lesions with linear depression (en coup de sabre [ECDS]). Overlap case with PRS and ECDS was presented. Enophthalmos, uveitis, ocular torticollis, keratic linear precipitates, and anti-double-stranded DNA positivity were identified. Subendothelial keratic precipitates detected by an in vivo laser scanning confocal microscopy were the first profiled in the literature. Patients must be evaluated and followed up carefully by their clinics to prevent misdiagnosis and unnecessary procedures such as surgery of ocular torticollis as muscular torticollis.

  18. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource™: a prospective study in 60 patients

    PubMed Central

    Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.

    2008-01-01

    Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641

  19. Atrial Tachycardias Following Atrial Fibrillation Ablation

    PubMed Central

    Sághy, László; Tutuianu, Cristina; Szilágyi, Judith

    2015-01-01

    One of the most important proarrhythmic complications after left atrial (LA) ablation is regular atrial tachycardia (AT) or flutter. Those tachycardias that occur after atrial fibrillation (AF) ablation can cause even more severe symptoms than those from the original arrhythmia prior to the index ablation procedure since they are often incessant and associated with rapid ventricular response. Depending on the method and extent of LA ablation and on the electrophysiological properties of underlying LA substrate, the reported incidence of late ATs is variable. To establish the exact mechanism of these tachycardias can be difficult and controversial but correlates with the ablation technique and in the vast majority of cases the mechanism is reentry related to gaps in prior ablation lines. When tachycardias occur, conservative therapy usually is not effective, radiofrequency ablation procedure is mostly successful, but can be challenging, and requires a complex approach. PMID:25308808

  20. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    SciTech Connect

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less

  1. A Significant Proportion of Pediatric Morphea En Coup De Sabre and Parry-Romberg Syndrome Patients Have Neuroimaging Findings

    PubMed Central

    Chiu, Yvonne E.; Vora, Sheetal; Kwon, Eun-Kyung M.; Maheshwari, Mohit

    2012-01-01

    Background/Objectives En coup de sabre (ECDS) and Parry-Romberg syndrome (PRS) are variants of linear morphea on the head and neck that can be associated with neurologic manifestations. Intracranial abnormalities on computed tomography (CT) and magnetic resonance imaging (MRI) can be present in a significant proportion of patients. Methods We describe 32 pediatric patients from our institution with ECDS or PRS, in whom neuroimaging was performed in 21 cases. We also review 51 additional patients from the literature. Results Nineteen percent of the children at our institution had intracranial abnormalities on MRI, half of whom were asymptomatic. Hyperintensities on T2-weighted sequences were the most common finding, present in all patients who had intracranial abnormalities on MRI. Seizures and headaches were the most common neurologic symptom, affecting 13% and 9% of our population, respectively. The presence of neurologic symptoms was not correlated with neuroimaging abnormalities as 2 asymptomatic patients had marked MRI findings, while the MRI was abnormal in only 2/9 symptomatic patients. Similarly, the severity of the superficial disease did not predict neurologic involvement; a patient with subtle skin involvement had striking MRI findings and seizures while another patient with a bony defect had no brain parenchymal involvement. Conclusions Neurologic symptoms and neuroimaging abnormalities are found in a surprisingly substantial percentage of children with ECDS and PRS. Early recognition of neurologic involvement is necessary as it affects treatment choices. As clinical predictors of intracranial abnormalities are poor, strong consideration should be given to obtaining an MRI prior to treatment initiation to assist in management decisions and establish a baseline examination. PMID:23106674

  2. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  3. Optimal imaging surveillance after stereotactic ablative radiation therapy for early-stage non-small cell lung cancer: Findings of an International Delphi Consensus Study.

    PubMed

    Nguyen, Timothy K; Senan, Suresh; Bradley, Jeffery D; Franks, Kevin; Giuliani, Meredith; Guckenberger, Matthias; Landis, Mark; Loo, Billy W; Louie, Alexander V; Onishi, Hiroshi; Schmidt, Heidi; Timmerman, Robert; Videtic, Gregory M M; Palma, David A

    Imaging after stereotactic ablative radiation therapy (SABR) for early-stage non-small cell lung cancer can detect recurrences and second primary lung cancers; however, the optimal follow-up practice of these patients remains unclear. We sought to establish consensus recommendations for surveillance after SABR. International opinion leaders in thoracic radiation oncology and radiology were invited to participate (n = 31), with 11 accepting (9 radiation oncologists, 2 radiologists). Consensus-building was achieved using a 3-round Delphi process. Participants rated their agreement/disagreement with statements using a 5-point Likert scale. An a priori threshold of ≥75% agreement/disagreement was required for consensus. A 100% response rate was achieved and final consensus statements were approved by all participants. The consensus statements were: (1.1) thoracic computed tomography (CT) scans should be ordered routinely in follow-up; (1.2) if there is a suspicion for local recurrence (LR), fludeoxyglucose positron emission tomography/CT scans are strongly recommended. Otherwise, there is limited evidence to guide routine use of fludeoxyglucose positron emission tomography /CT; (1.3) CT imaging is not recommended at 6 weeks, but is recommended at months 3, 6, and 12 in year 1 and then every 6 months in year 2 and annually in years 3 through 5; (1.4) after 5 years, CT imaging should continue, although no consensus was reached regarding the frequency. (2.1) Response Evaluation Criteria in Solid Tumors 1.1 criteria are not sufficient for detecting LR; (2.2) a formal scoring system, informed by validated data, should be used to classify high-risk imaging features predictive of LR; (2.3) CT findings suspicious for LR include: infiltration into adjacent structures, bulging margins, sustained growth, mass-like growth, spherical growth, craniocaudal growth, and loss of air bronchograms. (3) Salvage therapy without pathologic confirmation of recurrence is acceptable if

  4. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  5. Miniaturization of Microwave Ablation Antennas

    NASA Astrophysics Data System (ADS)

    Luyen, Hung

    Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun

  6. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  7. Studies of plasma irregularities and convection in the polar ionosphere using HILAT, SABRE and EISCAT. Interim report, 1 Feb 88-31 Mar 89

    SciTech Connect

    Jones, T.B.; Lester, M.; Wilkinson, A.J.

    A statistical study of the F-region main ionospheric trough has been undertaken with EISCAT common programme data to assess the possibility that the trough region is a perferential region for the generation of E-region irregularities. Three years of CP-3 data from EISCAT formed the basis of this study. Backscatter observed by the coherent radar, SABRE, was also utilized to study the occurrence of irregularities in the E-region. On 26 out of the 36 days when the trough was observed by EISCAT, SABRE observed coherent backscatter. Although this percentage seems high, there was no consistent relationship between the latitude of themore » trough minimum and the latitude of peak backscatter intensity. A case study involving a four day run of EISCAT in September 1986 indicates that the trough latitude can be affected by changes in the interplanetary magnetic field north-south components. On two days rapid decreases in the latitude of the trough were related to a southward turning of the IMF and the onset of backscatter. The high percentage of occurrence of backscatter is believed to be caused by enhanced convection.« less

  8. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  9. Comparison of computational results of the SABRE LMFBR pin bundle blockage code with data from well-instrumented out-of-pile test bundles (THORS bundles 3A and 5A)

    SciTech Connect

    Dearing, J.F.

    The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less

  10. Caries selective ablation: the handpiece

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter; Holtermann, Andreas

    1995-05-01

    Caries selective ablation is fixed to a window of fluences predicted by the ablation thresholds of carious and healthy dentin, respectively. The aim of the study was to develop a dental handpiece which guarantees homogeneous fluence at the irradiated tooth surface. Furthermore the point of treatment should be cooled down without energy losses due to the cooling system. We suggest the direct coupling of the laser radiation into a laminar stream of liquid, which acts in turn as a lengthened beam guide. The impacts of the laser radiation and of the cooling medium fall exactly into the same point. Hot ablation debris is removed out of the crater by the flush of the water jet. Fluences are constant if the handpiece is used in contact mode or at a distance. Normally the surface of a bare fiber working in contact mode is destroyed after a few shots. Coupling the laser radiation into a stream of liquid prevents this destruction. Putting together the benefits of this special handpiece short overall treatment times seem to be possible. High average power can be applied to the tooth without the threat of thermal damage. Furthermore no time consuming cutting of the fiber prolongs the treatment time.

  11. Alternate energy sources for catheter ablation.

    PubMed

    Wang, P J; Homoud, M K; Link, M S; Estes III, N A

    1999-07-01

    Because of the limitations of conventional radiofrequency ablation in creating large or linear lesions, alternative energy sources have been used as possible methods of catheter ablation. Modified radiofrequency energy, cryoablation, and microwave, laser, and ultrasound technologies may be able to create longer, deeper, and more controlled lesions and may be particularly suited for the treatment of ventricular tachycardias and for linear atrial ablation. Future studies will establish the efficacy of these new and promising technologies.

  12. Emergency catheter ablation in critical patients

    PubMed Central

    Tebbenjohanns, Jürgen; Rühmkorf, Klaus

    2010-01-01

    Emergency catheter ablation is justified in critical patients with drug-refractory life-threatening arrhythmias. The procedure can be used for ablation of an accessory pathway in preexcitation syndrome with high risk of ventricular fibrillation and in patients with shock due to ischemic cardiomyopathy and incessant ventricular tachycardia. Emergency catheter ablation can also be justified in patients with an electrical storm of the implanted cardioverter-defibrillator or in patients with idiopathic ventricular fibrillation. PMID:20606793

  13. Quality assurance in radiotherapy.

    PubMed

    Kouloulias, V E

    2003-03-01

    In 1999, the European Organisation for Research and Treatment of Cancer (EORTC), being a European pioneer in the field of cancer research as well as in quality assurance (QA), launched an Emmanuel van der Schueren fellowship for QA in radiotherapy. In this paper, the work that has been done during the first E. van der Schueren fellowship is reported, focusing on four phase III EORTC clinical trials: 22921 for rectal cancer, 22961 and 22991 for prostate cancer and 22922 for breast cancer. A historical review of the QA programme of the EORTC Radiotherapy group during the past 20 years is included.

  14. SABRE hyperpolarisation of vitamin B3 as a function of pH† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04043h Click here for additional data file.

    PubMed Central

    Olaru, A. M.; Burns, M. J.; Green, G. G. R.

    2017-01-01

    In this work we describe how the signal enhancements obtained through the SABRE process in methanol-d 4 solution are significantly affected by pH. Nicotinic acid (vitamin B3, NA) is used as the agent, and changing pH is shown to modify the level of polarisation transfer by over an order of magnitude, with significant improvements being seen in terms of the signal amplitude and relaxation rate at high pH values. These observations reveal that manipulating pH to improve SABRE enhancements levels may improve the potential of this method to quantify low concentrations of analytes in mixtures. 1H NMR spectroscopy results link this change to the form of the SABRE catalyst, which changes with pH, resulting in dramatic changes in the magnitude of the ligand exchange rates. The presented data also uses the fact that the chemical shifts of the nicotinic acids NMR resonances are affected by pH to establish that hyperpolarised 1H-based pH mapping with SABRE is possible. Moreover, the strong polarisation transfer field dependence shown in the amplitudes of the associated higher order longitudinal terms offers significant opportunities for the rapid detection of hyperpolarised NA in H2O itself without solvent suppression. 1H and 13C MRI images of hyperpolarised vitamin B3 in a series of test phantoms are presented that show pH dependent intensity and contrast. This study therefore establishes that when the pH sensitivity of NA is combined with the increase in signal gain provided for by SABRE hyperpolarisation, a versatile pH probe results. PMID:28507682

  15. ABLATIVE COMPOSITES FOR LIFTING REENTRY THERMAL PROTECTION.

    DTIC Science & Technology

    MECHANICAL PROPERTIES, THERMAL CONDUCTIVITY, ABLATION, DENSITY, TABLES(DATA), SPECIFIC HEAT, THERMOGRAVIMETRIC ANALYSIS, CORROSION RESISTANCE, COLORIMETRY , HEAT RESISTANT MATERIALS, ATMOSPHERE ENTRY.

  16. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  17. Innovations in Radiotherapy Technology.

    PubMed

    Feain, I J; Court, L; Palta, J R; Beddar, S; Keall, P

    2017-02-01

    Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy. Copyright © 2016 The Royal College of Radiologists. All rights reserved.

  18. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  19. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  20. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  1. Applications of laser ablation to microengineering

    NASA Astrophysics Data System (ADS)

    Gower, Malcolm C.; Rizvi, Nadeem H.

    2000-08-01

    Applications of pulsed laser ablation to the manufacture of micro- electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) devices are presented. Laser ablative processes used to manufacture a variety of microsystems technology (MST) components in the computer peripheral, sensing and biomedical industries are described together with a view of some future developments.

  2. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  3. Radiofrequency ablation versus electrocautery in tonsillectomy.

    PubMed

    Hall, Daniel J; Littlefield, Philip D; Birkmire-Peters, Deborah P; Holtel, Michael R

    2004-03-01

    The objective of this study was to compare the safety, difficulty of removal, and postoperative pain profile of radiofrequency ablation versus standard electrocautery removal of tonsils. A prospective, blinded study was designed to remove 1 tonsil with each of the 2 methods. Time of operation, estimated blood loss, difficulty of operation, postoperative pain, rate of postoperative hemorrhage, and the patient's preferred technique were evaluated. The operating time was significantly longer (P < 0.007) and the patients reported significantly less pain (P < 0.001) with radiofrequency ablation. There were no differences in blood loss, difficulty of operation, or postoperative hemorrhage rates. The patients preferred the radiofrequency ablation technique (P < 0.001). Radiofrequency ablation is a viable method to remove tonsillar tissue. Operating time for this procedure will likely decrease with experience. There was significantly less pain reported with radiofrequency ablation compared with standard electrocautery.

  4. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  5. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  6. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  7. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  8. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  9. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  10. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  11. Emerging needle ablation technology in urology.

    PubMed

    Leveillee, Raymond J; Pease, Karli; Salas, Nelson

    2014-01-01

    Thermal ablation of urologic tumors in the form of freezing (cryoablation) and heating (radiofrequency ablation) have been utilized successfully to treat and ablate soft tissue tumors for over 15 years. Multiple studies have demonstrated efficacy nearing that of extirpative surgery for certain urologic conditions. There are technical limitations to their speed and safety profile because of the physical limits of thermal diffusion. Recently, there has been a desire to investigate other forms of energy in an effort to circumvent the limitations of cryoblation and radiofrequency ablation. This review will focus on three relatively new energy applications as they pertain to tissue ablation: microwave, irreversible electroporation, and water vapor. High-intensity-focused ultrasound nor interstitial lasers are discussed, as there have been no recently published updates. Needle and probe-based ablative treatments will continue to play an important role. As three-dimensional imaging workstations move from the advanced radiologic interventional suite to the operating room, surgeons will likely still play a pivotal role in the +-application of these probe ablative devices. It is essential that the surgeon understands the fundamentals of these devices in order to optimize their application.

  12. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  13. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  14. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  15. Direct His bundle pacing post AVN ablation.

    PubMed

    Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar

    2009-08-01

    Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.

  16. Caring for women undergoing cardiac ablation.

    PubMed

    Keegan, Beryl

    2008-09-01

    Radiofrequency cardiac ablation (RFCA) has become the treatment of choice for many cardiac arrhythmias that have not responded to medication. Complications of cardiac ablation include bleeding, thrombosis, pericardial tamponade, and stroke. Many complications are procedure specific, and several complications can be avoided with appropriate nursing care. Quality patient outcomes begin with competent nursing care. Therefore it is vital for a patient undergoing a percutaneous cardiac ablation procedure to receive supportive care and pre- and post-interventional patient education. This article discusses the nursing care of women undergoing RFCA.

  17. Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a “No Fly Zone”

    SciTech Connect

    Chang, Joe Y., E-mail: jychang@mdanderson.org; Li, Qiao-Qiao; Xu, Qing-Yong

    2014-04-01

    Purpose: We extended our previous experience with stereotactic ablative radiation therapy (SABR; 50 Gy in 4 fractions) for centrally located non-small cell lung cancer (NSCLC); explored the use of 70 Gy in 10 fractions for cases in which dose-volume constraints could not be met with the previous regimen; and suggested modified dose-volume constraints. Methods and Materials: Four-dimensional computed tomography (4DCT)-based volumetric image-guided SABR was used for 100 patients with biopsy-proven, central T1-T2N0M0 (n=81) or isolated parenchymal recurrence of NSCLC (n=19). All disease was staged with positron emission tomography/CT; all tumors were within 2 cm of the bronchial tree, trachea, major vessels, esophagus, heart,more » pericardium, brachial plexus, or vertebral body. Endpoints were toxicity, overall survival (OS), local and regional control, and distant metastasis. Results: At a median follow-up time of 30.6 months, median OS time was 55.6 months, and the 3-year OS rate was 70.5%. Three-year cumulative actuarial local, regional, and distant control rates were 96.5%, 87.9%, and 77.2%, respectively. The most common toxicities were chest-wall pain (18% grade 1, 13% grade 2) and radiation pneumonitis (11% grade 2 and 1% grade 3). No patient experienced grade 4 or 5 toxicity. Among the 82 patients receiving 50 Gy in 4 fractions, multivariate analyses showed mean total lung dose >6 Gy, V{sub 20} >12%, or ipsilateral lung V{sub 30} >15% to independently predict radiation pneumonitis; and 3 of 9 patients with brachial plexus D{sub max} >35 Gy experienced brachial neuropathy versus none of 73 patients with brachial D{sub max} <35 Gy (P=.001). Other toxicities were analyzed and new dose-volume constraints are proposed. Conclusions: SABR for centrally located lesions produces clinical outcomes similar to those for peripheral lesions when normal tissue constraints are respected.« less

  18. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  19. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  20. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  1. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    SciTech Connect

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Wang, Jia

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated tomore » quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.« less

  2. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  3. Endometrial ablation: normal appearance and complications.

    PubMed

    Drylewicz, Monica R; Robinson, Kathryn; Siegel, Cary Lynn

    2018-03-14

    Global endometrial ablation is a commonly performed, minimally invasive technique aimed at improving/resolving abnormal uterine bleeding and menorrhagia in women. As non-resectoscopic techniques have come into existence, endometrial ablation performance continues to increase due to accessibility and decreased requirements for operating room time and advanced technical training. The increased utilization of this method translates into increased imaging of patients who have undergone the procedure. An understanding of the expected imaging appearances of endometrial ablation using different modalities is important for the abdominal radiologist. In addition, the frequent usage of the technique naturally comes with complications requiring appropriate imaging work-up. We review the expected appearance of the post-endometrial ablated uterus on multiple imaging modalities and demonstrate the more common and rare complications seen in the immediate post-procedural time period and remotely.

  4. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  5. Left Atrial Anatomy Relevant to Catheter Ablation

    PubMed Central

    Sánchez-Quintana, Damián; Cabrera, José Angel; Saremi, Farhood

    2014-01-01

    The rapid development of interventional procedures for the treatment of arrhythmias in humans, especially the use of catheter ablation techniques, has renewed interest in cardiac anatomy. Although the substrates of atrial fibrillation (AF), its initiation and maintenance, remain to be fully elucidated, catheter ablation in the left atrium (LA) has become a common therapeutic option for patients with this arrhythmia. Using ablation catheters, various isolation lines and focal targets are created, the majority of which are based on gross anatomical, electroanatomical, and myoarchitectual patterns of the left atrial wall. Our aim was therefore to review the gross morphological and architectural features of the LA and their relations to extracardiac structures. The latter have also become relevant because extracardiac complications of AF ablation can occur, due to injuries to the phrenic and vagal plexus nerves, adjacent coronary arteries, or the esophageal wall causing devastating consequences. PMID:25057427

  6. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  7. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  8. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  9. Microwave Tissue Ablation: Biophysics, Technology and Applications

    PubMed Central

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  10. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  11. Demand for radiotherapy in Spain.

    PubMed

    Rodríguez, A; Borrás, J M; López-Torrecilla, J; Algara, M; Palacios-Eito, A; Gómez-Caamaño, A; Olay, L; Lara, P C

    2017-02-01

    Assessing the demand for radiotherapy in Spain based on existing evidence to estimate the human resources and equipment needed so that every person in Spain has access to high-quality radiotherapy when they need it. We used data from the European Cancer Observatory on the estimated incidence of cancer in Spain in 2012, along with the evidence-based indications for radiotherapy developed by the Australian CCORE project, to obtain an optimal radiotherapy utilisation proportion (OUP) for each tumour. About 50.5 % of new cancers in Spain require radiotherapy at least once over the course of the disease. Additional demand for these services comes from reradiation therapy and non-melanoma skin cancer. Approximately, 25-30 % of cancer patients with an indication for radiotherapy do not receive it due to factors that include access, patient preference, familiarity with the treatment among physicians, and especially resource shortages, all of which contribute to its underutilisation. Radiotherapy is underused in Spain. The increasing incidence of cancer expected over the next decade and the greater frequency of reradiations necessitate the incorporation of radiotherapy demand into need-based calculations for cancer services planning.

  12. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  13. Laryngeal chondroradionecrosis following radiotherapy.

    PubMed

    Melo, Giulianno Molina; Souza, Paula Demetrio; Bastos, Luiz Castro; Neves, Murilo Catafesta; Espirito Santo, Kleber Simões do; Cervantes, Onivaldo; Abrahão, Márcio

    2017-01-01

    to study larynx chondroradionecrosis related to radiotherapy and chemotherapy treatment and provide a treatment flowchart. retrospective study with clinical data analysis of all larynx cancer patients admitted in a two tertiary hospital in a five years period. from 131 patients treated for larynx cancer, 28 underwent chemoradiotherapy with curative intent and three of them presented chondroradionecrosis. They were treated with hiperbaric oxigen therapy and surgical debridment following our flowchart, preserving the larynx in all. the incidence of chondroradionecrosis as a complication of chemoradiotherapy in our series was 10,7% and the treatment with hiperbaric oxigen therapy, based in our flowchart, was effective to control this complication.

  14. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  15. Micrometeoroid ablation simulated in the laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  16. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  17. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less

  18. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  20. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  1. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  2. TU-B-210-02: MRg HIFU - Advanced Approaches for Ablation and Hyperthermia

    SciTech Connect

    Moonen, C.

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  3. TU-B-210-01: MRg HIFU - Bone and Soft Tissue Tumor Ablation

    SciTech Connect

    Ghanouni, P.

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  4. WE-AB-207B-10: On Spinal Nerve Toxicity from Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

    SciTech Connect

    Hrycushko, B; Medin, P

    Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 ofmore » 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match

  5. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    SciTech Connect

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  6. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  7. Global microwave endometrial ablation for menorrhagia treatment

    NASA Astrophysics Data System (ADS)

    Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit

    2017-02-01

    Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.

  8. Long-lived states to sustain SABRE hyperpolarised magnetisation† †Electronic supplementary information (ESI) available: Experimental details, sample specification, substrate characterisation, SABRE studies, pulse sequence details, simulations. See DOI: 10.1039/c6cp02844f Click here for additional data file.

    PubMed Central

    Roy, Soumya S.; Rayner, Peter J.; Norcott, Philip; Green, Gary G. R.

    2016-01-01

    The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4% net 1H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the future. PMID:27711398

  9. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  10. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  11. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. Copyright © 2013. Published by Elsevier SAS.

  12. Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers

    NASA Astrophysics Data System (ADS)

    Restuccia, Nancy; Torrisi, Lorenzo

    2018-01-01

    The synthesis of Au and Ag nanoparticles (NP) though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM) measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials) and in vivo (in mice), were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.

  13. Comparison of the Three NIF Ablators

    SciTech Connect

    Kritcher, A. L.; Clark, D. S.; Haan, S. W.

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed sincemore » NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is

  14. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  15. Radiotherapy on hidradenocarcinoma.

    PubMed

    Lalya, Issam; Hadadi, Khalid; Tazi, El Mehdi; Lalya, Ilham; Bazine, Amine; Andaloussy, Khalid; Elmarjany, Mohamed; Sifat, Hassan; Hassouni, Khalid; Kebdani, Tayeb; Mansouri, Hamid; Benjaafar, Noureddine; Elgueddari, Brahim Khalil

    2011-01-01

    Clear cell Hidradenocarcinoma is a rare carcinoma arising from sweat glands. It is an aggressive tumor that most metastasizes to regional lymph nodes and distant viscera; surgery with safe margins is the mainstay of treatment. We report a case of 68-year-old woman who presented with an invasive clear cell hidradenocarcinoma situated in the left parotid area which recurred 5 months after surgery, this recurrence was managed successfully by high-dose irradiation of the tumor bed (66 Gy) and regional lymphatic chains (50 Gy), after a follow-up of more than 15 months, the patient is in good local control without significant toxicity. POST OPERATIVE RADIOTHERAPY ALLOWS BETTER LOCAL CONTROL AND SHOULD BE MANDATORY WHEN HISTOLOGICAL FEATURES PREDICTIVE OF RECURRENCE ARE PRESENT: positive margins, histology poorly differentiated, perineural invasion, vascular and lymphatic invasion, lymph node involvement, and extracapsular spread.

  16. Radiotherapy on hidradenocarcinoma

    PubMed Central

    Lalya, Issam; Hadadi, Khalid; Tazi, El Mehdi; Lalya, Ilham; Bazine, Amine; Andaloussy, Khalid; Elmarjany, Mohamed; Sifat, Hassan; Hassouni, Khalid; Kebdani, Tayeb; Mansouri, Hamid; Benjaafar, Noureddine; Elgueddari, Brahim Khalil

    2011-01-01

    Context: Clear cell Hidradenocarcinoma is a rare carcinoma arising from sweat glands. It is an aggressive tumor that most metastasizes to regional lymph nodes and distant viscera; surgery with safe margins is the mainstay of treatment. Case Report: We report a case of 68-year-old woman who presented with an invasive clear cell hidradenocarcinoma situated in the left parotid area which recurred 5 months after surgery, this recurrence was managed successfully by high-dose irradiation of the tumor bed (66 Gy) and regional lymphatic chains (50 Gy), after a follow-up of more than 15 months, the patient is in good local control without significant toxicity. Conclusion: Post operative radiotherapy allows better local control and should be mandatory when histological features predictive of recurrence are present: positive margins, histology poorly differentiated, perineural invasion, vascular and lymphatic invasion, lymph node involvement, and extracapsular spread. PMID:22540063

  17. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  18. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  19. Design calculations for NIF convergent ablator experiments.

    SciTech Connect

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  20. Pulmonary imaging after stereotactic radiotherapy—does RECIST still apply?

    PubMed Central

    Mattonen, Sarah A; Ward, Aaron D

    2016-01-01

    The use of stereotactic ablative radiotherapy (SABR) for the treatment of primary lung cancer and metastatic disease is rapidly increasing. However, the presence of benign fibrotic changes on CT imaging makes response assessment following SABR a challenge, as these changes develop with an appearance similar to tumour recurrence. Misclassification of benign fibrosis as local recurrence has resulted in unnecessary interventions, including biopsy and surgical resection. Response evaluation criteria in solid tumours (RECIST) are widely used as a universal set of guidelines to assess tumour response following treatment. However, in the context of non-spherical and irregular post-SABR fibrotic changes, the RECIST criteria can have several limitations. Positron emission tomography can also play a role in response assessment following SABR; however, false-positive results in regions of inflammatory lung post-SABR can be a major clinical issue and optimal standardized uptake values to distinguish fibrosis and recurrence have not been determined. Although validated CT high-risk features show a high sensitivity and specificity for predicting recurrence, most recurrences are not detected until more than 1-year post-treatment. Advanced quantitative radiomic analysis on CT imaging has demonstrated promise in distinguishing benign fibrotic changes from local recurrence at earlier time points, and more accurately, than physician assessment. Overall, the use of RECIST alone may prove inferior to novel metrics of assessing response. PMID:27245137

  1. Lack of IgG antibody seropositivity to Borrelia burgdorferi in patients with Parry-Romberg syndrome and linear morphea en coup de sabre in Mexico.

    PubMed

    Gutiérrez-Gómez, Claudia; Godínez-Hana, Ana L; García-Hernández, Marisela; Suárez-Roa, María de Lourdes; Toussaint-Caire, Sonia; Vega-Memije, Elisa; Gutiérrez-Mendoza, Daniela; Pérez-Dosal, Marcia; Medina-De la Garza, Carlos E

    2014-08-01

    Progressive hemifacial atrophy or Parry-Romberg Syndrome (PRS) is a rare, acquired, progressive dysplasia of subcutaneous tissue and bone characterized by unilateral facial involvement. Its etiology is unknown, but theories about its pathogenesis include infectious, degenerative, autoimmune, and traumatic causes among others. The causal relationship of PRS and linear morphea en coup de sabre (LMCS) with Borrelia burgdorferi infection remains controversial. Our goal was to serologically determine anti-B. burgdorferi antibodies in patients diagnosed with PRS and LMCS to establish a possible association as a causative agent. We conducted a serology study with patients belonging to a group of 21 individuals diagnosed with PRS, six with LMCS, and 21 matched controls. Anti-Borrelia IgG antibodies were determined by ELISA. A descriptive statistical analysis and Fischer's exact test were done. In serological tests, only two cases had borderline values and were further analyzed by Western blot with non-confirmatory results. For both the PRS and LMCS group, the association test was not significant, suggesting a lack of association between PRS or LMCS and the presence of anti-Borrelia antibodies. In Mexico there are no previous studies on Borrelia infection and its relationship between PRS or LMCS. Our result showed a lack of association of either clinical entities with anti-Borrelia-antibodies. Former reports of this association may suggest coincidental findings without causal relationship. © 2014 The International Society of Dermatology.

  2. Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm.

    PubMed

    Latifi, Kujtim; Oliver, Jasmine; Baker, Ryan; Dilling, Thomas J; Stevens, Craig W; Kim, Jongphil; Yue, Binglin; Demarco, Marylou; Zhang, Geoffrey G; Moros, Eduardo G; Feygelman, Vladimir

    2014-04-01

    Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treated on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99GITV = 7.4 Gy, ΔD99PTV = 10.4 Gy, ΔV90GITV = 13.7%, ΔV90PTV = 37.6%, ΔD95PTV = 9.8 Gy, and ΔDISO = 3.4 Gy. GITV = gross internal tumor volume. Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible alternative explanations are described in the report, although they are not thought likely to explain the difference. We

  3. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  4. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  5. Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode.

    PubMed

    Grönemeyer, Dietrich H W; Schirp, Sven; Gevargez, Athour

    2002-01-01

    Metastases to the spine are a challenging problem. Percutaneous, image-guided tumor ablation with a thermal energy source, such as radiofrequency, has received increasing attention as a promising technique for the treatment of focal malignant disease. We used radiofrequency ablation for patients with unresectable, osteolytic spine metastases under computed tomographic and fluoroscopic guidance. The purpose of this study was to determine the feasibility, effectiveness, and safety of radiofrequency ablation as a palliative procedure to reduce pain and back pain-related disability in patients with vertebral and paravertebral spine tumors who were not able to benefit from radiotherapy, chemotherapy, or surgery. Between November 1999 and January 2001, 10 patients with unresectable spine metastases were treated with radiofrequency ablation. For the ablation we used a 50-W radiofrequency generator that is connected to an expandable electrode catheter (RITA Medical System Inc., Mountain View, CA). The mean patient age was 64.4 years. Metastases were ablated in the thoracic spine, the lumbar spine, and/or the sacral bone. Tumor diameter ranged from 1.5 to 9 cm. Combined computed tomographic and fluoroscopic guidance was used to guide the procedure. Operations were carried out without heavy sedation with the patient under local anesthesia only. The thermal lesion was produced by applying temperatures of 50 degrees to 120 degrees C for 8-12 minutes. Vertebroplasty was performed in four patients by use of 3 to 5.5 mL of polymethyl methacrylate. Therapy outcome was documented by magnet resonance imaging. Before the therapy and on follow-up of an average of 5.8 months, pain was assessed with the help of the Visual Analogue Scale. Back pain-related disability was measured with the Hannover Functional Ability Questionnaire. Neurologic and health status were documented on the Frankel score and the Karnofsky index. At follow-up, 9 of 10 patients reported reduced pain (Visual

  6. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  7. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  8. Modeling topology formation during laser ablation

    NASA Astrophysics Data System (ADS)

    Hodapp, T. W.; Fleming, P. R.

    1998-07-01

    Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.

  9. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  10. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  11. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  12. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  13. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  14. Image-Guided Spinal Ablation: A Review

    SciTech Connect

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of themore » ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.« less

  15. Diagnosis and ablation of multiform fascicular tachycardia.

    PubMed

    Sung, Raphael K; Kim, Albert M; Tseng, Zian H; Han, Frederick; Inada, Keiichi; Tedrow, Usha B; Viswanathan, Mohan N; Badhwar, Nitish; Varosy, Paul D; Tanel, Ronn; Olgin, Jeffrey E; Stephenson, William G; Scheinman, Melvin

    2013-03-01

    Fascicular tachycardia (FT) is an uncommon cause of monomorphic sustained ventricular tachycardia (VT). We describe 6 cases of FT with multiform QRS morphologies. Six of 823 consecutive VT cases were retrospectively analyzed and found attributable to FT with multiform QRS patterns, with 3 cases exhibiting narrow QRS VT as well. All underwent electrophysiology study including fascicular potential mapping, entrainment pacing, and electroanatomic mapping. The first 3 cases describe similar multiform VT patterns with successful ablation in the upper mid septum. Initially, a right bundle branch block (RBBB) VT with superior axis was induced. Radiofrequency catheter ablation (RFCA) targeting the left posterior fascicle (LPF) resulted in a second VT with RBBB inferior axis. RFCA in the upper septum just apical to the LBB potential abolished VT in all cases. Cases 4 and 5 showed RBBB VT with alternating fascicular block compatible with upper septal dependent VT, resulting in bundle branch reentrant VT (BBRT) after ablation of LPF and left anterior fascicle (LAF). Finally, Cases 5 and 6 demonstrated spontaneous shift in QRS morphology during VT, implicating participation of a third fascicle. In Case 6, successful ablation was achieved over the proximal LAF, likely representing insertion of the auxiliary fascicle near the proximal LAF. Multiform FTs show a reentrant mechanism using multiple fascicular branches. We hypothesize that retrograde conduction over the septal fascicle produces alternate fascicular patterns as well as narrow VT forms. Ablation of the respective fascicle was successful in abolishing FT but does not preclude development of BBRT unless septal fascicle is targeted and ablated. © 2012 Wiley Periodicals, Inc.

  16. Effect of Radiofrequency Endometrial Ablation on Dysmenorrhea.

    PubMed

    Wyatt, Sabrina N; Banahan, Taylor; Tang, Ying; Nadendla, Kavita; Szychowski, Jeff M; Jenkins, Todd R

    To examine rates of dysmenorrhea after radiofrequency endometrial ablation in patients with and without known dysmenorrhea symptoms prior to the procedure in a diverse population. Retrospective cohort study (Canadian Task Force classification II-2). Academic gynecology practice. A total of 307 women underwent endometrial ablation between 2007 and 2013 at our institution. Patients who had preoperative and postoperative pain symptom assessments as well as a description of pain timing recorded were included in our analysis. Exclusion criteria were age <19 years and operative biopsy findings consistent with complex atypical hyperplasia. The difference in preoperative and postoperative rates of dysmenorrhea was evaluated. Demographic information and other outcome variables were used to evaluate factors associated with resolution of dysmenorrhea. A total of 307 patients who underwent radiofrequency endometrial ablation were identified. After exclusions, 296 charts were examined, and 144 patients met our enrollment criteria. The mean age of the study cohort was 45.4 ± 6.2 years; 57 patients (40%) were African American, 16 (11%) had a body mass index (BMI) > 40, and 41 (29%) were of normal weight. Preoperative dysmenorrhea was reported by 100 patients (69%); 48 of these patients (48%) experienced resolution of symptoms postoperatively. Only 3 of the 44 patients (7%) without preoperative dysmenorrhea reported new-onset dysmenorrhea postoperatively. Significantly fewer patients had dysmenorrhea after compared to before radiofrequency ablation (55 of 144 [38%] vs 100 of 144 [69%]; p < .001). Resolution of dysmenorrhea after ablation was associated with reduction in bleeding volume (p = .048) but not with a reduction in frequency of bleeding (p = .12). Approximately one-half of women who undergo radiofrequency endometrial ablation to treat heavy menstrual bleeding who also have preoperative dysmenorrhea exhibit documented pain resolution after the procedure

  17. [Magnetic navigation for ablation of cardiac arrhythmias].

    PubMed

    Chen, Jian; Hoff, Per Ivar; Solheim, Eivind; Schuster, Peter; Off, Morten Kristian; Ohm, Ole-Jørgen

    2010-08-12

    The first use of magnetic navigation for radiofrequency ablation of supraventricular tachycardias, was published in 2004. Subsequently, the method has been used for treatment of most types of tachyarrhythmias. This paper provides an overview of the method, with special emphasis on usefulness of a new remote-controlled magnetic navigation system. The paper is based on our own scientific experience and literature identified through a non-systematic search in PubMed. The magnetic navigation system consists of two external electromagnets (to be placed on opposite sides of the patient), which guide an ablation catheter (with a small magnet at the tip of the catheter) to the target area in the heart. The accuracy of this procedure is higher than that with manual navigation. Personnel can be quickly trained to use remote magnetic navigation, but the procedure itself is time-consuming, particularly for patients with atrial fibrillation. The major advantage is a considerably lower radiation burden to both patient and operator, in some studies more than 50 %, and a corresponding reduction in physical strain on the operator. The incidence of procedure-related complications seems to be lower than that observed with use of manually operated ablation catheters. Work is ongoing to improve magnetic ablation catheters and methods that can simplify mapping procedures and improve efficacy of arrhythmia ablation. The basic cost for installing a complete magnetic navigation laboratory may be three times that of a conventional electrophysiological laboratory. The new magnetic navigation system has proved to be applicable during ablation for a variety of tachyarrhythmias, but is still under development.

  18. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  19. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  20. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  1. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  2. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  3. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  4. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  5. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  6. Experimental measurement of ablation effects in plasma armature railguns

    SciTech Connect

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  7. Experimental measurement of ablation effects in plasma armature railguns

    SciTech Connect

    Parker, J.V.; Parsons, W.M.

    1986-11-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  8. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  9. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  10. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  11. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    PubMed Central

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  12. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  13. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  14. Pulsed Radiofrequency Ablation for Treating Sural Neuralgia.

    PubMed

    Abd-Elsayed, Alaa; Jackson, Markus; Plovanich, Elizabeth

    2018-01-01

    Sural neuralgia is persistent pain in the distribution of the sural nerve that provides sensation to the lateral posterior corner of the leg, lateral foot, and fifth toe. Sural neuralgia is a rare condition but can be challenging to treat and can cause significant limitation. We present 2 cases of sural neuralgia resistant to conservative management that were effectively treated by pulsed radiofrequency ablation. A 65-year-old female developed sural neuralgia after a foot surgery and failed conservative management. She had successful sural nerve blocks, and pulsed radiofrequency ablation led to an 80% improvement in her pain. A 33-year-old female presented with sural neuralgia secondary to two falls. The patient had tried several conservative modalities with no success. We performed diagnostic blocks and pulsed radiofrequency ablation, and the patient reported 80% improvement in her pain. Pulsed radiofrequency ablation may be a safe and effective treatment for patients with sural neuralgia that does not respond to conservative therapy. However, studies are needed to elucidate its effectiveness and safety profile.

  15. Microwave ablation devices for interventional oncology.

    PubMed

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  16. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  17. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  18. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  19. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  20. MO-FG-BRA-08: Swarm Intelligence-Based Personalized Respiratory Gating in Lung SAbR

    SciTech Connect

    Modiri, A; Sabouri, P; Sawant, A

    Purpose: Respiratory gating is widely deployed as a clinical motion-management strategy in lung radiotherapy. In conventional gating, the beam is turned on during a pre-determined phase window; typically, around end-exhalation. In this work, we challenge the notion that end-exhalation is always the optimal gating phase. Specifically, we use a swarm-intelligence-based, inverse planning approach to determine the optimal respiratory phase and MU for each beam with respect to (i) the state of the anatomy at each phase and (ii) the time spent in that state, estimated from long-term monitoring of the patient’s breathing motion. Methods: In a retrospective study of fivemore » lung cancer patients, we compared the dosimetric performance of our proposed personalized gating (PG) with that of conventional end-of-exhale gating (CEG) and a previously-developed, fully 4D-optimized plan (combined with MLC tracking delivery). For each patient, respiratory phase probabilities (indicative of the time duration of the phase) were estimated over 2 minutes from lung tumor motion traces recorded previously using the Synchrony system (Accuray Inc.). Based on this information, inverse planning optimization was performed to calculate the optimal respiratory gating phase and MU for each beam. To ensure practical deliverability, each PG beam was constrained to deliver the assigned MU over a time duration comparable to that of CEG delivery. Results: Maximum OAR sparing for the five patients achieved by the PG and the 4D plans compared to CEG plans was: Esophagus Dmax [PG:57%, 4D:37%], Heart Dmax [PG:71%, 4D:87%], Spinal cord Dmax [PG:18%, 4D:68%] and Lung V13 [PG:16%, 4D:31%]. While patients spent the most time in exhalation, the PG-optimization chose end-exhale only for 28% of beams. Conclusion: Our novel gating strategy achieved significant dosimetric improvements over conventional gating, and approached the upper limit represented by fully 4D optimized planning while being significantly

  1. Thermochemical Ablation Analysis of the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  2. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  3. [Catheter ablation for paroxysmal atrial fibrillation: new generation cryoballoon or contact force sensing radiofrequency ablation?].

    PubMed

    Nagy, Zsófia; Kis, Zsuzsanna; Som, Zoltán; Földesi, Csaba; Kardos, Attila

    2016-05-29

    Contact force sensing radiofrequency ablation and the new generation cryoballoon ablation are prevalent techniques for the treatment of paroxysmal atrial fibrillation. The authors aimed to compare the procedural and 1-year outcome of patients after radiofrequency and cryoballoon ablation. 96 patients with paroxysmal atrial fibrillation (radiofrequency ablation: 58, cryoballoon: 38 patients; 65 men and 31 women aged 28-70 years) were enrolled. At postprocedural 1, 3, 6 and 12 months ECG, Holter monitoring and telephone interviews were performed. Procedure and fluorosocopy time were: radiofrequency ablation, 118.5 ± 15 min and 15.8 ± 6 min; cryoballoon, 73.5 ± 16 min (p<0.05) and 13.8 ± 4.,1 min (p = 0.09), respectively. One year later freedom from atrial fibrillation was achieved in 76.5% of patients who underwent radiofrequency ablation and in 81% of patients treated with cryoballoon. Temporary phrenic nerve palsy occurred in two patients and pericardial tamponade developed in one patient. In this single center study freedom from paroxysmal atrial fibrillation was similar in the two groups with significant shorter procedure time in the cryoballoon group.

  4. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  5. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  6. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  7. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  8. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  9. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 04: Assessment of intra-fraction motion during lung SABR VMAT using a custom abdominal compression device

    SciTech Connect

    Hyde, Derek; Robinson, Mark; Araujo, Cynthia

    2016-08-15

    Purpose: Lung SABR patients are treated using Volumetrically Modulated Arc Therapy (VMAT), utilizing 2 arcs with Conebeam CT (CBCT) image-guidance prior to each arc. Intra-fraction imaging can prolong treatment time (up to 20%), and the aim of this study is to determine if it is necessary. Methods: We utilize an in-house abdominal compression device to minimize respiratory motion, 4DCT to define the ITV, a 5 mm PTV margin and a 2–3 mm PRV margin. We treated 23 patients with VMAT, fifteen were treated to 48 Gy in 4 fractions, while eight were treated with up to 60 Gy in 8more » fractions. Intrafraction motion was assessed by the translational errors recorded for the second CBCT. Results: There was no significant difference (t-test, p=0.93) in the intra-fraction motion between the patients treated with 4 and 8 fractions, or between the absolute translations in each direction (ANOVA, p=0.17). All 124 intra-fraction CBCT images were analysed and 95% remained localized within the 5 mm PTV margin The mean magnitude of the vector displacement was 1.8 mm. Conclusions: For patients localized with an abdominal compression device, the intrafraction CBCT image may not be necessary, if it is only the tumor coverage that is of concern, as the patients are typically well within the 5 mm PTV margin. On the other hand, if there is a structure with a smaller PRV margin, an intrafraction CBCT is recommended to ensure that the dose limit for the organ at risk is not exceeded.« less

  10. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    SciTech Connect

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid

  11. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  12. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  13. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  14. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  16. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  17. Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.

    PubMed

    Zhang, Huijuan; Nan, Qun; Liu, Youjun

    2013-09-01

    The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.

  18. Computational (DFT) and Experimental (EXAFS) Study of the Interaction of [Ir(IMes)(H)2 (L)3 ] with Substrates and Co-substrates Relevant for SABRE in Dilute Systems.

    PubMed

    van Weerdenburg, Bram J A; Engwerda, Anthonius H J; Eshuis, Nan; Longo, Alessandro; Banerjee, Dipanjan; Tessari, Marco; Guerra, Célia Fonseca; Rutjes, Floris P J T; Bickelhaupt, F Matthias; Feiters, Martin C

    2015-07-13

    Signal amplification by reversible exchange (SABRE) is an emerging hyperpolarization method in NMR spectroscopy, in which hyperpolarization is transferred through the scalar coupling network of para-hydrogen derived hydrides in a metal complex to a reversibly bound substrate. Substrates can even be hyperpolarized at concentrations below that of the metal complex by addition of a suitable co-substrate. Here we investigate the catalytic system used for trace detection in NMR spectroscopy with [Ir(IMes)(H)2 (L)3 ](+) (IMes=1,3-dimesitylimidazol-2-ylidene) as catalyst, pyridine as a substrate and 1-methyl-1,2,3-triazole as co-substrate in great detail. With density functional theory (DFT), validated by extended X-ray absorption fine structure (EXAFS) experiments, we provide explanations for the relative abundance of the observed metal complexes, as well as their contribution to SABRE. We have established that the interaction between iridium and ligands cis to IMes is weaker than that with the trans ligand, and that in mixed complexes with pyridine and triazole, the latter preferentially takes up the trans position. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimal approach for complete liver tumor ablation using radiofrequency ablation: a simulation study.

    PubMed

    Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet

    2018-04-01

    To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.

  20. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  1. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  2. Radiofrequency ablation of two femoral head chondroblastomas.

    PubMed

    Petsas, Theodore; Megas, Panagiotis; Papathanassiou, Zafiria

    2007-07-01

    Chondroblastoma is a rare benign cartilaginous bone tumor. Surgical resection is the treatment of choice for pain relief and prevention of further growth. Open surgical techniques are associated with complications, particularly when the tumors are located in deep anatomical sites. The authors performed RF ablation in two cases of subarticular femoral head chondroblastomas and emphasize its positive impact. The clinical course, the radiological findings and the post treatment results are discussed.

  3. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less

  4. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  5. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  6. Thermo-Chemical Phenomena Simulation for Ablation

    DTIC Science & Technology

    2011-02-21

    DATES COVERED (1/01/08-30/11/10) 4. TITLE AND SUBTITLE Thermo- Chemical Phenomena Simulation for Ablation 5a. CONTRACT NUMBER...First, a physic based chemical kinetic model for high-temperature gas is developed and verified by comparing with data from the RAM-C-II probe and the...found to be negligible and the energy exchange is dominated by the chemical process for conductive-convective heat transfer. A simplified and more

  7. Ablation of steel by microsecond pulse trains

    NASA Astrophysics Data System (ADS)

    Windeler, Matthew Karl Ross

    Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material

  8. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  9. Interactive Volumetry Of Liver Ablation Zones.

    PubMed

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  10. Interactive Volumetry Of Liver Ablation Zones

    PubMed Central

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow. PMID:26482818

  11. Interactive Volumetry Of Liver Ablation Zones

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  12. Picosecond laser ablation of polyamide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Götze, Marco; Krimig, Olaf; Kürbitz, Tobias; Henning, Sven; Heilmann, Andreas; Hillrichs, Georg

    2017-02-01

    Electrospun nanofibers mats have a great potential in tissue engineering and regenerative medicine. Their high porosity and enormous volume to surface ratio stimulate the growth and adhesion of mammalian cells and serve as a stable support structure. These suitable properties can be further optimized by structuring of the nanofibers. Ultrashort pulsed lasers can be used for modifying of the electrospun nanofibers without significant heat exposure. It seems also possible to generate very fine cuts from the fiber mats. In this study, polyamide electrospun nanofibers samples were processed with picosecond UV-laser irradiation (λ = 355 nm, τ = 15 ps). The samples were processed in dry, wet and immersed condition. To optimize cutting and structuring of nanofiber tissue flakes, the influence of different laser parameters on line widths, edge quality, heat-affected zone (HAZ) and the contamination of the fibers by ablated particles (debris) were examined. One additional aim was the minimization of the flake size. It was possible to generate nanofiber flakes in the sub-millimeter range. The quality of the nanofiber flakes could be improved by ablation near the ablation threshold of the material. For cutting under wet conditions shrinking of the flakes has to be taken into account.

  13. Influence of the Liquid on Femtosecond Laser Ablation of Iron

    NASA Astrophysics Data System (ADS)

    Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.

    Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.

  14. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  15. In vivo evaluation of virtual electrode mapping and ablation utilizing a direct endocardial visualization ablation catheter.

    PubMed

    Chik, William W B; Barry, M A; Malchano, Zach; Wylie, Bryan; Pouliopoulos, Jim; Huang, Kaimin; Lu, Juntang; Thavapalachandran, Sujitha; Robinson, David; Saadat, Vahid; Thomas, Stuart P; Ross, David L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2012-01-01

    Radiofrequency (RF) ablation utilizing direct endocardial visualization (DEV) requires a "virtual electrode" to deliver RF energy while preserving visualization. This study aimed to: (1) examine the virtual electrode RF ablation efficacy; (2) determine the optimal power and duration settings; and (3) evaluate the utility of virtual electrode unipolar electrograms. The DEV catheter lesions were compared to lesions formed using a 3.5 mm open irrigated tip catheter within the right atria of 12 sheep. Generator power settings for DEV were titrated from 12W, 14W and 16W for 20, 30 and 40 seconds duration with 25 mL/min saline irrigation. Standard irrigated tip catheter settings of 30W, 50°C for 30 seconds and 30 mL/min were used. The DEV lesions were significantly greater in surface area and both major and minor axes compared to irrigated tip lesions (surface area 19.43 ± 9.09 vs 10.88 ± 4.72 mm, P<0.01) with no difference in transmurality (93/94 vs 46/47) or depth (1.86 ± 0.75 vs 1.85 ± 0.57 mm). Absolute electrogram amplitude reduction was greater for DEV lesions (1.89 ± 1.31 vs 1.49 ± 0.78 mV, P = 0.04), but no difference in percentage reduction. Pre-ablation pacing thresholds were not different between DEV (0.79 ± 0.36 mA) and irrigated tip (0.73 ± 0.25 mA) lesions. There were no complications noted during ablation with either catheter. Virtual electrode ablation consistently created wider lesions at lower power compared to irrigated tip ablation. Virtual electrode electrograms showed a comparable pacing and sensing efficacy in detecting local myocardial electrophysiological changes. © 2011 Wiley Periodicals, Inc.

  16. Design of Ablation Test Device for Brick Coating of Gun

    NASA Astrophysics Data System (ADS)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  17. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    PubMed

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  18. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  19. A 6-year review of the outcome of endometrial ablation.

    PubMed

    Tsaltas, J; Taylor, N; Healey, M

    1998-02-01

    In June, 1995 a postal questionnaire was distributed to all 232 women who had an endometrial ablation at Monash Medical Centre between July, 1989 and December, 1994. Data was analyzed from the 149 who responded. Length of follow-up ranged from 6 months to 6 years 6 months. Of these 78% were satisfied with their ablation and 84% found their menses to be lighter or to have stopped. The repeat ablation rate was 13% and the hysterectomy rate was 17%.

  20. Left Septal Slow Pathway Ablation for Atrioventricular Nodal Reentrant Tachycardia.

    PubMed

    Katritsis, Demosthenes G; John, Roy M; Latchamsetty, Rakesh; Muthalaly, Rahul G; Zografos, Theodoros; Katritsis, George D; Stevenson, William G; Efimov, Igor R; Morady, Fred

    2018-03-01

    Immunohistochemistry studies suggest that the anatomic substrate of the slow pathway in atrioventricular nodal reentrant tachycardia (AVNRT) is the left inferior nodal extension. We hypothesized that slow pathway ablation from the left septum is an effective alternative to right-sided ablation. We analyzed our databases of AVNRT in search of cases that had used slow pathway ablation from the left septum because of failure of right septal ablation, and then prospectively subjected consenting patients to a left septal-only procedure. Of 1342 patients subjected to right septal slow pathway ablation for AVNRT, 15 patients, 11 with typical and 4 with atypical AVNRT, had a left septal approach after unsuccessful right-sided ablation (R+L group). Eleven patients were subjected to a left septal-only approach for slow pathway ablation without a previous right septal attempt (L group). Fluoroscopy times in the R+L and L groups were 30.5 (21.0-44.0) and 20.0 (17.0-25.0) minutes, respectively ( P =0.061), and radiofrequency current delivery times were 11.3 (5.0-19.1) and 10.0 (7.0-12.0) minutes, respectively ( P =0.897). There was no need for additional ablation lesions at other anatomic sites in either group, and no cases of atrioventricular block were encountered. Recurrence rates of the arrhythmia for the R+L and L groups were 6.7% and 0%, respectively, in the 3 months after ablation ( P =1.000). Left septal ablation at the anatomic site of the left inferior nodal extension is an alternative for ablation of both typical and atypical AVNRT when ablation at the right posterior septum is ineffective. © 2018 American Heart Association, Inc.

  1. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  2. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans

    PubMed Central

    Gete, Ermias; Duzenli, Cheryl; Teke, Tony

    2014-01-01

    A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans. PACS number: 87.55.K‐ PMID:24892341

  3. Associations of night-time road traffic noise with carotid intima-media thickness and blood pressure: The Whitehall II and SABRE study cohorts.

    PubMed

    Halonen, Jaana I; Dehbi, Hakim-Moulay; Hansell, Anna L; Gulliver, John; Fecht, Daniela; Blangiardo, Marta; Kelly, Frank J; Chaturvedi, Nish; Kivimäki, Mika; Tonne, Cathryn

    2017-01-01

    Road traffic noise has been linked to increased risk of stroke, for which hypertension and carotid intima-media thickness (cIMT) are risk factors. A link between traffic noise and hypertension has been established, but there are few studies on blood pressure and no studies on cIMT. To examine cross-sectional associations for long-term exposure to night-time noise with cIMT, systolic blood pressure (SBP), diastolic blood pressure (DBP) and hypertension. The study population consisted of 2592 adults from the Whitehall II and SABRE cohort studies living within Greater London who had cIMT, SBP and DBP measured. Exposure to night-time road traffic noise (A-weighted dB, referred to as dBA) was estimated at each participant's residential postcode centroid. Mean night-time road noise levels were 52dBA (SD=4). In the pooled analysis adjusted for cohort, sex, age, ethnicity, marital status, smoking, area-level deprivation and NOx there was a 9.1μm (95% CI: -7.1, 25.2) increase in cIMT in association with 10dBA increase in night-time noise. Analyses by noise categories of 55-60dBA (16.2μm, 95% CI: -8.7, 41.2), and >60dBA (21.2μm, 95% CI: -2.5, 44.9) vs. <55dBA were also positive but non-significant, expect among those not using antihypertensive medication and exposed to >60dBA vs. <55dBA (32.6μm, 95% CI: 6.2, 59.0). Associations for SBP, DPB and hypertension were close to null. After adjustments, including for air pollution, the association between night-time road traffic noise and cIMT was only observed among non-medication users but associations with blood pressure and hypertension were largely null. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Factors affecting tumor ablation during high intensity focused ultrasound treatment.

    PubMed

    Hassanuddin, Aizan; Choi, Jun-Ho; Seo, Dong-Wan; Ryu, Choong Heon; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2014-07-01

    High intensity focused ultrasound (HIFU) utilizes a targeted extracorporeal focused ultrasound beam to ablate neoplastic pancreatic tissue. We used an in vitro model to examine the effects of bone, metallic stents, plastic stents, metal plates, and cyst-like lesions on HIFU treatment. HIFU was delivered to the phantom models implanted with foreign bodies, and the location, shape, and size of the ablated zones were evaluated. Bone and metallic plates reflected the ultrasound beam, shifting the ablation zone from the focal zone to the prefocal area. In the phantoms containing metal stent, plastic stent, and cyst, most of the ablative energy was reflected to the prefocal area by the surface, with the remainder penetrating through the phantom. The area of the ablated margins was significantly larger in size and volume than the intended focal ablation zone. During HIFU therapy, artificial or anatomical barriers could affect the direction of the ultrasound beams, shifting the ablation zone from the focal area to a prefocal site with a larger than expected ablation zone. These factors should be considered prior to HIFU treatment for pancreatic tumors because they could limit ablation success, in addition to causing complications.

  5. Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model

    NASA Astrophysics Data System (ADS)

    Makkouk, Amani Riad

    The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that

  6. Is Cryoballoon Ablation Preferable to Radiofrequency Ablation for Treatment of Atrial Fibrillation by Pulmonary Vein Isolation? A Meta-Analysis

    PubMed Central

    Xu, Junxia; Huang, Yingqun; Cai, Hongbin; Qi, Yue; Jia, Nan; Shen, Weifeng; Lin, Jinxiu; Peng, Feng; Niu, Wenquan

    2014-01-01

    Objective Currently radiofrequency and cryoballoon ablations are the two standard ablation systems used for catheter ablation of atrial fibrillation; however, there is no universal consensus on which ablation is the optimal choice. We therefore sought to undertake a meta-analysis with special emphases on comparing the efficacy and safety between cryoballoon and radiofrequency ablations by synthesizing published clinical trials. Methods and Results Articles were identified by searching the MEDLINE and EMBASE databases before September 2013, by reviewing the bibliographies of eligible reports, and by consulting with experts in this field. Data were extracted independently and in duplicate. There were respectively 469 and 635 patients referred for cryoballoon and radiofrequency ablations from 14 qualified clinical trials. Overall analyses indicated that cryoballoon ablation significantly reduced fluoroscopic time and total procedure time by a weighted mean of 14.13 (95% confidence interval [95% CI]: 2.82 to 25.45; P = 0.014) minutes and 29.65 (95% CI: 8.54 to 50.77; P = 0.006) minutes compared with radiofrequency ablation, respectively, whereas ablation time in cryoballoon ablation was nonsignificantly elongated by a weighted mean of 11.66 (95% CI: −10.71 to 34.04; P = 0.307) minutes. Patients referred for cryoballoon ablation had a high yet nonsignificant success rate of catheter ablation compared with cryoballoon ablation (odds ratio; 95% CI; P: 1.34; 0.53 to 3.36; 0.538), and cryoballoon ablation was also found to be associated with the relatively low risk of having recurrent atrial fibrillation (0.75; 0.3 to 1.88; 0.538) and major complications (0.46; 0.11 to 1.83; 0.269). There was strong evidence of heterogeneity and low probability of publication bias. Conclusion Our findings demonstrate greater improvement in fluoroscopic time and total procedure duration for atrial fibrillation patients referred for cryoballoon ablation than those for

  7. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  8. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    PubMed

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  9. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  10. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  12. Radiofrequency Ablation Followed by Percutaneous Ethanol Ablation Leading to Long-Term Remission of Hyperparathyroidism

    PubMed Central

    Menon, Arun S.; Nazar, P. K.; Moorthy, Srikanth; Kumar, Harish; Nair, Vasantha; Pavithran, Praveen Valiyaparambil; Bhavani, Nisha; Menon, Vadayath Usha; Abraham, Nithya; Jayakumar, R. Vasukutty

    2017-01-01

    A 30-year-old male with cerebral palsy and motor impairment presented with right femur fracture. He had gradually worsening mobility and contractures of all extremities for the preceding 5 years. Evaluation showed multiple vertebral and femoral fractures, severe osteoporosis, a large parathyroid adenoma, and parathormone (PTH) exceeding 2500 pg/mL. Because of poor general health and high anesthetic risk, parathyroidectomy was deemed impractical. Ultrasound-guided radiofrequency ablation (RFA) helped achieve 50% size reduction and PTH levels with better control of hypercalcemia. Later, as calcium and PTH remained elevated, percutaneous ethanol ablation was performed with resultant normalization of PTH and substantial symptomatic improvement. Two years later, he still remains normocalcaemic with normal PTH levels. We propose that RFA and percutaneous ethanol ablation be considered as effective short-term options for surgically difficult cases, which could even help achieve long-term remission. Although not previously reported, our case illustrates that both RFA and percutaneous ethanol ablation could be safely performed successively achieving long-term remission. PMID:29264521

  13. Radiofrequency ablation for treatment of sporadic angiomyolipoma.

    PubMed

    Prevoo, Warner; van den Bosch, Maurice A A J; Horenblas, Simon

    2008-07-01

    Symptomatic angiomyolipoma (AML) and asymptomatic AML larger than 4 cm in size are usually treated with nephron-sparing surgery or arterial embolization. We used another technique, that is, radiofrequency ablation (RFA), for treatment of a sporadic AML in a patient with a solitary kidney, in whom maximal sparing of normal renal tissue was required. Contrast-enhanced computed tomography (CT) showed an enhancing well-defined mainly lipomatous tumor, with a maximum diameter of 4.5 cm in the upper pole of the left kidney. Diagnosis of AML was confirmed with fine-needle aspiration biopsy. RFA was performed with a RF 3000 system, consisting of a generator that supplied up to 200W of power, connected to a 15-gauge LeVeen multipolar array electrode that was placed under CT-guidance centrally in the AML. Initial power was set at low power and increased with increments of 10W, according to the algorithm provided by the manufacturer, resulting in a final tumor end temperature above 65 degrees C. No complications occurred and the patient was discharged home the day after. During follow-up (12 months) function of the solitary kidney of the patient was preserved and patient did not have any AML-related symptoms develop. Contrast-enhanced CT scan showed complete (100%) tumor ablation with absence of enhancement in the tumor and decreased tumor size from 4.5 cm to 2.9 cm at 12 months. CT-guided RFA is a minimally invasive ablation procedure that allowed successful treatment of a sporadic AML in a patient with a solitary kidney. No complications occurred and no AML recurrence was observed during the 12-month follow-up.

  14. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Sprayable low density ablator and application process

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Hill, W. E.; Simpson, W. G.; Carter, J. M.; Brown, E. L.; King, H. M.; Schuerer, P. H.; Webb, D. D. (Inventor)

    1978-01-01

    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent.

  16. Excimer laser ablation of the cornea

    NASA Astrophysics Data System (ADS)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  17. Radiofrequency ablation for benign thyroid nodules.

    PubMed

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.

  18. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  19. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  20. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  1. Radiofrequency Ablation of Uterine Fibroids: a Review.

    PubMed

    Lee, Bruce B; Yu, Steve P

    2016-01-01

    Laparoscopic, ultrasound-guided radiofrequency ablation (RFA) is a new, FDA-cleared uterine sparing, outpatient procedure for uterine fibroids. The procedure utilizes recent technological advancements in instrumentation and imaging, allowing surgeons to treat numerous fibroids of varying size and location in a minimally invasive fashion. Early and mid-term data from multi-center clinical trials have demonstrated safety and efficacy, with resolution or improvement of symptoms and significant volume reduction. Re-intervention rates for fibroid symptoms have been low. The procedure is well tolerated with a typically uneventful and rapid recovery requiring NSAIDs only for postoperative pain. While post RFA pregnancy data are limited, the results are promising.

  2. Laser ablation of PMMA doped with benzyl

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1998-08-01

    KrF-laser ablation of poly(methylmethacrylate) (PMMA) doped with benzil was studied from the viewpoint of nonlinear absorption of the PMMA film during the laser irradiation. After measuring the relationship between the transmission and incident laser intensity, we developed a novel method to obtain absorption coefficient depending on laser intensity. Using the nonlinear absorption coefficient of PMMA doped with benzil, we succeeded in fitting the relationship of etch depth and laser intensity. The dependence of concentration of benzil in PMMA film and the difference between benzil and pyrene were also discussed.

  3. Antibacterial effects of laser ablated Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Shamaila, S.; Wali, H.; Sharif, R.; Nazir, J.; Zafar, N.; Rafique, M. S.

    2013-10-01

    The interaction of nickel nanoparticles with Escherichia coli (E. coli) bacteria has been studied. The nickel nanoparticles have been fabricated by continuous wave laser ablation of nickel target and their properties are studied using different characterization techniques. The antibacterial activity of nickel nanoparticles was checked against E. coli bacteria. Escherichia coli were cultured in nutrients broth and different concentrations of nickel nanoparticles were added to bacterial culture solution to investigate the interaction of nickel nanoparticles with bacteria and to check toxicity of the nickel nanoparticles against E. coli. The fabricated Ni nanoparticles have exhibited considerable antimicrobial activity against E. coli.

  4. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.

    PubMed

    Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal

    2015-04-01

    Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of <-30 ms was recorded at those ablation sites. LVOT VAs originating from intramural foci could usually be eliminated by sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.

  5. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    PubMed Central

    Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I-C. (Joe); Diederich, Chris J.

    2014-01-01

    Purpose: Feasibility of targeted and volumetric hyperthermia (40–45 °C) delivery to the prostate with a commercial MR-guided endorectal ultrasound phased array system, designed specifically for thermal ablation and approved for ablation trials (ExAblate 2100, Insightec Ltd.), was assessed through computer simulations and tissue-equivalent phantom experiments with the intention of fast clinical translation for targeted hyperthermia in conjunction with radiotherapy and chemotherapy. Methods: The simulations included a 3D finite element method based biothermal model, and acoustic field calculations for the ExAblate ERUS phased array (2.3 MHz, 2.3 × 4.0 cm2, ∼1000 channels) using the rectangular radiator method. Array beamforming strategies were investigated to deliver protracted, continuous-wave hyperthermia to focal prostate cancer targets identified from representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Preliminary experiments included beamformed sonications in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Results: Acoustic intensities considered during simulation were limited to ensure mild hyperthermia (Tmax < 45 °C) and fail-safe operation of the ExAblate array (spatial and time averaged acoustic intensity ISATA < 3.4 W/cm2). Tissue volumes with therapeutic temperature levels (T > 41 °C) were estimated. Numerical simulations indicated that T > 41 °C was calculated in 13–23 cm3 volumes for sonications with planar or diverging beam patterns at 0.9–1.2 W/cm2, in 4.5–5.8 cm3 volumes for simultaneous multipoint focus beam patterns at ∼0.7 W/cm2, and in ∼6.0 cm3 for curvilinear (cylindrical) beam patterns at 0.75 W/cm2. Focused heating patterns may be practical for treating focal disease in a single posterior quadrant of the prostate and diffused heating patterns may be

  6. Pleural Puncture that Excludes the Ablation Zone Decreases the Risk of Pneumothorax after Percutaneous Microwave Ablation in Porcine Lung

    PubMed Central

    Lee, Kyungmouk Steve; Takaki, Haruyuki; Yarmohammadi, Hooman; Srimathveeravalli, Govindarajan; Luchins, Kerith; Monette, Sébastien; Nair, Sreejit; Kishore, Sirish; Erinjeri, Joseph P.

    2017-01-01

    Purpose To test the hypothesis that the geometry of probe placement with respect to the pleural puncture site affects the risk of pneumothorax after microwave (MW) ablation in the lung. Materials and Methods Computed tomography–guided MW ablation of the lung was performed in 8 swine under general anesthesia and mechanical ventilation. The orientation of the 17-gauge probe was either perpendicular (90°) or parallel (< 30°) with respect to the pleural puncture site, and the ablation power was 30 W or 65 W for 5 minutes. After MW ablation, swine were euthanized, and histopathologic changes were assessed. Frequency and factors affecting pneumothorax were evaluated by multivariate analysis. Results Among 62 lung MW ablations, 13 (21%) pneumothoraces occurred. No statistically significant difference was noted in the rate of pneumothorax between the perpendicular and the parallel orientations of the probe (31% vs 14%; odds ratio [OR], 2.8; P = .11). The pneumothorax rate was equal for 65-W and 30-W ablation powers (21% and 21%; OR, 1.0; P = .94). Under multivariate analysis, 2 factors were independent positive predictors of pneumothorax: ablation zone inclusive of pleural insertion point (OR, 7.7; P = .02) and time since intubation (hours) (OR, 2.7; P = .02). Conclusions Geometries where the pleural puncture site excluded the ablation zone decreased pneumothorax in swine undergoing MW ablation in the lung. Treatment planning to ensure that the pleural puncture site excludes the subsequent ablation zone may reduce the rate of pneumothorax in patients undergoing MW ablation in the lung. PMID:25753501

  7. [Thoracoscopic, epicardial ablation of atrial fibrillation using the COBRA Fusion system as the first part of hybrid ablation].

    PubMed

    Budera, P; Osmančík, P; Talavera, D; Fojt, R; Kraupnerová, A; Žďárská, J; Vaněk, T; Straka, Z

    2017-01-01

    Treatment of persistent and long-standing persistent atrial fibrillation is not successfully managed by methods of catheter ablation or pharmacotherapy. Hybrid ablation (i.e. combination of minimally invasive surgical ablation, followed by electrophysiological assessment and subsequent endocardial catheter ablation to complete the entire intended procedure) presents an ever more used and very promising treatment method. Patients underwent thoracoscopic ablation of pulmonary veins and posterior wall of the left atrium (the box-lesion) with use of the COBRA Fusion catheter; thoracoscopic occlusion of the left atrial appendage using the AtriClip system was also done in later patients. After 23 months, electrophysiological assessment and catheter ablation followed. In this article we summarize a strategy of the surgical part of the hybrid procedure performed in our centre. We describe the surgery itself (including possible periprocedural complications) and we also present our short-term results, especially with respect to subsequent electrophysiological findings. Data of the first 51 patients were analyzed. The first 25 patients underwent unilateral ablation; the mean time of surgery was 102 min. Subsequent 26 patients underwent the bilateral procedure with the mean surgery time of 160 min. Serious complications included 1 stroke, 1 phrenic nerve palsy and 2 surgical re-explorations for bleeding. After 1 month, 65% of patients showed sinus rhythm. The box-lesion was found complete during electrophysiological assessment in 38% of patients and after catheter ablation, 96% of patients were discharged in sinus rhythm. The surgical part of the hybrid procedure with use of the minimally invasive approach and the COBRA Fusion catheter is a well-feasible method with a low number of periprocedural complications. For electrophysiologists, it provides a very good basis for successful completion of the hybrid ablation.Key words: atrial fibrillation hybrid ablation - thoracoscopy

  8. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Rail gun performance and plasma characteristics due to wall ablation

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  10. Investigations on laser hard tissue ablation under various environments

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Oh, J.; Welch, A. J.

    2008-06-01

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perflu