Science.gov

Sample records for ablator areal density

  1. Measuring direct drive ICF remaining ablator areal density using a gas Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Rubery, Michael; Horsfield, Colin; Herrmann, Hans; Kim, Yongho; Hoffmann, Nelson; Mack, Joseph; Young, Carl; Evans, Scott; Sedillo, Tom; Caldwell, Steven; Grafil, Elliot; Stoeffl, Wolfgang; Milnes, James; Atomic Weapons Establishment PLC Team; Los Alamos National Laboratory Team; Lawrence Livermore National Laboratory Team; Photek Ltd Team

    2013-10-01

    Neutrons from a compressed direct drive ICF target produce γ rays through inelastic interactions with ablator material. The inelastic γ intensity is proportional to the remaining ablator areal density at bang time and the neutron yield. Remaining ablator areal density is an important metric for the quality of the implosion and is strongly correlated with fuel temperature and compression. This contribution describes how a background signal routinely measured on the gas Cherenkov detectors can be used to infer the intensity of the low-energy inelastic gammas from the ablator on the same trace as the DT fusion γ signal, which is directly proportional to the neutron yield; therefore allowing the remaining ablator areal density to be measured in a self consistent manner. Results from recent experiments at the Omega laser facility designed to prove the technique are discussed. In addition, Monte Carlo modelling shows the technique can be used to measure remaining ablator areal density for both plastic and glass capsules.

  2. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    NASA Astrophysics Data System (ADS)

    Cerjan, C.; Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W.; Grafil, E. M.; Herrmann, H. W.; Hoffman, N. M.; Kim, Y.

    2015-03-01

    The inelastic neutron scattering induced γ-ray signal from 12C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the 12C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  3. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    SciTech Connect

    Cerjan, C. Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W.; Grafil, E. M.; Herrmann, H. W.; Hoffman, N. M.; Kim, Y.

    2015-03-15

    The inelastic neutron scattering induced γ-ray signal from {sup 12}C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the {sup 12}C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  4. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  5. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    SciTech Connect

    Hagmann, C. Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.; Herrmann, H. W.; Knauer, J. P.

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  6. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility.

    PubMed

    Hagmann, C; Shaughnessy, D A; Moody, K J; Grant, P M; Gharibyan, N; Gostic, J M; Wooddy, P T; Torretto, P C; Bandong, B B; Bionta, R; Cerjan, C J; Bernstein, L A; Caggiano, J A; Herrmann, H W; Knauer, J P; Sayre, D B; Schneider, D H; Henry, E A; Fortner, R J

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix. PMID:26233419

  7. Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth

    NASA Astrophysics Data System (ADS)

    Loomis, E. N.; Braun, D.; Batha, S. H.; Sorce, C.; Landen, O. L.

    2011-09-01

    Isolated defects on inertial confinement fusion ignition capsules are a concern as defects taller than a few hundred nanometers are calculated to form jets of high-Z material, which enter the main fuel. If this mixing of high-Z material is not controlled, a serious degradation in thermonuclear burn can occur. A path towards controlling the growth of defects on the outer surface of plastic capsules is currently under development, but requires accurate predictions of defect evolution driven by the early time ablative Richtmyer-Meshkov (RM) effect. The chief uncertainty is the Equation of State (EOS) for polystyrene and its effect on ablative RM. We report on measurements of the growth of isolated defects made at the onset of ablative RM oscillations driven by x-ray ablation to differentiate between EOS models used in design calculations. Experiments at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] used on-axis area backlighting radiography and x-ray framing cameras to determine bump areal densities at discrete times. Bumps 12 and 14 μm tall and 33 μm FWHM were found to grow to 2 × their initial areal density by 3 ns after the start of the drive laser pulse. Shock speed measurements established target conditions resulting from the ablation process. The tabular LEOS 5310 [D. Young and E. Corey, J. Appl. Phys. 78, 3748 (1995)] model shows good agreement with measured shock speeds and bump growth whereas the QEOS model [R. More et al., Phys. Fluids 31, 3059 (1988)] over predicts shock speed and under predicts bump growth by 6×. Differences in ablative RM behavior were also found for x-ray ablation compared to laser ablation, which result in an overestimation (or non-existence) of oscillation frequency for x-ray ablation as predicted by theory.

  8. Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth

    SciTech Connect

    Loomis, E. N.; Batha, S. H.; Braun, D.; Sorce, C.; Landen, O. L.

    2011-09-15

    Isolated defects on inertial confinement fusion ignition capsules are a concern as defects taller than a few hundred nanometers are calculated to form jets of high-Z material, which enter the main fuel. If this mixing of high-Z material is not controlled, a serious degradation in thermonuclear burn can occur. A path towards controlling the growth of defects on the outer surface of plastic capsules is currently under development, but requires accurate predictions of defect evolution driven by the early time ablative Richtmyer-Meshkov (RM) effect. The chief uncertainty is the Equation of State (EOS) for polystyrene and its effect on ablative RM. We report on measurements of the growth of isolated defects made at the onset of ablative RM oscillations driven by x-ray ablation to differentiate between EOS models used in design calculations. Experiments at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] used on-axis area backlighting radiography and x-ray framing cameras to determine bump areal densities at discrete times. Bumps 12 and 14 {mu}m tall and 33 {mu}m FWHM were found to grow to 2 x their initial areal density by 3 ns after the start of the drive laser pulse. Shock speed measurements established target conditions resulting from the ablation process. The tabular LEOS 5310 [D. Young and E. Corey, J. Appl. Phys. 78, 3748 (1995)] model shows good agreement with measured shock speeds and bump growth whereas the QEOS model [R. More et al., Phys. Fluids 31, 3059 (1988)] over predicts shock speed and under predicts bump growth by 6x. Differences in ablative RM behavior were also found for x-ray ablation compared to laser ablation, which result in an overestimation (or non-existence) of oscillation frequency for x-ray ablation as predicted by theory.

  9. Using gamma-ray emission to measure areal density of ICF capsules

    SciTech Connect

    Hoffman, Nelson M; Wilson, Douglas C; Hermann, Hans W; Young, Carlton S

    2010-01-01

    Fusion neutrons streaming from a burning ICF capsule generate gamma rays via nuclear inelastic scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density ('{rho}R') and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, {sup 12}C nuclei emit gamma rays at 4.44 MeV after excitation by 14.1-MeV neutrons from D+T fusion. These gamma rays can be measured by the Gamma Reaction History (GRH) experiment being built at the National Ignition Facility (NIF). A linear error analysis indicates the chief sources of uncertainty in inferred areal density.

  10. Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Tommasini, R.; Field, J. E.; Hammel, B. A.; Landen, O. L.; Haan, S. W.; Aracne-Ruddle, C.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Doeppner, T.; Edwards, M. J.; Hurricane, O. A.; Izumi, N.; Jones, O. A.; Ma, T.; Meezan, N. B.; Nagel, S. R.; Rygg, J. R.; Segraves, K. S.; Stadermann, M.; Strauser, R. J.; Town, R. P. J.

    2015-05-01

    Areal density non-uniformities seeded by time-dependent drive variations and target imperfections in Inertial Confinement Fusion (ICF) targets can grow in time as the capsule implodes, with growth rates that are amplified by instabilities. Here, we report on the first measurements of the perturbations on the density and areal density profiles induced by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. The measurements are based on the reconstruction of the ablator density profiles from 2D radiographs obtained using pinhole imaging coupled to area backlighting, as close as 150 ps to peak compression. Our study shows a clear correlation between the modulations imposed on the areal density and measured neutron yield, and a 3× reduction in the areal density perturbations comparing a high-adiabat vs. low-adiabat pulse shape.

  11. Tent-induced perturbations on areal density of implosions at the National Ignition Facility

    SciTech Connect

    Tommasini, R. Field, J. E.; Hammel, B. A.; Landen, O. L.; Haan, S. W.; Aracne-Ruddle, C.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Doeppner, T.; Edwards, M. J.; Hurricane, O. A.; Izumi, N.; Jones, O. A.; Ma, T.; Meezan, N. B.; Nagel, S. R.; Rygg, J. R.; Stadermann, M.; and others

    2015-05-15

    Areal density non-uniformities seeded by time-dependent drive variations and target imperfections in Inertial Confinement Fusion (ICF) targets can grow in time as the capsule implodes, with growth rates that are amplified by instabilities. Here, we report on the first measurements of the perturbations on the density and areal density profiles induced by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. The measurements are based on the reconstruction of the ablator density profiles from 2D radiographs obtained using pinhole imaging coupled to area backlighting, as close as 150 ps to peak compression. Our study shows a clear correlation between the modulations imposed on the areal density and measured neutron yield, and a 3× reduction in the areal density perturbations comparing a high-adiabat vs. low-adiabat pulse shape.

  12. Arrays of 100 nm Magnetic Nanorings with High Areal Densities

    NASA Astrophysics Data System (ADS)

    Zhu, F. Q.; Fan, D. L.; Cammarata, R. C.; Zhu, X. C.; Zhu, J. G.; Chien, C. L.

    2004-03-01

    Arrays of magnetic nanorings with high areal densities have special attributes. To date only a small number of μ m-size rings have been made by lithography. Here we present a new lithography-less process for fabricating a large number of 100 nm Co nanorings over a macroscopic area with an extremely high areal density (45 rings/μ m^2). Hysteresis loops show two switching fields at about 150 Oe and 2 kOe. Micromagnetics simulations reveal two reversal processes. In the first process two domain walls in the onion state attract and annihilate to form a vortex state. The stable vortex state requires 2 kOe to induce two domain walls and form the reversed onion state. The second process with a switching field of about 50 Oe involves the rotation of the onion state by 180r with the two domain walls at the opposite ends. Both reversal processes exist simultaneously in our sample, and the hysteresis behavior is the superposition of two such hysteresis loops. Work supported by NSF and DARPA.

  13. Improving CMD Areal Density Analysis: Algorithms and Strategies

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    2014-06-01

    Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD¡¯s) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMDgeneration program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities (A ), and large variation in A are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

  14. Shock ignition of thermonuclear fuel with high areal density.

    PubMed

    Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A

    2007-04-13

    A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy. PMID:17501359

  15. Mammoth ecosystem: Climatic areal, animal's density and cause of extinctions

    NASA Astrophysics Data System (ADS)

    Zimov, S.; Zimov, N.; Zimova, G.; Chapin, S. F.

    2008-12-01

    During the last glaciations Mammoth Ecosystem (ME) occupied territory from present-day France to Canada and from the Arctic islands to China. This ecosystem played major role in global carbon cycle and human settling around the planet. Causes of extinction of this ecosystem are debatable. Analyses of hundreds of radiocarbon dates of ME animal fossil remains showed that warming and moistening of climate wasn't accompanied by animal extinction. On the opposite, on the north right after the warming rise of herbivore population was observed. Reconstruction of ME climatic areal showed that its climatic optimum lies within range of annual precipitation of 200-350 mm and average summer temperatures of +8-+12oC which corresponds with modern climate of Northern Siberia. Analyses of bones and skeletons concentrations in permafrost of Northern Siberia showed that animal density in ME was similar to African savannah. That was a high productive ecosystem that could sustain in wide variety of climates because numerous herbivores maintained there pastures themselves.

  16. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    NASA Astrophysics Data System (ADS)

    Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe

    2015-05-01

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  17. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    SciTech Connect

    Lippman, Thomas Brockie, Richard; Contreras, John; Garzon, Samir; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Coker, Jon; Galbraith, Rick; Hanson, Weldon; Duquette, Paul; Petrizzi, Joe

    2015-05-07

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  18. Measurement of inflight shell areal density near peak velocity using a self backlighting technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M., Jr.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-05-01

    The growth of perturbations in inertial confinement fusion (ICF) capsules can lead to significant variation of inflight shell areal density (ρR), ultimately resulting in poor compression and ablator material mixing into the hotspot. As the capsule is accelerated inward, the perturbation growth results from the initial shock-transit through the shell and then amplification by Rayleigh-Taylor as the shell accelerates inwards. Measurements of ρR perturbations near peak implosion velocity (PV) are essential to our understanding of ICF implosions because they reflect the integrity of the capsule, after the inward acceleration growth is complete, of the actual shell perturbations including native capsule surface roughness and “isolated defects”. Quantitative measurements of shell-ρR perturbations in capsules near PV are challenging, requiring a new method with which to radiograph the shell. An innovative method, utilized in this paper, is to use the self-emission from the hotspot to “self- backlight” the shell inflight. However, with nominal capsule fills there is insufficient self-emission for this method until the capsule nears peak compression (PC). We produce a sufficiently bright continuum self-emission backlighter through the addition of a high-Z gas (∼ 1% Ar) to the capsule fill. This provides a significant (∼10x) increase in emission at hυ∼8 keV over nominal fills. “Self backlit” radiographs are obtained for times when the shock is rebounding from the capsule center, expanding out to meet the incoming shell, providing a means to sample the capsule optical density though only one side, as it converges through PV.

  19. Generation of ramp waves using variable areal density flyers

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2015-02-01

    Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 \\upmu s, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  20. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes.

    PubMed

    Xie, Huanhuan; Zhang, Rufan; Zhang, Yingying; Zhang, Wenlin; Jian, Muqiang; Wang, Chunya; Wang, Qi; Wei, Fei

    2014-10-01

    We report a facile graphene/graphite sheet assisted CVD process for the synthesis of high-areal-density HACNT arrays. Besides, some metal nanoparticles could eat the graphene/graphite sheets, forming serpentine holes on the sheets in the early stage, and finally leading to the precipitation of CNTs without an additional carbon source. PMID:25111331

  1. Folding paper-based lithium-ion batteries for higher areal energy densities.

    PubMed

    Cheng, Qian; Song, Zeming; Ma, Teng; Smith, Bethany B; Tang, Rui; Yu, Hongyu; Jiang, Hanqing; Chan, Candace K

    2013-10-01

    Paper folding techniques are used in order to compact a Li-ion battery and increase its energy per footprint area. Full cells were prepared using Li4Ti5O12 and LiCoO2 powders deposited onto current collectors consisting of paper coated with carbon nanotubes. Folded cells showed higher areal capacities compared to the planar versions with a 5 × 5 cell folded using the Miura-ori pattern displaying a ~14× increase in areal energy density. PMID:24059538

  2. Areal density optimizations for heat-assisted magnetic recording of high-density media

    NASA Astrophysics Data System (ADS)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  3. Design and fabrication of an electrohydrodynamically actuated microlens with areal density modulated electrodes

    NASA Astrophysics Data System (ADS)

    Ousati Ashtiani, Alireza; Jiang, Hongrui

    2016-01-01

    In this paper, we introduce an electrode design for electrohydrodynamically actuated liquid microlenses. The effective electrode areal density radially increases which results in centering of the liquid tunable microlens with a planar device structure. A model was developed to demonstrate the centering mechanism of the liquid microlens. 3D electrostatic simulation was conducted and validity of the idea was examined. A simple fabrication process was developed that uses a surface modified SU-8 as the insulator. The focal length of the microlens was measured to vary from 10.1 mm to 5.8 mm as the voltage varied from zero to 100 V.

  4. Isothermal expansion of a spherical layer with a given areal density into vacuum

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.

    2016-04-01

    An analytical solution has been obtained for the spherical isothermal expansion of the outer layer of a ball whose mass increases at a constant areal density of the heated layer, which is equal to the product of the initial values of the depth of heating and the density of the layer for the entire time of expansion into vacuum. This solution differs from the known solution for the isothermal spherical expansion of a given mass of a material in a slower decrease in the density and, as a result, in the pressure of the expanding material with the time. In particular, it describes the expansion of the boundary layer of the ball heated by a flow of fast electrons in application to the problem of the ignition of an inertial confinement fusion target by a shock wave induced because of the heating of the target by the flow of laser-accelerated fast electrons (shock ignition).

  5. Development of lower-energy neutron spectroscopy for areal density measurement in implosion experiment at NIF and OMEGA

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Lerche, Richard A.; Phillips, Thomas W.; Schmid, Gregory J.; Moran, Michael J.; Sangster, Thomas C.

    2001-12-01

    Areal density ((sigma) R) is a fundamental parameter that characterizes the performance of an ICF implosion. For high areal densities ((sigma) R>0.1 g/cm2), which will be realized in implosion experiments at NIF and LMJ, the target areal density exceeds the stopping range of charged particles and measurements with charged particle spectroscopy will be difficult. In this region, an areal density measurement method using down shifted neutron counting is a promising alternative. The probability of neutron scattering in the imploded plasma is proportional to the areal density of the plasma. The spectrum of neutrons scattered by the specific target nucleus has a characteristic low energy cut off. This enables separate, simultaneous measurements of fuel and pusher (sigma) Rs. To apply this concept in implosion experiments, the detector should have extremely large dynamic range. Sufficient signal output for low energy neutrons is also required. A lithium-glass scintillation-fiber plate (LG-SCIFI) is a promising candidate for this application. In this paper we propose a novel technique based on down shifted neutron measurements with a lithium-glass sctintillation-fiber plate. The details of instrumentation and background estimation with Monte Carlo calculation are reported.

  6. Development of Lower Energy Neutron Spectroscopy for Areal Density Measurement in Implosion Experiment at NIF and Omega

    SciTech Connect

    Isumi, N; Lerche, R A; Phillips, T W; Schmid, G J; Moran, M J; Sangster, T C

    2001-08-02

    Areal density ({rho}R) is a fundamental parameter that characterizes the performance of an ICF implosion. For high areal densities ({rho}R> 0.1 g/cm{sup 2}), which will be realized in implosion experiments at NIF and LMJ, the target areal density exceeds the stopping range of charged particles and measurements with charged particle spectroscopy will be difficult. In this region, an areal density measurement method using down shifted neutron counting is a promising alternative. The probability of neutron scattering in the imploded plasma is proportional to the areal density of the plasma. The spectrum of neutrons scattered by the specific target nucleus has a characteristic low energy cut off. This enables separate, simultaneous measurements of fuel and pusher {rho}Rs. To apply this concept in implosion experiments, the detector should have extremely large dynamic range. Sufficient signal output for low energy neutrons is also required. A lithium-glass scintillation-fiber plate (LG-SCIFI) is a promising candidate for this application. In this paper we propose a novel technique based on downshifted neutron measurements with a lithium-glass scintillation-fiber plate. The details of instrumentation and background estimation with Monte Carlo calculation are reported.

  7. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-01

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D2 neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  8. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    SciTech Connect

    Glebov, V. Yu. Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-15

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D{sub 2} neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  9. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C J; Marshall, K L; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C

    2014-11-01

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D2 neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented. PMID:25430281

  10. Sprayable low density ablator and application process

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Hill, W. E.; Simpson, W. G.; Carter, J. M.; Brown, E. L.; King, H. M.; Schuerer, P. H.; Webb, D. D. (Inventor)

    1978-01-01

    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent.

  11. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Gao, Shan; Du, Zhaolong; Yuan, Anbao; Lu, Wei; Chen, Liwei

    2016-02-01

    Practical supercapacitor devices require high areal capacitance and areal power density, and thus demand high utilization of active material and good rate performance under high areal mass loading. However, ion transport in high-mass-loading electrodes can be a challenge, which leads to deteriorate specific capacitance and rate performance. In this paper, a well-dispersed porous MnO2-carbon nanotube (CNT) composite was prepared for use as a supercapacitor electrode material. The small MnO2 nanoparticles and porous CNT network facilitated fast electron/ion transfer kinetics in the electrode. With a mass loading as high as 6.4 mg cm-2 on the electrode, the MnO2-CNT composite exhibited an excellent areal capacitance of 1.0 F cm-2 at 0.2 A g-1 (1.28 mA cm-2), with a retention of 77% even at a high current density of 20 A g-1 (128 mA cm-2). The electrode exhibited a high power density of 45.2 kW kg-1 (0.29 W cm-2) while maintaining a reasonable energy density of 16.7 Wh kg-1 (106 μWh cm-2). No apparent fading was observed even after 3000 charge/discharge cycles at 1 A g-1. This porous and evenly distributed MnO2-CNT composite has great potential for practical applications in supercapacitors.

  12. On a novel graded areal density solution to facilitate ramp wave generation in plate-impact studies

    NASA Astrophysics Data System (ADS)

    Painter, Jonathan; Fitzmaurice, Brianna; Goff, Michael; Appleby-Thomas, Gareth; Wood, David; Pinto, Tom

    2015-06-01

    Building on a substantial body of work on functionally graded materials in the literature, it has been previously shown that the use of graded areal density impactors, in conjunction with buffer materials, allows generation of ramp-wave loading profiles in impacted targets. Such off-principle-Hugoniot loading paths are of particular interest where control of one or more state variables (e.g. temperature) is desirable during the loading event. Previous attempts to produce suitable graded areal density impactors have focused on rapid protoyping techniques such as 3D printing. While suitable for small-scale production of impactors, such technologies are relatively immature. Instead, here a novel approach to creating graded areal density structures - TWI Ltd's novel surface modification process, SurfiSculpt®, with a nominal surface spike distribution of 1.5 per mm2, has been employed to produce the required impactors. Initial experimental results are presented highlighting the potential of this experimental approach; further, these results - combined with basic hydrocode simulations - are used to postulated idealised structures which would allow useful loading paths such as the Adiabat to be readily accessed.

  13. Areal Crater Density Analysis of Volcanic Smooth Plains: A New Approach to Distinguishing Age Units

    NASA Astrophysics Data System (ADS)

    Ostrach, L. R.; Robinson, M. S.

    2013-12-01

    It is well documented that the lunar maria were emplaced over an extended period of time [e.g., 1-3], and mare units exhibit significant color differences in multispectral data that are interpreted to correlate with distinct mineralogical compositions and ages [e.g., 3-7]. Areal crater density (ACD) analysis is used as a novel approach to identify resurfacing boundaries within Mare Imbrium as a test case for mercurian studies. Absolute model age dating and measures of ACD from crater counts on Lunar Reconnaissance Orbiter Wide Angle Camera (LRO WAC) mosaics reveal two spatially expansive, statistically separable units in Mare Imbrium. The older, spectrally red unit (~15-18 wt% FeO, ~2-5 wt% TiO2 [8]) in the east is ~3.3 Ga, and the younger, spectrally blue unit (~17-20 wt% FeO, ~7-10 wt% TiO2 [8]) in the west is ~2.2 Ga. ACD measurements show a regional boundary at the contact between these two regions. The geologic contact is confidently observed in ACD maps derived for regions with model age differences >300-500 million years and spatial extents >1 × 104 km2. The older, spectrally red unit exhibits higher ACD (>35000 craters with diameters ≥500 m per 106 km2) and the younger, spectrally blue unit has a lower ACD (<26000 craters with diameters ≥500 m per 106 km2); the absolute model ages and ACD results agree with other dating studies of this region [5, 9-12]. Thus, ACD measurements provide a reliable technique to distinguish relative ages among geologic units as well as a means to explore the statistical significance of published absolute model ages. Moreover, the ability to distinguish surface units of different ages from measures of crater frequencies in Mare Imbrium, when spectral information is not available or units do not exhibit spectral contrasts, shows that the ACD technique may be applied to other planetary bodies to search for age boundaries within contiguous smooth plains units. For example, multispectral differences within volcanic units (age

  14. The temperature and electromagnetic field distributions of heat-assisted magnetic recording for bit-patterned media at ultrahigh areal density

    NASA Astrophysics Data System (ADS)

    Pituso, K.; Kaewrawang, A.; Buatong, P.; Siritaratiwat, A.; Kruesubthaworn, A.

    2015-05-01

    In this paper, the temperature and electromagnetic field distributions for bit-patterned media (BPM) with heat-assisted writing technology at areal density of 6.54-17.92 Tb/in2 are investigated by the finite integral technique method. We have found that the BPM can confine temperature better than continuous media. The temperature ratio of neighbor bits to heating bit of BPM at areal density of 6.54-7.69 Tb/in2 is lower than 65% and increases with increasing areal density. The electric field direction is toward the bit and the magnetic field circulates around the heating bit. In addition, the electric field of BPM is the same pattern as continuous media at areal density of 13.17 Tb/in2 or above.

  15. Using X-Rays to Test CVD Diamond Detectors for Areal Density Measurement at the National Ignition Facility

    SciTech Connect

    Dauffy, L S; Koch, J A; Tommasini, R; Izumi, N

    2008-05-06

    At the National Ignition Facility (NIF), 192 laser beams will compress a target containing a mixture of deuterium and tritium (DT) that will release fusion neutrons, photons, and other radiation. Diagnostics are being designed to measure this emitted radiation to infer crucial parameters of an ignition shot. Chemical Vapor Deposited (CVD) diamond is one of the ignition diagnostics that will be used as a neutron time-of-flight detector for measuring primary (14.1 MeV) neutron yield, ion temperature, and plasma areal density. This last quantity is the subject of this study and is inferred from the number of downscattered neutrons arriving late in time, divided by the number of primary neutrons. We determine in this study the accuracy with which this detector can measure areal density, when the limiting factor is detector and electronics saturation. We used laser-produced x-rays to reproduce NIF signals in terms of charge carriers density, time between pulses, and amplitude contrast and found that the effect of the large pulse on the small pulse is at most 8.4%, which is less than the NIF accuracy requirement of {+-} 10%.

  16. Numerical and areal density estimates of fibre type composition in a skeletal muscle (rat extensor digitorum longus).

    PubMed Central

    Egginton, S

    1990-01-01

    The composition of a mixed fast skeletal muscle (rat extensor digitorum longus) was examined to quantify the difference between the relative number of the three major fibre types in a representative muscle and their relative contribution to muscle cross-section, i.e. numerical (NN) and areal (AA) densities, respectively. These two indices clearly differ in their physiological relevance. While the former may be useful in describing hyperplasia, the latter allows for differences in size among fibre types. When estimated as NN, over 20% of fields contained 5-10% SO fibres and less than 5% had 75-80% FG fibres. In contrast, only 2% of fields had an AA of 5-10% for SO fibres while around 30% contained 75-80% FG fibres. The importance of a direct method for estimating AA is emphasised, as an indirect approach may have an error of 20-30% when used for oxidative fibre types. The use of an unbiased sampling regime to minimise error in determining both numerical and areal densities of different fibre types is illustrated. Images Fig. 1 Fig. 2 PMID:2139022

  17. Development of a gated scintillation fiber neutron detector for areal density measurements of inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Lerche, R. A.; Phillips, T. W.; Schmid, G. J.; Moran, M. J.; Koch, J. A.; Azechi, H.; Sangster, T. C.

    2003-03-01

    A detector for fuel areal density measurements in inertial confinement fusion capsules has been designed. Observation of neutrons scattered in an imploded deuterium capsule (0.27-0.6 MeV) is a promising method for areal density measurements in the National Ignition Facility DD surrogate capsules. In order to detect scattered neutrons, we need to (1) suppress interference due to the strong direct neutron burst and (2) suppress the background produced by neutrons scattering on nontarget material (mainly from the target chamber). In our detector system, we suppress direct neutrons by gating the detector. We suppress the nontarget background neutrons by placing the detector outside the target chamber and limiting the view of the detector with collimators. In addition, we are developing a lithium-glass scintillation-fiber detector (LG-SCIFI) to detect the scattered neutrons. The LG-SCIFI will work as a multichannel scintillator array. The scintillation signal will be amplified by a microchannel plate image intensifier, which is gated to accept signals only in a specific time-of-flight window for the scattered neutrons. The gated scintillation image will be recorded by a charge-coupled device. Since the detector is segmented, neutron detection events will be clearly identified as bright spots in the gated image.

  18. Multi-view areal-density maps of compressed shells in OMEGA direct-drive implosions extracted from MMI data

    NASA Astrophysics Data System (ADS)

    Johns, Heather; Joshi, Tirtha; Mayes, Daniel; Durmaz, Tunay; Mancini, Roberto; Tommasini, Riccardo; Delettrez, Jacques; Regan, Sean; Nagayama, Taisuke

    2012-10-01

    In a series of implosion experiments performed at the OMEGA laser facility, spherical plastic shells doped with an embedded titanium tracer-layer and filled with deuterium gas were driven with high- and low-adiabat laser pulse shapes. The titanium emergent intensity distribution was recorded with a streaked spectrometer and three identical gated, multi-monochromatic x-ray imaging instruments (MMI) that observed the implosion along three quasi-orthogonal lines-of-sight. The data shows spectral signatures due to absorption K-shell line transitions in titanium L-shell ions that are backlit by the continuum radiation from the hot core. To interpret these observations, the MMI spectrally-resolved image data were processed to obtain narrow-band images and spatially-resolved spectra based on the titanium spectral features.footnotetextT. Nagayama, R.C. Mancini, R. Florido, et al, J. App. Phys. 109, 093303 (2011) Areal-density maps were extracted using two independent methods based on narrow-band images and spatially-resolved spectra. The areal-density maps reveal the 3D structure and state of the compressed shell through the collapse of the implosion and the performance differences between high- and low-adiabat implosions.

  19. Development of Low Density, Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  20. Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Boehly, T. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Radha, P. B.; Seka, W.; Skupsky, S.; Stoeckl, C.; Casey, D. T; Frenje, J. A.; Petrasso, R. D.

    2010-04-23

    The performance of triple-picket deuterium-tritium cryogenic target designs on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reported. These designs facilitate control of shock heating in low-adiabat inertial confinement fusion targets. Areal densities up to 300 mg/cm{sup 2} (the highest ever measured in cryogenic deuterium-tritium implosions) are inferred in the experiments with an implosion velocity {approx}3x10{sup 7} cm/s driven at peak laser intensities of 8x10{sup 14} W/cm{sup 2}. Extension of these designs to ignition on the National Ignition Facility [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] is presented.

  1. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera)

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Radha, P. B.; Sangster, T. C.; Meyerhofer, D. D.; Hatchett, S. P.; Haan, S. W.; Cerjan, C. J.; Landen, O. L.; Fletcher, K. A.; Leeper, R. J.

    2010-05-01

    For the first time high areal-density (ρR) cryogenic deuterium-tritium (DT) implosions have been probed using downscattered neutron spectra measured with the magnetic recoil spectrometer (MRS) [J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The ρR data obtained with the MRS have been essential for understanding how the fuel is assembled and for guiding the cryogenic program at the Laboratory for Laser Energetics (LLE) to ρR values up to ˜300 mg/cm2. The ρR data obtained from well-established charged particle spectrometry techniques [C. K. Li et al., Phys. Plasmas 8, 4902 (2001)] were used to authenticate the MRS data for low-ρR plastic capsule implosions, and the ρR values inferred from these techniques are in excellent agreement, indicating that the MRS technique provides high-fidelity data. Recent OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for determining ρR, ion temperature (Ti) and neutron yield (Yn) in both low-yield, tritium-rich, deuterium-lean, hydrogen-doped implosions and high-yield DT implosions.

  2. X-ray spectroscopic measurements of areal density and modulations of compressed shells in implosion experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Yaakobi, B.; Marshall, F. J.; Meyerhofer, D. D.

    2000-11-01

    The compressed shell integrity of imploded spherical targets has been studied using the 60-beam, 30-kJ UV OMEGA laser system. The shell integrity is measured by imaging the core emission at different x-ray energies. Time-integrated images of the titanium-doped targets have been obtained using a pinhole array with filters below and above the K-edge energy of titanium and recorded on DEF film. The optical depth ratio between such images reflects the nonuniformity of the cold or absorbing part of the shell. The nonuniformity in emission of pure-CH targets reflects integrity of the hot or emitting part of the shell. Using Fourier transforms of the images, signal modulations have been distinguished from noise. The modulations in shell areal density have been measured to be about 20% to 50% for 20- and 24-μm shell thicknesses and for square and shaped pulses, with nonuniformities peaked at l˜5 of the compressed shell.

  3. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE PAGESBeta

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-25

    In warm target direct-drive ICF implosion experiments performed at the OMEGA laser facility, plastic microballoons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolvedmore » titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400±28eV, electron number density (Ne) = 8.5x1024±2.5x1024 cm-3, and average areal density <ρR> = 86±7mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1±1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5±1μm.« less

  4. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-01

    In warm target direct-drive inertial confinement fusion implosion experiments performed at the OMEGA laser facility, plastic micro-balloons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolved titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400 ± 28 eV, electron number density (Ne) = 8.5 × 1024 ± 2.5 × 1024 cm-3, and average areal density <ρR> = 86 ± 7 mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1 ± 1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5 ± 1 μm.

  5. Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project

    SciTech Connect

    Hertel, E.S. Jr.; Ryder, E.E.

    1991-11-01

    The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

  6. Development of Low Density Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpole, Mairead; Thornton, Jeremy; Fan, Wendy; Agrawal, Parul; Doxtad, Evan; Gasch, Matt

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (0.27g/cm3) coupled with efficient ablative capability at high heat fluxes. Under the Orion program, PICA was also shown to be capable of both ISS and lunar return missions however some unresolved issues remain for its application in a tiled configuration for the Orion-specific design. In particular, the problem of developing an appropriate gap filler resulted in the Orion program selecting AVCOAT as the primary heatshield material over PICA. We are currently looking at alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA that will address some of the design issues faced in the application of a tiled PICA heat shield. These new materials are viable TPS candidates for upcoming NASA missions and as material candidates for private sector Commercial Orbital Transportation Services (COTS). This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as arc jet and LHMEL screening test results.

  7. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  8. Slow dynamics of ablated zone observed around the density fluctuation ridge of fluid medium

    NASA Astrophysics Data System (ADS)

    Koizumi, Masato; Kulinich, Sergei A.; Shimizu, Yoshiki; Ito, Tsuyohito

    2013-12-01

    In-situ shadowgraph images were recorded to follow and study processes during laser ablation of Sn targets in pressurized carbon dioxide medium. The dynamics of the low-density region with a bubble-like structure forming by ablated Sn in CO2 at different pressures was studied. The lifetime of the region is shown to be pressure-dependent, being the longest near the density fluctuation ridge of the medium, i.e., at 8.8 MPa at 40 °C. The present work is to report on the slower dynamics of ablated zone near the medium density fluctuation maximum, which can be used in nanoparticle synthesis and processing.

  9. Convergent ablator performance measurements

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.; Olson, R. E.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile {rho}(r) and effective backlighter profile I{sub 0}(y) at each time step to be uniquely determined subject to the constraints that {rho}(r) is localized in radius space and I{sub 0}(y) is delocalized in object space. Moments of {rho}(r) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  10. Convergent ablator performance measurements

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-01

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile ρ(r ) and effective backlighter profile I0(y) at each time step to be uniquely determined subject to the constraints that ρ(r ) is localized in radius space and I0(y) is delocalized in object space. Moments of ρ(r ) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  11. Streaked radiography measurements of convergent ablator performance (invited)

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Olson, R. E.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other ablator rocket parameters have been measured using a single streaked x-ray radiograph. A regularization technique has been used to determine the ablator density profile {rho}(r) at each time step; moments of {rho}(r) then provide the areal density, average radius, and mass of the unablated, or remaining, ablator material, with the velocity determined from the time derivative of the average radius. The technique has been implemented on experiments at the OMEGA laser facility.

  12. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  13. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Edwards, R.; Compant La Fontaine, A.; Aedy, C.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Mastrosimone, D.; Pichoff, N.; Pien, G.; Stoeckl, C.

    2013-08-01

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 1019 W/cm2) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm2. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function).

  14. The thermal and mechanical properties of a low density elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1973-01-01

    Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.

  15. Videodensitometric time-density curve change after alcohol septal ablation of obstructive hypertrophic cardiomyopathy.

    PubMed

    Nemes, A; Kalapos, A; Sasi, V; Ungi, T; Ungi, I; Forster, T; Sepp, R

    2015-02-01

    A recently developed computerized method for estimation of myocardial perfusion, based on the analysis of the time-density curves, is demonstrated to assess myocardial blush over a selected myocardial region of interest in a patient with obstructive hypertrophic cardiomyopathy before and after alcohol septal ablation. PMID:23184598

  16. High-density carbon ablator experiments on the National Ignition Facility

    SciTech Connect

    MacKinnon, A. J. Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  17. High-density carbon ablator experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  18. High-density carbon ablator experiments on the National Ignition Facilitya)

    SciTech Connect

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  19. Mapping neutral, ion, and electron number densities within laser-ablated plasma plumes

    NASA Astrophysics Data System (ADS)

    Weaver, I.; Doyle, Liam A.; Martin, G. W.; Riley, Dave; Lamb, M. J.; Graham, William G.; Morrow, Tom; Lewis, Ciaran L. S.

    1998-05-01

    Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.

  20. Reduction of early-time perturbation growth in ablatively driven laser targets using tailored density profiles

    NASA Astrophysics Data System (ADS)

    Metzler, Nathan; Velikovich, Alexander L.; Gardner, John H.

    1999-08-01

    The effects of tailoring the density profile in a laser target in order to decrease imprinting of mass perturbations due to the long-wavelength modes are investigated analytically and numerically. Inverting the acceleration of the ablation front during the shock transit time could reduce the early-time mass perturbation amplitudes developed in the target after the shock transit. This principle was first suggested for mitigating the Rayleigh-Taylor (RT) instability of imploding Z-pinches [Velikovich et al., Phys. Rev. Lett. 77, 853 (1996); Phys. Plasmas 5, 3377 (1998)]. As the shock wave slows down propagating into higher density layers, the effective gravity near the ablation front has the same direction as the density gradient. This makes the mass perturbations near it oscillate at a higher frequency and at a lower amplitude than they normally would due to the "rocket effect" caused by mass ablation [Sanz, Phys. Rev. Lett. 73, 2700 (1994); Piriz et al., Phys. Plasmas 4, 1117 (1997)]. So, tailoring density profiles instead of using flat densities is demonstrated to reduce the "seed" mass perturbation amplitude at the onset of the exponential RT growth.

  1. Genome-wide association meta-analyses identified 1q43 and 2q32.2 for hip Ward's triangle areal bone mineral density.

    PubMed

    Pei, Yu-Fang; Hu, Wen-Zhu; Hai, Rong; Wang, Xiu-Yan; Ran, Shu; Lin, Yong; Shen, Hui; Tian, Qing; Lei, Shu-Feng; Zhang, Yong-Hong; Papasian, Christopher J; Deng, Hong-Wen; Zhang, Lei

    2016-10-01

    Aiming to identify genomic variants associated with osteoporosis, we performed a genome-wide association meta-analysis of bone mineral density (BMD) at Ward's triangle of the hip in 7175 subjects from 6 samples. We performed in silico replications with femoral neck, trochanter, and inter-trochanter BMDs in 6912 subjects from the Framingham heart study (FHS), and with forearm, femoral neck and lumbar spine BMDs in 32965 subjects from the GEFOS summary results. Combining the evidence from all samples, we identified 2 novel loci for areal BMD: 1q43 (rs1414660, discovery p=1.20×10(-8), FHS p=0.05 for trochanter BMD; rs9287237, discovery p=3.55×10(-7), FHS p=9.20×10(-3) for trochanter BMD, GEFOS p=0.02 for forearm BMD, nearest gene FMN2) and 2q32.2 (rs56346965, discovery p=7.48×10(-7), FHS p=0.10 for inter-trochanter BMD, GEFOS p=0.02 for spine BMD, nearest gene NAB1). The two lead SNPs rs1414660 and rs56346965 are eQTL sites for the genes GREM2 and NAB1 respectively. Functional annotation of GREM2 and NAB1 illustrated their involvement in BMP signaling pathway and in bone development. We also replicated three previously reported loci: 5q14.3 (rs10037512, discovery p=3.09×10(-6), FHS p=8.50×10(-3), GEFOS p=1.23×10(-24) for femoral neck BMD, nearest gene MEF2C), 6q25.1 (rs3020340, discovery p=1.64×10(-6), GEFOS p=1.69×10(-3) for SPN-BMD, nearest gene ESR1) and 7q21.3 (rs13310130, discovery p=8.79×10(-7), GEFOS p=2.61×10(-7) for spine BMD, nearest gene SHFM1). Our findings provide additional insights that further enhance our understanding of bone development, osteoporosis, and fracture pathogenesis. PMID:27397699

  2. Measurement of electron density by Stark broadening in an ablative pulsed plasma thruster

    SciTech Connect

    Liu Feng; Nie Zongfu; Xu Xu; Zhou Qianhong; Li Linsen; Liang Rongqing

    2008-09-15

    Electron density was measured by Stark broadening in an ablative pulsed plasma thruster. The asymmetrical deconvolution is used to obtain Stark broadening. The result shows that the electron density in the discharge channel is 2.534x10{sup 22} m{sup -3} when the discharge energy is 5 J and the measured electron temperature is 18 000 K, and it is in excellent agreement with other experimental and theoretical data. The electron density in the discharge channel increases very minimally with increasing discharge energy.

  3. Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean

    2011-01-01

    An ablative composite is low-density (0.25 to 0.40 g/cu cm), easy to fabricate, and superior to the current state-of-the-art ablator (phenolic impregnated carbon ablator, PICA) in terms of decomposition temperature, char yield, and mechanical strength. Initial ablative testing with a CO2 laser under high-heat-flux (1,100 W/sq cm) conditions showed these new ablators are over twice as effective as PICA in terms of weight loss, as well as transfer of heat through the specimen. The carbon fiber/poly(azomethine) composites have the same density as PICA, but are 8 to 11 times stronger to irreversible breaking by tensile compression. In addition, polyazomethine char yields by thermogravimetric analysis are 70 to 80 percent at 1,000 C. This char yield is 10 to 20 percent higher than phenolic resins, as well as one of the highest char yields known for any polymer. A high char yield holds the composite together better toward shearing forces on reentry, as well as reradiates high heat fluxes. This innovative composite is stronger than PICA, so multiple pieces can be sealed together without fracture. Researchers have also studied polyazomethines before as linear polymers. Due to poor solubility, these polymers precipitate from the polymerization solvent as a low-molecular-weight (2 to 4 repeat units) powder. The only way found to date to keep linear polyazomethines in solution is by adding solubilizing side groups. However, these groups sacrifice certain polymer properties. These hyperbranched polyazomethines are high molecular weight and fully aromatic.

  4. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  5. Density profile of a line plasma generated by laser ablation for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hwangbo, Y.; Ryu, W.-J.; Kim, K. N.; Park, S. H.

    2016-03-01

    An elongated line plasma generated by a laser ablation of an aluminum target was investigated, which can be used in the laser wakefield acceleration (LWFA) by employing ultra-intense laser pulse through the longitudinal direction of the plasma. To generate a uniform and long plasma channel along the propagation of ultra-intense laser pulse (main pulse), a cylindrical lens combined with a biprism was used to shape the intensity of a ns Nd:YAG laser (pre-pulse) on the Al target. A uniformity of laser intensity can be manipulated by changing the distance between the biprism and the target. The density profile of the plasma generated by laser ablation was measured using two interferometers, indicating that a 3-mm long uniform line plasma with a density of 6 × 1017 cm-3 could be generated. The density with main pulse was also measured and the results indicated that the density would increase further due to additional ionization of the plasma by the main ultra-intense laser pulse. The resulting plasma density, which is a crucial parameter for the LWFA, can be controlled by the intensity of the pre-pulse, the time delay between the pre- and main pulse, and the distance of the main pulse from the target surface.

  6. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive.

    PubMed

    Casey, D T; Milovich, J L; Smalyuk, V A; Clark, D S; Robey, H F; Pak, A; MacPhee, A G; Baker, K L; Weber, C R; Ma, T; Park, H-S; Döppner, T; Callahan, D A; Haan, S W; Patel, P K; Peterson, J L; Hoover, D; Nikroo, A; Yeamans, C B; Merrill, F E; Volegov, P L; Fittinghoff, D N; Grim, G P; Edwards, M J; Landen, O L; Lafortune, K N; MacGowan, B J; Widmayer, C C; Sayre, D B; Hatarik, R; Bond, E J; Nagel, S R; Benedetti, L R; Izumi, N; Khan, S; Bachmann, B; Spears, B K; Cerjan, C J; Gatu Johnson, M; Frenje, J A

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1  g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition. PMID:26382681

  7. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    SciTech Connect

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; Park, H. -S.; Döppner, T.; Callahan, D. A.; Haan, S. W.; Patel, P. K.; Peterson, J. L.; Hoover, D.; Nikroo, A.; Yeamans, C. B.; Merrill, F. E.; Volegov, P. L.; Fittinghoff, D. N.; Grim, G. P.; Edwards, M. J.; Landen, O. L.; Lafortune, K. N.; MacGowan, B. J.; Widmayer, C. C.; Sayre, D. B.; Hatarik, R.; Bond, E. J.; Nagel, S. R.; Benedetti, L. R.; Izumi, N.; Khan, S.; Bachmann, B.; Spears, B. K.; Cerjan, C. J.; Gatu Johnson, M.; Frenje, J. A.

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  8. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGESBeta

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; et al

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  9. Radar meteors range distribution model. III. Ablation, shape-density and self-similarity parameters

    NASA Astrophysics Data System (ADS)

    Pecinová, D.; Pecina, P.

    2007-10-01

    The theoretical radar meteors Range Distribution of the overdense echoes developed by Pecinová and Pecina (2007 a) is applied here to observed range distributions of meteors belonging to the Quadrantid, Perseid, Leonid, Geminid, γ Draconid (Giacobinid), ζ Perseid and β Taurid streams to study the variability of the shape-density, ablation, and self-similarity parameters of meteoroids of these streams. We have found in accordance with results of photographical observations that ablation parameter σ is higher for members of showers of clearly cometary origin, and is lower for Geminid and daytime shower meteoroids. Levin's self-similarity parameter μ was found to be much greater than the classical value 2/3 for all investigated streams with the exception of Geminids, for which the value found is almost classical, i.e. 0.66 ± 0.01. The method of getting μ by means of fitting the light curve of faint TV meteors is also suggested.

  10. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  11. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  12. Time-resolved measurements of in-flight ablator performance using streaked x-ray radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien; Spears, Brian; Sorce, Chuck; Celliers, Peter; Landen, Otto; Collins, Gilbert; Boehly, Thomas

    2007-11-01

    Determining ablator performance during an implosion is a critical part of the NIF tuning campaign. In particular, it is vital to have an accurate, in-flight measure of the velocity, areal density, and mass of the ablator. We present a new technique which achieves time-resolved measurements of all these parameters in a single, area-backlit, streaked radiograph. This is accomplished by tomographically inverting the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, thickness, areal density, and mass of the ablator can then be determined simply by taking moments of this density profile. Application of this technique is demonstrated on Cu-doped Be capsule implosions at Omega. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  13. Note: Low density and long plasma channels generated by laser transversely ignited ablative capillary discharges.

    PubMed

    Liu, Mingwei; Deng, Aihua; Liu, Jiansheng; Li, Ruxin; Xu, Jiancai; Xia, Changquan; Wang, Cheng; Shen, Baifei; Xu, Zhizhan; Nakajima, K

    2010-03-01

    A technique is developed to reduce the jitter associated with ablative capillary discharges. A laser pulse propagating perpendicularly to the axis of the capillary and focused onto a copper wire creates a plasma that initiates the discharge. This transverse laser ignition method has several advantages over previous techniques employing a laser pulse collinear with the capillary, including increased capillary lifetime and simpler arrangement of the igniting and the driving pulses for laser-wakefield acceleration. Using this technique long, low density plasma channels are produced with low jitter. PMID:20370230

  14. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    SciTech Connect

    Greenly, John B.; Seyler, Charles

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and

  15. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  16. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  17. 3D RuO₂ Microsupercapacitors with Remarkable Areal Energy.

    PubMed

    Ferris, Anaïs; Garbarino, Sébastien; Guay, Daniel; Pech, David

    2015-11-01

    Large areal capacitance electrodes made of ruthenium oxide on highly porous gold current collectors are realized by an attractive approach. The hybrid structure exhibits a capacitance in excess of 3 F cm(-2) and an areal energy density for all-solid-state microsupercapacitors that is comparable to those of microbatteries. PMID:26419782

  18. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  19. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  20. First Case of Automatic His Potential Detection With a Novel Ultra High-density Electroanatomical Mapping System for AV Nodal Ablation

    PubMed Central

    Hilbert, Sebastian; Kosiuk, Jedrzej; John, Silke; Hindricks, Gerhard; Bollmann, Andreas

    2016-01-01

    A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation. PMID:25852249

  1. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGESBeta

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; et al

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  2. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.

  3. Dynamics of pulsed laser ablation in high-density carbon dioxide including supercritical fluid state

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Kato, Toru; Stauss, Sven; Himeno, Shohei; Kato, Satoshi; Muneoka, Hitoshi; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2013-10-01

    To gain a better understanding of pulsed laser ablation (PLA) processes in high-density fluids, including gases, liquids, and supercritical fluids (SCFs), we have investigated the PLA dynamics in high-density carbon dioxide (CO2) using a time-resolved shadowgraph (SG) observation method. The SG images revealed that the PLA dynamics can be categorized into two domains that are separated by the gas-liquid coexistence curve and the Widom line, which forms a border between the gaslike and liquidlike domains of an SCF. Furthermore, a cavitation bubble observed in liquid CO2 near the critical point exhibited a particular characteristic: the formation of an inner bubble and an outer shell structure. The results indicate that the thermophysical properties of the reaction field generated by PLA can be dynamically tuned by controlling the solvent temperature and pressure, particularly near the critical point.

  4. Investigation of gamma-ray time shifts caused by capsule areal density variations in inertial confinement fusion experiments at the national ignition facility and the omega facility

    NASA Astrophysics Data System (ADS)

    Grafil, Elliot M.

    This thesis describes work on Cherenkov based gamma detectors used as diag- nostics at Inertial Confinement Fusion (ICF) facilities. The first part describes the calibration and commissioning of the Gamma Reaction History diagnostic which is a four cell Cherenkov detector array used to characterize the ICF implosion at the National Ignition Facility (NIF) by measuring the gamma rays generated during the fusion event. Two of the key metrics which the GRH measures are Gamma Bang Time (GBT) generated from the D(T,α)n thermonuclear burn and Ablator Peak Time (APT) caused by (n,n‧)gamma reactions in the surrounding capsule ablator. Simulations of ignition capsules predict that GBT and APT should be time synchronized. After GRH commissioning, the array was used during first year of NIF operation in the National Ignition Campaign. Contrary to expectations, time shifts between GBT and APT of order 10s of picoseconds were observed. In order to further investigate the possibility of these time shifts in view of testing both instrument and code credibility an ICF shot campaign at the smaller OMEGA facility in Rochester was devised. It was performed during two full shot days in April of 2013 and 2014 and confirmed in principle the viability of the Cherenkov detector approach but raised additional questions regarding the credibility of the simulation codes used to describe ICF experiments. Specifically the measurements show that the understanding of temporal behavior of GBT vs APT may not be properly modeled in the DRACO code used at OMEGA. In view of the OMEGA results which showed no time shifts between GBT and APT, the readout and timing synchronization system of the GRH setup at the NIF was reevaluated in the framework of this thesis. Motivated by the results, which highlighted the use of wrong optical fiber diameters and possible problems with the installed variable optical attenuators, the NIF equipment has been updated over the recent months and new timing tests will

  5. Determination of energy density threshold for laser ablation of bacteria. An in vitro study.

    PubMed

    Coffelt, D W; Cobb, C M; MacNeill, S; Rapley, J W; Killoy, W J

    1997-01-01

    The Nd:YAG and CO2 lasers have been shown to be bactericidal at relative low energy densities. However, at energy densities exceeding 120 J/cm2 (CO2) and 200 J/cm2 (Nd:YAG), laser irradiation also causes irreparable root surface damage. The purpose of this study was to determine, in vitro, the energy density threshold at which microbial ablation could be achieved while inflicting the least amount of damage to the root surfaces of human teeth. Pairs of Escherichia coli colonies cultured on broth agar were treated with a CO2 laser using a pulsed waveform at approximate energy densities ranging from 3 to 110 J/cm2. One of each colony-pair was then examined by scanning electron microscopy (SEM) and the other subcultured for viable microbes. Roots of extracted teeth were lightly scaled and treated by CO2 laser, again with pulsed beam using approximate energy densities of 3 to 110 J/cm2: and examined by SEM. Regardless of the level of energy density, residual bacteria could be subcultured from all laser treated microbial colonies. The inability of the laser to completely obliterate microbial colonies was likely due to: depth of energy penetration, difficulty in precisely overlapping beam focal spots, irregular beam profile, and presence of microbes at the periphery of the beam focal spot. The threshold energy density for bacterial obliteration was determined to be 11 J/cm2 and that for root damage was 41 J/cm2. Root damage was evident by charring, crater formation, melt-down and resolidification surface mineral, and increasing surface porosity. The results of this in vitro study indicate that when used at an energy density between 11 and 41 J/cm2 the CO2 laser may destroy microbial colonies without inflicting undue damage to the tooth root surface. PMID:9049791

  6. Laser-ablated loading of solid target through foams of overcritical density

    SciTech Connect

    De Angelis, R. Consoli, F.; Andreoli, P.; Cristofari, G.; Di Giorgio, G.; Gus'kov, S. Yu.; Rupasov, A. A.

    2015-07-15

    The main objective of the work is to study the conversion of the laser pulse energy into the energy of the hydrodynamic motion of matter in a solid target following the initial absorption of laser radiation in a layer of porous material. Results of experiments on plane massive aluminum targets, coated with a layer of porous plastic with density greater than the critical density of the plasma created, are presented. Experiments were carried out on the laser installation ABC of the Research Center ENEA-Frascati; the targets were irradiated by a beam of the fundamental harmonic of Nd-laser radiation with an energy of about 50 kJ, intensity of 10{sup 13 }W/cm{sup 2}, and 3 ns duration. The experimental method consisted in measuring the volume of the craters created on the aluminum surface behind various thicknesses and densities of the porous absorber of laser radiation. On the basis of these measurements and of an advanced analytical model, quantitative conclusions are made on how the efficiency of laser energy transfer to the solid part of the target (laser-ablated loading) depends on thickness and density of the porous absorber.

  7. Laser-ablated loading of solid target through foams of overcritical density

    NASA Astrophysics Data System (ADS)

    De Angelis, R.; Consoli, F.; Gus'kov, S. Yu.; Rupasov, A. A.; Andreoli, P.; Cristofari, G.; Di Giorgio, G.

    2015-07-01

    The main objective of the work is to study the conversion of the laser pulse energy into the energy of the hydrodynamic motion of matter in a solid target following the initial absorption of laser radiation in a layer of porous material. Results of experiments on plane massive aluminum targets, coated with a layer of porous plastic with density greater than the critical density of the plasma created, are presented. Experiments were carried out on the laser installation ABC of the Research Center ENEA-Frascati; the targets were irradiated by a beam of the fundamental harmonic of Nd-laser radiation with an energy of about 50 kJ, intensity of 1013 W/cm2, and 3 ns duration. The experimental method consisted in measuring the volume of the craters created on the aluminum surface behind various thicknesses and densities of the porous absorber of laser radiation. On the basis of these measurements and of an advanced analytical model, quantitative conclusions are made on how the efficiency of laser energy transfer to the solid part of the target (laser-ablated loading) depends on thickness and density of the porous absorber.

  8. High-Density Carbon Ablator Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ross, James; Macphee, Andrew; McNaney, James; Doeppner, Tilo; Pak, Art; Rygg, Ryan; Benedetti, Robin; Town, Richard; Bradley, David; Dewald, Edward; Tommasini, Ricardo; Milovich, Jose; Berzak-Hopkins, Laura; Moody, John; Callahan, Debbi; Hamza, Alex; Biener, Juergen; Ho, Darwin; Storm, Eric; Kilkenny, Joe; Landen, Otto; Lindl, John; Edwards, John; Meezan, Nathan; Mackinno, Andrew

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been preformed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). The NIF laser was used to generate a shaped laser pulse with a peak power of 360 TW and a total energy of 1.3 MJ. The total neutron yield, ion temperature, neutron bang time and x-ray bang time were measured and compared to simulations. A deuterium-tritium filled HDC capsule recently produced a neutron yield of 1.6 × 1015, the current record for laser driven ICF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by LDRD-11-ERD-075.

  9. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, Laura

    2014-10-01

    Achieving ignition requires reaching fast implosion velocities, which highlights the need for a highly efficient hohlraum to drive indirect-drive inertial confinement fusion implosions. Gas-filled hohlraums are typically utilized due to the pulse length (15-20 ns) needed to drive plastic (CH) capsules. With the recent use of 3× denser high-density carbon (HDC) capsules, ignition pulses can be less than 10 ns in duration, providing the opportunity to utilize near-vacuum hohlraums (NVH) to drive ignition-relevant implosions on the National Ignition Facility (NIF) with minimal laser-plasma instabilities which complicate standard gas-filled hohlraums. Initial NVH implosions on the NIF have demonstrated coupling efficiency significantly higher than observed in gas-filled hohlraums - backscatter losses less than 2% and virtually no suprathermal electron generation. A major design challenge for the NVH is symmetry control. Without tamping gas, the hohlraum wall quickly expands filling the volume with gold plasma. However, results to-date indicate that the inner-cone beams propagate freely to the hohlraum wall for at least 6.5 ns. With minimal predicted cross-beam power transfer, this propagation enables symmetry control via dynamic beam phasing - time-dependent direct adjustment of the inner- and outer-cone laser pulses. A series of experiments with an HDC ablator and NVH culminated in a 6 ns, 1.2 MJ cryogenic DT layered implosion yielding 1.8 × 1015 neutrons--significantly higher yield than any CH implosion at comparable energy. This implosion reached an ignition-relevant velocity -350 km/s - with no observed ablator mix in the hot spot. Recent experiments have explored two-shock designs in a larger, 6.72 mm hohlraum, and upcoming experiments will incrementally extend the pulse duration toward a 9 ns long, three-shock ignition design. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Performance of high-density-carbon (HDC) ablator implosion experiments on the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    MacKinnon, Andy

    2013-10-01

    A series of experiments on the National Ignition Facility (NIF) have been performed to measure high-density carbon (HDC) ablator performance for indirect drive inertial confinement fusion (ICF). HDC is a very promising ablator material; being 3x denser than plastic, it absorbs more hohlraum x-rays, leading to higher implosion efficiency. For the HDC experiments the NIF laser generated shaped laser pulses with peak power up to 410 TW and total energy of 1.3 MJ. Pulse shapes were designed to drive 2, 3 or 4 shocks in cryogenic layered implosions. The 2-shock pulse, with a designed fuel adiabat of ~3 is 6-7ns in duration, allowing use of near vacuum hohlraums, which greatly increases the coupling efficiency due to low backscatter losses. Excellent results were obtained for 2,3 and 4 shock pulses. In particular a deuterium-tritium gas filled HDC capsule driven by a 4-shock pulse in a gas-filled hohlraum produced a neutron yield of 1.6 × 1015, a record for a non-cryogenically layered capsule driven by a gas-filled hohlraum. The first 2-shock experiment used a vacuum hohlraum to drive a DD gas filled HDC capsule with a 6.5 ns, laser pulse. This hohlraum was 40% more efficient than the gas-filled counterpart used for 3 and 4 shock experiments, producing near 1D performance at 11 x convergence ratio, peak radiation temperature of 317 eV, 98% laser-hohlraum coupling, and DD neutron yield of 2.2e13, a record for a laser driven DD implosion. The HDC campaigns will be presented, including options for pushing towards the alpha dominated regime. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    PubMed

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM. PMID:27607281

  12. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  13. Phenomenological and experimental study of the thermal response of low density silica ablators to high enthalpy plasma flows

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tran, Huy K.; Hamm, Michael K.

    1991-01-01

    A complete analysis of the melting-ablator governing equations is carried out for porous ablators with the purpose of establishing an approximate analytical model capable of determining surface recession, temperature, and heat flux as well as in-depth temperature profiles. A detailed dimensional analysis of the melt-flow governing equations is performed for parameters applicable to high-enthalpy flows. Results of arc-jet flow experiments performed on NASA Reusable Surface Insulation materials of different densities and over a range of stagnation pressures and heat fluxes are discussed. A dimensionless correlation for melt run-offs is derived in terms of material and flow parameters; however, it is pointed out that the accuracy of the current data is sufficient to conclude the compliance with the model.

  14. Design Calculations for NIF Convergent Ablator Experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Callahan, D. A.; Hicks, D. G.; Landen, O. L.; Langer, S. H.; Meezan, N. B.; Spears, B. K.; Widmann, K.; Kline, J. L.; Wilson, D. C.; Petrasso, R. D.; Leeper, R. J.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics -- 1) Dante measurements of hohlraum x-ray flux and spectrum, 2) streaked radiographs of the imploding ablator shell, 3) wedge range filter measurements of D-He3 proton output spectra, and 4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning. *SNL, LLNL, and LANL are operated under US DOE contracts DE-AC04-94AL85000. DE-AC52-07NA27344, and DE-AC04-94AL85000.

  15. Design calculations for NIF convergent ablator experiments.

    SciTech Connect

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.; Zylstra, A.; Seguin, F.; Landen, Otto L.; Petrasso, R. D.; Rinderknecht, H.; Kline, J. L.; Frenje, J.; Wilson, D. C.; Langer, S. H.; Widmann, K.; Meezan, Nathan B.; Hicks, Damien G.; Olson, Richard Edward

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.

  16. Meteorite Ablation Evaluated from the Data on the Density of Cosmic-Ray Tracks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.

    2004-05-01

    We determined the form of the functional dependence of the rate of formation of tracks of galactic cosmic rays in meteorites (ρ/t) on the shielding degree for ordinary chondrites with preatmospheric radius R > 5 cm based on published semiempirical data on ρ/t. The resulting dependence was used to construct a nomogram which allowed us to estimate the ablation of a meteorite according to the average rate of track formation in it and its recovered mass. The calculated ablation of meteorites agrees with the estimates obtained by other methods. The average ablation for 83 ordinary chondrites was found to be equal to 78.4+3.1-3.4%. The analysis of the data obtained demonstrated that the average preatmospheric mass of chondrites is M ~ 90 kg, and for 95% of the meteorites, the preatmospheric masses fall in the interval ~2-3500 kg, which corresponds to radii from ~5 to ~60 cm. It was found that meteorites with a small preatmospheric mass tend to higher ablation.

  17. Comparison of plasma temperature and electron density on nanosecond laser ablation of Cu and nano-Cu

    SciTech Connect

    Chen, Anmin; Jiang, Yuanfei; Wang, Tingfeng; Shao, Junfeng; Jin, Mingxing

    2015-03-15

    Laser-induced breakdown spectroscopy is performed through the collection of spectra by spectral detection equipment at different delay times and distances from targets composed of Cu and nano-Cu, which are ablated using a Nd:YAG laser (532 nm, 10 ns, 10 Hz) in our experiments. The measured wavelength range is from 475 nm to 525 nm. Using the local thermodynamic equilibrium model, we analyze the characteristics of the plasma temperature and the electron number density for different distances between the target surface and the lens. The results show that when compared with the nano-Cu plasma case, the temperature of the Cu plasma is higher, while its electron number density is lower.

  18. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    SciTech Connect

    Hayes, Anna; Grim, Gary; Jungnam, Jerry; Bradley, Paul; Rundberg, Bob; Wilhelmy, Jerry; Wilson, Doug

    2009-07-09

    An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it the ideal

  19. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    NASA Astrophysics Data System (ADS)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  20. Estimating storm areal average rainfall intensity in field experiments

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, Christa D.; Wood, Eric F.

    1994-07-01

    Estimates of areal mean precipitation intensity derived from rain gages are commonly used to assess the performance of rainfall radars and satellite rainfall retrieval algorithms. Areal mean precipitation time series collected during short-duration climate field studies are also used as inputs to water and energy balance models which simulate land-atmosphere interactions during the experiments. In two recent field experiments (1987 First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) and the Multisensor Airborne Campaign for Hydrology 1990 (MAC-HYDRO '90)) designed to investigate the climatic signatures of land-surface forcings and to test airborne sensors, rain gages were placed over the watersheds of interest. These gages provide the sole means for estimating storm precipitation over these areas, and the gage densities present during these experiments indicate that there is a large uncertainty in estimating areal mean precipitation intensity for single storm events. Using a theoretical model of time- and area-averaged space- time rainfall and a model rainfall generator, the error structure of areal mean precipitation intensity is studied for storms statistically similar to those observed in the FIFE and MAC-HYDRO field experiments. Comparisons of the error versus gage density trade-off curves to those calculated using the storm observations show that the rainfall simulator can provide good estimates of the expected measurement error given only the expected intensity, coefficient of variation, and rain cell diameter or correlation length scale, and that these errors can quickly become very large (in excess of 20%) for certain storms measured with a network whose size is below a "critical" gage density. Because the mean storm rainfall error is particularly sensitive to the correlation length, it is important that future field experiments include radar and/or dense rain gage networks capable of accurately characterizing the

  1. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steven H.; Landen, Otto L.

    2013-11-01

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS) models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps) due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sent a ˜1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM) deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα - 2.76keV) backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  2. Observations of multimode perturbation decay at non-accelerating, soft x-ray driven ablation fronts

    NASA Astrophysics Data System (ADS)

    Loomis, E. N.; Braun, D.; Batha, S. H.; Landen, O. L.

    2012-12-01

    Minimizing the growth of hydrodynamic instabilities is a fundamental design issue facing the achievement of thermonuclear ignition and burn with Inertial Confinement Fusion (ICF). The thin capsules and extreme accelerations found in ICF make it an inherently unstable system primarily to Rayleigh-Taylor (RT) occurring at the ablation front. A potential mechanism by which perturbations at the outer capsule surface can be reduced lies in the already present ablative Richtmyer-Meshkov (RM) effect, which operates during the first shock transit of the ablator. At present, the available Equation of State (EOS) models predict a wide range of behavior for the ablative RM oscillations of multimode isolated defects on plastic (CH) capsules. To resolve these differences, we conducted experiments at the OMEGA Laser Facility [T. R. Boehly et al., Optics Comm. 133 (1997)] that measured the evolution of gaussian-shaped bumps driven by soft x-ray ablation from a halfraum. Shock speeds in the CH target were measured to reach 15 μm/ns for halfraum radiation temperatures of 70 eV lasting for up to 7 ns. The evolution of gaussian-shaped bumps of different widths and heights were measured using on-axis x-ray radiography at up to 37× magnification. Bumps with initial widths of 34 and 44 μm FWHM were found to grow by 3× their initial areal density and then saturate out to 6 ns due to lateral compression of the bump characteristic of the formation of a rippled shock front propagating into the solid target. Narrower 17 μm FWHM bumps, on the other hand, grew by roughly 2× followed immediately by a decrease back to initial values of areal density out to 7 ns, which largely agrees with both LEOS 5310 and SESAME 7592 EOS predictions. The difference in observed behavior suggests that high spatial frequency modes found in narrower bumps are needed to significantly affect the ablation front profile on shorter time scales.

  3. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Yashiro, H.; Kakehata, M.

    2013-05-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  4. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    SciTech Connect

    Yashiro, H.; Kakehata, M.

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  5. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  6. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  7. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  8. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 1015 neutrons, 40% of the 1D simulated yield.

  9. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B. Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  10. Single and Combined use of Human Parathyroid Hormone (PTH) (1-34) on Areal Bone Mineral Density (aBMD) in Postmenopausal Women with Osteoporosis: Evidence Based on 9 RCTs

    PubMed Central

    Song, Jiefu; Jing, Zhizhen; Chang, Feng; Li, Lijun; Su, Yunxing

    2014-01-01

    Background Human parathyroid hormone (PTH) (1-34) or teriparatide (TPTD) is an anabolic agent for osteoporosis. This recombinant protein stimulates positive bone formation balance and bone remodeling. However, when concomitantly used with antiresorptive (AR) agents, previous studies reported conflicting results in their potential additive and synergistic effects on bone metabolism and bone mineral density (BMD). This study aimed to integrate previous evidence to assess the effect of TPTD monotherapy and the additive effect of TPTD on AR agents in postmenopausal women with osteoporosis. Material/Methods This meta-analysis identified 9 RCTs from databases. To assess the therapeutic effect on osteoporosis, the weighted mean differences (WMDs) were used to pool the percentage change of BMD along with the 95% confidence intervals (CIs). BMD of 3 skeletal sites, including lumbar spine, total hip, and femoral neck were assessed. Results TPTD alone could significantly improve BMD of all 3 skeletal sites compared with placebo, although the effect on the femoral neck was less conclusive. The additive effect of TPTD over hormone replacement therapy (HRT) and denosumab (DEN) agents is evident in all 3 skeletal sites. But TPTD plus Alendronate (ALN) did not demonstrate additive effect in total hip and femoral neck. Conclusions TPTD alone could significantly improve BMD of lumbar spine, total hip, and femoral neck. BMD outcomes of concomitant use of TPTD and AR agents are site-dependent and vary depending on the specific AR agent used and the timing of AR therapy initiation. PMID:25503108

  11. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; Lin, C. Wang, H. Y.; Lu, H. Y.; He, X. T.; Yan, X. Q.; Chen, J. E.; Cowan, T. E.

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  12. Physics and Designs of Ignition Capsules Using High-Density Carbon (HDC) Ablators: Robust Designs, Stability, and Shock Mergers

    NASA Astrophysics Data System (ADS)

    Ho, D.; Salmonson, J.; Haan, S.; Clark, D.; Lindl, J.; Meezan, N.; Thomas, C.

    2015-11-01

    We present six ignition designs using W-doped HDC ablators with, respectively, 2, 3, and 4-step increases in Tr. Fuel adiabat α ranges between 1.5 and 4. The 4-step design has the lowest α of 1.5 but has the highest ablation front Rayleigh-Taylor (RT) growth. Consequently, the overall robustness of the 4-step design is inferior to the intermediate- α 3-step design, assuming typical currently measured surface roughness spectrum. As the foot level is increased further and the shocks merge inside the fuel, the fuel adiabat is raised to 4. The RT growth and mix are reduced but the 1D margin is decreased making it overall more susceptible to surface roughness. The 2-step α = 2.5 design turns out to be the most robust against surface roughness and still can deliver very high 1D yield of 14.5 MJ. Systematic evaluation of the robustness of these capsules with respect to low-mode radiation asymmetries, will also be discussed. Different paths to achieve low-convergence-ratio implosions (i.e. high velocity and high α as one option versus low velocity and low α as another option), while still giving respectable neutron yield will be presented. Finally, we discuss how the performance of these doped capsules changes; if the Au wall of the hohlraum is replaced by U. Work performed under auspices of U.S. DOE by LLNL under DE-AC52-07NA27344.

  13. Manganese oxide micro-supercapacitors with ultra-high areal capacitance.

    PubMed

    Wang, Xu; Myers, Benjamin D; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-21

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm(-2) at a current density of 27.2 μA cm(-2). PMID:23563785

  14. Quantitative Determination and Subcellular Imaging of Cu in Single Cells via Laser Ablation-ICP-Mass Spectrometry Using High-Density Microarray Gelatin Standards.

    PubMed

    Van Malderen, Stijn J M; Vergucht, Eva; De Rijcke, Maarten; Janssen, Colin; Vincze, Laszlo; Vanhaecke, Frank

    2016-06-01

    This manuscript describes the development and characterization of a high-density microarray calibration standard, manufactured in-house and designed to overcome the limitations in precision, accuracy, and throughput of current calibration approaches for the quantification of elemental concentrations on the cellular level using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). As a case study, the accumulation of Cu in the model organism Scrippsiella trochoidea resulting from transition metal exposure (ranging from 0.5 to 100 μg/L) was evaluated. After the Cu exposure, cells of this photosynthetic dinoflagellate were treated with a critical point drying protocol, transferred to a carbon stub, and sputter-coated with a Au layer for scanning electron microscopy (SEM) analysis. In subsequent LA-ICPMS analysis, approximately 100 cells of each population were individually ablated. This approach permitted the evaluation of the mean concentration of Cu in the cell population across different exposure levels and also allowed the examination of the cellular distribution of Cu within the populations. In a cross-validation exercise, subcellular LA-ICPMS imaging was demonstrated to corroborate synchrotron radiation confocal X-ray fluorescence (SR-XRF) microimaging of single cells investigated under in vivo conditions. PMID:27149342

  15. Ultraviolet/Ozone as a Tool To Control Grafting Density in Surface-Initiated Controlled-Radical Polymerizations via Ablation of Bromine.

    PubMed

    Sheridan, Richard J; Orski, Sara V; Muramoto, Shin; Stafford, Christopher M; Beers, Kathryn L

    2016-08-16

    We used an ultraviolet-ozone (UVO) cleaner to create substrates for atom-transfer radical polymerization (ATRP) with varying surface initiator coverage. We collected complementary time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) measurements to investigate the precise chemical origin of the variation in grafting density. At short exposure times, the atomic composition underwent minor changes except for the relative amount of bromine. At longer UVO exposure times, there is clear evidence of exposure-dependent surface initiator oxidation. We interpret these data as evidence of a bromine ablation process within the UVO cleaner, with additional oxidative modification of the rest of the surface. We then used these substrates to create a series of poly(methyl methacrylate) (PMMA) brushes varying in grafting density, demonstrating the utility of this tool for the control of polymer brush density. The measured brush grafting densities were correlated with the bromine concentration measured by both ToF-SIMS and XPS. XPS and brush thicknesses correlated strongly, following an exponential decay with a half-life of 18 ± 1 s. PMID:27442615

  16. Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ho, D. D.-M.; Haan, S. W.; Salmonson, J. D.; Clark, D. S.; Lindl, J. D.; Milovich, J. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Meezan, N. B.

    2016-05-01

    We present five ignition scale capsule designs using high-density carbon ablators with fuel adiabat (α) ranging from 1.5 to 4. All five have 1D yield > 1 MJ. The sensitivities of these capsules to surface roughness and P2 radiation asymmetries were studied. The most robust configuration with respect to surface roughness depends on the amplitude of the surface spectrum. The most robust configuration with respect to P2 asymmetry is the α = 1.5 configuration which has the highest 1D margin. We find that α = 2 and 2.5 configurations have the highest overall robustness. Further analysis is needed to study the effects of more complicated 3D behaviors.

  17. Dynamics of pulsed laser ablation plasmas in high-density CO2 near the critical point investigated by time-resolved shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Kato, Toru; Himeno, Shohei; Kato, Satoshi; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2013-09-01

    Pulsed laser ablation (PLA) plasmas generated in high-density gases and liquids are promising for the synthesis of nanomaterials. However, the characteristics of such plasmas are still not well understood. In order to improve the understandings of PLA plasmas in high-density fluids including gases, liquids, and supercritical fluids (SCFs), we have investigated the dynamics of PLA plasmas in high-density carbon dioxide (CO2) . We report on experimental results of time-resolved shadowgraph imaging, from the generation of plasma plume to the extinction of cavitation bubbles. Shadowgraph images revealed that the PLA plasma dynamics showed two distinct behaviors. These are divided by gas-liquid coexistence curve and the so-called Widom line, which separates gas-like and liquid-like SCF domains. Furthermore, cavitation bubble observed in liquid CO2 near the critical point showed peculiar characteristics, the formation of an inner bubble and an outer shell structure, which so far has never been reported. The experiments indicate that thermophysical properties of PLA plasmas can be tuned by controlling solvent temperature and pressure around the critical point, which may be useful for materials processing. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21110002) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  18. The relative contributions of forest growth and areal expansion to forest biomass carbon

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan, Y.; Birdsey, R.; Fang, J.

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and it is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest biomass C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests has been a larger contributor to C sinks than forest growth for planted forests in China (62.2 % vs. 37.8 %). However, for natural forests, forest growth has made a larger contribution than areal expansion (60.4 % vs. 39.6 %). For all forests (planted and natural forests), growth in area and density has contributed equally to the total C sinks of forest biomass in China (50.4 % vs. 49.6 %).The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 % to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends, owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation will continue to increase the C sink of China's forests in the future, subject to sustainable forest growth after the establishment of plantations.

  19. Observations of multimode perturbation decay at non-accelerating, soft x-ray driven ablation fronts

    SciTech Connect

    Loomis, E. N.; Batha, S. H.; Braun, D.; Landen, O. L.

    2012-12-15

    Minimizing the growth of hydrodynamic instabilities is a fundamental design issue facing the achievement of thermonuclear ignition and burn with Inertial Confinement Fusion (ICF). The thin capsules and extreme accelerations found in ICF make it an inherently unstable system primarily to Rayleigh-Taylor (RT) occurring at the ablation front. A potential mechanism by which perturbations at the outer capsule surface can be reduced lies in the already present ablative Richtmyer-Meshkov (RM) effect, which operates during the first shock transit of the ablator. At present, the available Equation of State (EOS) models predict a wide range of behavior for the ablative RM oscillations of multimode isolated defects on plastic (CH) capsules. To resolve these differences, we conducted experiments at the OMEGA Laser Facility [T. R. Boehly et al., Optics Comm. 133 (1997)] that measured the evolution of gaussian-shaped bumps driven by soft x-ray ablation from a halfraum. Shock speeds in the CH target were measured to reach 15 {mu}m/ns for halfraum radiation temperatures of 70 eV lasting for up to 7 ns. The evolution of gaussian-shaped bumps of different widths and heights were measured using on-axis x-ray radiography at up to 37 Multiplication-Sign magnification. Bumps with initial widths of 34 and 44 {mu}m FWHM were found to grow by 3 Multiplication-Sign their initial areal density and then saturate out to 6 ns due to lateral compression of the bump characteristic of the formation of a rippled shock front propagating into the solid target. Narrower 17 {mu}m FWHM bumps, on the other hand, grew by roughly 2 Multiplication-Sign followed immediately by a decrease back to initial values of areal density out to 7 ns, which largely agrees with both LEOS 5310 and SESAME 7592 EOS predictions. The difference in observed behavior suggests that high spatial frequency modes found in narrower bumps are needed to significantly affect the ablation front profile on shorter time scales.

  20. Ablative system

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A carrier liquid containing ablative material bodies is connected to a plenum chamber wall with openings to a high temperature environment. The liquid and bodies pass through the openings of the wall to form a self replacing ablative surface. The wall is composed of honeycomb layers, spheres containing ablative whiskers or wads, and a hardening catalyst for the carrier liquid. The wall also has woven wicks of ablative material fibers that extend through the wall openings and into plenum chamber which contains the liquid.

  1. The relative contributions of forest growth and areal expansion to forest biomass carbon sinks in China

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan, Y.; Birdsey, R.; Fang, J.

    2015-06-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests was a larger contributor to C sinks than forest growth for all forests and planted forests in China (74.6 vs. 25.4 % for all forests, and 62.4 vs. 37.8 % for plantations). However, for natural forests, forest growth made a larger contribution than areal expansion (60.4 vs. 39.6 %). The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation can continue to increase the C sink of China's forests in the future subject to persistently-increasing forest growth after establishment of plantation.

  2. BOREAS HYD-4 Areal Snow Course Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 team focused on collecting data during the 1994 winter focused field campaign (FFCW) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the hydrology research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Airborne remote sensing data (gamma, passive microwave) were acquired along a series of flight lines established in the vicinity of the BOREAS study areas. Ground snow surveys were conducted along selected sections of these aircraft flight lines. These calibration segments were typically 10-20 km in length, and ground data were collected at one to two kilometer intervals. The data are provided in tabular ASCII files. The HYD-04 areal snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  4. On the spherical chromium oxide particulates via pulsed laser ablation at a very high power density in vacuum with a specified oxygen flow rate

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Shen, P.; Chen, S. Y.

    2010-02-01

    Chromium oxide condensates nearly spherical in shape ranging from 0.1 to 0.2 micron in diameter were fabricated by laser ablation on a Cr target at a very high power density of 1.8×1012 W/cm2 for a very rapid heating and cooling effect. Analytical electron microscopic observations of such spherical particulates revealed three types: (1) α-Cr2O3 single crystal with ( bar{1}101),(bar{1}012) and (1 bar{2}10) facets, (2) spinel-like Cr3O4 polycrystals with spherulitic texture, i.e. a rather corrugated solidification front, (3) recrystallized Cr3O4 polycrystals derived from type 2 by radiant heating. The microstructure and phase difference among the particulates can be attributed to a varied extent of supercooling under the influence of rather complicated Cr2+ solute trapping of the molten and solid phases in the Cr3O4-O pseudo-binary in vacuum. The chromium oxide condensates being spherical yet full of facets, with significant internal compressive stress up to ca. 3.4 GPa according to Raman shift, and with UV-absorbance close to violet light due to the presence of internal stress and/or Cr2+, may have potential optoelectronic and catalytic applications.

  5. Nike Experiment to Observe Strong Areal Mass Oscillations in a Rippled Target Hit by a Short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2010-11-01

    When a short (sub-ns) laser pulse deposits finite energy in a target, the shock wave launched into it is immediately followed by a rarefaction wave. If the irradiated surface is rippled, theory and simulations predict strong oscillations of the areal mass perturbation amplitude in the target [A. L. Velikovich et al., Phys. Plasmas 10, 3270 (2003).] The first experiment designed to observe this effect has become possible by adding short-driving-pulse capability to the Nike laser, and has been scheduled for the fall of 2010. Simulations show that while the driving pulse of 0.3 ns is on, the areal mass perturbation amplitude grows by a factor ˜2 due to ablative Richtmyer-Meshkov instability. It then decreases, reverses phase, and reaches another maximum, also about twice its initial value, shortly after the shock breakout at the rear target surface. This signature behavior is observable with the monochromatic x-ray imaging diagnostics fielded on Nike.

  6. Ultrasonic characterization of laser ablation

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Telschow, K. L.

    When a pulsed laser beam strikes the surface of an absorbing material, ultrasonic waves are generated due to thermoelectric expansion and, at higher laser power densities, ablation of the material. These sound generation mechanisms have been the subject of numerous theoretical and experimental studies and are now fairly well understood. In particular, it has been established that at low power densities the thermoelastic mechanism is well described by a surface center of expansion. This mechanism produces a characteristic waveform whose amplitude is proportional to the energy absorbed from the laser pulse and also dependent on the thermal and elastic properties of the material. The ablation ultrasonic source can be described by a point normal force acting on the material surface. For laser power densities near the ablation onset, the time dependence of the source is that of the laser pulse. The resultant waveform recorded on epicenter (source and detector collinear) has a sharp peak determined by the momentum impulse delivered to the material by the ablation process. Particularly in the near ablation onset region, this ultrasonic displacement peak can be used to characterize the ablation process occurring at the material surface. The onset power density for ablation and subsequent ablation dependence on power density are material dependent and thought to be a function of the heat capacity and thermal conductivity of the material. With this in mind, it is possible that these ablation signals could be used to characterize material microstructures, and perhaps material mechanical properties such as hardness, through microstructural changes of the material thermal parameters. This paper explores this question for samples of Type 304 stainless steel with microstructures controlled through work hardening and annealing.

  7. Satb1 Ablation Alters Temporal Expression of Immediate Early Genes and Reduces Dendritic Spine Density during Postnatal Brain Development

    PubMed Central

    Balamotis, Michael A.; Tamberg, Nele; Woo, Young Jae; Li, Jingchuan; Davy, Brian

    2012-01-01

    Complex behaviors, such as learning and memory, are associated with rapid changes in gene expression of neurons and subsequent formation of new synaptic connections. However, how external signals are processed to drive specific changes in gene expression is largely unknown. We found that the genome organizer protein Satb1 is highly expressed in mature neurons, primarily in the cerebral cortex, dentate hilus, and amygdala. In Satb1-null mice, cortical layer morphology was normal. However, in postnatal Satb1-null cortical pyramidal neurons, we found a substantial decrease in the density of dendritic spines, which play critical roles in synaptic transmission and plasticity. Further, we found that in the cerebral cortex, Satb1 binds to genomic loci of multiple immediate early genes (IEGs) (Fos, Fosb, Egr1, Egr2, Arc, and Bdnf) and other key neuronal genes, many of which have been implicated in synaptic plasticity. Loss of Satb1 resulted in greatly alters timing and expression levels of these IEGs during early postnatal cerebral cortical development and also upon stimulation in cortical organotypic cultures. These data indicate that Satb1 is required for proper temporal dynamics of IEG expression. Based on these findings, we propose that Satb1 plays a critical role in cortical neurons to facilitate neuronal plasticity. PMID:22064485

  8. A prepositioned areal electrofishing apparatus for sampling stream habitats

    USGS Publications Warehouse

    Fisher, William L.; Brown, Marshall E.

    1993-01-01

    We describe the design, use, and sampling characteristics ofan electrofishing apparatus used to sample fish in stream habitats. The apparatus uses two prepositioned areal electrofishing devices (PAED) of different designs, a bottom parallel electrode PAED and a suspended dropper electrode PAED. To determine the effective immobilization ranges of the PAEDs, we evaluated intensities and shapes of the PAEDs' electrical fields, and the electroshock responses of fish in cages in concrete tanks and in four streams in Alabama with different water conductivities. Electroshock responses indicated that complete immobilization occurred at voltage gradients of 1.0 V/cm or higher (voltage drop, 400 V AC), as far as 35 cm from the PAED electrodes, although some fish were immobilized up to 65 cm away at 0.3 V/cm. We estimated the immobilization (stun) power density threshold to be about 10 μW/cm3. Stream evaluations of the PAEDs revealed that higher voltages were needed to immobilize fish at lower (35 μS/cm) and higher (120 and 125 μS/cm) water conductivities, whereas lower voltages were required at an intermediate conductivity (60 μS/cm). These results conformed with the predictions of power transfer theory and underscored the need to calibrate PAEDs to stream conductivities to standardize the effective sampling range.

  9. Endometrial ablation

    MedlinePlus

    ... can be seen on the video screen. Small tools can be used through the scope to remove abnormal growths or tissue for examination. Ablation uses heat, cold, or electricity to destroy the lining of the womb. The ...

  10. Combining remotely sensed and other measurements for hydrologic areal averages

    NASA Technical Reports Server (NTRS)

    Johnson, E. R.; Peck, E. L.; Keefer, T. N.

    1982-01-01

    A method is described for combining measurements of hydrologic variables of various sampling geometries and measurement accuracies to produce an estimated mean areal value over a watershed and a measure of the accuracy of the mean areal value. The method provides a means to integrate measurements from conventional hydrological networks and remote sensing. The resulting areal averages can be used to enhance a wide variety of hydrological applications including basin modeling. The correlation area method assigns weights to each available measurement (point, line, or areal) based on the area of the basin most accurately represented by the measurement. The statistical characteristics of the accuracy of the various measurement technologies and of the random fields of the hydrologic variables used in the study (water equivalent of the snow cover and soil moisture) required to implement the method are discussed.

  11. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  12. Improving copper plating adhesion on glass using laser machining techniques and areal surface texture parameters

    NASA Astrophysics Data System (ADS)

    He, Baofeng; Petzing, Jon; Webb, Patrick; Leach, Richard

    2015-12-01

    Glass is a promising substitute substrate material being evaluated for electronic packaging technology. Improving the electroless copper plated layer adhesion of the glass is one of the most important considerations for development of the technology. An excimer laser (248 nm) was used for structured texturing of glass surfaces (to improve adhesion) by changing mask dimensions, laser operating parameters and overlapping pitch spacing, and therefore producing a range of micro-scale features. Electroless plated copper adhesion strength was assessed using quantitative scratch testing, demonstrating that micro-patterned structures can significantly improve copper/glass adhesion. New ISO 25178 Part 2 areal surface texture parameters were used to characterise the surface roughness of ablated glass surfaces, and correlated to the scratch testing results. Highly correlated parameters were identified that could be used as predictive surface design tools, directly linking surface topography to adhesion performance, without the need for destructive adhesion quantification via scratch testing.

  13. RF Field Visualization of RF Ablation at the Larmor Frequency

    PubMed Central

    Stang, Pascal; Kerr, Adam; Pauly, John; Scott, Greig

    2012-01-01

    Radiofrequency ablation is an effective minimally invasive treatment for tumors. One primary source of difficulty is monitoring and controlling the ablation region. Currently, RF ablation is performed at 460 kHz, for which MRI could play a role given its capability for temperature monitoring and tumor visualization. If instead the ablation were to be performed at the MRI Larmor frequency, then the MR capability for B1 field mapping could be used to directly visualize the RF fields created by the ablation currents. Visualizing the RF fields may enable better control of the ablation currents, enabling better control of lesion shape and size and improving repeatability. We demonstrate the feasibility of performing RF ablations at 64 MHz and show preliminary results from imaging the RF fields from the ablation. The post-ablation RF fields show an increase in current density in the ablated region, consistent with an increase in conductivity of the ablated tissue. PMID:21775256

  14. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  15. Streaked Imaging of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2003-10-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the seeds for subsequent growth of perturbations due to the Rayleigh--Taylor instability in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically,(V.N. Goncharov, Phys. Rev. Lett. 82), 2091 (1999). observed in 2-D ORCHID hydrodynamic simulations, and measured experimentally.(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly, through face-on x-ray radiography. Experiments with a high-resolution, Ir-coated Kirkpatrick--Baez microscope, coupled to a high-current streak tube, provided a continuous record of the target areal density during shock transit, while it was dominated by the evolution of the RM instability. Planar plastic targets with variable thicknesses (30 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses with intensities---ranging from 5 × 10^13 W/cm^2 to 4 × 10^14 W/cm^2. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. The predicted dependence of the oscillation period on laser intensity and modulation wavelength was quantified. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  16. Observation of strong oscillations of areal mass in an unsupported shock wave produced by a short laser pulse

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2011-10-01

    The first experimental study of hydrodynamic perturbation evolution in a strong unsupported shock wave, which is immediately followed by a rarefaction wave, is reported. Our planar solid polystyrene laser-machined targets, 50 to 100 μm thick, rippled from the front side with a single-mode wavelength 30 or 45 μm and peak-to-valley amplitude 4 to 6 μm, were irradiated with a 350 ps long Nike KrF laser pulse at peak intensity of up to 330 TW/cm2. The perturbation evolution in the target was observed using face-on monochromatic x-ray radiography while the pulse lasted and for 3 to 4 ns after it ended. While the driving pulse was on, the areal mass modulation amplitude in the target was observed to grow by a factor of up to ~4 due to the ablative Richtmyer-Meshkov instability. After the end of the pulse, while the strong unsupported shock wave propagated through the unperturbed target, the theoretically predicted large oscillations of the areal mass [A. L. Velikovich et al., Phys. Plasmas 10, 3270 (2003)] were observed. Multiple phase reversals of the areal mass modulation have been detected. Work supported by DOE/NNSA and Office of Naval Research.

  17. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  18. Relationships in Areal Variability: The Ross Sea Polynya and Ice

    NASA Astrophysics Data System (ADS)

    Ward, Jason Michael

    General increases in Antarctic sea ice coverage occur primarily in the Ross Sea. This study investigates the Ross Sea Polynya's relationship with the Ross Sea ice areal coverage. A unique, relatively long term Ross Sea Polynya area dataset was created through the application of the Polynya Signature Simulation Method (PSSM) onto Special Sensor Microwave Imager (SSM/I) data inputs. Bivariate regression analyses were used to determine the relationships, at the 95% confidence level, between Ross Sea Polynya and ice areal trends, annual seasonalities, and anomalies at the full temporal scale as well as the monthly level. Polynya and sea ice have significant positive relationships in the late austral summer and early spring (February to March), and a significant negative relationship in the late austral winter (August). The areal anomalies only had a significant relationship in February, while the trends were not correlated at any time.

  19. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  20. Areal rainfall construction and estimation of extreme quantiles.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    Areal rainfall estimation and extrapolation to extremes is a key issue for catchment flood study. It is a tricky problem which deals with spatial interpolation (to build an estimate at the catchment's scale based on few rain gauges only), and probabilistic extrapolation (for extreme values estimation). In this study, several methods to build an areal rainfall estimation are compared. The first method is the commonly used Thiessen polygons. A second way to build an areal rainfall relies on the SPAZM method [Gottardi, 2012], in which daily rain fields are reconstructed at a 1km2 resolution, with an interpolation scheme integrating the altitude of the pixel and the weather type of the day. These two methods are compared to the stochastic rain field simulator SAMPO [Leblois et Creutin, 2013], which is an adaptation of the turning band method allowing to generate over 50 years of realistic rain fields. Several questions are tackled in this study: In a Thiessen estimation, how many rain gauges should be selected ? Which weighting scheme should be used ? SPAZM is an interpolator designed to produce unbiased mean annual precipitation (MAP) at a catchment's scale. So if a Thiessen areal rainfall is scaled to fit the MAP given by SPAZM, how does it affect its extreme rainfall estimation ? If a virtual rain gauges network is extracted from the rain fields generated by SAMPO, how do behave the Thiessen and SPAZM areal rainfall estimations based on these point values ? At the end, some abatement functions are obtained, showing the influence of the catchment's area and the options chosen to build the areal rainfall estimations. References: F. Gottardi, C. Obled, J. Gailhard, and E. Paquet, Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154 - 167, 2012. ISSN 0022-1694. E. Leblois and J-D. Creutin, Space-time simulation of intermittent rainfall with prescribed

  1. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    SciTech Connect

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  2. A fuzzy areal assessment approach for potentially contaminated sites

    NASA Astrophysics Data System (ADS)

    Özdamar, Linet; Demirhan, Melek; Özpinar, Alper; Kilanç, Burak

    2000-04-01

    This article describes a new fuzzy areal site assessment approach in the detection of contaminated zones within a site which is under environmental investigation. Conventional techniques utilized in this field are mostly interpolation based. These methods interpolate the contaminant concentration values at unobserved locations using observed values. Unlike these interpolation techniques, the motivation of the approach introduced here consists of partitioning a given site into smaller sections. Partitioning is carried out iteratively where subregions of interest are divided into further smaller regions. This re-partitioning scheme leads to a dynamic grouping of observations, since areas of differing sizes and boundaries contain different sets of samples. The potential of an area to contain contaminated zones is assessed by a fuzzy measure which converts the data values in that area into an aggregate grade normalized on [0, 1]. Thus, this approach does not assume concentration values at unobserved locations, rather, an areal potential is evaluated.

  3. Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2002-11-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the late-time imprint levels in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically and observed experimentally,(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). and in 2-D ORCHID simulations. These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly with an x-ray framing camera through face-on x-ray radiography. Planar plastic targets with variable thickness (20 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses at maximum energy. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. Nonlinearity in the evolution of the preimposed mode, resulting in an enriched spectrum, was observed for initial amplitudes previously believed to develop linearly with time. Upcoming experiments with a high-resolution, streaked imager, will allow for the detailed recording of the evolution of the RM instability and the competing stabilization effect. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  4. A data-management system for detailed areal interpretive data

    USGS Publications Warehouse

    Ferrigno, C.F.

    1986-01-01

    A data storage and retrieval system has been developed to organize and preserve areal interpretive data. This system can be used by any study where there is a need to store areal interpretive data that generally is presented in map form. This system provides the capability to grid areal interpretive data for input to groundwater flow models at any spacing and orientation. The data storage and retrieval system is designed to be used for studies that cover small areas such as counties. The system is built around a hierarchically structured data base consisting of related latitude-longitude blocks. The information in the data base can be stored at different levels of detail, with the finest detail being a block of 6 sec of latitude by 6 sec of longitude (approximately 0.01 sq mi). This system was implemented on a mainframe computer using a hierarchical data base management system. The computer programs are written in Fortran IV and PL/1. The design and capabilities of the data storage and retrieval system, and the computer programs that are used to implement the system are described. Supplemental sections contain the data dictionary, user documentation of the data-system software, changes that would need to be made to use this system for other studies, and information on the computer software tape. (Lantz-PTT)

  5. Formative Processes Governing Ross Sea Polynya Areal Variability

    NASA Astrophysics Data System (ADS)

    Ward, J. M.

    2014-12-01

    Of the 17 million km^2 of sea ice in the Southern Ocean, ~10% is generated through coastal polynyal systems. The largest and greatest contributor to sea ice formation in the Antarctic is the Ross Sea Polynya which exists in a region where sea ice trends are positive and significant. Understanding polynya areal dynamics and the contributing physical factors will give further insight into the future of Ross Sea ice production. Previous studies have established coastal winds and surface temperatures as key contributors to the development and maintenance of coastal polynyas. However, much that is understood is based on physically sound inference. While the influence of these variables have been studied separately, their concerted roles have not been quantified, neither has any indication of their variation with time been established. Automatic weather station data produced by the Antarctic Automatic Weather Station Program was acquired from the National Oceanic and Atmospheric Administration, and polynya area data was produced through the application of the Polynya Signature Simulation Method onto Special Sensor Microwave Imager input acquired from the National Snow and Ice Data Center. Wind speed, wind direction, sea surface temperature, near surface air temperature, oceanic temperature, and tidal fluctuations are examined as physically significant contributors to polynya areal variability and are considered in a multivariate regression model at a 95% confidence level. This study quantifies the degree to which each variable contributes to Ross Sea Polynya areal dynamics, and determines how their influences vary seasonally and in the long term.

  6. Areal rainfall estimation using moving cars as rain gauges - modeling study and laboratory experiment

    NASA Astrophysics Data System (ADS)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.

    2012-04-01

    Areal rainfall estimation is still one of the concerns in hydrological analyses. Low density of the conventional rainfall measurement devices as well as the errors in radar data developed the new idea of using moving cars, called raincars, as a possible new source for measuring rainfall. This idea is easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and data from the sensors, either for the frequency measurement of the wipers or the optical sensors on cars. According to the modeling study, which is done on the Bode catchment in Germany, a high number of possibly inaccurate sensors, raincars, provide more reliable areal rainfall estimation than a lower number of highly accurate, stationary sensors. In this study, data for the stationary gauges and the cars are extracted from the radar data. A valid relationship between wiper frequency and rainfall with a known error is assumed where the radar data is considered as the reference. Areal precipitation is estimated by different interpolation techniques, ordinary kriging for the stationary stations and indicator kriging for the cars. The results are then compared and evaluated with the reference, radar. After proving the feasibility of the hypothesis in the modeling study, field and laboratory experiment have been arranged. A certain number of cars has been equipped with sensors and in the laboratory, to produce the rainfall as close as possible to nature, sprinkler irrigation system has been designed for producing different rain intensities, from 1 mm/hr to 55 mm/hr. Here, we can develop an empirical approach for the relationship between the wiper frequency and rainfall intensity as well as for the optical sensors on the cars under different rainfall intensities.

  7. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    NASA Astrophysics Data System (ADS)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-03-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  8. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    PubMed Central

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  9. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance.

    PubMed

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric &symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric &symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm(-2) &19.1 Wh Kg(-1) and 194 mF cm(-2) &4.5 Wh Kg(-1) (based on total mass loading of 6.25 &6.0 mg) respectively at current density of 1 mA cm(-2). The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  10. Thermal response and ablation characteristics of lightweight ceramic ablators

    SciTech Connect

    Tran, H.K.; Rasky, D.J.; Esfahani, L.

    1994-11-01

    This paper presents the thermal performance and ablation characteristics of the newly developed lightweight ceramic ablators (LCAs) in a supersonic, high-enthalpy convective environment. Lightweight ceramic ablators were recently conceived and developed at NASA Ames using low-density ceramic or carbon fibrous matrices as substrates for main structural support and organic resins as fillers. These LCAs were successfully produced with densities ranging from approximately 0.224 to 1.282 g/cu cm. Several infiltrants with different char yields were used to study the effect on surface recession. Tests were conducted in the NASA Ames arc-jet facilities. Material thermal performance was evaluated at cold-wall heat fluxes from 113.5 to 1634 W/sq cm, and stagnation pressures of 0.018 to 0.331 atm. Conventional ablators such as SLA-561, Avcoat 5026-39HC, MA-25S, and balsa wood were tested at the same heat fluxes for direct comparison. Surface temperature was measured using optical pyrometers, and the recession rates were obtained from the high-speed films. In-depth temperature data were obtained to determine the thermal penetration depths and conductivity. Preliminary results indicated that most LCAs performed comparably to or better than conventional ablators. At low flux levels (less than 454 W/sq cm), the addition of silicon carbide and polymethyl methacrylate significantly improved the ablation performance of silica substrates. The carbon-based LCAs were the most mass-efficient at high flux levels (greater than 454 W/sq cm). 16 refs.

  11. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  12. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  13. Intercomparison of selected fixed-area areal reduction factor methods

    NASA Astrophysics Data System (ADS)

    Pavlovic, Sandra; Perica, Sanja; St Laurent, Michael; Mejía, Alfonso

    2016-06-01

    The areal reduction factor (ARF) is a concept used in many hydrologic designs to transform a point precipitation frequency estimate of a given duration and frequency to a corresponding areal estimate. Various methods have been proposed in the literature to calculate ARFs. Proposed ARFs could vary significantly, and it is unclear if discrepancies are primarily due to differences in methodologies, the dissimilar datasets used to calculate ARFs, or if they originate from regional uniqueness. Our goal in this study is to analyze differences among ARFs derived from different types of fixed-area ARF methods, which are suitable for use with precipitation frequency estimates. For this intercomparison, all the ARFs were computed using the same, high-quality rainfall-radar merged dataset for a common geographic region. The selected ARFs methods represent four commonly used approaches: empirical methods, methods that are based on the spatial correlation structure of rainfall, methods that rely on the scaling properties of rainfall in space and time, and methods that utilize extreme value theory. The state of Oklahoma was selected as the study area, as it has a good quality radar data and a dense network of rain gauges. Results indicate significant uncertainties in the ARF estimates, regardless of the method used. Even when calculated from the same dataset and for the same geographic area, the ARF estimates from the selected methods differ. The differences are more pronounced for the shorter durations and larger areas. Results also indicate some ARF dependence on the average recurrence intervals.

  14. Areal array jetting device for ball grid arrays

    SciTech Connect

    Frear, D.R.; Yost, F.G.; Schmale, D.T.; Essien, M.

    1997-08-01

    Package designs for microelectronics devices have moved from through-hole to surface mount technology in order to increase the printed wiring board real estate available by utilizing both sides of the board. The traditional geometry for surface mount devices is peripheral arrays where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. A solution to the peripheral surface mount issue is to shift the leads to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. In a BGA package, the leads are on the bottom surface of the package in the form of an array of solder balls. The current practice of joining BGA packages to printed wiring boards involves a hierarchy of solder alloy compositions. A high melting temperature ball is typically used for standoff. A promising alternative to current methods is the use of jetting technology to perform monolithic solder ball attachment. This paper describes an areal array jetter that was designed and built to simultaneously jet arrays of solder balls directly onto BGA substrates.

  15. An Infrared Spectroscopic and Density Functional Theoretical Investigation of the Reaction Products of Laser-Ablated Scandium and Titanium Atoms with Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Kushto, Gary P.; Zhou, Mingfei; Andrews, Lester; Arnold, James (Technical Monitor)

    1998-01-01

    Laser-ablated Sc and Ti atoms have been reacted with NO during condensation in excess argon. Matrix infrared spectra show that the major products are the side bonded Sc[NO] species and the inserted NScO and NTiO molecules based on isotopic substitution (15NI6O and 15N18O) and DIFT calculations of isotopic frequencies, which provide a match for two modes in three isotopic modifications for each molecule. The NScO and NTiO molecules are nitride/oxides with M-O stretching modes only 46-88/cm below the diatomic metal oxides but M-N stretching modes 314-442/cm lower than the diatomic metal nitride molecules. The ScN, ScO, TiN, and TiO molecules are observed as decomposition products. Evidence is also presented for the nitrosyls ScNO and TiNO, the Sc[NO]+ cation, and the NTiO- anion.

  16. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  17. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  18. Electron Beam Ablation and Deposition

    NASA Astrophysics Data System (ADS)

    Kovaleski, S. D.; Gilgenbach, R. M.; Ang, L. K.; Lau, Y. Y.

    1997-11-01

    Ablation of fused silica, titanium nitride, and boron nitride with a channel spark electron beam is being studied. The channel spark is a low energy (15-20kV), high current (1600A) electron beam source developed at KFK(G. Muller and C. Schultheiss, Proc. of Beams `94, Vol. II, p833). This is a pseudospark device which operates in the ion focused regime of electron beam transport. For this reason, a low pressure (10-15mTorr of Ar) background gas is used to provide electron beam focusing. Plume composition and excitation has been studied via optical emission spectroscopy. Ablation has also been imaged photographically. Electron density gradients and densities are being studied through laser deflection. Film deposition experiments are also being performed. Electron transport and energy deposition in metals are being simulated in the ITS-TIGER code(Sandia Report No. SAND 91-1634).

  19. Laser-ablation processes

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    The various mechanisms by which ablation of materials can be induced with lasers are discussed in this paper. The various ablation processes and potential applications are reviewed from the threshold for ablation up to fluxes of about 10{sup 13} W/cm{sup 2}, with emphasis on three particular processes; namely, front-surface spallation, two-dimensional blowoff, and contained vaporization.

  20. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.

    PubMed

    Boyd, Glen R; Li, Minghua; Husserl, Johana; Ocampo-Gómez, Ana M

    2006-01-10

    A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30

  1. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  2. Areal rainfall estimation using moving cars as rain gauges - laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel

    2014-05-01

    Areal precipitation estimation for fine temporal and spatial resolution is still a challenging task. Beside the fact that newly developed instrumentations, e.g. weather radar, provide valuable information with high spatial and temporal resolutions, they are subject to different sources of errors. On the other hand, recording rain gauges provide accurate point rainfall depth, but are still often poor in density. Equipping a car with a GPS device as well as sensors measuring rainfall makes it possible to implement cars on the streets as the moving rain gauges. Initial results from a modeling study assuming arbitrary measurement errors have shown that implementing a reasonable large number of inaccurate measurement devices (raincars) provide more reliable areal precipitations compared to the available rain gauge network. The purpose of this study is to derive relationships between sensor readings and rain rate in a laboratory and quantify the errors. Sensor readings involve wiper frequency and optical sensors which are on the cars to automate wiper activities. Besides, the influence of car speed on the sensor readings is investigated implementing a car-speed simulator. It has been observed that the manual wiper activity adjustment, according to front visibility, shows a strong relationship between rainfall intensity and wiper speed. Two optical sensors calibrated in laboratory showed a relatively strong relationship with the rain intensity recorded by a tipping bucket. A positive relationship between the velocity and the amount of water has been observed meaning that the higher the speed of a car, the higher the amount of water hitting the car. Additionally, some preliminary results of the field experiments are discussed.

  3. Nanoscale ablation through optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  4. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  5. AREAL low energy electron beam applications in life and materials sciences

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Aroutiounian, R. M.; Amatuni, G. A.; Aloyan, L. R.; Aslanyan, L. G.; Avagyan, V. Sh.; Babayan, N. S.; Buniatyan, V. V.; Dalyan, Y. B.; Davtyan, H. D.; Derdzyan, M. V.; Grigoryan, B. A.; Grigoryan, N. E.; Hakobyan, L. S.; Haroutyunian, S. G.; Harutiunyan, V. V.; Hovhannesyan, K. L.; Khachatryan, V. G.; Martirosyan, N. W.; Melikyan, G. S.; Petrosyan, A. G.; Petrosyan, V. H.; Sahakyan, A. A.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Tatikyan, S. Sh.; Tsakanova, G. V.; Tsovyan, E.; Vardanyan, A. S.; Vardanyan, V. V.; Yeremyan, A. S.; Yeritsyan, H. N.; Zanyan, G. S.

    2016-09-01

    The AREAL laser-driven RF gun provides 2-5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  6. Assessment of probabilistic areal reduction factors of precipitations for the entire French territory with gridded rainfall data.

    NASA Astrophysics Data System (ADS)

    Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2016-04-01

    The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year

  7. Areal Feature Matching Based on Similarity Using Critic Method

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yu, K.

    2015-10-01

    In this paper, we propose an areal feature matching method that can be applied for many-to-many matching, which involves matching a simple entity with an aggregate of several polygons or two aggregates of several polygons with fewer user intervention. To this end, an affine transformation is applied to two datasets by using polygon pairs for which the building name is the same. Then, two datasets are overlaid with intersected polygon pairs that are selected as candidate matching pairs. If many polygons intersect at this time, we calculate the inclusion function between such polygons. When the value is more than 0.4, many of the polygons are aggregated as single polygons by using a convex hull. Finally, the shape similarity is calculated between the candidate pairs according to the linear sum of the weights computed in CRITIC method and the position similarity, shape ratio similarity, and overlap similarity. The candidate pairs for which the value of the shape similarity is more than 0.7 are determined as matching pairs. We applied the method to two geospatial datasets: the digital topographic map and the KAIS map in South Korea. As a result, the visual evaluation showed two polygons that had been well detected by using the proposed method. The statistical evaluation indicates that the proposed method is accurate when using our test dataset with a high F-measure of 0.91.

  8. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  9. Renal ablation update.

    PubMed

    Khiatani, Vishal; Dixon, Robert G

    2014-06-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity-focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  10. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  11. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  12. Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Han, H.; Liu, S.

    2014-03-01

    To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a set of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to capture statistically the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote-sensing techniques, using high-resolution satellite imagery, were used to extrapolate the in situ point measurements to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented that allows the estimation of ablation on a debris covered glacier by combining field data and remote-sensing information. The sub-debris ice ablation accounts for about 24% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacierized area. Although the ice cliffs occupy only 1.7% of the debris covered area, the melt amount accounts for approximately 12% of the total sub-debris ablation and 2.5% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus in a particular climate setting. Due to the fact that melt rates beyond 0.1 m of moraine cover are highly restricted, the shielding effect of the debris cover dominates over the temperature and elevation dependence of the ablation in the bare ice case.

  13. Impact of varying debris cover thickness on catchment scale ablation: a case study for Koxkar glacier in the Tien Shan

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Haidong, H.; Shiyin, L.

    2013-11-01

    To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a bundle of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to statistically capture the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote sensing techniques, using high resolution satellite imagery, were used to extrapolate the ground truth results to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented, that allows the estimation of ablation on a debris covered glacier by combining field data and remote sensing information. The sub-debris ice ablation accounts for about 19% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacerized area. Although the ice cliffs occupy only 1.7% of the debris covered area the melt amount accounts for approximately 15% of the total sub-debris ablation and 2.7% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus to climate warming. Due to the fact that melt rates beyond 0.1m of moraine cover are highly restricted the shielding effect of the debris cover dominates over the temperature- and elevation dependence of the ablation in the bare ice case.

  14. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation. PMID:27050331

  15. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  16. Microwave Ablation of Hepatic Malignancy

    PubMed Central

    Lubner, Meghan G.; Brace, Christopher L.; Ziemlewicz, Tim J.; Hinshaw, J. Louis; Lee, Fred T.

    2013-01-01

    Microwave ablation is an extremely promising heat-based thermal ablation modality that has particular applicability in treating hepatic malignancies. Microwaves can generate very high temperatures in very short time periods, potentially leading to improved treatment efficiency and larger ablation zones. As the available technology continues to improve, microwave ablation is emerging as a valuable alternative to radiofrequency ablation in the treatment of hepatic malignancies. This article reviews the current state of microwave ablation including technical and clinical considerations. PMID:24436518

  17. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    SciTech Connect

    Li, Hang; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Song, Tianming; Yang, Jiamin Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  18. Observations of the Ablative Richtmyer-Meshkov Effect Relevant to Indirect-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Landen, Otto

    2013-10-01

    Recent simulations and experiments have shown that isolated features on the outer surface of Inertial Confinement Fusion (ICF) ignition capsules can profoundly impact capsule performance by leading to material jetting or mixing into the hotspot. Controlling the growth of these artifacts is complicated due to uncertainties in equation of state (EOS) models used in simulation codes. Here we report on measurements pertaining to the growth and decay of isolated defects due to x-ray ablation Richtmyer-Meshkov in CH capsules in order to validate these models. Face-on transmission radiography was used to measure the evolution of Gaussian bump arrays in plastic targets. Au halfraums heated to radiation temperatures near 70 eV using 15 beams in a 7.5 ns pulse from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) indirectly drove the samples while simultaneous radiographs from Ta and Y backlighter foils were recorded. Shock speed measurements were also made with Omega's Active Shock Break Out (ASBO) diagnostic in conjunction with the x-ray flux recorded by a soft x-ray power diagnostic (DANTE) were used to determine drive conditions in the target. Measurements of 5 micron tall, 17 micron wide bumps show a decrease in bump areal density between 4.5 and 7.5 ns while 33 micron wide bumps saturate near 3 ns consistent with LEOS 5310 and SESAME 7592 simulations.

  19. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    NASA Astrophysics Data System (ADS)

    Li, Hang; Song, Tianming; Yang, Jiamin; Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Kuang, Longyu; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-07-01

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2-5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  20. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  1. Dynamic effective connectivity of inter-areal brain circuits.

    PubMed

    Battaglia, Demian; Witt, Annette; Wolf, Fred; Geisel, Theo

    2012-01-01

    Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance

  2. Use of areal snow cover measurements from ERTS-1 imagery in snowmelt-runoff relationships in Arizona

    NASA Technical Reports Server (NTRS)

    Aul, J. S.; Ffolliott, P. F.

    1975-01-01

    Methods of interpreting ERTS-1 imagery to measure areal snow cover were analyzed. Relationship of areal snow cover and runoff were among the objectives in this study of ERTS-1 imagery use for forecasting snowmelt-runoff relationships.

  3. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  4. Ablation dynamics in coiled wire-array Z-pinches

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-01

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  5. Spectroscopic measurements of ablation plasma generated with laser-driven intense extreme ultraviolet (EUV) light

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Hane, K.; Shikata, H.; Masuda, M.; Nagatomi, K.; Sunahara, A.; Yoshida, M.; Fujioka, S.; Nishimura, H.

    2016-03-01

    Material ablation by a focused Extreme ultraviolet (EUV) light is studied by comparing expanding ion properties and plasma parameters with laser ablation. The kinetic energy distributions of expanding ions from EUV and laser ablation showed different spectra implying different geometries of plasma expansion. The calculation results of plasma parameters showed that EUV energy is mostly deposited in high electron density region close to the solid density, while laser energy is deposited in low energy density region. Plasma parameters experimentally obtained from visible spectra did not show noticeable difference between EUV and laser ablation due to the corresponding low cut off density.

  6. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  7. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile

    NASA Astrophysics Data System (ADS)

    Rivera, Andrés; Benham, Toby; Casassa, Gino; Bamber, Jonathan; Dowdeswell, Julian A.

    2007-10-01

    High thinning rates (up to - 4.0 ± 0.97 m a - 1 ) have been measured at Campo de Hielo Patagónico Norte (CHN) or Northern Patagonia Icefield, Chile between 1975 and 2001. Results have been obtained by comparing a Digital Elevation Model (DEM) derived from regular cartography compiled by Instituto Geográfico Militar of Chile (IGM) based upon 1974/1975 aerial photographs and a DEM generated from Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in September 2001. A complete cloud-free Landsat ETM+ satellite image mosaic acquired in March 2001 was used to update the available glacier inventory of the CHN, including all glaciers larger than 0.5 km 2 (48 new glaciers). A new delineation of ice divides was also performed over the accumulation areas of glaciers sharing the high plateau where the existing regular cartography exhibits poor coverage of topographic information. This updated glacier inventory produced a total ice area for 2001 of 3953 km 2, which represents a decrease of 3.4 ± 1.5% (140 ± 61 km 2 of ice) with respect to the total ice area of the CHN in 1979 calculated from a Landsat MSS satellite image. Almost 62% of the total area change between 1979 and 2001 took place in glaciers located at the western margin of the CHN, where the maximum area loss was experienced by Glaciar San Quintín with 33 km 2. At the southern margin, Glaciar Steffen underwent the largest ice-area loss (12 km 2 or 2.6% of the 1979 area), whilst at the eastern margin the greatest area loss took place in Glaciares Nef (7.9 km 2, 5.7% of the 1979 area) and Colonia (9.1 km 2, 2.7% of the 1979 area). At the northern margin of the CHN the lower debris-covered ablation area of Glaciar Grosse collapsed into a new freshwater lake formed during the late 1990s. The areal changes measured at the CHN are much larger than previously estimated due to the inclusion of changes experienced in the accumulation areas. The CHN as a whole is

  8. Measurement of inflight shell areal density perturbations in NIF capsule implosions near peak velocity

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Pickworth, L.; Smalyuk, V.; Macphee, A.; Scott, H. A.; Robey, H.; Barrios, M.; Regan, S. P.

    2015-11-01

    Quantitative measurements of shell-RhoR perturbations in capsules near peak implosion velocity (PV) are challenging. An external backlighter samples both sides of the shell, unless a re-entrant cone is used (potentially perturbing implosion). Emission from the hot core, after shock-stagnation and prior to PV, has been used as a self-backlighter, providing a means to sample one side of the capsule. Adding high-Z gas (~ 1% Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at photon energies ~ 8 keV over nominal fills. From images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer, we infer the growth at PV of imposed perturbations (100 nm amplitude, mode 40). Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. HoneySiC: a new optomechanical material for low-areal cost and density

    NASA Astrophysics Data System (ADS)

    Goodman, William A.

    2013-09-01

    One of the major problems perceived for deposited silicon carbide mirrors and structures is the cost associated with machining and lightweighting the material to the specifications of a drawing. Molded pedigrees of silicon carbide address these concerns by casting or molding a slurry and prefiring the slurry to make a consolidated and porous greenbody which is relatively soft and not very difficult to machine. The machined greenbody is then infiltrated with molten silicon in an exothermic process that yields a two phase reaction bonded silicon carbide material that must undergo a final machining step. Converted silicon carbide pedigrees machine a graphite or carbon/carbon precursor material to near net shape and then infiltrate the part with gaseous silicon monoxide or molten silicon to convert most or all of the carbon to silicon carbide. Some pedigrees are highly porous, while others may be dense and containing 2 or 3 different phases of material. We have created and demonstrated a new fiber reinforced silicon carbide material that combines the benefits of molding, infiltration and conversion processes. The resulting HoneySiC material requires a minimal amount of machining. HoneySiC material achieves lightweighting of 92% relative to bulk material and net production cost on the order of 38K per square meter (unpolished), less than half of NASA's goal of 100K per square meter.

  10. Silicon nano-trees as high areal capacity anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Leveau, Lucie; Laïk, Barbara; Pereira-Ramos, Jean-Pierre; Gohier, Aurélien; Tran-Van, Pierre; Cojocaru, Costel-Sorin

    2016-06-01

    Nanostructured silicon electrodes have attracted attention as a potential candidate for high capacity anode in lithium-ion batteries, thanks to their high specific capacity and their ability to accommodate silicon volume changes upon cycling. However, the silicon amount deposited on these nanostructured electrodes is generally low and leads to low surface capacities. Here, a new structure is proposed to increase the areal density of silicon on the electrode. A second growth of secondary nanowires on a silicon nanowires electrode leads to a "nano-tree" structure with surface capacities between 1.8 and 7.1 mAh cm-2. These high loaded electrodes maintain very good rate capabilities and a rather stable cycling is observed for the intermediate loadings, with a capacity maintained above 2 mAh cm-2 after 100 cycles at C/5. This paper provides evidence of a successful synthesis of high loaded silicon electrodes for practical applications, of which the electrochemical performances outperform those of graphite commercial anodes.

  11. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-07-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

  12. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials.

    PubMed

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-01-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m(2) g(-1) is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA(+), diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm(-2) and high energy density of 10/39 Wh kg(-1) at power of 52/286 kW kg(-1) in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively. PMID:24986670

  13. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    PubMed Central

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-01-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g−1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm−2 and high energy density of 10/39 Wh kg−1 at power of 52/286 kW kg−1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively. PMID:24986670

  14. The effect of gettering on areal inhomogeneities in large-area multicrystalline-silicon solar cells

    SciTech Connect

    Gee, J.M.; Sopori, B.L.

    1997-10-01

    Multicrystalline-silicon (mc-Si) materials and cells feature large areal variations in material and junction quality. The regions with poor device quality have been predicted to have more recombination current at forward bias than a simple area-weighted average due to the parallel interconnection of the good and bad regions by the front junction. The authors have examined the effect of gettering on areal inhomogeneities in large-area mc-Si cells. Cells with large areal inhomogeneities were found to have increased non-ideal recombination current, which is in line with theoretical predictions. Phosphorus-diffusion and aluminum-alloy gettering of mc-Si was found to reduce the areal inhomogeneities and improve large-area mc-Si device performance.

  15. Areal Distribution of the Oxygen-Isotope Ratio in Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    1997-01-01

    Mean values of the oxygen-isotope ratio relative to standard mean ocean water reported for 46 sites on the Greenland ice sheet are compiled together with data on mean annual surface temperature, latitude, 6180 elevation, and mean annual shortest distance to the open ocean denoted by the 10% sea-ice concentration boundary. Stepwise regression analyses, with 6180 as the dependent variable, define two robust models. In the forward mode at the 99.9% confidence level, only temperature enters the model. In the backward mode at the 95% confidence level, only temperature, latitude, and distance to the open ocean remain in the model. Inversions of the models on the basis of 160 gridpoint locations 100 km apart in the area delimited by the surface equilibrium line produce four contoured distributions of 6"0. Two distributions are based on the bivariate model and two on the multivariate model. The second distribution for each model is obtained substituting mean annual surface-temperature values obtained from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) database. All four distributions are considered valid, and differences between them are evaluated using contoured anomaly maps. It is suggested that the inversion of the multivariate model using THIR data provides the more reliable pattern for studies of atmospheric advection or for the derivation of ice-flow adjustments for 6180 series obtained from deep-core or ablation-zone sites.

  16. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  17. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  18. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  19. Ablation of kidney tumors.

    PubMed

    Karam, Jose A; Ahrar, Kamran; Matin, Surena F

    2011-04-01

    While surgical excision remains the gold standard for curative treatment of small renal cell carcinomas, ablative therapy has a place as a minimally invasive, kidney function-preserving therapy in carefully selected patients who are poor candidates for surgery. Although laparoscopic cryoablation and percutaneous radiofrequency ablation (RFA) are commonly performed, percutaneous cryoablation and laparoscopic RFA are reportedly being performed with increasing frequency. The renal function and complication profiles following ablative therapy are favorable, while oncologic outcomes lag behind those of surgery, thus reinforcing the need for careful patient selection. PMID:21377587

  20. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. PMID:24488638

  1. Cardiac ablation procedures

    MedlinePlus

    ... Accessory pathway, such as Wolff-Parkinson-White Syndrome Atrial fibrillation and atrial flutter Ventricular tachycardia ... consensus statement on catheter and surgical ablation of atrial fibrillation: ... for personnel, policy, procedures and follow-up. ...

  2. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  3. Laser ablation with applied magnetic field for electric propulsion

    NASA Astrophysics Data System (ADS)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  4. Assessment of probabilistic areal reduction factors of precipitations for the entire French territory with gridded rainfall data.

    NASA Astrophysics Data System (ADS)

    Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2016-04-01

    The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year

  5. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  6. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  7. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    . A laser-induced and localized thermal ionization pathway has been investigated and it was found to have significant influence on the initial free electron density during plasma formation due to the combination of strong light absorption by chromophores and confined temperature rise in the chromophores. Good agreements have been found between the new plasma-mediated ablation model and experimental results. The implications of this dissertation research to the future improvement of laser systems in dermatology and plastic surgery are discussed.

  8. Atrial fibrillation ablation.

    PubMed

    Pappone, Carlo; Santinelli, Vincenzo

    2012-06-01

    Atrial fibrillation is the commonest cardiac arrhythmia, with significant morbidity related to symptoms, heart failure, and thromboembolism, which is associated with excess mortality. Over the past 10 years, many centers worldwide have reported high success rates and few complications after a single ablation procedure in patients with paroxysmal atrial fibrillation. Recent studies indicate a short-term and long-term superiority of catheter ablation as compared with conventional antiarrhythmic drug therapy in terms of arrhythmia recurrence, quality of life, and arrhythmia progression. As a result, catheter ablation is evolving to a front-line therapy in many patients with atrial fibrillation. However, in patients with persistent long-standing atrial fibrillation catheter ablation strategy is more complex and time-consuming, frequently requiring repeat procedures to achieve success rates as high as in paroxysmal atrial fibrillation. In the near future, however, with growing experience and evolving technology, catheter ablation of atrial fibrillation may be extended also to patients with long-standing atrial fibrillation. PMID:22541284

  9. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  10. Modeling Ablation of Fibrous Materials from Bulk to Knudsen Regime

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean; Mansour, Nagi N.

    2008-01-01

    Material-environment interactions are analyzed at microscopic scale to explain the lower than expected density observed by post-flight analysis of the char layer on the Stardust shield. Mass transfer, ablation (oxidation), and surface recession of fibrous material is simulated in 3D using a Monte-Carlo simulation tool. Ablation is found to occur either at the surface or in volume depending on Knudsen and Thiele number values. This study supports the idea of volume ablation followed by possible carbon fiber spallation that may explain post-flight analyses.

  11. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  12. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  13. Tumour ablation: technical aspects

    PubMed Central

    Bodner, Gerd; Bale, Reto

    2009-01-01

    Abstract Image-guided percutaneous radiofrequency ablation (RFA) is a minimally invasive, relatively low-risk procedure for tumour treatment. Local recurrence and survival rates depend on the rate of complete ablation of the entire tumour including a sufficient margin of surrounding healthy tissue. Currently a variety of different RFA devices are available. The interventionalist must be able to predict the configuration and extent of the resulting ablation necrosis. Accurate planning and execution of RFA according to the size and geometry of the tumour is essential. In order to minimize complications, individualized treatment strategies may be necessary for tumours close to vital structures. This review examines the state-of-the art of different device technologies, approaches, and treatment strategies for percutaneous RFA of liver tumours. PMID:19965296

  14. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  15. Observation of Strong Oscillations of Areal Mass in an Unsupported Shock Wave

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2012-08-01

    An experimental study of hydrodynamic perturbation evolution in a strong unsupported shock wave, which is immediately followed by an expansion wave, is reported. A planar solid plastic target rippled on the front side is irradiated with a 350-450 ps long laser pulse. The perturbation evolution in the target is observed using face-on monochromatic x-ray radiography during and for up to 4 ns after the laser pulse. The theoretically predicted large oscillations of the areal mass in the target are observed for the first time. Multiple phase reversals of the areal mass modulation are detected.

  16. Louisiana hydrologic atlas map no. 2 : Areal extent of freshwater in major aquifers of Louisiana

    USGS Publications Warehouse

    Smoot, Charles W.

    1986-01-01

    The areal availability of freshwater (cl content < 250 mg/L) in 14 major aquifers in Louisiana was investigated. The depth of occurrence of fresh groundwater in Louisiana is variable. The aquifers were mapped to show their areal extent from the outcrop or subcrop to the downdip limit of freshwater. Water in each aquifer becomes saline downdip; but in most areas an overlying (younger) aquifer contains freshwater. None of the major aquifer contains freshwater in northern Louisiana where the Vicksburg and Jackson groups crop out and the underlying Cockfield aquifer (Cockfield Formation) contains saline water. (Peters-PTT)

  17. Comprehensive Areal Model of Earthquake-Induced Landslides: Technical Specification and User Guide

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2007-01-01

    This report describes the complete design of a comprehensive areal model of earthquakeinduced landslides (CAMEL). This report presents the design process, technical specification of CAMEL. It also provides a guide to using the CAMEL source code and template ESRI ArcGIS map document file for applying CAMEL, both of which can be obtained by contacting the authors. CAMEL is a regional-scale model of earthquake-induced landslide hazard developed using fuzzy logic systems. CAMEL currently estimates areal landslide concentration (number of landslides per square kilometer) of six aggregated types of earthquake-induced landslides - three types each for rock and soil.

  18. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  19. Ablative thermal protection systems

    NASA Technical Reports Server (NTRS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed.

  20. Laboratory Micrometeroid/Dust Ablation Studies

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Horanyi, M.; Janches, D.; Munsat, T. L.; Plane, J. M. C.; Simolka, J.; Sternovsky, Z.

    2014-12-01

    Each day, somewhere between 5-270 tonnes of meteoric material ablates in Earth's upper atmosphere. Thisenormous range is significant because the Interplanetary Dust Particle (IDP) input has implications in ourunderstanding of meteor transport in the atmosphere, the formation of layers of metal atoms and ions,nucleation of noctilucent clouds, effects on stratospheric aerosols and O3 chemistry, and dust evolution inour solar system. As the dust ablates, it produces light, as well as a plasma trail of ionized atmosphericatoms and electrons. These meteor signatures are detected by photographic means, or by radar, but thereremain uncertainties in the luminous efficiency and ionization coefficient of meteors - two parameters thatare essential to evaluate densities, masses, height distributions and fluxes. Precise measurements of theseparameters would allow for not only an understanding of the layers of metal atoms and ions and meteoricsmoke particles in the mesosphere and lower thermosphere, but also would allow for the Earth's atmosphereto be used as a dust detector to detect and characterize the dust environment in our solar system. This work discusses the preliminary results of the new dust ablation facility at the 3 MV hypervelocity dust accelerator at the Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) at the University of Colorado, which aims to characterize the ionization coefficient and luminous efficiency of ablating micrometeroids.

  1. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Areal measurement of Mercury's first quadrant. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Various linear and areal measurements of Mercury's first quadrant which were used in geological map preparation, map analysis, and statistical surveys of crater densities are discussed. Accuracy of each method rests on the determination of the scale of the photograph, i.e., the conversion factor between distances on the planet (in km) and distances on the photograph (in cm). Measurement errors arise due to uncertainty in Mercury's radius, poor resolution, poor coverage, high Sun angle illumination in the limb regions, planetary curvature, limited precision in measuring instruments, and inaccuracies in the printed map scales. Estimates are given for these errors.

  2. Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas

    NASA Astrophysics Data System (ADS)

    Ding, Xuecheng; Zhang, Zicai; Liang, Weihua; Chu, Lizhi; Deng, Zechao; Wang, Yinglong

    2016-06-01

    A Monte Carlo simulation method with an instantaneous density dependent mean-free-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas. The ablated-particle density and velocity distributions are analyzed. The force distributions acting on the ablated particles are investigated. The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed. The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa. This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles. supported by the Natural Science Foundation of Hebei Province, China (No. A2015201166) and the Natural Science Foundation of Hebei University, China (No. 2013-252)

  3. Characteristics of optical emission intensities and bubblelike phenomena induced by laser ablation in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Machmudah, Siti; Goto, Hiroshi; Wahyudiono; Goto, Motonobu; Sasaki, Koichi

    2014-01-01

    We investigated the characteristics of laser ablation phenomena in supercritical fluids by optical emission and shadowgraph imaging. In comparison with laser ablation in liquid H2O, the optical emission of a laser ablation plasma produced in supercritical H2O had a longer lifetime and a larger transport length. It was found in supercritical CO2 that laser ablation plasmas with bright optical emissions were produced at a mass density of approximately 300 kg/m3. A clear correlation between the optical emission intensity and the density fluctuation was not observed in our experimental results, which were obtained in a regime deviated from the critical point. Bubblelike hollows were observed by shadowgraph imaging in both supercritical H2O and CO2. The dynamics of the bubblelike hollows were different from the dynamics of a cavitation bubble induced by laser ablation in a liquid medium but relatively similar to the dynamics of ambient gas in gas-phase laser ablation.

  4. Therapeutic stimulation versus ablation.

    PubMed

    Hariz, Marwan I; Hariz, Gun-Marie

    2013-01-01

    The renaissance of functional stereotactic neurosurgery was pioneered in the mid 1980s by Laitinen's introduction of Leksell's posteroventral pallidotomy for Parkinson´s disease (PD). This ablative procedure experienced a worldwide spread in the 1990s, owing to its excellent effect on dyskinesias and other symptoms of post-l-dopa PD. Modern deep brain stimulation (DBS), pioneered by Benabid and Pollak in 1987 for the treatment of tremor, first became popular when it was applied to the subthalamic nucleus (STN) in the mid 1990s, where it demonstrated a striking effect on all cardinal symptoms of advanced PD, and permitted reduced dosages of medication. DBS, as a nondestructive, adaptable, and reversible procedure that is proving safe in bilateral surgery on basal ganglia, has great appeal to clinicians and patients alike, despite the fact that it is expensive, laborious, and relies on very strict patient selection criteria, especially for STN DBS. Psychiatric surgery has experienced the same phenomenon, with DBS supplanting completely stereotactic ablative procedures. This chapter discusses the pros and cons of ablation versus stimulation and investigates the reasons why DBS has overshadowed proven efficient ablative procedures such as pallidotomy for PD, and capsulotomy and cingulotomy for obsessive-compulsive disorder and depression. PMID:24112885

  5. New Ablation Technologies and Techniques

    PubMed Central

    Berte, Benjamin; Yamashita, Seigo; Derval, Nicolas; Denis, Arnaud; Shah, Ashok; Amraoui, Sana; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Sacher, Frederic

    2014-01-01

    Catheter ablation is an established treatment strategy for a range of different cardiac arrhythmias. Over the past decade two major areas of expansion have been ablation of atrial fibrillation (AF) and ventricular tachycardia (VT) in the context of structurally abnormal hearts. In parallel with the expanding role of catheter ablation for AF and VT, multiple novel technologies have been developed which aim to increase safety and procedural success. Areas of development include novel catheter designs, novel navigation technologies and higher resolution imaging techniques. The aim of the present review is to provide an overview of novel developments in AF ablation and VT ablation in patients with of structural cardiac diseases. PMID:26835075

  6. New Ablation Technologies and Techniques.

    PubMed

    Mahida, Saagar; Berte, Benjamin; Yamashita, Seigo; Derval, Nicolas; Denis, Arnaud; Shah, Ashok; Amraoui, Sana; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Sacher, Frederic

    2014-08-01

    Catheter ablation is an established treatment strategy for a range of different cardiac arrhythmias. Over the past decade two major areas of expansion have been ablation of atrial fibrillation (AF) and ventricular tachycardia (VT) in the context of structurally abnormal hearts. In parallel with the expanding role of catheter ablation for AF and VT, multiple novel technologies have been developed which aim to increase safety and procedural success. Areas of development include novel catheter designs, novel navigation technologies and higher resolution imaging techniques. The aim of the present review is to provide an overview of novel developments in AF ablation and VT ablation in patients with of structural cardiac diseases. PMID:26835075

  7. Printed microelectrodes for scalable, high-areal-capacity lithium-sulfur batteries.

    PubMed

    Milroy, Craig; Manthiram, Arumugam

    2016-03-10

    Printed microelectrodes for lithium-sulfur cathodes are produced with aqueous inks and a one-step printing process. The cathodes exhibit high areal capacities of ≥5 mA h cm(-2) for 50 cycles and withstand ≥500 cycles. This performance meets energy-storage benchmarks for powering microdevices, and presents a strategic option for future microbatteries. PMID:26833188

  8. CONFRONTING THE MODIFIABLE AREAL UNIT PROBLEM FOR INFERENCE ON NITRATE IN REGIONAL SHALLOW GROUND WATER

    EPA Science Inventory

    The modifiable areal unit problem results from data aggregation to a level which is so arbitrary that critical information is lost. Yet aggregation is necessary for assessment under the U.S. Environmental Protection Agency's Regional Vulnerability Assessment Program. This work pr...

  9. Operational use of LANDSAT imagery for the estimation of snow areal extent

    NASA Technical Reports Server (NTRS)

    Katibah, E. F.

    1975-01-01

    Quantification of the surface area of snow covering watersheds can be a useful parameter in estimating snow water content for inclusion in water runoff prediction equations. An operational manual interpretation technique is described, which allows fast and accurate estimates to be made of the areal extent of snow parameter using LANDSAT-1 imagery. The analysis procedures and the statistical results are presented.

  10. DISTRIBUTION OF AREAL RECHARGE TO A DISCRETE FRACTURE NETWORK (FRACNET) MODEL USING THE ANALYTIC ELEMENT METHOD

    EPA Science Inventory

    Rain water filtering down through the soil will provide recharge of the saturated fractured rock aquifer. he computer model FRACNET has been designed to distribute areal recharge into linear fracture zones in order to complete the regional water balance. n this presentation, a te...

  11. A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems

    NASA Astrophysics Data System (ADS)

    Ayvaz, M. Tamer

    2016-07-01

    In this study, a new simulation-optimization approach is proposed for solving the areal groundwater pollution source identification problems which is an ill-posed inverse problem. In the simulation part of the proposed approach, groundwater flow and pollution transport processes are simulated by modeling the given aquifer system on MODFLOW and MT3DMS models. The developed simulation model is then integrated to a newly proposed hybrid optimization model where a binary genetic algorithm and a generalized reduced gradient method are mutually used. This is a novel approach and it is employed for the first time in the areal pollution source identification problems. The objective of the proposed hybrid optimization approach is to simultaneously identify the spatial distributions and input concentrations of the unknown areal groundwater pollution sources by using the limited number of pollution concentration time series at the monitoring well locations. The applicability of the proposed simulation-optimization approach is evaluated on a hypothetical aquifer model for different pollution source distributions. Furthermore, model performance is evaluated for measurement error conditions, different genetic algorithm parameter combinations, different numbers and locations of the monitoring wells, and different heterogeneous hydraulic conductivity fields. Identified results indicated that the proposed simulation-optimization approach may be an effective way to solve the areal groundwater pollution source identification problems.

  12. Percutaneous Ablation of Adrenal Tumors

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Dupuy, Damian E.; Wood, Bradford J.

    2010-01-01

    Adrenal tumors comprise a broad spectrum of benign and malignant neoplasms, and include functional adrenal adenomas, pheochromocytomas, primary adrenocortical carcinoma and adrenal metastases. Percutaneous ablative approaches that have been described and used in the treatment of adrenal tumors include percutaneous radiofrequency ablation (RFA), cryoablation, microwave ablation and chemical ablation. Local tumor ablation in the adrenal gland presents unique challenges, secondary to the adrenal gland’s unique anatomic and physiologic features. The results of clinical series employing percutaneous ablative techniques in the treatment of adrenal tumors are reviewed in this article. Clinical and technical considerations unique to ablation in the adrenal gland are presented, including approaches commonly used in our practices, and risks and potential complications are discussed. PMID:20540918

  13. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  14. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    PubMed Central

    Chen, H.; Li, H.; Sun, YC.; Wang, Y.; Lü, PJ.

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application. PMID:26864679

  15. USE OF REMOTE SENSING TO MAP THE AREAL DISTRIBUTION OF 'CLADOPHORA GLOMERATA' AT A SITE IN LAKE HURON

    EPA Science Inventory

    The areal distribution of the benthic alga Cladophora glomerata and the percent areal coverage of Cladophora within 45.8 m (150 ft) by 15.3 m (50 ft) model cells for a 2.8 km length of Lake Huron shoreline at Harbor Beach, Michigan, are determined by remote sensing techniques. Da...

  16. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    USGS Publications Warehouse

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  17. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  18. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  19. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  20. Radiofrequency Ablation of Metastatic Pheochromocytoma

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Lai, Edwin W.; Adams, Karen T.; Fojo, Antonio Tito; Pacak, Karel; Wood, Bradford J.

    2013-01-01

    In the present report on the preliminary safety and effectiveness of radiofrequency (RF) ablation for pheochromocytoma metastases, seven metastases were treated in six patients (mean size, 3.4 cm; range, 2.2–6 cm). α- and β-adrenergic and catecholamine synthesis inhibition and intraprocedural anesthesia monitoring were used. Safety was assessed by recording ablation-related complications. Complete ablation was defined as a lack of enhancement within the ablation zone on follow-up computed tomography. No serious adverse sequelae were observed. Complete ablation was achieved in six of seven metastases (mean follow-up, 12.3 months; range, 2.5–28 months). In conclusion, RF ablation may be safely performed for metastatic pheochromocytoma given careful attention to peri-procedural management. PMID:19875067

  1. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  2. High-areal-capacity lithium storage of the Kirkendall effect-driven hollow hierarchical NiSx nanoarchitecture

    NASA Astrophysics Data System (ADS)

    Lee, Chan Woo; Seo, Seung-Deok; Park, Hoon Kee; Park, Sangbaek; Song, Hee Jo; Kim, Dong-Wan; Hong, Kug Sun

    2015-01-01

    Three-dimensional (3-D) architectures can provide significant advantages as lithium ion microbattery electrodes by lengthening the vertical dimension. In addition, the nanoscale hierarchy and hollow properties are important factors for enhancing the performance. Here, we prepared a 3-D nickel sulfide nanoarchitecture via a facile low-temperature solution route. A Kirkendall effect-driven sulfidation of a 3-D nickel electrode was used to produce a hollow 3-D structure. Moreover, a nanoscale hierarchy can be formed with the use of highly concentrated sulfur species. The morphology, structure, and chemical composition of the 3-D nickel sulfide electrode are characterized in detail, and the formation mechanism is discussed based on a time-resolved study. The 3-D nickel sulfide electrodes show an outstanding areal capacity (1.5 mA h cm-2 at a current rate of 0.5 mA cm-2), making this electrode a potential electrode for 3-D lithium ion microbatteries with a large energy density. Moreover, this strategy is expected to provide a general fabrication method for transition metal sulfide nanoarchitectures.Three-dimensional (3-D) architectures can provide significant advantages as lithium ion microbattery electrodes by lengthening the vertical dimension. In addition, the nanoscale hierarchy and hollow properties are important factors for enhancing the performance. Here, we prepared a 3-D nickel sulfide nanoarchitecture via a facile low-temperature solution route. A Kirkendall effect-driven sulfidation of a 3-D nickel electrode was used to produce a hollow 3-D structure. Moreover, a nanoscale hierarchy can be formed with the use of highly concentrated sulfur species. The morphology, structure, and chemical composition of the 3-D nickel sulfide electrode are characterized in detail, and the formation mechanism is discussed based on a time-resolved study. The 3-D nickel sulfide electrodes show an outstanding areal capacity (1.5 mA h cm-2 at a current rate of 0.5 mA cm-2), making

  3. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  4. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  5. Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data

    NASA Technical Reports Server (NTRS)

    Rango, Albert; Van Katwijk, Victor F.; Martinec, Jaroslav; Chang, Alfred T. C.; Foster, James L.

    1989-01-01

    Satellite microwave data were used to evaluate the average areal water equivalent of snow cover in the mountainous Rio Grande basin of Colorado. Areal water equivalent data for the basin were obtained from contoured values of point measurements and from zonal water volume values generated by a snowmelt runoff model. Comparison of these snow water equivalent values shows the model values to consistently exceed the contoured values, probably because of the narrow elevation range in the lower part of the basin where the point measurements are concentrated. A significant relationship between the difference in microwave brightness temperatures at two different wavelengths and a basin-wide average snow water equivalent value is obtained. The average water equivalent of the snow cover in the basin was derived from differences of the microwave brightness temperatures.

  6. Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data

    NASA Technical Reports Server (NTRS)

    Rango, A.; Martinec, J.; Chang, A. T. C.; Foster, J. L.; Vankatwijk, V.

    1988-01-01

    Satellite microwave data were used to evaluate the average areal water equivalent of snow cover in the mountainous Rio Grande basin of Colorado. Areal water equivalent data for the basin were obtained from contoured values of point measurements and from zonal water volume values generated by a snowmelt runoff model. Comparison of these snow water equivalent values shows the model values to consistently exceed the contoured values, probably because of the narrow elevation range in the lower part of the basin where the point measurements are concentrated. A significant relationship between the difference in microwave brightness temperatures at two different wavelengths and a basin-wide average snow water equivalent value is obtained. The average water equivalent of the snow cover in the basin was derived from differences of the microwave brightness temperatures.

  7. Unsupervised classification and areal measurement of land and water coastal features on the Texas coast

    NASA Technical Reports Server (NTRS)

    Flores, L. M.; Reeves, C. A.; Hixon, S. B.; Paris, J. F.

    1973-01-01

    Multispectral scanner (MSS) digital data from ERTS-1 was used to delineate coastal land, vegetative, and water features in two portions of the Texas Coastal Zone. Data (Scene ID's 1037-16244 and 1037-16251) acquired on August 29, 1972, were analyzed on NASA Johnson Space Center systems through the use of two clustering algorithms. Seventeen to 30 spectrally homogeneous classes were so defined. Many classes were identified as being pure features such as water masses, salt marsh, beaches, pine, hardwoods, and exposed soil or construction materials. Most classes were identified to be mixtures of the pure class types. Using an objective technique for measuring the percentage of wetland along salt marsh boundaries, an analysis was made of the accuracy of areal measurement of salt marshes. Accuracies ranged from 89 to 99 percent. Aircraft photography was used as the basis for determining the true areal size of salt marshes in the study sites.

  8. Surveying the earth's environment from space - Spectral, areal, temporal coverage trends

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.

    1977-01-01

    Attention is given to various areas of satellite applications to monitoring the earth's environment. These trends primarily concern spectral, areal, and temporal coverage. Various environmental monitors are discussed in terms of derived economic benefits. Several types of remote sensors for earth applications are described, noting spectral channels, resolution cell size, swath width, and data rate. A sample environmental monitoring system is presented which includes five geostationary satellites, and three or four low earth orbit spacecraft

  9. 3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries.

    PubMed

    Fang, Ruopian; Zhao, Shiyong; Hou, Pengxiang; Cheng, Min; Wang, Shaogang; Cheng, Hui-Ming; Liu, Chang; Li, Feng

    2016-05-01

    Sulfur electrodes based on a 3D integrated hollow carbon fiber foam (HCFF) are synthesized with high sulfur loadings of 6.2-21.2 mg cm(-2) . Benefiting from the high electrolyte absorbability of the HCFF and the multiple conductive channels, the obtained electrode demonstrates excellent cycling stability and a high areal capacity of 23.32 mAh cm(-2) , showing great promise in commercially viable Li-S batteries. PMID:26932832

  10. MAUP: Modifiable Areal Unit Problem in raster GIS datasets. Raster pixels as modifiable areas

    USGS Publications Warehouse

    Lyn, Usery E.

    2001-01-01

    The Modifiable Areal Unit Problem (MAUP) is a well-studied aspect of geographic phenomena. It is usually associated with socio-economic data collected by census enumeration units. This problem also applies directly to geographic data in raster formats, including both GIS categorical data layers and remotely sensed images. The author briefly provides a foundation for examining the component parts of the MAUP in remotely sensed raster data.

  11. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    NASA Astrophysics Data System (ADS)

    Ouyang, Peixuan; Li, Peijie; Leksina, E. G.; Michurin, S. V.; He, Liangju

    2016-01-01

    In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  12. Transformation of Areal Objects Into Linear Objects, Regarding the Map Scale

    NASA Astrophysics Data System (ADS)

    Szombara, Stanisław

    2013-12-01

    The Digital Landscape Model is characterized by preserving strict georeference of the content and the included classes of the objects on a definite level of datail. In the process of digital cartographic generalization, it is often necessary to change the objects into the ones of a lower level of datail than the source level, preserving their strict georeference. One of the generalization operations is a partial or total change of areal objects into linear objects (collapse). This transformation is used in the mentioned above model, for the Digital Cartographic Model. In the solution proposed by the Author, the change of the dimension of the areal objects (of natural origin) into linear objects is carried out by the constructions called Medial Axis Transform (MAT) and the elementary disc. The idea of the elementary disc is based on the Perkal's method and the standard based on the Chrobak's elementary triangle. Owing to the combination of these elements the operator of digital cartographic generalization was obtained, making an unambiguous result (independent from the operator). In the process of automatic cartographic generalization, the presented method allows the transformation of the areal object into a linear object in any scale (dependant on the drawing recognizability norm), in an unambiguous way, as well as regarding the detection and solution of graphical conflicts arising during the collapse.

  13. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data.

    PubMed

    Hawrylycz, Mike; Bernard, Amy; Lau, Chris; Sunkin, Susan M; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Ng, Lydia

    2010-02-01

    Although cytoarchitectonic organization of the mammalian cortex into different lamina has been well-studied, identifying the architectural differences that distinguish cortical areas from one another is more challenging. Localization of large anatomical structures is possible using magnetic resonance imaging or invasive techniques (such as anterograde or retrograde tracing), but identifying patterns in gene expression architecture is limited as gene products do not necessarily identify an immediate functional consequence of a specialized area. Expression of specific genes in the mouse and human cortex is most often identified across entire lamina, and areal patterning of expression (when it exists) is most easily differentiated on a layer-by-layer basis. Since cortical organization is defined by the expression of large sets of genes, the task of identifying individual (or groups of structures) cannot be done using individual areal markers. In this manuscript we describe a methodology for clustering gene expression correlation profiles in the C57Bl/6J mouse cortex to identify large-scale genetic relationships between layers and areas. By using the Anatomic Gene Expression Atlas (http://mouse.brain-map.org/agea/) derived from in situ hybridization data in the Allen Brain Atlas, we show that a consistent expression based organization of areal patterning in the mouse cortex exists when clustered on a laminar basis. Surface-based mapping and visualization techniques are used as a representation to clarify these relationships. PMID:19800006

  14. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  15. A numerical model for areal migration of water and light hydrocarbon in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, J. J.; Parker, J. C.; Lenhard, R. J.

    A finite element model has been developed to simulate simultaneous flow of water and light hydrocarbon in an areal flow region of an unconfined aquifer for analyses of hydrocarbon spreading from subsurface leaks or spills and for use in design of free product recovery systems. Vertically integrated governing equations for water and oil flow are employed which assume local vertical equilibrium and negligible gas pressure gradients. Multiple water and free product recovery wells are handled as internal type-I boundary conditions by stipulating air-oil table elevation and free product height with corrections to convert grid averaged nodal heads to actual well bore fluid levels. An automatic updating scheme for well bore correction factors is introduced which ensures consistency of well flux calculations with the global mass balance. Areal model predictions are compared with two dimensional vertical cartesian and radial simulations with multiphase seepage faces for hypothetical trench and well free product recovery systems, respectively. The results indicate that the assumption of vertical equilibrium and lack of explicit treatment of seepage faces in the areal model produce minor loss in accuracy while conferring major reductions in computational effort. Simulations of various spill spreading and free product recovery scenarios with multiple pumping wells are investigated to demonstrate the model capabilities.

  16. Spectroscopic and morphological study of laser ablated Titanium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muahmamd Shahid; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Saman; Dawood, Asadullah; Arooj

    2016-07-01

    The laser-induced breakdown spectroscopy (LIBS) and surface morphology of Titanium (Ti) plasma as a function of laser irradiance have been investigated under ambient environment of argon at fixed pressure of 50 Torr. Ablation was performed by employing Q-switched Nd:YAG laser pulses (λ ≈ 1064 nm, τ ≈ 10 ns, repetition rate ≈ 10 Hz). Ti targets were exposed to various laser intensities ranging from 6 to 50 GW/cm2. LIBS analysis has been employed for the investigation of plasma parameters. Scanning Electron Microscope (SEM) analysis was employed for investigation of surface morphology. Ablation depth was measured by optical microscopy technique. It was observed that both plasma parameters, i.e., excitation temperature and electron density have been significantly influenced by laser irradiance. It is observed that with increasing laser irradiance up to 13 GW/cm2, the electron temperature decreases whereas number density significantly increases and attains its maxima. Afterwards by increasing irradiance electron temperature increases, attains its maxima and a decrease in electron number density is observed at irradiance of 19 GW/cm2. Further increase in irradiance causes saturation with insignificant changes in both electron temperature and electron number density. This saturation in both excitation temperature and electron number density is explainable on the basis of self-sustaining regime. SEM micrographs reveal the ripple and coneformation at the boundaries of ablated region of Ti. The height of cones as well as the ablation depth is maximum at irradiance of 13 GW/cm2 whereas electron number density is also maximum. The maximum electron number density is considered to be responsible for maximum ablation as well as mass removal. A strong correlation between plasma parameters and surface morphology is established.

  17. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  18. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  19. The ablation threshold of Er;Cr:YSGG laser radiation in bone tissue

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Zezell, Denise Maria

    2015-06-01

    In laser cut clinical applications, the use of energy densities lower than the ablation threshold causes increase of temperature of the irradiated tissue, which might result in an irreversible thermal damage. Hence, knowing the ablation threshold is crucial for insuring the safety of these procedures. The aim of this study was to determine the ablation threshold of the Er,Cr:YSGG laser in bone tissue. Bone pieces from jaws of New Zealand rabbits were cut as blocks of 5 mm × 8 mm and polished with sandpaper. The Er,Cr:YSGG laser used in this study had wavelength of 2780 nm, 20 Hz of frequency, and the irradiation condition was chosen so as to simulate the irradiation during a surgical procedure. The laser irradiation was performed with 12 different values of laser energy densities, between 3 J/cm2 and 42 J/cm2, during 3 seconds, resulting in the overlap of 60 pulses. This process was repeated in each sample, for all laser energy densities. After irradiation, the samples were analyzed by scanning electron microscope (SEM), and it was measured the crater diameter for each energy density. By fitting a curve that related the ablation threshold with the energy density and the corresponding diameter of ablation crater, it was possible to determine the ablation threshold. The results showed that the ablation threshold of the Er,Cr:YSGG in bone tissue was 1.95+/-0.42 J/cm2.

  20. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  1. High areal capacitance three-dimensional Ni@Ni(OH)2 foams via in situ oxidizing Ni foams in mild aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Qingfeng; Cui, Mangwei; Tao, Keyu; Yang, Yongzhen; Liu, Xuguang; Kang, Litao

    2016-03-01

    In this work, commercial Ni foams are directly oxidized into Ni@Ni(OH)2 foams in a mild NH4NO3 solution at 80 °C. When used as binder-free electrodes, these Ni@Ni(OH)2 electrodes demonstrate a high areal capacitance of 6.4 F/cm2 at a current density of 2.5 mA/cm2, or 1.62 F/cm2 at a high current density of 30 mA/cm2. Nevertheless, they show a poor cycling ability with 70.4% (or 42%) capacitance retention after 2000 (or 5000) cycles at 30 mA/cm2. This kind of electrodes has a promising application in low-cost, high-performance supercapacitor, if an effective strategy is found to improve their cycling ability.

  2. High-areal-capacity lithium storage of the Kirkendall effect-driven hollow hierarchical NiS(x) nanoarchitecture.

    PubMed

    Lee, Chan Woo; Seo, Seung-Deok; Park, Hoon Kee; Park, Sangbaek; Song, Hee Jo; Kim, Dong-Wan; Hong, Kug Sun

    2015-02-14

    Three-dimensional (3-D) architectures can provide significant advantages as lithium ion microbattery electrodes by lengthening the vertical dimension. In addition, the nanoscale hierarchy and hollow properties are important factors for enhancing the performance. Here, we prepared a 3-D nickel sulfide nanoarchitecture via a facile low-temperature solution route. A Kirkendall effect-driven sulfidation of a 3-D nickel electrode was used to produce a hollow 3-D structure. Moreover, a nanoscale hierarchy can be formed with the use of highly concentrated sulfur species. The morphology, structure, and chemical composition of the 3-D nickel sulfide electrode are characterized in detail, and the formation mechanism is discussed based on a time-resolved study. The 3-D nickel sulfide electrodes show an outstanding areal capacity (1.5 mA h cm(-2) at a current rate of 0.5 mA cm(-2)), making this electrode a potential electrode for 3-D lithium ion microbatteries with a large energy density. Moreover, this strategy is expected to provide a general fabrication method for transition metal sulfide nanoarchitectures. PMID:25585208

  3. Assessing Modifiable Areal Unit Problem in the Analysis of Deforestation Drivers Using Remote Sensing and Census Data

    NASA Astrophysics Data System (ADS)

    Mas, J. F.; Pérez Vega, A.; Andablo Reyes, A.; Castillo Santiago, M. A.; Flamenco Sandoval, A.

    2015-08-01

    In order to identify drivers of land use / land cover change (LUCC), the rate of change is often compared with environmental and socio-economic variables such as slope, soil suitability or population density. Socio-economic information is obtained from census data which are collected for individual households but are commonly presented in aggregate on the basis of geographical units as municipalities. However, a common problem, known as the modifiable areal unit problem (MAUP), is that the results of statistical analysis are not independent of the scale and the spatial configuration of the units used to aggregate the information. In this article, we evaluate how strong MAUP effects are for a study on the deforestation drivers in Mexico at municipality level. This was done by taking socio-economic variables from the 2010 Census of Mexico along with environmental variables and the rate of deforestation. As population census is given for each human settlement and environmental variables are obtained from high resolution spatial database, it was possible to aggregate the information using spatial units ("pseudo municipalities") with different sizes in order to observe the effect of scale and aggregation on the values of bivariate correlations (Pearsons r) between pairs of variables. We found that MAUP produces variations in the results, and we observed some variable pairs and some configurations of the spatial units where the effect was substantial.

  4. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  5. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  6. Novel method for Ag colloidal cluster formation by laser ablation at the air-liquid interface

    NASA Astrophysics Data System (ADS)

    Nishi, Teppei; Akimoto, Yusuke; Takahashi, Naoko; Kitazumi, Kosuke; Kajiya, Shuji; Watanabe, Yoshihide

    2015-09-01

    We report a novel method for formation of sub-nanoclusters by laser ablation at the air-liquid interface. The density of plasma induced by laser ablation at the air-liquid interface should be lower than that produced by laser ablation in liquid. In the lower density plasma, the produced clusters rarely grow or aggregate into larger clusters because the collision probability is low, resulting in the formation of small clusters. Ag sub-nanoclusters were observed by electrospray ionization mass spectrometry (ESI-MS) and X-ray photoelectron spectroscopy (XPS). These results show that low-density plasma can be applied to small-cluster formation and that laser ablation at the air-liquid interface produces a good reactive field for the formation of sub-nanoclusters. Our results highlight the importance of low-density plasma induced at the air-liquid interface for sub-nanocluster formation.

  7. Laser-ablation processes (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dingus, Ronald S.

    1992-06-01

    The physical mechanisms associated with ablation of matter by laser irradiation are quite different in different regions of parameter space. The important parameters are the laser wavelength; the laser flux versus time, position, and angle of incidence at the target; and the target properties as well as the properties of the laser-transport medium adjacent to the irradiated target surface. Important target properties include surface contour, laser reflectivity and absorption depth, thermal diffusively, vaporization energy, Gruneisen coefficient, spall strength, ionization energies and plasma opacity versus temperature and density. As the flux increases, the process becomes less dependent on most of these target properties. Depending on the values of these various parameters, at relatively low fluxes targets can be vaporized and these vapors can be transparent to the laser beam. If a transparent liquid or solid transport medium exists in front of the vaporized target material, then a complicated contained- vaporization process takes place and the work done on the target by the vapors can be several orders of magnitude larger than with a gas or vacuum transport medium; the degree of work enhancement can depend strongly on the vapor condensability and condensed matter thermal conductivity. For short-pulselength irradiations of semi-transparent targets with a low- acoustic-impedance-laser-transport medium adjacent to the target, ablation needs to be a vacuum in order for the beam to be able to propagate to the target. For targets in a vacuum exposed to fluxes of this order (and considerably higher) and for long pulselengths, most of the laser energy will be absorbed (before reaching the critical surface) by inverse bremsstrahlung in material blown off from the target; at higher fluxes, the beam will be stopped at the critical surface producing localized absorption along with much higher energy densities and non-thermal equilibrium behavior. When the combination of

  8. Factors Limiting Complete Tumor Ablation by Radiofrequency Ablation

    SciTech Connect

    Paulet, Erwan Aube, Christophe; Pessaux, Patrick; Lebigot, Jerome; Lhermitte, Emilie; Oberti, Frederic; Ponthieux, Anne; Cales, Paul; Ridereau-Zins, Catherine; Pereira, Philippe L.

    2008-01-15

    The purpose of this study was to determine radiological or physical factors to predict the risk of residual mass or local recurrence of primary and secondary hepatic tumors treated by radiofrequency ablation (RFA). Eighty-two patients, with 146 lesions (80 hepatocellular carcinomas, 66 metastases), were treated by RFA. Morphological parameters of the lesions included size, location, number, ultrasound echogenicity, computed tomography density, and magnetic resonance signal intensity were obtained before and after treatment. Parameters of the generator were recorded during radiofrequency application. The recurrence-free group was statistically compared to the recurrence and residual mass groups on all these parameters. Twenty residual masses were detected. Twenty-nine lesions recurred after a mean follow-up of 18 months. Size was a predictive parameter. Patients' sex and age and the echogenicity and density of lesions were significantly different for the recurrence and residual mass groups compared to the recurrence-free group (p < 0.05). The presence of an enhanced ring on the magnetic resonance control was more frequent in the recurrence and residual mass groups. In the group of patients with residual lesions, analysis of physical parameters showed a significant increase (p < 0.05) in the time necessary for the temperature to rise. In conclusion, this study confirms risk factors of recurrence such as the size of the tumor and emphasizes other factors such as a posttreatment enhanced ring and an increase in the time necessary for the rise in temperature. These factors should be taken into consideration when performing RFA and during follow-up.

  9. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  10. Spectroscopic characterization of laser ablated silicon plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Mumtaz, M.; Shahzada, S.; Nadeem, A.; Haq, S. U.

    2014-06-01

    We report plasma parameters of laser ablated silicon plasma using the fundamental (1064 nm) and second harmonics (532 nm) of a Nd : YAG laser. The electron temperature and electron number density are evaluated using the Boltzmann plot method and Stark broadened line profile, respectively. The electron temperature and electron number density are deduced using the same laser irradiance 2-16 GW cm-2 for 1064 nm and 532 nm as 6350-7000 K and (3.42-4.44) × 1016 cm-3 and 6000-6400 K and (4.20-5.72) × 1016 cm-3, respectively. The spatial distribution of plasma parameters shows a decreasing trend of 8200-6300 K and (4.00-3.60) × 1016 cm-3 for 1064 nm and 6400-5500 K and (5.10-4.50) × 1016 cm-3 for 532 nm laser ablation. Furthermore, plasma parameters are also investigated at low pressure from 45 to 550 mbar, yielding the electron temperature as 4580-5535 K and electron number density as (1.51-2.12) × 1016 cm-3. The trend of the above-mentioned results is in good agreement with previous investigations. However, wavelength-dependent studies and the spatial evolution of plasma parameters have been reported for the first time.

  11. Hydrogen alpha laser ablation plasma diagnostics.

    PubMed

    Parigger, C G; Surmick, D M; Gautam, G; El Sherbini, A M

    2015-08-01

    Spectral measurements of the H(α) Balmer series line and the continuum radiation are applied to draw inferences of electron density, temperature, and the level of self-absorption in laser ablation of a solid ice target in ambient air. Electron densities of 17 to 3.2×10(24) m(-3) are determined from absolute calibrated emission coefficients for time delays of 100-650 ns after generation of laser plasma using Q-switched Nd:YAG radiation. The corresponding temperatures of 4.5-0.95 eV were evaluated from the absolute spectral radiance of the continuum at the longer wavelengths. The redshifted, Stark-broadened hydrogen alpha line emerges from the continuum radiation after a time delay of 300 ns. The electron densities inferred from power law formulas agree with the values obtained from the plasma emission coefficients. PMID:26258326

  12. Ablation plasma transport using multicusp magnetic field for laser ion source

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Umezawa, M.; Uchino, T.; Ikegami, K.; Sasaki, T.; Kikuchi, T.; Harada, N.

    2016-05-01

    We propose a plasma guiding method using multicusp magnetic field to transport the ablation plasma keeping the density for developing laser ion sources. To investigate the effect of guiding using the magnetic field on the ablation plasma, we demonstrated the transport of the laser ablation plasma in the multicusp magnetic field. The magnetic field was formed with eight permanent magnets and arranged to limit the plasma expansion in the radial direction. We investigated the variation of the plasma ion current density and charge distribution during transport in the magnetic field. The results indicate that the plasma is confined in the radial direction during the transport in the multicusp magnetic field.

  13. Evaluating the effect of climate change on areal reduction factors using regional climate model projections

    NASA Astrophysics Data System (ADS)

    Li, Jingwan; Sharma, Ashish; Johnson, Fiona; Evans, Jason

    2015-09-01

    Areal reduction factors (ARFs) are commonly used to transform point design rainfall to represent the average design rainfall for a catchment area. While there has been considerable attention paid in the research and engineering communities to the likely changes in rainfall intensity in future climates, the issue of changes to design areal rainfall has been largely ignored. This paper investigates the impact of climate change on ARFs. A new methodology for estimating changes in ARFs is presented. This method is used to assess changes in ARFs in the greater Sydney region using a high-resolution regional climate model (RCM). ARFs under present (1990-2009) and future (2040-2059) climate conditions were derived and compared for annual exceedance probabilities (AEPs) from 50% to 5% for durations ranging from 1 h to 120 h. The analysis shows two main trends in the future changes in ARFs. For the shortest duration events (1-h) the ARFs are found to increase which implies that these events will tend to have a larger spatial structure in the future than the current climate. In contrast, storms with durations between 6 and 72 h are likely to have decreased ARFs in the future, suggesting a more restricted spatial coverage of storms under a warming climate. The extent of the decrease varies with event frequency and catchment size. The largest decreases are found for large catchments and rare events. Although the results here are based on a single RCM and need to be confirmed in future work with multiple models, the framework that is proposed will be useful for future studies considering changes in the areal extent of rainfall extremes.

  14. Areal 3-D seismic technique for reservoir delineation: Case history from offshore Niger Delta

    SciTech Connect

    Idowu, A.O. )

    1993-02-01

    In the 1950s, early exploration period in the Niger Delta witnessed the use of 2-D (two dimensional) seismic reflection method which adequate for imaging large subsurface geologic features including growth faulting and roll-over anticlines. This technique involves the Common-Depth-Point method (CDP) which acquires a plane of seismic information in distance along the surface and in time into the geological section, and is used to improve the signal-to-noise (S/N) ratio, to remove multiples and consequently give a representation of the subsurface particularly if the data are collected up- or downdip. By mid-1980s, the obvious geological structures have, in general, been discovered and it became necessary to adopt a more sophisticated technique such as the 3-D (three dimensional) seismic method to delineate more subtle reservoirs and resolve complex fault patterns in order to aid exploration as well as facilitate efficient field development. The case history discussed in this paper involves the use of areal 3-D seismic method for delineating the reservoir characterization of the O-field located in a shallow water area of the western Niger Delta. The areal 3-D seismic technique is superior to the earlier CDP method in that a cube of seismic data can be collected in two dimensions in space and one in time by a variety of techniques including the swath seismic shooting pattern adopted for gathering the 3-D data for the O-field's reservoir which involves the line of sources. The objective is to adequately sample the subsurface so that changes in various parameters such as the amplitude phase or power in the siesmic signal or velocity of propagation can be mapped areally and interpreted as an indication of changes in the physical properties of the rock matrix.

  15. The topographic development and areal parametric characterization of a stratified surface polished by mass finishing

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Blunt, Liam; Fleming, Leigh

    2015-09-01

    Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq

  16. Development of moldable carbonaceous materials for ablative rocket nozzles.

    NASA Technical Reports Server (NTRS)

    Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.

    1972-01-01

    Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.

  17. Investigation of low-cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Massions, V. P.; Mach, R. W.

    1973-01-01

    The fabrication, testing, and evaluation of materials and techniques employed in the fabrication of ablative heat shield panels are described. Results of this effort show projected reductions in labor man-hours for dielectric curing of panels when compared to panels molded in a steam-heated press. In addition, panels were fabricated with more than one density within the cross-section. These dual-density panels show significant weight and cost reduction potentials.

  18. Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC)

    NASA Astrophysics Data System (ADS)

    Platzer, K.-H.; Hirsch, C.; Metzger, D. E.; Wittig, S.

    1992-05-01

    The experimental technique presented is designed to obtain detailed local heat transfer data on both stationary as well as rotating disk-cavity surfaces applicable to gas turbines. The method employed utilizes thin coatings of thermochromic liquid crystals (TLC) as surface temperature indicators under aerodynamically steady but thermally transient experimental conditions. The color display of the liquid crystals is monitored by a video camera. The video signals are captured in real time by a computer-based color recognition system to extract areal temperature and heat transfer information. Some typical results are presented and compared with literature data to illustrate the potential of the system.

  19. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    SciTech Connect

    Crocetti, Laura Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-08-15

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  20. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  1. Advances in Atrial Fibrillation Ablation

    PubMed Central

    Darge, Alicia; Reynolds, Matthew R.; Germano, Joseph J.

    2009-01-01

    Atrial Fibrillation (AF) is an increasingly common and costly medical problem.1–3 Given the disappointing efficacy and side effects associated with pharmacological therapy for AF, new treatment options are needed. Over the last decade, advances in our understanding of the mechanisms of AF, coupled with iterative improvements in catheter ablation techniques, have spurred the evolution of catheter ablation for AF from an experimental procedure to an increasingly important treatment option.4 This paper will review recent advances in the approaches and outcomes of AF ablation. PMID:19411729

  2. Epicardial Ablation For Ventricular Tachycardia

    PubMed Central

    Maccabelli, Giuseppe; Mizuno, Hiroya; Della Bella, Paolo

    2012-01-01

    Epicardial ablation has lately become a necessary tool to approach some ventricular tachycardias in different types of cardiomyopathy. Its diffusion is now limited to a few high volume centers not because of the difficulty of the pericardial puncture but since it requires high competence not only in the VT ablation field but also in knowing and recognizing the possible complications each of which require a careful treatment. This article will review the state of the art of epicardial ablation with special attention to the procedural aspects and to the possible selection criteria of the patients PMID:23233758

  3. [Percutaneous ablation of renal tumors: radiofrequency ablation or cryoablation?].

    PubMed

    Buy, X; Lang, H; Garnon, J; Gangi, A

    2011-09-01

    Percutaneous ablation of renal tumors, including radiofrequency ablation and cryoablation, are increasingly being used for small tumors as an alternative to surgery for poor surgical candidates. Compared to radiofrequency ablation, cryoablation has several advantages: improved volume control and preservation of adjacent structures due to the excellent depiction of the ice ball on CT and MRI; better protection of the collecting system for central tumor with reduced risk of postprocedural urinary fistula. The main pitfall of cryoablation is the higher cost. Therefore, cryoablation should be reserved for the treatment of complex tumors. In this article, we will review the different steps of percutaneous renal tumor ablation procedures including patient selection, technical considerations, and follow-up imaging. PMID:21944236

  4. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  5. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  6. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  7. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  8. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.; Salmonson, Jay D.; Callahan, Debra A.; Town, Richard P. J.

    2010-05-15

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)], has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of one-dimensional simulations, meant to assess the statistical behavior of the target design, as well as two-dimensional simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  9. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  10. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  11. A modified method for accurate correlation between the craze density and the optomechanical properties of fibers using pluta microscope.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; El-Bakary, M A; Omar, E Z; Hamza, A A

    2016-05-01

    A modified method was suggested to improve the performance of the Pluta microscope in its nonduplicated mode in the calculation of the areal craze density especially, for relatively low draw ratio (low areal craze density). This method decreases the error that is resulted from the similarity between the formed crazes and the dark fringes of the interference pattern. Furthermore, an accurate method to calculate the birefringence and the orientation function of the drawn fibers via nonduplicated Pluta polarizing interference microscope for high areal craze density (high draw ratio) was suggested. The advantage of the suggested method is to relate the optomechanical properties of the tested fiber with the areal craze density, for the same region of the fiber material. Microsc. Res. Tech. 79:422-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920339

  12. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  13. Evaluation of CAMEL - comprehensive areal model of earthquake-induced landslides

    USGS Publications Warehouse

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    A new comprehensive areal model of earthquake-induced landslides (CAMEL) has been developed to assist in planning decisions related to disaster risk reduction. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using fuzzy logic systems and geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL has been empirically evaluated with respect to disrupted landslides (Category I) using a case study of the 1989 M = 6.9 Loma Prieta, CA earthquake. In this case, CAMEL performs best in comparison to disrupted slides and falls in soil. For disrupted rock fall and slides, CAMEL's performance was slightly poorer. The model predicted a low occurrence of rock avalanches, when none in fact occurred. A similar comparison with the Loma Prieta case study was also conducted using a simplified Newmark displacement model. The area under the curve method of evaluation was used in order to draw comparisons between both models, revealing improved performance with CAMEL. CAMEL should not however be viewed as a strict alternative to Newmark displacement models. CAMEL can be used to integrate Newmark displacements with other, previously incompatible, types of knowledge. ?? 2008 Elsevier B.V.

  14. Estimating areal production of intertidal microphytobenthos based on spatio-temporal community dynamics and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Du, Guo Ying; Chung, Ik Kyo

    2009-12-01

    In situ Microphytobenthic community dynamics were combined with laboratory measurement of predominant species by fluorescence methods to estimate the areal primary production. Field investigation of community dynamics of microphytobenthos (MPB) was conducted from August 2006 to August 2007 in intertidal flats of the Nakdong River estuary, Korea. MPB Biomass varied between 0.47 and 16.58 μg cm-3 in the surface 1 cm sediment, with two dominant diatom species, Amphora coffeaeformis and Navicula sp., occupying average 77.2 ± 14.9% of total number of MPB cells. The biomass was higher in the slightly muddy sand sites than that in the sand site, and showed different pattern of seasonal variation. The profile of vertical distribution of biomass was an exponential decrease trend with depth in sediments. The biomass proportions in the uppermost 3 mm were 57.6% and 37.8% with and without the presence of biofilm, respectively. The two dominant species were cultured in laboratory, and their photosynthetic parameters, rETRmax (relative maximum electron transport rate), α (light utilization coefficient) and E k (light saturation parameter) were derived from rETR (relative ETR)-irradiance curves by Imaging- PAM (pulse amplitude modulated) fluorometry. The rETR-irradiance curves showed no significant difference of photosynthetic activities between the two species. The areal potential production ranged from 0.74 to 2.22 g C m-2 d-1.

  15. Areally averaged estimates of surface heat flux from ARM field studies

    SciTech Connect

    Coulter, R.L.; Martin, T.J.; Cook, D.R.

    1993-08-01

    The determination of areally averaged surface fluxes is a problem of fundamental interest to the Atmospheric Radiation Measurement (ARM) program. The Cloud And Radiation Testbed (CART) sites central to the ARM program will provide high-quality data for input to and verification of General Circulation Models (GCMs). The extension of several point measurements of surface fluxes within the heterogeneous CART sites to an accurate representation of the areally averaged surface fluxes is not straightforward. Two field studies designed to investigate these problems, implemented by ARM science team members, took place near Boardman, Oregon, during June of 1991 and 1992. The site was chosen to provide strong contrasts in surface moisture while minimizing the differences in topography. The region consists of a substantial dry steppe (desert) upwind of an extensive area of heavily irrigated farm land, 15 km in width and divided into 800-m-diameter circular fields in a close packed array, in which wheat, alfalfa, corn, or potatoes were grown. This region provides marked contrasts, not only on the scale of farm-desert (10--20 km) but also within the farm (0.1--1 km), because different crops transpire at different rates, and the pivoting irrigation arms provide an ever-changing pattern of heavy surface moisture throughout the farm area. This paper primarily discusses results from the 1992 field study.

  16. Cryoballoon Ablation for Atrial Fibrillation

    PubMed Central

    Andrade, Jason G; Dubuc, Marc; Guerra, Peter G; Macle, Laurent; Rivard, Lena; Roy, Denis; Talajic, Mario; Thibault, Bernard; Khairy, Paul

    2012-01-01

    Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP) provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1) the rationale for adjunctive imaging, 2) selection of an appropriate cryoballoon size, 3) predictors of efficacy, 4) advanced trouble-shooting techniques, and 5) strategies to reduce procedural complications, such as phrenic nerve palsy. PMID:22557842

  17. Modeling and Validation of Microwave Ablations with Internal Vaporization

    PubMed Central

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L.

    2014-01-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this work, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10 and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intra-procedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard Index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard Index of 0.27, 0.49, 0.61, 0.67 and 0.69 at 1, 2, 3, 4, and 5 minutes. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  18. Direct coupling of a laser ablation cell to an AMS

    NASA Astrophysics Data System (ADS)

    Wacker, L.; Münsterer, C.; Hattendorf, B.; Christl, M.; Günther, D.; Synal, H.-A.

    2013-01-01

    In rare cases, cleaned samples can be directly inserted into a negative ion source of an AMS and still meet the requirements for long-term and stable measurements. We present the coupling of a laser ablation system to the gas ion source of an AMS system (MICADAS, ETH Zurich) for direct and continuous CO2 introduction. Solid carbonate samples like stalagmites or corals are suitable sample materials, which can be ablated and decomposed continuously using a pulsed laser focused onto the surface of a solid sample, which is placed in an airtight ablation cell. CO2 formed during the ablation of a CaCO3 sample is continually flushed with He into the gas ion source. The production rate of CO2 can be adjusted via the laser pulse repetition rate (1-20 Hz), the crater diameter (1-150 μm) and the energy density applied (0.2-3 mJ/pulse) of the laser (frequency quintupled Nd:YAG at 213 nm with 5 ns pulse duration). In our first test, measurements of one sample with known age were replicated within one sigma. Blanks showed 5% contamination of modern carbon of yet unknown origin. In order to develop LA-AMS into a routine sampling tool the ablation cell geometry and settings of the gas ion source have to be further optimized.

  19. Direct-drive–ignition designs with mid-Z ablators

    SciTech Connect

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  20. Direct-drive–ignition designs with mid-Z ablators

    SciTech Connect

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S.

    2015-03-01

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO2) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  1. Modeling and validation of microwave ablations with internal vaporization.

    PubMed

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L

    2015-02-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this paper, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10, and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intraprocedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard index of 0.27, 0.49, 0.61, 0.67, and 0.69 at 1, 2, 3, 4, and 5 min, respectively. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally. PMID:25330481

  2. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  3. Dynamics of laser ablated colliding plumes

    SciTech Connect

    Gupta, Shyam L.; Pandey, Pramod K.; Thareja, Raj K.

    2013-01-15

    We report the dynamics of single and two collinearly colliding laser ablated plumes of ZnO studied using fast imaging and the spectroscopic measurements. Two dimensional imaging of expanding plume and temporal evolution of various species in interacting zones of plumes are used to calculate plume front velocity, electron temperature, and density of plasma. The two expanding plumes interact with each other at early stage of expansion ({approx}20 ns) resulting in an interaction zone that propagates further leading to the formation of stagnation layer at later times (>150 ns) at the lateral collision front of two plumes. Colliding plumes have larger concentration of higher ionic species, higher temperature, and increased electron density in the stagnation region. A one-to-one correlation between the imaging and optical emission spectroscopic observations in interaction zone of the colliding plumes is reported.

  4. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  5. Bone and soft tissue ablation.

    PubMed

    Foster, Ryan C B; Stavas, Joseph M

    2014-06-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  6. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    SciTech Connect

    Garcia-Lechuga, M.; Siegel, J. Hernandez-Rueda, J.; Solis, J.

    2014-09-15

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  7. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment

    SciTech Connect

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi; Inubushi, Yuichi

    2010-10-15

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

  8. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while BMD appeared stable or trending upward. For females (n=8) LD observations were too few to discern a trend. Notably, models describing trends in TBS appeared to be more sensitive to the effects of age than the models for BMD. We conclude that TBS may provide an additional index for the lumbar spine to monitor the combined changes due to spaceflight and due to aging. This increased knowledge may enhance the ability to identify an intervention trigger for premature vertebral fractures in astronauts.

  9. Areal and Shear Strain Coupling of PBO Borehole Strainmeters From Teleseismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Roeloffs, E.; McCausland, W.

    2007-12-01

    In order to compare borehole strainmeter data with tectonic models, we must know the coupling parameters relating elastic deformation of the strainmeter to strain in the surrounding rock. At least two coupling parameters are required: the ratios of instrument areal and shear strain to formation areal and shear strain, respectively. These coupling parameters depend on the relative elastic moduli of the formation, grout, and strainmeter, and typical elastic moduli yield nominal coupling parameters of 1.5 and 3. More accurate coupling parameters must be determined by analyzing each strainmeter's response to a known deformation source after the instrument has been grouted into the borehole. Borehole strainmeters installed by the National Science Foundation-funded Earthscope Plate Boundary Observatory (PBO) consist of four gauges, sampled at 20 Hz, that measure extension along distinct azimuths. Teleseismic Love and Rayleigh waves that produce fractional gauge elongations > 10-7 , such as those from the M8.3 Kuril Islands earthquake of November 15, 2006, can be used to constrain the coupling parameters. A planar Love or Rayleigh wave is expected to have a simple strain field that produces the same waveform on all four gauges of a strainmeter. The two-parameter coupling model is consistent with the variation of surface wave amplitudes as functions of azimuth for the borehole strainmeter data analyzed to date, although most of the PBO strainmeters require that differences in the relative gains of the four gauges be estimated as well. Fits to the data can be improved for some strainmeters by allowing for two distinct shear strain coupling parameters, and/or for a small (<10 degrees) error in the orientation of the strainmeter as measured during installation. However, data from more earthquakes will need to be analyzed before these refinements can be called significant. The Rayleigh wave data provide tight constraints on the ratio of shear to areal coupling. For borehole

  10. Radiofrequency Ablation to Prevent Sudden Cardiac Death

    PubMed Central

    Atoui, Moustapha; Gunda, Sampath; Lakkireddy, Dhanunjaya; Mahapatra, Srijoy

    2015-01-01

    Radiofrequency ablation may prevent or treat atrial and ventricular arrhythmias. Since some of these arrhythmias are associated with sudden cardiac death, it has been hypothesized that ablation may prevent sudden death in certain cases. We performed a literature search to better understand under which circumstances ablation may prevent sudden death and found little randomized data demonstrating the long-term effects of ablation. Current literature shows that ablation clearly prevents symptoms of arrhythmia and may reduce the incidence of sudden cardiac death in select patients, although data does not indicate improved mortality. Ongoing clinical trials are needed to better define the role of ablation in preventing sudden cardiac death. PMID:26306130

  11. Stratospheric areal distribution of water vapor burden and the jet stream

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Magaziner, E.; Stearns, L. P.

    1976-01-01

    Radiometrically inferred areal observations of the atmospheric water vapor burden have been made in the 270 to 520 per cm spectral band over western U.S. and the extreme eastern Pacific from the NASA C-141 Kuiper Airborne Observatory. Before this, very few observations from the upper troposphere and lower stratosphere over such a broad area have been made. A total of 30,600 individual observations from eight separate synoptic situations involving eight jet maxima were computer-averaged over 2-deg latitude x 2-deg longitude boxes and related to the polar continental jet. Mean water vapor burdens ranged from 0.00046 to 0.00143 g per sq cm at 13.4 km with a striking peak just north of the jet wind maximum over a region of strong upward vertical motion.

  12. Real-time areal precipitation determination from radar by means of statistical objective analysis

    NASA Astrophysics Data System (ADS)

    Gerstner, E.-M.; Heinemann, G.

    2008-05-01

    SummaryPrecipitation measurement by radar allows for areal rainfall determination with a high spatial and temporal resolution. However, hydrological applications require an accuracy of the precipitation quantification which cannot be obtained by today's weather radar devices. The quality of the radar-derived precipitation can be significantly improved with the aid of ground measurements. In this paper, a complete processing pipeline for real-time radar precipitation determination using a modified statistical objective analysis method is presented. Thereby, several additional algorithms, such as a dynamical use of Z-R relationships, a bias correction and an advection correction scheme are employed. The performance of the algorithms is tested for several case studies. For an error analysis, an eight months data set of X-band radar scans and rain gauge precipitation measurements is used. We show a reduction in the radar-rain gauge RMS difference of up to 59% for the optimal combination of the different algorithms.

  13. Surface Roughness, Areal Topographic Measurement, and Correlation to LCF Behavior in a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Ardi, D. T.; Li, Y. G.; Chan, K. H. K.; Bache, M. R.

    2014-10-01

    Surface roughness often determines fatigue performance of advanced engineering components making definition of this parameter essential subsequent to manufacture. Traditionally, topography measurements employ an average amplitude parameter, R a, obtained from a two-dimensional contact measurement. This parameter, however, is highly localised making it relatively unreliable. This study attempts to correlate areal (3D) topographic, measurements with the low cycle fatigue (LCF) performance defined for a nickel-based superalloy (Waspaloy). Three different surface finishes, namely longitudinal polished, circumferential ground, and longitudinal ground were applied to fatigue specimens. The height and orientation of the topographic features with respect to the loading axis were found to affect LCF performance. Results indicate a close correlation between cycles to failure and the maximum height ( S z) and ten-point height ( S 5z) parameters. A power fit to account for the topographic effect was generated based on the experimental data.

  14. Measuring and comparing brain cortical surface area and other areal quantities

    PubMed Central

    Winkler, Anderson M.; Sabuncu, Mert R.; Yeo, B.T. Thomas; Fischl, Bruce; Greve, Douglas N.; Kochunov, Peter; Nichols, Thomas E.; Blangero, John; Glahn, David C.

    2012-01-01

    Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature. The method consists of the construction of a mesh representation of the ortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic method. Statistical analysis of surface area is done with power-transformed data to address lognormality, and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss its interpretation and potential applications. PMID:22446492

  15. Collinear Stimuli Induce Local and Cross-Areal Coherence in the Visual Cortex of Behaving Monkeys

    PubMed Central

    Gilad, Ariel; Meirovithz, Elhanan; Leshem, Amir; Arieli, Amos; Slovin, Hamutal

    2012-01-01

    Background Collinear patterns of local visual stimuli are used to study contextual effects in the visual system. Previous studies have shown that proximal collinear flankers, unlike orthogonal, can enhance the detection of a low contrast central element. However, the direct neural interactions between cortical populations processing the individual flanker elements and the central element are largely unknown. Methodology/Principal Findings Using voltage-sensitive dye imaging (VSDI) we imaged neural population responses in V1 and V2 areas in fixating monkeys while they were presented with collinear or orthogonal arrays of Gabor patches. We then studied the spatio-temporal interactions between neuronal populations processing individual Gabor patches in the two conditions. Time-frequency analysis of the stimulus-evoked VSDI signal showed power increase mainly in low frequencies, i.e., the alpha band (α; 7–14 Hz). Power in the α-band was more discriminative at a single trial level than other neuronal population measures. Importantly, the collinear condition showed an increased intra-areal (V1-V1 and V2-V2) and inter-areal (V1-V2) α-coherence with shorter latencies than the orthogonal condition, both before and after the removal of the stimulus contribution. α-coherence appeared between discrete neural populations processing the individual Gabor patches: the central element and the flankers. Conclusions/Significance Our findings suggest that collinear effects are mediated by synchronization in a distributed network of proximal and distant neuronal populations within and across V1 and V2. PMID:23185325

  16. Current Hot Potatoes in Atrial Fibrillation Ablation

    PubMed Central

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  17. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  18. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  19. The Research of Feasibility and Efficacy of Radiofrequency Ablation in Treating Uterine Fibroids.

    PubMed

    Luo, Xin; Shu, Shan-Rong; Ma, Xue-Feng; Shuai, Han-Lin

    2015-11-01

    To explore the feasibility and efficacy of radiofrequency ablation in treating uterine fibroids.Ninety patients with multiple uterine fibroids, who had undergone hysterectomy were included in the study. After the uterus was resected, the temperature of 60, 80, 100°C were adopted to ablate the in vitro fibroid with each temperature dealing with 30 patients. Simultaneously, 5 patients were included, whose in vivo fibroid were ablated with the temperature of 100°C before the fibroids were removed after laparotomy. After the fibroids were ablated, the smooth muscle in the ablated center (group A), the ablated edge (group B) and 1 cm away from the ablated edge (group C) were taken. Then, the samples were stained with hematoxylin and eosin (HE) to examine the histopathological changes, and immunohistochemistry was performed to detect the expression of estrogen receptor (ER) and progesterone receptor (PR).After radiofrequency ablation, the ablated lesions were round, toast tan, and dry on gross appearance. There were no obvious tissue carbonization and there were distinct boundary from periphery tissue. In vitro: On automated analysis, the average optical density of ER and PR in group A, B, and C was lower than the control group (P < 0.05), and which were gradually raised with the increased distance to electrode. In the same treatment group, ER optical density was gradually decreased with the increased temperature among 3 different groups. The PR optical density was decreased with the increased temperature under different temperatures in group A and group B, there was significant difference among groups (P < 0.05). But in group C, there was no difference in PR expression among the temperature of 60, 80, and 100°C (P > 0.05). In vivo: Compared with the control group, the average optical density of ER and PR were significantly different among group A, B, and C (P < 0.05), what's more, it was gradually raised with the increased distance to electrode.After radiofrequency

  20. A Review of Mitral Isthmus Ablation

    PubMed Central

    Wong, Kelvin CK; Betts, Timothy R

    2012-01-01

    Mitral isthmus ablation forms part of the electrophysiologist’s armoury in the catheter ablation treatment of atrial fibrillation. It is well recognised however, that mitral isthmus ablation is technically challenging and incomplete ablation may be pro-arrhythmic, leading some to question its role. This article first reviews the evidence for the use of adjunctive mitral isthmus ablation and its association with the development of macroreentrant perimitral flutter. It then describes the practical techniques of mitral isthmus ablation, with particular emphasis on the assessment of bi-directional mitral isthmus block. The anatomy of the mitral isthmus is also discussed in order to understand the possible obstacles to successful ablation. Finally, novel techniques which may facilitate mitral isthmus ablation are reviewed. PMID:22912536

  1. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  2. Measuring Ionization at Extreme Densities

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik; Doeppner, Tilo; Kritcher, Andrea; Bachmann, Benjamin; Fletcher, Luke; Falcone, Roger; Gericke, Dirk; Glenzer, Siegfried; Masters, Nathan; Nora, Ryan; Boehm, Kurt; Divol, Laurent; Landen, Otto; Yi, Austin; Kline, John; Redmer, Ronald; Neumayer, Paul

    2015-11-01

    A precise knowledge of ionization at given temperature and density is crucial in order to properly model compressibility and heat capacity of ICF ablator materials for efficient implosions producing energy gain. Here, we present a new experimental platform to perform spectrally resolved x-ray scattering measurements of ionization, density and temperature in imploding CH or beryllium capsules on the National Ignition Facility. Recording scattered x-rays at 9 keV from a zinc He-alpha plasma source at a scattering angle of 120 degrees, first experiments show strong sensitivity to k-shell ionization, while at the same time constraining density and temperature. This platform will allow for x-ray Thomson scattering studies of dense plasmas with free electron densities up to 1025 cm-3, giving the possibility to investigate effects of continuum lowering and Pauli blocking on the ablator ionization state right before stagnation of the implosion.

  3. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  4. Surgical Ablation of Atrial Fibrillation.

    PubMed

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  5. Thermal Ablation of Lung Tumors

    PubMed Central

    Sonntag, P. David; Hinshaw, J. Louis; Lubner, Meghan G.; Brace, Christopher L.; Lee, Fred T.

    2011-01-01

    Lung cancer remains the leading cause of cancer death in the United States, accounting for an estimated 29% of cancer deaths in 2009.1 Pneumonectomy or lobectomy with hilar and mediastinal lymph node sampling is the gold standard treatment and offers the best option for cure of stage 1/2 nonsmall cell lung cancer (NSCLC).2 Unfortunately, only 15% of patients present with stage 1/2 disease, and many of these patients do not meet the pulmonary physiologic guidelines for lobar resection.3 In addition to lung cancer, pulmonary metastases are present in 25% to 30% of patients dying from all types of cancer.4 For some patients with oligometastatic pulmonary disease, metastectomy is associated with an improvement in survival.5 External beam radiation traditionally has been offered as the alternative to surgical resection for NSCLC or pulmonary metastatic disease. Unfortunately, the 5-year survival following radiation for stage 1 and 2 NSCLC remains low at 15% to 20%, with local recurrence being the most common mode of failure.6,7 Thermal ablation offers an intriguing therapeutic option to increase local tumor control and survival in patients with early stage NSCLC or with limited metastatic disease from nonlung primaries who are not surgical candidates because of poor cardiopulmonary reserve, anatomic constraints limiting resection, failure of traditional therapies, or refusal of operative approaches. Thermal ablation has been shown to be effective in treating tumors in bone, kidney, and liver.8–11 Most preclinical and clinical trials have focused on demonstrating the feasibility of three modalities for pulmonary thermal ablation, namely radiofrequency (RF) ablation, microwave (MW) ablation, and cryoablation. This article discusses the unique challenges of performing thermal ablation in lung tissue and reviews the current literature regarding RF, MW, and cryoablation in the lung. PMID:21377589

  6. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  7. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  8. Laser ablation of human tooth

    NASA Astrophysics Data System (ADS)

    Franklin, Sushmita R.; Chauhan, P.; Mitra, A.; Thareja, R. K.

    2005-05-01

    We report the measurements of ablation threshold of human tooth in air using photo-thermal deflection technique. A third harmonic (355nm) of Nd:YAG (yttrium aluminum garnet) laser was used for irradiation and a low power helium neon laser as a probe beam. The experimental observations of ablation threshold in conjunction with theoretical model based on heat conduction equations for simulating the interaction of a laser radiation with a calcified tissue are used to estimate the absorption coefficient of human tooth.

  9. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  10. Ablative Therapies for Barrett's Esophagus

    PubMed Central

    Garman, Katherine S.; Shaheen, Nicholas J.

    2011-01-01

    Barrett's esophagus has gained increased clinical attention because of its association with esophageal adenocarcinoma, a cancer with increasing incidence and poor survival rates. The goals of ablating Barrett's esophagus are to decrease esophageal cancer rates and to improve overall survival and quality of life. Different techniques have been developed and tested for their effectiveness eradicating Barrett's epithelium. This review assesses the literature associated with different ablative techniques. The safety and efficacy of different techniques are discussed. This review concludes with recommendations for the clinician, including specific strategies for patient care decisions for patients with Barrett's esophagus with varying degrees of dysplasia. PMID:21373836

  11. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  12. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  13. Atrial Fibrillation Ablation and Stroke.

    PubMed

    Aagaard, Philip; Briceno, David; Csanadi, Zoltan; Mohanty, Sanghamitra; Gianni, Carola; Trivedi, Chintan; Nagy-Baló, Edina; Danik, Stephan; Barrett, Conor; Santoro, Francesco; Burkhardt, J David; Sanchez, Javier; Natale, Andrea; Di Biase, Luigi

    2016-05-01

    Catheter ablation has become a widely available and accepted treatment to restore sinus rhythm in atrial fibrillation patients who fail antiarrhythmic drug therapy. Although generally safe, the procedure carries a non-negligible risk of complications, including periprocedural cerebral insults. Uninterrupted anticoagulation, maintenance of an adequate ACT during the procedure, and measures to avoid and detect thrombus build-up on sheaths and atheters during the procedure, appears useful to reduce the risk of embolic events. This is a review of the incidence, mechanisms, impact, and methods to reduce catheter ablation related cerebral insults. PMID:27150179

  14. Replication of Low Density Electroformed Normal Incidence Optics

    NASA Technical Reports Server (NTRS)

    Ritter, Joseph M.; Burdine, Robert (Technical Monitor)

    2001-01-01

    Replicated electroformed light-weight nickel alloy mirrors can have high strength, low areal density (less than 3kg/m2), smooth finish, and controllable alloy composition. Progress at NASA MSFC SOMTC in developing normal incidence replicated Nickel mirrors will be reported.

  15. Replication of Low Density Electroformed Normal Incidence Optics

    NASA Technical Reports Server (NTRS)

    Ritter, Joseph M.

    2000-01-01

    Replicated electroformed light-weight nickel alloy mirrors can have high strength, low areal density (<3kg/m2), smooth finish, and controllable alloy composition. Progress at NASA MSFC SOMTC in developing normal incidence replicated Nickel mirrors will be reported.

  16. Equilibrium pellet and liquid jet shape under high ablation pressures

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Rosenbluth, M. N.

    1998-05-01

    Owing to the nonspherical nature of the heat deposition in the pellet ablation cloud by energy loss of incident plasma electrons streaming parallel to the uniform magnetic field, a nonuniform pressure distribution develops at the pellet surface. This can lead to deformation of "soft" cryogenic pellets exposed to high temperature and high density magnetized plasmas. The effect of deformation on the burning rate and stability of the condensed phase is evaluated for pellets and liquid jets.

  17. Projections of changes of areal evapotranspiration for different land-use units in the Wielkopolska Region (Poland)

    NASA Astrophysics Data System (ADS)

    Szwed, Małgorzata

    2016-08-01

    Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the quantity as well as spatial and seasonal distribution of precipitation. This will result in changes in all elements of the water balance, including the areal evapotranspiration. For estimating the areal evapotranspiration, the heat balance method (HBM) is used in this paper for the growing season (March-October), whereas for the remaining months (November-February), evaporation is calculated according to the Ivanov equation. Values of areal evapotranspiration from selected land units are examined and compared for the average conditions in two time horizons, i.e. 1961-1990 (control period) and 2061-2090 (projection horizon) over the Wielkopolska Region in Poland, based on multi-model ensemble climate projections. Projections for the future, based on the MPI-M-REMO model, indicate that the regional average increases of the annual sum of areal evapotranspiration (connected mainly with an increase of air temperature) is equal to 45 mm, with the biggest changes during winter. In the growing season, the highest increases are expected to appear in July and June. As regards the spatial distribution, the highest increases are projected for the areas with presently highest evapotranspiration, e.g. the southwestern parts of the region.

  18. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  19. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  20. Leonid meteor ablation, energy exchange and trail morphology

    SciTech Connect

    Zinn, John; Judd, O'Dean P.; ReVelle, D. O.

    2002-01-01

    This paper describes theoretical model studies of the interaction of Leonid meteoroids with the earth's atmosphere. Subject to some modest-to-strenuous approximations we compute the rates of ablation and deceleration, energy deposition, and terminal altitudes of the meteors as functions of their initial mass and bulk density, velocity, trajectory entry angle, drag coefficient, heat of ablation, and an ablation energy transfer fraction. We find that the dominant energy deposition in the atmosphere is associated with the stopping of the ablated meteor particles and vapor by the surrounding air. Then having computed the energy deposition rates versus altitude we compute the hydrodynamic and radiative expansion of the hot wake material in the radial direction, along with the associated air chemistry. From the computed results we can then plot two-dimensional temperature contours -- as functions of the instantaneous distance behind the meteor and radial distance from the center of the wake, at various altitudes along the meteor's path. We also compute the rates of emission of radiation and the radiative efficiency, and discuss comparisons with observations.

  1. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    SciTech Connect

    Zeng, Xianzhong

    2004-12-10

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and the effects of the cavities on the ablation processes were investigated. The temperatures and electron number densities of the resulting laser-induced plasmas in the cavities were determined from spectroscopic measurements. Reflection and confinement effects by the cavity walls and plasma shielding were discussed to explain the increased temperature and electron number density with respect to increasing cavity aspect ratio. The temporal variations of the plasma temperature and electron number density inside the cavity decreased more rapidly than outside the cavity. The effect of laser energy on formation of a plasma inside a cavity was also investigated. Propagation of the shock wave generated during pulsed laser ablation in cavities was measured using laser shadowgraph imaging and compared with laser ablation on a flat surface. It is found that outside the cavity, after about 30 ns the radius of the expanding shock wave was proportional to t2/5, which corresponds to a spherical blast wave. The calculated pressures and temperatures of the shocked air outside of the cavities were higher than those obtained on the flat surface. Lasers with femtosecond pulse duration are receiving much attention for direct fabrication of microstructures due to their capabilities of high-precision ablation with minimal damage to the sample. We have also performed experimental studies of pulsed femtosecond laser ablation on the flat surface of silicon samples and compared results with pulsed nanosecond

  2. Percutaneous Tumor Ablation with Radiofrequency

    PubMed Central

    Wood, Bradford J.; Ramkaransingh, Jeffrey R.; Fojo, Tito; Walther, McClellan M.; Libutti, Stephen K.

    2008-01-01

    BACKGROUND Radiofrequency thermal ablation (RFA) is a new minimally invasive treatment for localized cancer. Minimally invasive surgical options require less resources, time, recovery, and cost, and often offer reduced morbidity and mortality, compared with more invasive methods. To be useful, image-guided, minimally invasive, local treatments will have to meet those expectations without sacrificing efficacy. METHODS Image-guided, local cancer treatment relies on the assumption that local disease control may improve survival. Recent developments in ablative techniques are being applied to patients with inoperable, small, or solitary liver tumors, recurrent metachronous hereditary renal cell carcinoma, and neoplasms in the bone, lung, breast, and adrenal gland. RESULTS Recent refinements in ablation technology enable large tumor volumes to be treated with image-guided needle placement, either percutaneously, laparoscopically, or with open surgery. Local disease control potentially could result in improved survival, or enhanced operability. CONCLUSIONS Consensus indications in oncology are ill-defined, despite widespread proliferation of the technology. A brief review is presented of the current status of image-guided tumor ablation therapy. More rigorous scientific review, long-term follow-up, and randomized prospective trials are needed to help define the role of RFA in oncology. PMID:11900230

  3. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  4. Photochemical Ablation of Organic Solids

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2004-03-01

    As discovered by Srinivasan in 1982, irradiation of materials by far UV laser light can lead to photochemical ablation, a process distinct from normal thermal ablation in which the laser primarily heats the material. A versatile mesoscopic model for molecular dynamics simulations of the laser ablation phenomena is presented. The model incorporates both the thermal and photochemical events, that is, both heating of the system and UV induced bond-cleavage followed by abstraction and radical-radical recombination reactions. The results from the simulations are compared to experimental data and the basic physics and chemistry for each irradiation regime are discussed. Initial results from polymer ablation simulations will be presented. L. V. Zhigilei, P. B. S. Kodali and B. J. Garrison, J. Phys. Chem. B, 102, 2845-2853 (1998); L. V. Zhigilei and B. J. Garrison, Journal of Applied Physics, 88, 1281-1298 (2000). Y. G. Yingling, L. V. Zhigilei and B. J. Garrison, J. Photochemistry and Photobiology A: Chemistry, 145, 173-181 (2001); Y. G. Yingling and B. J. Garrison, Chem. Phys. Lett., 364, 237-243 (2002).

  5. Electron Beam Ablation of Metals

    NASA Astrophysics Data System (ADS)

    Kovaleski, S. D.; Gilgenbach, R. M.; Rintamaki, J. I.; Ang, L. K.; Spindler, H. L.; Cohen, W. E.; Lau, Y. Y.; Lash, J. S.

    1996-10-01

    An experiment has recently been devised for material ablation using a channelspark electron beam. The ultimate goal of this experiment is to deposit thin films by electron beam ablation. The channelspark is a pseudospark device developed by Forschungszentrum Karlsruhe (G. Muller, C. Schultheiss, Proc. of Beams, 2, 833(1994)) for production of high current, low energy electron beams. The channelspark has the following operating parameters: a 15-20kV accelerating potential and measured source current of <2000A. Initial experiments have concentrated on characterizing ion-focused electron beam current transport through the necessary background fill gas (typically 5-50 mTorr of Argon). Ablation of Al, Fe, and Ti is being studied with spectroscopy and electron beam current diagnostics. Physical beam target damage is also being investigated and compared to laser ablated targets. Simulations of electron transport and energy deposition are being conducted via the ITS-TIGER code (Sandia Report No. SAND 91-1634) developed at Sandia National Laboratory.

  6. Photophysical ablation of porous silicon

    NASA Astrophysics Data System (ADS)

    Aksenov, Valerii P.; Mikhailova, G. N.

    2004-07-01

    Laser ablation of porous silicon as a function of laser wavelength and width of silicon nanowires was studied in our experiments. The time-resolved evolution of the cloud of the porous silicon particles produced by laser ablation is studied in situ by the analysis of the kinetics of photoluminescence signal. The laser ablation of porous silicon produced by pulses of 532 nm or 337 nm radiation with addition of synchronized power pulses of 1064 nm radiation. The cloud of the nanometer-sized silicon crystallites had the high enhancement of luminescence quantum efficiency in the red region of spectra. The slow PL kinetics component, which is due to the localized carriers, decays on a millisecond time scale. The squeezed electron-hole plasma heating by IR-laser radiation may produce a damage of silicon nanowires. The fragments of nanowires in cloud must be smaller, than the critical length. The energy of excitation of e-h pair in fragment with contribution of longitude quantum modes must be lower than energy of the excited photons. Particles with lesser length don't absorb excited laser radiation and don't damage. For this case we may speak about the quantum mechanism of laser ablation of nanowires.

  7. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  8. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    SciTech Connect

    Deodhar, Ajita; Monette, Sebastien; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Solomon, Stephen B.

    2011-12-15

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent 'pores' in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized with the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.

  9. X-ray ablation rates in inertial confinement fusion capsule materials

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Rochau, G. A.; Landen, O. L.; Leeper, R. J.

    2011-03-01

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm2/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm2/ns; and for HDC, the rates range from 2 to 9 mg/cm2/ns. The ablation rates follow an approximate T3 dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T3.5. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  10. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  11. Functional System and Areal Organization of a Highly Sampled Individual Human Brain.

    PubMed

    Laumann, Timothy O; Gordon, Evan M; Adeyemo, Babatunde; Snyder, Abraham Z; Joo, Sung Jun; Chen, Mei-Yen; Gilmore, Adrian W; McDermott, Kathleen B; Nelson, Steven M; Dosenbach, Nico U F; Schlaggar, Bradley L; Mumford, Jeanette A; Poldrack, Russell A; Petersen, Steven E

    2015-08-01

    Resting state functional MRI (fMRI) has enabled description of group-level functional brain organization at multiple spatial scales. However, cross-subject averaging may obscure patterns of brain organization specific to each individual. Here, we characterized the brain organization of a single individual repeatedly measured over more than a year. We report a reproducible and internally valid subject-specific areal-level parcellation that corresponds with subject-specific task activations. Highly convergent correlation network estimates can be derived from this parcellation if sufficient data are collected-considerably more than typically acquired. Notably, within-subject correlation variability across sessions exhibited a heterogeneous distribution across the cortex concentrated in visual and somato-motor regions, distinct from the pattern of intersubject variability. Further, although the individual's systems-level organization is broadly similar to the group, it demonstrates distinct topological features. These results provide a foundation for studies of individual differences in cortical organization and function, especially for special or rare individuals. VIDEO ABSTRACT. PMID:26212711

  12. Areal distribution of sedimentary facies determined from seismic facies analysis and models of modern depositional systems

    SciTech Connect

    Seramur, K.C.; Powell, R.D.; Carpenter, P.J.

    1988-02-01

    Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining the paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.

  13. Areal-reduction factors for the precipitation of the 1-day design storm in Texas

    USGS Publications Warehouse

    Asquith, William H.

    1999-01-01

    The reduction of the precipitation depth from a design storm for a point to an effective (mean) depth over a watershed often is important for cost-effective design of hydraulic structures by reducing the volume of precipitation. A design storm for a point is the depth of precipitation that has a specified duration and frequency (recurrence interval). The effective depth can be calculated by multiplying the design-storm depth by an areal-reduction factor (ARF). ARF ranges from 0 to 1, varies with the recurrence interval of the design storm, and is a function of watershed characteristics such as watershed size and shape, geographic location, and time of year that the design storm occurs. This report documents an investigation of ARF by the U.S. Geological Survey, in cooperation with the Texas Department of Transportation, for the 1-day design storm for Austin, Dallas, and Houston, Texas. The ?annual maxima-centered? approach used in this report specifically considers the distribution of concurrent precipitation surrounding an annual precipitation maxima. Unlike previously established approaches, the annual maxima-centered approach does not require the spatial averaging of precipitation nor explicit definition of a representative area of a particular storm in the analysis. Graphs of the relation between ARF and circular watershed area (to about 7,000 square miles) are provided, and a technique to calculate ARF for noncircular watersheds is discussed.

  14. [Catheter ablation of persistent atrial fibrillation : pulmonary vein isolation, ablation of fractionated electrograms, stepwise approach or rotor ablation?].

    PubMed

    Scherr, D

    2015-02-01

    Catheter ablation is an established treatment option for patients with atrial fibrillation (AF). In paroxysmal AF ablation, pulmonary vein isolation alone is a well-defined procedural endpoint, leading to success rates of up to 80% with multiple procedures over 5 years of follow-up. The success rate in persistent AF ablation is significantly more limited. This is partly due to the rudimentary understanding of the substrate maintaining persistent AF. Three main pathophysiological concepts for this arrhythmia exist: the multiple wavelet hypothesis, the concept of focal triggers, mainly located in the pulmonary veins and the rotor hypothesis. However, the targets and endpoints of persistent AF ablation are ill-defined and there is no consensus on the optimal ablation strategy in these patients. Based on these concepts, several ablation approaches for persistent AF have emerged: pulmonary vein isolation, the stepwise approach (i.e. pulmonary vein isolation, ablation of fractionated electrograms and linear ablation), magnetic resonance imaging (MRI) and rotor-based approaches. Currently, persistent AF ablation is a second-line therapy option to restore and maintain sinus rhythm. Several factors, such as the presence of structural heart disease, duration of persistent AF and dilatation and possibly also the degree of fibrosis of the left atrium should influence the decision to perform persistent AF ablation. PMID:25687615

  15. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  16. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  17. Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Garnov, Sergei V; Danielius, R; Piskarskas, A; Tamosauskas, G; Dausinger, F

    1999-08-31

    A series of studies was carried out on the ablation of steel, Si{sub 3}N{sub 4} ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 - 10{sup 3} J cm{sup -2}). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed. (interaction of laser radiation with matter. laser plasma)

  18. Effect of Polymer Ablation Gas on Arc Quenching Properties around Current Zero

    NASA Astrophysics Data System (ADS)

    Onchi, Toshiyuki; Tanaka, Yasunori; Uesugi, Yoshihiko

    Influence of polymer ablation on arc properties such as temperature distribution and arc conductance in current decay process was investigated by numerical approaches. A numerical thermofluid model was developed for a simplified circuit breaker with POM or PTFE ablation. In this model, thermal plasma-polymer solid coupling phenomena such as melting and evaporation were taken into account without any empirical model based on measurements unlike other existing numerical thermofluid model. Dominant process for decay of arc conductance was examined by changing thermodynamic parameters such as melting and boiling temperatures of solid polymers, or thermal conductivity and electrical conductivity of ablation gas. As a result, it was found that gas density, thermal conductivity and electrical conductivity of ablation gas were more effective for decaying arc conductance than any other thermodynamic parameters.

  19. Development of lightweight ceramic ablators and arc-jet test results

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.

    1994-01-01

    Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.

  20. Off-Hugoniot characterization of alternative inertial confinement fusion ablator materials.

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-05-01

    The ablation material used during the National Ignition Campaign, a glow- discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple- shock inducing radiation drive environment created by laser power profile [1]. We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) and compare with GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP.

  1. Surgical Ablation of Atrial Fibrillation

    PubMed Central

    Ramlawi, Basel; Abu Saleh, Walid K.

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary “Afib teams

  2. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation.

    PubMed

    Negussie, Ayele H; Partanen, Ari; Mikhail, Andrew S; Xu, Sheng; Abi-Jaoudeh, Nadine; Maruvada, Subha; Wood, Bradford J

    2016-05-01

    Purpose The purpose of this study was to (1) develop a novel tissue-mimicking thermochromic (TMTC) phantom that permanently changes colour from white to magenta upon heating above ablative temperatures, and (2) assess its utility for specific applications in evaluating thermal therapy devices. Materials and methods Polyacrylamide gel mixed with thermochromic ink was custom made to produce a TMTC phantom that changes its colour upon heating above biological ablative temperatures (> 60 °C). The thermal properties of the phantom were characterised, and compared to those of human tissue. In addition, utility of this phantom as a tool for the assessment of laser and microwave thermal ablation was examined. Results The mass density, thermal conductivity, and thermal diffusivity of the TMTC phantom were measured as 1033 ± 1.0 kg/m(3), 0.590 ± 0.015 W/m.K, and 0.145 ± 0.002 mm(2)/s, respectively, and found to be in agreement with reported values for human soft tissues. Heating the phantom with laser and microwave ablation devices produced clearly demarcated regions of permanent colour change geographically corresponding to regions with temperature elevations above 60 °C. Conclusion The TMTC phantom provides direct visualisation of ablation dynamics, including ablation volume and geometry as well as peak absolute temperatures within the treated region post-ablation. This phantom can be specifically tailored for different thermal therapy modalities, such as radiofrequency, laser, microwave, or therapeutic ultrasound ablation. Such modality-specific phantoms may enable better quality assurance, device characterisation, and ablation parameter optimisation, or optimise the study of dynamic heating parameters integral to drug device combination therapies relying upon heat. PMID:27099078

  3. Surface Modification of ICF Target Capsules by Pulsed Laser Ablation

    DOE PAGESBeta

    Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.

    2016-06-30

    Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less

  4. Meteoroid ablation in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Haider, Syed A.; Pandya, Bhavinkumar

    Periodic meteor streams and meteor showers are results of continuous impact of debris and interplanetary dust, which is disintegrated from the periodic comets at their perihelion distance. The interplanetary dust and debris known as meteoroids and micro meteoroids enter the Martian atmosphere and produces sporadic low-laying plasma layers in the ionosphere. The metallic ions are produced by meteoric ablation of neutral metal atoms or charge exchange between neutral meteoric metal atoms and atmospheric atoms. In this talk we shall present new model results which produces three plasma layers simultaneously due to impact of the meteoroids, solar X-ray (0.5-9nm) and EUV (9-102.6 nm) radiation at altitude range 80-85 km, 100-115 km and 135-140 km respectively in the dayside ionosphere of Mars. The calculated results are compared with the radio occultation measurements made by Mars Express and Mars Global Surveyor on 18 April, 2004 and 11 May, 2005, when comets P/2003 WC7 (LINEAR Catalina) and 10P/Tempel 2 intersected the orbit of Mars respectively. The densities of 21 ions (CO2+, O2+, CO+, O+, NO+, N2+, Mg+, Fe+, Si+, MgO+, FeO+, SiO+, MgCO2+, MgO2+, FeCO2+, FeO2+, SiCO2+, SiO2+, MgN2+, FeN2+, and SiN2+) have been computed self-consistently between altitude 50 km and 200 km. The model shows that the ions CO2+, N2+, O+, CO+, O2+, and NO+ are produced in the upper ionosphere due to impact of solar X-ray and EUV radiation. The metallic ions are formed in the middle ionosphere due to ablation of micrometeoroids.

  5. Laser Ablation Propulsion A Study

    NASA Astrophysics Data System (ADS)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  6. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  7. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  8. The influence of ambient medium density on laser ablation processes

    SciTech Connect

    Kilgo, M.M. III

    1995-11-01

    Interest in high flux transport processes has grown in recent years along with the ability and need to manipulate systems with microscopic length and time scales. These systems present unique engineering challenges. Because the time and length scales associated with these problems are very small, assumptions of local equilibrium, physical and mathematical smoothness of boundaries and the unambiguous definition of thermodynamic fields can not be automatically made, even though they may ultimately be acceptable. Furthermore, the observations are made on macroscopic or integrated scales. The large difference in scales between the temporal evolution of the process and the observation requires careful consideration of the claims made regarding the system`s microscopic, temporal behavior. In particular, consistency of a proposed model with observed results does not guarantee uniqueness, or predictive accuracy for the model. For these reasons, microscale heat transfer systems demand a careful consideration of the framework within which the experimentation and analysis are conducted.

  9. Glass fiber addition strengthens low-density ablative compositions

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  10. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  11. Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data.

    PubMed

    Kang, Su Yun; Cramb, Susanna M; White, Nicole M; Ball, Stephen J; Mengersen, Kerrie L

    2016-01-01

    Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists. PMID:27245803

  12. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGESBeta

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is themore » highest mobility from SMDPPEH ever reported.« less

  13. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    SciTech Connect

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  14. Numerical Analysis on Effect of Areal Gas Distribution Pipe on Characteristics Inside COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai

    2014-07-01

    In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.

  15. Areal Distribution of Potential Felsic Material in Nili Patera at Syrtis Major, Mars

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Wray, J. J.; Dufek, J.

    2015-12-01

    For decades, studies of the exposed igneous Martian crust via remote sensing and landed observation have concluded that it is predominantly basaltic. However, new analyses of meteorites and mission data indicate a wider range of primary rock composition. Nili Patera in the Syrtis Major region provides one of the best exposures of evolved compositions. Recently, Wray et al. (2013) identified a new unit in the caldera with very high feldspar abundance but unusually low mafic abundance and interpreted it as a felsic unit (as opposed to spectrally similar anorthosite) based on its proximity to a dacite unit. We investigate the summit calderas of Syrtis Major by defining and mapping distinct compositional units using mineralogies inferred from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO). The study focuses on the areal extent of potential felsic material, identified based on a broad absorption feature centered at ~1.25-1.3 μm, a unique feature of feldspars attributed to minor Fe2+ substitution. These mapping efforts are put in geologic context using images from the High Resolution Imaging Science Experiment (HiRISE) instrument on MRO and existing mapping efforts in the area, as well as spectral context using laboratory generated spectra of feldspar and mafic mixtures. While further work understanding this potential felsic unit is warranted, if it is truly felsic it implies a more complicated Martian magmatic history than previously thought. As the diversity of known geologic materials on Mars grows, it is necessary that we understand how to recognize and characterize those materials using the instruments available on current and upcoming missions, such as MRO or the Mars 2020 Rover. Through modeling and data analysis, our ongoing work seeks to understand the geophysical and petrologic context in which the potential felsic materials were generated, and thus to infer their implications for Martian

  16. Solid material evaporation into an ECR source by laser ablation

    SciTech Connect

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-09-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10{sup 7} W/cm{sup 2} has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source.

  17. Plasma acceleration processes in an ablative pulsed plasma thruster

    SciTech Connect

    Koizumi, Hiroyuki; Noji, Ryosuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2007-03-15

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind.

  18. Enhanced filament ablation of metals based on plasma grating in air

    NASA Astrophysics Data System (ADS)

    Wang, Di; Yuan, Shuai; Liu, Fengjiang; Ding, Liangen; Zeng, Heping

    2015-09-01

    We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  19. Enhanced filament ablation of metals based on plasma grating in air

    SciTech Connect

    Wang, Di; Liu, Fengjiang; Ding, Liangen; Yuan, Shuai; Zeng, Heping

    2015-09-15

    We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  20. Destruction of monocrystalline silicon with nanosecond pulsed fiber laser accompanied by the oxidation of ablation microparticles

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2013-11-01

    In this work, we report an observation of process of local destruction monocrystalline silicon with a scanning beam irradiation of pulse ytterbium fiber laser with a wavelength λ= 1062 nm, accompanied by the oxidation of ablation microparticles. It is shown that depending on the power density of irradiation was observed a large scatter size of the microparticles. From a certain average power density is observed beginning oxidation particulate emitted from the surface of the irradiated area. By varying the parameters of the laser beam such as scanning speed, pulse repetition rate, overlap of laser spot, radiation dose can be achieved almost complete oxidation of all formed during the ablation of microparticles.

  1. Caries selective ablation: the handpiece

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter; Holtermann, Andreas

    1995-05-01

    Caries selective ablation is fixed to a window of fluences predicted by the ablation thresholds of carious and healthy dentin, respectively. The aim of the study was to develop a dental handpiece which guarantees homogeneous fluence at the irradiated tooth surface. Furthermore the point of treatment should be cooled down without energy losses due to the cooling system. We suggest the direct coupling of the laser radiation into a laminar stream of liquid, which acts in turn as a lengthened beam guide. The impacts of the laser radiation and of the cooling medium fall exactly into the same point. Hot ablation debris is removed out of the crater by the flush of the water jet. Fluences are constant if the handpiece is used in contact mode or at a distance. Normally the surface of a bare fiber working in contact mode is destroyed after a few shots. Coupling the laser radiation into a stream of liquid prevents this destruction. Putting together the benefits of this special handpiece short overall treatment times seem to be possible. High average power can be applied to the tooth without the threat of thermal damage. Furthermore no time consuming cutting of the fiber prolongs the treatment time.

  2. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  3. Areal extent of a plume of mineralized water from a flowing artesian well in Dade County, Florida

    USGS Publications Warehouse

    Waller, Bradley G.

    1982-01-01

    A flowing artesian well that taps the Floridan aquifer at Chekika Hammock State Park is contaminating the overlying Biscayne aquifer with saline water. The plume of mineralized water extends approximately 7 miles southeast of the well and ranges in width from 1 to 2 miles. The areal extent of contamination in the primary plume is approximately 12 square miles. The principal ions contaminating the Biscayne aquifer are chloride, sodium, and sulfate. (USGS)

  4. Spatializing Area-Based Measures of Neighborhood Characteristics for Multilevel Regression Analyses: An Areal Median Filtering Approach.

    PubMed

    Oka, Masayoshi; Wong, David W S

    2016-06-01

    Area-based measures of neighborhood characteristics simply derived from enumeration units (e.g., census tracts or block groups) ignore the potential of spatial spillover effects, and thus incorporating such measures into multilevel regression models may underestimate the neighborhood effects on health. To overcome this limitation, we describe the concept and method of areal median filtering to spatialize area-based measures of neighborhood characteristics for multilevel regression analyses. The areal median filtering approach provides a means to specify or formulate "neighborhoods" as meaningful geographic entities by removing enumeration unit boundaries as the absolute barriers and by pooling information from the neighboring enumeration units. This spatializing process takes into account for the potential of spatial spillover effects and also converts aspatial measures of neighborhood characteristics into spatial measures. From a conceptual and methodological standpoint, incorporating the derived spatial measures into multilevel regression analyses allows us to more accurately examine the relationships between neighborhood characteristics and health. To promote and set the stage for informative research in the future, we provide a few important conceptual and methodological remarks, and discuss possible applications, inherent limitations, and practical solutions for using the areal median filtering approach in the study of neighborhood effects on health. PMID:27197736

  5. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  6. Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Takezawa, Hideharu; Ito, Shuji; Yoshizawa, Hiroshi; Abe, Takeshi

    2016-08-01

    We investigated a structural stabilizing effect of large x values on enhancing cyclability for the SiOx electrode with large areal capacity. Electrodes composed of a-SiOx film on roughened Cu substrate with the same areal capacity (2 mAh cm-2) were prepared, so that changes in volume of the lithiated SiOx per unit electrode area were equal. Cycle tests were performed for three x values (0.17, 0.68, 1.02) using half-cell and the morphology of electrodes were analyzed by SEM. Higher x values were found to result in larger inactive phase contents and demonstrated superior cyclability. The SiO1.02 electrode contained 11 times more inactive phase than the SiO0.17 and showed a capacity retention of 98% after 30 cycles. For the SiO0.17 electrode, structural changes such as the pulverization of the particles, fracturing of the electrodeposited Cu tips caused electrical isolation of Li-Si. For the SiO1.02 electrode, the structure was extremely stable. These results reveal that even in electrodes with large areal capacity, the inactive phase exhibited the great buffering effect of the change in volume of Li-Si.

  7. Image-guided ablation for hepatocellular carcinoma.

    PubMed

    Lencioni, Riccardo; Crocetti, Laura

    2013-01-01

    Image-guided ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma (HCC) when surgical options-including resection and transplantation-are precluded. The term image-guided tumor ablation is defined as the direct application of chemical substances or sources of energy to a focal tumor in an attempt to achieve eradication or substantial tumor destruction. Over the past 25 years, several methods for local tumor destruction have been developed and clinically tested. Radiofrequency ablation (RFA) has shown superior anticancer effect and greater survival benefit with respect to the seminal percutaneous technique, ethanol injection, in meta-analyses of randomized controlled trials, and is currently established as the standard ablative modality. Nevertheless, novel thermal and nonthermal techniques for tumor ablation-including microwave ablation and irreversible electroporation-seem to have potential to improve the efficacy of RFA and are currently undergoing clinical investigation. PMID:22941021

  8. A simulation-based and analytic analysis of the off-Hugoniot response of alternative inertial confinement fusion ablator materials

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-09-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.

  9. Laser Ablation of Alumina in Water

    SciTech Connect

    Musaev, O.; Midgley, A; Wrobel, J; Kruger, M

    2010-01-01

    Bulk {alpha}-alumina immersed in distilled water was ablated by pulsed UV laser radiation. The resulting colloidal solution contained micron and submicron size particles. X-ray diffraction and Raman spectra of the ablated and original material are similar. Hence, most of the ablated material is {alpha}-alumina. From transmission electron microscope images, most of the submicron and all of the micron-sized particles have sharp edges and do not have spherical shapes, indicating that the dominant ablation mechanism is due to crack propagation. Some spherical particles of diameter less than 100 nm are observed, indicating that they were formed from the liquid state.

  10. Ablative therapies in renal cell carcinoma.

    PubMed

    Chan, A A; Ahrar, K; Matin, S F

    2011-09-01

    We reviewed the use of ablative therapies in the management of renal cell carcinoma. We performed a PubMed search of the English language literature using the keywords "ablation" and "renal carcinoma." Pertinent articles specific to the technologic advancement of ablative therapy and clinical outcomes were selected for review. Intermediate-term oncologic outcomes of cryoablation and radiofrequency ablation are acceptable but are not quite as good as for surgical excision based nearly all on retrospective studies. No randomized studies have been performed comparing excisional and ablative therapies. Careful selection of patients and tumor characteristics results in improved outcomes. Diagnostic biopsy for tissue confirmation is mandatory and should even be considered post therapy after 6-12 months in patients with a concern about recurrence. Ablative therapies are associated with decreased morbidity, less severe complication rates, and excellent preservation of renal function in comparison with surgical excision. The majority of recurrences occur early, but long-term surveillance is required as delayed recurrences are also possible and the long-term oncologic efficacy is not yet established. Ablation can be delivered percutaneously or laparoscopically, and the superiority of one over the other remains controversial. The percutaneous approach is more cost effective and causes less perinephric desmoplasia. Nearly all data on ablation are retrospective and, with few exceptions, from single institutions. Ablative therapy is an appealing option for the management of small renal tumors shown to be renal cell carcinoma on biopsy in patients who are unsuitable candidates for surgical extirpation. PMID:21993322

  11. Plasma-mediated ablation of biofilm contamination

    NASA Astrophysics Data System (ADS)

    Guo, Zhixiong; Wang, Xiaoliang; Huang, Huan

    2010-12-01

    Ultra-short pulsed laser removal of thin biofilm contamination on different substrates has been conducted via the use of plasma-mediated ablation. The biofilms were formed using sheep whole blood. The ablation was generated using a 1.2 ps ultra-short pulsed laser with wavelength centered at 1552 nm. The blood contamination was transformed into plasma and collected with a vacuum system. The single line ablation features have been measured. The ablation thresholds of blood contamination and bare substrates were determined. It is found that the ablation threshold of the blood contamination is lower than those of the beneath substrates including the glass slide, PDMS, and human dermal tissues. The ablation effects of different laser parameters (pulse overlap rate and pulse energy) were studied and ablation efficiency was measured. Proper ablation parameters were found to efficiently remove contamination with maximum efficiency and without damage to the substrate surface for the current laser system. Complete removal of blood contaminant from the glass substrate surface and freeze-dried dermis tissue surface was demonstrated by the USP laser ablation with repeated area scanning. No obvious thermal damage was found in the decontaminated glass and tissue samples.

  12. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm‑1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm‑1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm‑1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  13. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  14. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Liao, M. W.; Lin, S. L.

    2010-04-01

    Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

  15. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.

    PubMed

    Pang, Quan; Nazar, Linda F

    2016-04-26

    Lithium-sulfur batteries are attractive electrochemical energy storage systems due to their high theoretical energy density and very high natural abundance of sulfur. However, practically, Li-S batteries suffer from short cycling life and low sulfur utilization, particularly in the case of high-sulfur-loaded cathodes. Here, we report on a light-weight nanoporous graphitic carbon nitride (high-surface-area g-C3N4) that enables a sulfur electrode with an ultralow long-term capacity fade rate of 0.04% per cycle over 1500 cycles at a practical C/2 rate. More importantly, it exhibits good high-sulfur-loading areal capacity (up to 3.5 mAh cm(-2)) with stable cell performance. We demonstrate the strong chemical interaction of g-C3N4 with polysulfides using a combination of spectroscopic experimental studies and first-principles calculations. The 53.5% concentration of accessible pyridinic nitrogen polysulfide adsorption sites is shown to be key for the greatly improved cycling performance compared to that of N-doped carbons. PMID:26841116

  16. Multivariate areal analysis of the impact and efficiency of the family planning programme in peninsular Malaysia.

    PubMed

    Tan Boon Ann

    1987-06-01

    The findings of the final phase of a 3-phase multivariate areal analysis study undertaken by the Economic and Social Commission for Asia and the Pacific (ESCAP) in 5 countries of the Asian and Pacific Region, including Malaysia, to examine the impact of family planning programs on fertility and reproduction are reported. The study used Malaysia's administrative district as the unit of analysis because the administration and implementation of socioeconomic development activities, as well as the family planning program, depend to a large extent on the decisions of local organizations at the district or state level. In phase 1, existing program and nonprogram data were analyzed using the multivariate technique to separate the impact of the family planning program net of other developmental efforts. The methodology in the 2nd phase consisted of in-depth investigation of selected areas in order to discern the dynamics and determinants of efficiency. The insights gained in phase 2 regarding dynamics of performance were used in phase 3 to refine the input variables of the phase 1 model. Thereafter, the phase 1 analysis was repeated. Insignificant variables and factors were trimmed in order to present a simplified model for studying the impact of environmental, socioeconomic development, family planning programs, and related factors on fertility. The inclusion of a set of family planning program and development variables in phase 3 increased the predictive power of the impact model. THe explained variance for total fertility rate (TFR) of women under 30 years increased from 71% in phase 1 to 79%. It also raised the explained variance of the efficiency model from 34% to 70%. For women age 30 years and older, their TFR was affected directly by the ethnic composition variable (.76), secondary educational status (-.45), and modern nonagricultural occupation (.42), among others. When controlled for other socioeconomic development and environmental indicators, the

  17. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major

  18. Localized and Areally Extensive Alterations in Marathon Valley, Endeavour Crater Rim, Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Gellert, Ralf; Van Bommel, Scott; Arvidson, Raymond E.; Clark, Benton C.; Cohen, Barbara A.; Farrand, William H.; Ming, Douglas W.; Schroeder, Christian; Yen, Albert S.; Jolliff, Bradley L.

    2016-01-01

    Mars Exploration Rover Opportunity is exploring the rim of 22 km diameter, Noachian-aged Endeavour crater. Marathon Valley cuts through the central region of the western rim providing a window into the local lower rim stratigraphic record. Spectra from the Compact Reconnaissance Imaging Spectrometer for Mars show evidence for the occurrence of Fe-Mg smectite in this valley, indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. The Alpha Particle X-ray Spectrometer has determined the compositions of 59 outcrop targets on untreated, brushed and abraded surfaces. Rocks in the Marathon Valley region are soft breccias composed of mm- to cm-sized darker clasts set in a lighter-toned, finegrained matrix. They are basaltic in non-volatile-element composition and compositionally similar to breccias investigated elsewhere on the rim. Alteration styles recorded in the rocks include: (1) Enrichments in Si, Al, Ti and Cr in more reddish-colored rock, consistent with leaching of more soluble cations and/or precipitation of Si +/- Al, Ti, Cr from fluids. Coprecipitation of Ge-rich phases with Si occurred in the western area only; high water:rock is indicated. Pancam multispectral observations indicate higher nanophase ferric oxide contents, but the rocks have lower Fe contents. The highly localized nature of the red zones indicate they cannot be the source of the widespread smectite signature observed from orbit. (2) Outcrops separated by approximately 65 m show common compositional changes between brushed and abraded (approximately 1 mm deep) targets: increases in S and Mg; decreases in Al, Cl and Ca. These changes are likely due to relatively recent, surface-related alteration of valley rocks and formation of surface coatings under low water:rock. (3) One target, from the center of a region of strong CRISM smectite signature, shows modest differences in composition (higher Si, K; lower Mn) compared to most Marathon Valley rocks, while

  19. A Novel Method for Assessing Rainfall Extremes from GCMs and RCMs using Areal Reduction Factors

    NASA Astrophysics Data System (ADS)

    Johnson, F.; Li, J.; Evans, J. P.; Sharma, A.

    2013-12-01

    There is considerable uncertainty in future projections of rainfall extremes which affects flood risk planning. One of the reasons for this uncertainty is the significant biases in both General Circulation Model (GCM) and Regional Climate Model (RCM) simulations of these events. Generally these biases mean that future extreme rainfalls are estimated using a delta-change approach where the observed rainfalls are scaled by the percentage change in the RCM current to future estimates. One aspect that has not received much attention is how spatial patterns of extreme rainfall may change and whether these patterns are represented by GCMs and RCMs with more accuracy than the magnitude of the extreme rainfall totals. Areal reduction factors (ARFs) are a useful tool for considering the spatial patterns of extreme rainfalls. ARFs account for the spatial heterogeneity of storm events by quantifying the required reduction in a point rainfall estimate to give an equivalent area averaged rainfall estimate. The required reduction has been found to be dependent on location, watershed area and size of the rainfall event. This study has investigated the scaling of point to grid rainfall for extreme rainfall events as modelled by a number of GCMs and for dynamically downscaled GCM simulations over south-east Australia from the Weather Research and Forecasting (WRF) model. ARFs are proposed as a novel way of evaluating both the GCM and RCM simulations. For the GCMs, the ARFs provide guidance on the models that best represent the modulation of point rainfalls expected over watershed areas as large as individual GCM cells. The advantage of this approach is that information on the scaling of extreme value distributions with increasing spatial scales can be used to correct the bias in the GCM simulations. For the WRF downscaled results, reanalysis driven simulations show that the representation of observed ARF relationships is quite acceptable. Future changes in ARFs can therefore be

  20. Plasma effects during ablation and drilling using pulsed solid-state lasers

    NASA Astrophysics Data System (ADS)

    Breitling, Detlef; Ruf, Andreas; Berger, Peter W.; Dausinger, Friedrich H.; Klimentov, Sergei M.; Pivovarov, Paval A.; Kononenko, Taras V.; Konov, Vitali I.

    2003-09-01

    Plasma and vapor plumes generated by ultrashort laser pulses have been studied by various optical methods for both single pulse ablation as well as high-repetition rate drilling. Time-resolved shadow and resonance absorption photographs enable to determine the plume and vapor expansion behavior and, by means of an analytical shock wave model, allow to estimate an energy balance that can be refined by plasma transmission measurements. The results furthermore suggest that several types of laser-induced plasmas can be distinguished according to their origin: the material vapor plasma originating at the ablated surface even at moderate intensities, a breakdown plasma at increased power densities occurring in cold vapor or dust particles left from previous ablations during repetitively-pulsed processing and, finally, the optical breakdown in the pure atmosphere at high intensities. The latter also gives rise to nonlinear scattering phenomena resulting in a strong redistribution of the energy density in the beam profile.

  1. Study of critical defects in ablative heat shield systems for the space shuttle

    NASA Technical Reports Server (NTRS)

    Miller, C. C.; Rummel, W. D.

    1974-01-01

    Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.

  2. Inflight Properties of NIF Ignition Capsules Inferred from Convergent Ablator Experiments

    NASA Astrophysics Data System (ADS)

    Meezan, Nathan

    2012-10-01

    Convergent ablator (ConA) experiments on the National Ignition Facility (NIF) are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, back-lit radiography provides data used by the National Ignition Campaign to infer time-dependent properties of the capsule ablator, including its center of mass radius, velocity, unablated mass, shell thickness, and peak density. Previously, CallahanfootnotetextD. A. Callahan et al., Phys. Plasmas 19, 056305 (2012) and Hicks reported ConA experiments demonstrating velocities approaching those required for ignition. Here, we present the findings from a full year of NIF ConA experiments where we have shot more than 20 targets at energies greater than 1 MJ to study the inflight dynamics of ignition-like implosions. These include: *Studies of ablator center of mass motion vs. time, suggesting that the drive history differs substantially from that predicted by standard modeling *Pulse shape scalings studying the dynamics of a ``fifth shock'' that can significantly increase the entropy of the DT fuel in an ignition implosion. *Performance of different ablators, including CH ablators with graded Si doping, CH ablators with uniform Si doping, and other ablators. *ConA experiments using capsules with cryogenic ice layers, demonstrating that gas-filled capsules are adequate surrogates for DT layered implosions. *Studies of thicker capsules shot at powers and energies surpassing 500 TW and 1.8 MJ as we work to meet the ignition implosion velocity requirement in the presence of hydrodynamic instabilities. Finally, we describe insights into hydrodynamic instabilities that we have gained through this large database, from variations in capsule performance (neutron yield and Tion) as well as from the impact of mix on observed late-time ablator properties.

  3. Pendrin gene ablation alters ENaC subcellular distribution and open probability

    PubMed Central

    Pech, Vladimir; Nanami, Masayoshi; Bao, Hui-Fang; Kim, Young Hee; Lazo-Fernandez, Yoskaly; Yue, Qiang; Pham, Truyen D.; Eaton, Douglas C.; Verlander, Jill W.

    2015-01-01

    The present study explored whether the intercalated cell Cl−/HCO3− exchanger pendrin modulates epithelial Na+ channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na+ absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na+ absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability. We conclude that in mice harboring wild-type ENaC, pendrin modulates ENaC function through changes in subunit abundance, subcellular distribution, and channel open probability. In a mouse model of Liddle's syndrome, however, pendrin gene ablation reduces channel activity mainly through changes in open probability. PMID:25972513

  4. Particle-based ablation model for faint meteors

    NASA Astrophysics Data System (ADS)

    Stokan, E.; Campbell-Brown, M.

    2014-07-01

    ]. Large trail widths in faint meteors observed with CAMO are also explained by the collisional light production emphasized with this model [4]. Ultimately, improving models of meteoroid ablation, such that they are able to satisfy more constraints simultaneously, will provide a better understanding of the composition and structure of objects throughout the Solar System. Particularly, we hope to use this model in the future to quantify meteoroid density and the distribution of particle sizes present in dust-ball bodies.

  5. Deposition, characterization, and laser ablation patterning of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Vase, Per; Yueqiang, Shen; Freltoft, Torsten

    1990-12-01

    High quality epitaxial thin films of YBa 2Cu 3O 7 have been deposited on single-crystal MgO(001) substrates by 355 nm Nd:YAG laser ablation. Through a systematic optimization of the deposition parameters, it was found that for a target-substrate distance of 30 mm, the optimal laser intensity, substrate temperature, and deposition oxygen pressure were 300 MW/cm 2, 750 ° C, and 0.5-1.0 mbar, respectively. Microstrips with dimensions down to 10 μm across were fabricated using both a photoresist technique and laser ablation through a metal mask. The superconducting transition takes place over 1 K, and the critical temperature is reproducible within ±1.5 K, the best result being Tc,0 = 90 K. The highest critical current density measured on a 10 X 0.15 μm 2 strips was 4 X 10 6 A/cm 2 at 77 K . Film patterning using laser ablation through a metal mask was studied in detail to investigate the applicability of this method. Etch rates as a function of laser intensity were measured, and the process was followed in situ by on-line monitoring of the film resistivity.

  6. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  7. Laser ablation of copper and aluminium in air

    NASA Astrophysics Data System (ADS)

    Xia, Yueyuan; Mei, Liangmo; Tan, Chunyu; Liu, Xiangdong; Wang, Qingpu; Yue, Shubin

    1991-06-01

    The ablation behavior of copper alloy and aluminium irradiated in air by 1.06 μm, 10 ns pulsed laser with power density of 6.4×109W/cm2 was studied using scanning electron microscopy (SEM), MCS-RBS and X-ray microanalysis. Evidence of bulk vaporization via bubble formation was observed for the copper alloy under the laser irradiation. Silver-enrichment microregions were found in the ablation crater created by the laser shots on the copper alloy sample. Material removal rates of these materials were determined by crater shape-profile measurement. Using self-similar solutions of the gas-dynamic equations, gas-dynamic parameters of the vaporization waves are obtained. These parameters are used to calculate material removal rates and impulse coupling coefficients of these materials under the pulsed laser irradiation. The calculated mass removal rates and the coupling coefficients are compared with the corresponding experimentally determined values. The surface kinetic energy of the irradiated area on the Al sample is estimated. Possible mechanisms for laser ablation of the materials under study are discussed.

  8. Possible Role for Cryoballoon Ablation of Right Atrial Appendage Tachycardia when Conventional Ablation Fails

    PubMed Central

    Kilic, Ayhan

    2015-01-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage. PMID:26175651

  9. Advantages of dual-laser ablation in the growth of multicomponent thin films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Devajyoti; Hyde, Robert; Mukherjee, Pritish; Witanachchi, Sarath

    2012-07-01

    We report the use of a dual-laser deposition process to grow stoichiometric films of the piezoelectric material PbZr0.52Ti0.48O3 (PZT) and the thermoelectric material Ba8Ga16Ge30. High volatility of Pb and Ba in these materials leads to non-stoichiometric growth in conventional PLD processes. Dual-laser ablation process preserves the Pb and Ba stoichiometry while significantly reducing the thickness variation and particulate density on the deposited films. This lead to the growth of smooth uniform films with enhanced ferroelectric and electrical properties. The dual-laser ablation combines the pulses of a KrF excimer laser (248 nm wavelength, 30 ns pulse width) and a CO2 laser (10.6 μm wavelength, 250 ns pulse width) where the beams are spatially overlapped on the ablation target and temporally delayed. At an optimum delay that is dependent on the physical properties of the material, CO2 pulse energy is coupled into the plume, generating a high temperature plasma (>25,000K). Laser-target interaction studies have shown the evaporation to be stoichiometric. Emission spectroscopy studies have shown ten-fold increase in emission intensities in dual-laser ablation while time-gated 2D ICCD imaging studies revealed the plume expansion to be stoichiometric over a large cone-angle of the plume under these conditions. Time-of-flight investigations in concert with hydrodynamic modeling provided a clear understanding of the mechanism of dual-laser ablation. Furthermore, plasma generated in the process is highly ionized (>75%) leading to films with high density and crystallinity. This paper will show the enhancement in properties attainable by the dual-laser ablation process in comparison to the single laser ablation.

  10. Ablation of human carious dentin with a nanosecond pulsed laser at a wavelength of 5.85 μm: relationship between hardness and ablation depth

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2014-02-01

    Less invasive treatment and preservation of teeth, referred to as minimal intervention, are strong requirements in dentistry. In our previous study, the fundamental ablation properties of human dentin at wavelengths around 5.8 μm were investigated, and the results indicated that the wavelength of 5.85 μm was optimal for selective removal of carious dentin with less damage to normal dentin. The purpose of this study was to investigate the relationship between the ablation depth and hardness of human dentin including carious lesion. A nanosecond pulsed laser produced by difference-frequency generation was used for irradiations to human carious dentin. It was observed that correlation between ablation depth and Vickers hardness after 2 s laser irradiation at the wavelength of 5.85 μm and the average power density of 30 W/cm2. On the other hand, ablations did not depend on Vickers hardness at the wavelength of 6.00 μm. A nanosecond pulsed laser with the wavelength at 5.85 μm is useful for selective ablation of human carious dentin in accordance with the hardness.

  11. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  12. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  13. Percutaneous Local Ablative Therapy for Hepatocellular Carcinoma

    PubMed Central

    Lau, W. Y.; Leung, Thomas W. T.; Yu, Simon C. H.; Ho, Stephen K. W.

    2003-01-01

    Objective To review and compare treatment result for percutaneous local ablative therapy (PLAT) with surgical resection in the treatment of small hepatocellular carcinoma (HCC). Summary Background Data PLAT is indicated for small unresectable HCC localized to the liver. From the use of ethanol to the latest technology of radiofrequency ablation, ablative techniques have been refined and their role in the management of HCC established. This review aims to give an overview of various ablative methods, including their efficacy, indications, and limitations, and also tries to look into the future of clinical trials in PLAT. Methods The authors reviewed recent papers in the English medical literature about the use of local ablative therapy for HCC. Focus was given to the results of treatment in terms of local control, progression-free survival, and overall survival, and to compare treatment results with those of surgery. Results PLAT for small HCC (<5 cm) with thermal ablation (radiofrequency ablation or microwave coagulation) can achieve effective local control of disease and is superior to ethanol injection. Progressive disease in untreated areas is a common reason for failure. Overall progression-free survival is similar to that of surgical resection. Conclusions Thermal ablation gives good local control of small HCC, is superior to ethanol, and may be comparable to surgical resection in long-term outcome. PMID:12560774

  14. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  15. Local Ablation for Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Lin, Shi-Ming

    2013-01-01

    Hepatocellular carcinoma (HCC) is the second commonest cancer in Taiwan. The national surveillance program can detect HCC in its early stages, and various curative modalities (including surgical resection, orthotopic liver transplantation, and local ablation) are employed for the treatment of small HCC. Local ablation therapies are currently advocated for early-stage HCC that is unresectable because of co-morbidities, the need to preserve liver function, or refusal of resection. Among the various local ablation therapies, the most commonly used modalities include percutaneous ethanol injection and radiofrequency ablation (RFA); percutaneous acetic acid injection and microwave ablation are used less often. RFA is more commonly employed than other local ablative modalities in Taiwan because the technique is highly effective, minimally invasive, and requires fewer sessions. RFA is therefore advocated in Taiwan as the first-line curative therapy for unresectable HCC or even for resectable HCC. However, current RFA procedures are less effective against tumors that are in high-risk or difficult-to-ablate locations, are poorly visualized on ultrasonography (US), or are large. Recent advancements in RFA in Taiwan can resolve these issues by the creation of artificial ascites or pleural effusion, application of real-time virtual US assistance, use of combination therapy before RFA, or use of switching RF controllers with multiple electrodes. This review article provides updates on the clinical outcomes and advances in local ablative modalities (mostly RFA) for HCC in Taiwan. PMID:24159599

  16. First-Principles Investigations on Thermal Conductivity and Average Ionization of CH Ablators Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.

    2015-11-01

    A plastic CH ablator (polystyrene) is often used for inertial confinement fusion (ICF) target designs. Upon intense laser or x-ray ablations, a CH ablator can be shocked to warm-dense-matter (WDM) conditions. Many-body coupling and quantum electron degeneracy are expected to play an essential role in determining the properties of such warm dense plasmas. Using ab initio methods of quantum molecular dynamics (QMD), we have performed investigations on the principal Hugoniot of a CH ablator, the first-principles equation-of-state table of CH, and its effect on ICF simulations. In this presentation, we focus on the thermal conductivity and average ionization of CH-ablators under a wide range of plasma temperatures and densities. The resulting thermal conductivity (κ) and average ionization () show large differences from the usual model predictions in the WDM regime. These results, being fitted with analytical functions of plasma density and temperature, have been incorporated into radiation -hydrodynamics codes. Their effects on the ICF implosion simulations will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Scientific Campaign 10 at LANL under Contract No. DE-AC52-06NA25396.

  17. Evaluation of physical parameters during the plasma-induced ablation of teeth

    NASA Astrophysics Data System (ADS)

    Niemz, Markolf H.

    1995-01-01

    The physical parameters of the plasma-induced ablation mechanism were investigated using a picosecond Nd:YLF laser system. The laser consists of a diode-pumped oscillator and a lamp- pumped regenerative amplifier. It operates at a wavelength of 1.053 micrometers with pulse durations of 30 ps and pulse energies up to 1 mJ. The laser beam was expanded to a diameter of 4 mm and focussed to spot sizes of about 30 micrometers . At these high power densities a localized plasma was induced at the focal spot. Surfaces of extracted human teeth were used as target material. In order to study the effect of accompanying shock waves, dye penetration tests, hardness tests and polarized microscopy were performed. At moderate pulse energies no significant impact of shock waves was observed. Because of this result, the terms `plasma- induced ablation' or `plasma-mediated ablation' are more appropriate for ablations solely induced by plasma ionization, and should be distinguished from photodisruptive ablations. In another series of experiments the generated plasma sparks were spectroscopically analyzed. From the measured spectra, mean plasma temperatures of about 5 eV and mean electron densities of about 1018/cm3 were estimated.

  18. Modeling Of Laser Ablation And Fragmentation Of Human Calculi

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.; Howsare, Charles

    1989-09-01

    The large-scale radiation-hydrodynamics computer code LASNEX, has been used to model experimental results in the laser ablation and fragmentation of renal and biliary calculi. Recent experiments have demonstrated laser ablation and fragmentation of human calculi in vitro and in vivo. In the interaction, laser light incident upon the calculus is of sufficient intensity to produce a plasma (a hot ionized gas). The physical picture which emerges is as follows. The plasma couples to acoustic and shear waves which then propagate through the dense stone material, causing spall and fracture by reflection from material discontinuities or boundaries. Experiments have thus far yielded data on the interaction against which models can be tested. Data on the following have been published: (1) light emission, (2) absorption and emission spectra, (3) fragmentation efficiency, (4) cavitation bubble dynamics and (5) mass removal. We have performed one dimensional simulations of the laser-matter interaction to elucidate the im-portant physical mechanisms. We find that good quantitative fits between simulation and experiment are obtained for visible light emission, electron temperature, electron density, plasma pressure and cavitation bubble growth. With regard to mass removal, experiment and simulation are consistent with each other and give an excellent estimate of the ablation threshold. The modeling indicates that a very small ablation layer at the surface of the calulus is responsible for significant mass loss by fragmentation within the bulk of the calculus. With such quantitative fits in hand, we believe this type of modeling can now be applied to the study of other procedures involving plasma formation of interest to the medical community.

  19. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  20. Epicardial Ventricular Tachycardia Ablation for Which Patients?

    PubMed Central

    Roten, Laurent; Sacher, Frédéric; Daly, Matthew; Pascale, Patrizio; Komatsu, Yuki; Ramoul, Khaled; Scherr, Daniel; Chaumeil, Arnaud; Shah, Ashok; Denis, Arnaud; Derval, Nicolas; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    With the widespread use of implantable cardioverter-defibrillators, an increasing number of patients present with ventricular tachycardia (VT). Large multicentre studies have shown that ablation of VT successfully reduces recurrent VT and this procedure is being performed by an increasing number of centres. However, for a number of reasons, many patients experience VT recurrence after ablation. One important reason for VT recurrence is the presence of an epicardial substrate involved in the VT circuit which is not affected by endocardial ablation. Epicardial access and ablation is now frequently performed either after failed endocardial VT ablation or as first-line treatment in selected patients. This review will focus on the available evidence for identifying VT of epicardial origin, and discuss in which patients an epicardial approach would be benefitial. PMID:26835028

  1. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  2. KrF laser-induced ablation and patterning of Y--Ba--Cu--O films

    SciTech Connect

    Heitz, J.; Wang, X.Z.; Schwab, P.; Baeuerle, D. ); Schultz, L. )

    1990-09-01

    The ablation and patterning of Y--Ba--Cu--O films on (100) SrTiO{sub 3} and (100) MgO substrates by KrF excimer-laser light projection was investigated. Three different regimes of laser-material interactions were observed. Transition temperatures and critical current densities in laser-fabricated strip lines were investigated.

  3. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  4. Radiofrequency ablation for hepatocellular carcinoma.

    PubMed

    Nishikawa, Hiroki; Kimura, Toru; Kita, Ryuichi; Osaki, Yukio

    2013-09-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Unfortunately, only 20% of HCC patients are amenable to curative therapy (liver transplantation or surgical resection). Locoregional therapies such as radiofrequency ablation (RFA), percutaneous ethanol injection, microwave coagulation therapy, and transcatheter arterial chemoembolisation play a key role in the management of HCC. The choice of the treatment modality depends on the size of the tumour, tumour location, anatomic considerations and the number of tumours present and liver function. RFA therapy for HCC can be performed safely using a percutaneous, laparoscopic, or an open approach, even in patients with poor functional reserve. Since the introduction of RFA, several randomised controlled trials and non-randomised studies comparing RFA and other therapies for HCC have been conducted. In addition, in the last decade there have been technical advances in RFA therapy for HCC, resulting in significant improvement in the prognosis of HCC patients treated with this modality. In this review, we primarily focus on percutaneous RFA therapy for HCC and refer to current knowledge and future perspectives for this therapy. We also discuss new emerging ablation techniques. PMID:23937321

  5. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  6. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  7. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  8. Suppression of Ablation in Femtosecond Double-Pulse Experiments

    SciTech Connect

    Povarnitsyn, M. E.; Khishchenko, K. V.; Levashov, P. R.; Itina, T. E.

    2009-11-06

    We report the physical reasons of a curious decrease in the crater depth observed for long delays in experiments with two successive femtosecond pulses. Detailed hydrodynamic modeling demonstrates that the ablation mechanism is dumped when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The evidence of this effect follows from the pressure and density profiles obtained at different delays after the first laser pulse.

  9. MARG - A Low Cost Solid State Microwave Areal Precipitation Measurement System

    NASA Astrophysics Data System (ADS)

    Paulitsch, Helmut; Dombai, Ferenc; Cremonini, Roberto; Bechini, Renzo

    2014-05-01

    Water is an essential resource for us so the measurements of its movement throughout the whole cycle is very important. The rainfall is discontinuous in space and in time having large natural variability unlike many other meteorological parameters. The widely used method for getting relatively accurate precipitation data over land is the combination of radar rainfall estimations and rain gauge data. The typically used radar data is coming from long-range weather radars operating in C or S band, or from mini radars operating in X band which is attenuating heavily in strong precipitation. Using such radar data we are facing several constraints: operating costs and limitations of long range radars, X band radars can be blocked totally in heavy thunderstorms even in short range, dual polarization solutions are expensive, etc. Recognizing that an important gap exists in instrumental precipitation measurements over land a consortium has been organized and a project has been established to develop a new measurement device, the so called Microwave Areal Rain Gauge (MARG). MARG is based on FMCW radar principle using solid state transmitter and digital signal processing and operating in C band. The MARG project aims to provide an innovative, real-time, low-cost, user friendly and accurate sensor technology to monitor and to measure continuously the rainfall intensity distribution over an area around some thousand square km. The MARG project proposal has been granted by the EU in FP7-SME-2012 funding scheme. The developed instrument is able to monitor in real-time intensity and spatial distribution of rainfall in rural and urban environments and can be operated by commercial weather data and value-added forecast product suppliers. To achieve sufficient isolation between the transmitter and receiver modules, and to avoid using complex and expensive microwave components, two parabolic antennae are used to transmit and receive the FMCW signal. The radar frontend operates in the

  10. Proposed linear energy transfer areal detector for protons using radiochromic film

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-01

    LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.

  11. Proposed linear energy transfer areal detector for protons using radiochromic film

    SciTech Connect

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-15

    LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%–10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%–15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.

  12. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  13. Self-consistent stability analysis of ablation fronts in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Goncharov, Valeri N.

    1998-09-01

    In Inertial Confinement Fusion (ICF) implosions, a cold target material is accelerated by a hot, low density plasma. The surface between the heavy and light materials is Rayleigh-Taylor (RT) unstable similar to the interface between two fluids of constant densities ρh and ρl subject to a gravitational field g pointing toward the lighter fluid ρl. The classical treatment of the sharp-interface RT instability leads to a linear growth rate γcl=/sqrt[ATkg], where k is the perturbation wave number, g is the acceleration, and AT=(ρh- ρl)/(ρh+ρl) is the Atwood number. In this thesis, the linear stability analysis of accelerated ICF targets is carried out including the effects of ablative flow and finite thermal conduction. The thermal conductivity κ has a power law dependence on the temperature, κ~Tν, with a power index /nu. It is shown that the physical mechanisms inherent to the ablative compression (finite density-gradient scale-length, mass flow across the ablation region, transverse and lateral thermal conductivity, etc.) reduce the classical growth rate of the unstable modes γ<γcl. The most important parameter characterizing the instability is the Froude number Fr defined as Fr=Va2/(gL0), where Va is the ablation velocity, g is the target acceleration, and L0 is the characteristic width of the ablation region. For ablation-fronts with large Froude numbers, the unstable spectrum consists only of long-wavelength modes (kLmin/ll1, where Lmin is the minimum density-gradient scale-length) and short-wavelengths (kLmin/gg1) are stable (the cutoff wavelength is much longer than the minimum density-gradient scale-length). The main physical mechanisms stabilizing the Rayleigh-Taylor growth of the interface in this case are the jump of the dynamic pressure pd=/rho V2 caused by lateral thermal conduction, and the mass flow through the ablation region. For the ablation fronts with small Froude numbers, the unstable spectrum consists of long as well as short

  14. Subpicosecond laser ablation of dental enamel

    NASA Astrophysics Data System (ADS)

    Rode, A. V.; Gamaly, E. G.; Luther-Davies, B.; Taylor, B. T.; Dawes, J.; Chan, A.; Lowe, R. M.; Hannaford, P.

    2002-08-01

    Laser ablation of dental enamel with subpicosecond laser pulses has been studied over the intensity range of (0.1-1.4) x1014 W/cm2 using 95 and 150 fs pulses at a pulse repetition rate of 1 kHz. The experimentally determined ablation threshold of 2.2plus-or-minus0.1 J/cm2 was in good agreement with theoretical predictions based on an electrostatic ablation model. The ablation rate increased linearly with the laser fluence for up to 15 times the ablation threshold. The absence of collateral damage was observed using optical and scanning electron microscopy. Pulpal temperature measurements showed an increase of about 10 degC during the 200 s course of ablation. However, air cooling at a rate of 5 l/min resulted in the intrapulpal temperature being maintained below the pulpal damage threshhold of 5.5 degC. The material removal rates for subpicosecond precision laser ablation of dental enamel are compared with other techniques.

  15. Neural Ablation and Regeneration in Pain Practice.

    PubMed

    Choi, Eun Ji; Choi, Yun Mi; Jang, Eun Jung; Kim, Ju Yeon; Kim, Tae Kyun; Kim, Kyung Hoon

    2016-01-01

    A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration. PMID:26839664

  16. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  17. Neural Ablation and Regeneration in Pain Practice

    PubMed Central

    Choi, Eun Ji; Choi, Yun Mi; Jang, Eun Jung; Kim, Ju Yeon; Kim, Tae Kyun

    2016-01-01

    A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration. PMID:26839664

  18. Initial development of an ablative leading edge for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daforno, G.; Rose, L.; Graham, J.; Roy, P.

    1974-01-01

    A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.

  19. Equation of state for simulation of nanosecond laser ablation aluminium in water and air

    NASA Astrophysics Data System (ADS)

    Davydov, R.; Antonov, V.; Kalinin, N.

    2015-11-01

    To analyze the physical processes at high energy densities, when laser is used, an adequate description the thermodynamic property of matter over a broad region of states including the normal conditions and plasma at high pressures and temperatures is required. For describing the thermodynamic properties of metals in nanoparticles production using laser ablation a semi-empirical equation of state model is proposed. To verify this model, an equation of state of aluminum was constructed. Using this equation was calculated ablation depths and crater profile for aluminum and compared with experimental data. Received results are in a good match with experiment.

  20. Femtosecond x-ray diffuse scattering measurements of semiconductor ablation dynamics

    NASA Astrophysics Data System (ADS)

    Lindenberg, A. M.; Engemann, S.; Gaffney, K. J.; Sokolowski-Tinten, K.; Larsson, J.; Reis, D.; Lorazo, P.; Hastings, J. B.

    2008-05-01

    Femtosecond time-resolved small and wide-angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the build-up of these fluctuations is measured in real-time. Small-angle scattering measurements reveal the first steps in the nucleation of nanoscale voids below the surface of the semiconductor and support MD simulations of the ablation process.

  1. ERTS-1 image enhancement by optically combining density slices

    NASA Technical Reports Server (NTRS)

    Tapper, G. O.; Pease, R. W.

    1973-01-01

    The technique of density slicing using a photographic film and its application to enhancement of ERTS-1 imagery has proved to be useful for mapping varigated areal phenomena and provides a useful supplement ot the I2S MiniAddcol viewing system. The intial experiments conducted with this film were encouraging, and indicated that this technique of density slicing using readily accessible darkroom facilities and simple darkroom procedures allows rapid, accurate, and facile interpretation of certain areal phenomena to be made from the imagery. The distribution of the tree yucca, Yucca brevifolia Jaegeriana, in the eastern Mojave Desert of Southern California and southern Nevada was used as an example to test the accuracy of the technique for mapping purposes. The distribution was mapped at a relatively high level of accuracy.

  2. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis. PMID:27464121

  3. Chemically assisted laser ablation ICP mass spectrometry.

    PubMed

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis. PMID:12553756

  4. Finite-difference model to simulate the areal flow of saltwater and fresh water separated by an interface

    USGS Publications Warehouse

    Mercer, James W.; Larson, S.P.; Faust, Charles R.

    1980-01-01

    Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).

  5. A sharp cadherin-6 gene expression boundary in the developing mouse cortical plate demarcates the future functional areal border.

    PubMed

    Terakawa, Youhei W; Inoue, Yukiko U; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-10-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca(2+) and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  6. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  7. High geocentric velocity meteor ablation

    NASA Astrophysics Data System (ADS)

    Hill, K. A.; Rogers, L. A.; Hawkes, R. L.

    2005-12-01

    Interstellar origin meteoroids have now been detected using radar, image intensified video, large aperture radar and space dust impact techniques. Dynamical and radiation production mechanisms will eject some meteoroids from other planetary systems into orbits which will impact Earth with high geocentric velocities. In this paper we numerically model the ablation of high geocentric velocity (71 to 500~km s-1) meteors in order to predict the heights, light curves and trail lengths to be expected. We modeled three compositions and structures: asteroidal, cometary and porous cometary. Meteoroid masses ranging from 10-6 to 10-13~kg were used in the model. As expected, these high geocentric velocity meteors, when compared to other meteors, ablate higher in the atmosphere. For example a 300~km s-1 cometary structure meteor of mass 10-9~kg will have a peak luminosity at about 190 km. They will also have significantly longer trail lengths. The same 300~km s-1, 10-9~kg cometary meteor would be within 2 mag of its peak brightness for a vertical displacement of 60 km if incident at a zenith angle of 45°. The peak light intensity of these high geocentric velocity meteors changes only slowly with velocity. Although the incident kinetic energy per unit time increases dramatically, this is largely offset by a decrease in the optical luminous efficiency in this velocity regime according to our luminous efficiency model. The 300~km s-1, 10-9~kg cometary meteor would have an absolute meteor magnitude at peak luminosity of about +8.5 mag. Our results suggest that at least those high geocentric velocity meteors larger than about 10-8~kg should be observable with current meteor electro-optical technology although there may be observational biases against their detection. The results of this paper can be used to help optimize a search strategy for these very high geocentric velocity meteors.

  8. Atrioventricular Junction Ablation for Atrial Fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2016-04-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:26968669

  9. Atrioventricular junction ablation for atrial fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2014-11-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:25443238

  10. Catheter ablation of inappropriate sinus tachycardia.

    PubMed

    Gianni, Carola; Di Biase, Luigi; Mohanty, Sanghamitra; Gökoğlan, Yalçın; Güneş, Mahmut F; Horton, Rodney; Hranitzky, Patrick M; Burkhardt, J David; Natale, Andrea

    2016-06-01

    Catheter ablation for inappropriate sinus tachycardia (IST) is recommended for patients symptomatic for palpitations and refractory to other treatments. The current approach consists in sinus node modification (SNM), achieved by ablation of the cranial part of the sinus node to eliminate faster sinus rates while trying to preserve chronotropic competence. This approach has a limited efficacy, with a very modest long-term clinical success. To overcome this, proper patient selection is crucial and an epicardial approach should always be considered. This brief review will discuss the current role and limitations of catheter ablation in the management of patients with IST. PMID:26310299

  11. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  12. Quantifying Leisure Physical Activity and Its Relation to Bone Density and Strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Compare three published methods of quantifying physical activity (total activity, peak strain, and bone loading exposure [BLE] scores) and identify their associations with areal bone mineral density (aBMD), volumetric BMD (vBMD), and bone strength. Methods: Postmenopausal women (N = 239; me...

  13. Current Tumor Ablation Technologies: Basic Science and Device Review

    PubMed Central

    Saldanha, David F.; Khiatani, Vishal L.; Carrillo, Tami C.; Yap, Felix Y.; Bui, James T.; Knuttinen, M. Grace; Owens, Charles A.; Gaba, Ron C.

    2010-01-01

    Image-guided tumor ablation is an increasingly utilized tool to treat focal malignancy. Tumor ablation can be divided into two large categories, thermal and chemical ablation. The authors provide an overview of the current methods used to achieve thermal and chemical ablation of tumors, specifically addressing the basic science behind the ablation methods as well as providing a brief synopsis of the commercial devices currently available for use in the United States. PMID:22550363

  14. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  15. Investigation of low-cost ablative heat shield fabrication for space shuttles

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1972-01-01

    Improvements in the processes and design to reduce the manufacturing costs for low density ablative panels for the space shuttle are discussed. The areas that were studied included methods of loading honeycomb core, alternative reinforcement concepts, and the use of reusable subpanels. A review of previous studies on the fabrication of low-cost ablative panels and on permissible defects that do not affect thermal performance was conducted. Considerable differences in the quoted prices for ablative panels, even though the various contractors had reported similar fabrication times were discovered. How these cost differences arise from different estimating criteria and which estimating assumptions and other costs must be included in order to arrive at a realistic price are discussed.

  16. Quantitative Analysis of Plasma Ablation Using Inverse Wire Array Z-pinches

    SciTech Connect

    Harvey-Thompson, A. J.; Lebedev, S. V.; Bland, S. N.; Chittenden, J. P.; Hall, G. N.; Ning, C.; Suzuki-Vidal, F.; Bott, S. C.

    2009-01-21

    An inverse (exploding) wire array configuration, in which the wires form a cylinder around a current carrying electrode on axis, was used to study the ablation phase of the pinch. This configuration allows the parameters of the plasma from individual wires of the array to be measured as the ablated plasma streams propagate in the outward radial direction. The density distribution and the evolution of the natural mode of modulation of the ablation was measured with interferometry and soft x-ray imaging. Measurements of the voltage across the array, which in this configuration is determined by the private magnetic flux around the individual wires, allows information on the localisation of the current to be obtained.

  17. Mechanism of Er:YAG laser-induced ablation of dental hard substances

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1993-07-01

    Er:YAG laser ablation was investigated by fast photography in a Schlieren optic setup. The results support the idea of continuous, thermally driven microexplosion type of ablation, which is based on the inhomogeneous distribution of strong (water) and weak absorbers (hydroxyapatite). Sudden vaporization and heating of the water content leads to a very effective material removal by bursting off the solid tissue components. Material is ejected in the form of particles when the threshold energy density for ablation (about 3 J cm-2) is reached. For high radiant exposure, initial plume velocity is in the order of the speed of sound in air. After leaving the tissue surface, particles are heated by the still incoming laser radiation, causing glowing and melting. No surface plasma and only weak pressure waves caused by individual spikes were observed.

  18. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition

    NASA Astrophysics Data System (ADS)

    Kwon, Min Ho; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    In this research, the fabrication process of a super-hydrophobic metallic surface using laser ablation and electrodeposition was investigated. Re-entrant structure and surface roughness play an important role in forming a super-hydrophobic surface on intrinsically hydrophilic material. A micro pillar array with a re-entrant structure of copper on stainless steel was fabricated through a sequential process of laser ablation, insulating, mechanical polishing and electrodeposition. Spacing of the micro pillars in the array played a major role in the structure hydrophobicity that was confirmed by measuring the water contact angle. Surface morphology changed relative to the parameters of the laser ablation process and electrodeposition process. Under a gradual increase in current density during the electrodeposition process, surface morphology roughness was maximized for fabricating a super-hydrophobic surface. Finally, the super-hydrophobic surface was successfully fabricated on metal.

  19. Formation of nanostructured solid-state carbon particles by laser ablation of graphite in isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-Iti; Abe, Hiroaki; Yamamoto, Shunya

    2005-02-01

    Nanostructured solid-state carbon particles with sizes of 1 10 μm are successfully formed from graphite target by applying laser ablation technique in isopropyl alcohol. In the laser ablation in liquid, the diffusion of the evaporated atomic carbon particles is prevented. It follows that the shock front is condensed in the high-density condition, and evaporated carbon particles are clustered and aggregated. Nanostructured solid-state carbon particles are formed by repeatedly gathering. In this study, the influence of laser ablation process on isopropyl alcohol solvent and graphite target is analyzed, and it is revealed that the possible influences on chemical reactions with isopropyl alcohol and the direct exfoliation from the target can be excluded in this condensation process.

  20. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  1. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.

    2001-01-01

    During 1997-1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 i?? 186.4 SE, whereas inactive colonies occupied 560.4 i?? 89.2 km2. These data represent the 1st quantitative assessment of prairie-dog colonies in the northern Great Plains. The survey dispels popular notions that millions of square kilometers of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts

  2. Ablation of polymers by focused EUV radiation from a table-top laser-produced plasma source

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Mann, Klaus

    2011-10-01

    We have investigated ablation of polymers with radiation of 13.5 nm wavelength, using a table-top laser produced plasma source based on solid gold as target material. A Schwarzschild objective with Mo/Si multilayer coatings was adapted to the source, generating an EUV spot of 5 μm diameter with a maximum energy density of ˜1.3 J/cm2. In combination with a Zirconium transmission filter, radiation of high spectral purity (2% bandwidth) can be provided on the irradiated spot. Ablation experiments were performed on PMMA, PTFE and PC. Ablation rates were determined for varying fluences using atomic force microscopy and white light interferometry. The slopes of these curves are discussed with respect to the chemical structure of the polymers. Additionally, the ablation behavior in terms of effective penetration depths, threshold fluences and incubation effects is compared to literature data for higher UV wavelength.

  3. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  4. An Electron Emission Effect on Dynamics of Laser Ablation

    SciTech Connect

    Nastoyashchii, A. F.

    2004-03-30

    The paper deals with the effect of electron emission on a heat transfer in the area of a plasma critical density (near plasma-solid surface boundary). As is known, experimental data show the limitation of electron thermal conductivity in the mentioned area. In the laser fusion research just the limitation of the heat transfer at target irradiation with long-wave lasers has made application of CO2-lasers unreasonable in spite of their high efficiency. On other hand, as to the applied tasks of laser ablation (e.g. in launching small-scale satellites) the aspect of the CO2-lasers application is being widely discussed. In the paper the mentioned limitation is explained on the basis of classical representations. It is marked, that the heat transfer limitations arise from the conditions of preserving plasma quasi-neutrality at the absorption area boundary where the electron density is close to critical one for the given laser wavelength. Possible mechanisms of the electron emission in the mode of the laser ablation are discussed.

  5. Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system

    PubMed Central

    ARCARO, M.J.; KASTNER, S.

    2016-01-01

    Areas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional “areas.” Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex. PMID:26241035

  6. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  7. [Ablation of supraventricular tachycardias : Complications and emergencies].

    PubMed

    Sawan, N; Eitel, C; Thiele, H; Tilz, R

    2016-06-01

    Catheter ablation is an established treatment of supraventricular tachycardias (SVT) with high success rates of > 95 %. Complication rates range from 3 to 5 %, with serious complications occurring in about 0.8 %. There are general complications caused either by the vascular access or the catheters (e. g. hematomas, hemo-pneumothorax, embolism, thrombosis and aspiration) und specific ablation related complications (e. g. AV block during ablation of the slow pathway). The complication risk is elevated in elderly and multimorbid patients. Furthermore, the experience of the treating physician and the respective team plays an essential role. The purpose of this article is to give an overview on incidences, causes and management as well as prevention strategies of complications associated with catheter ablation of SVT. PMID:27206630

  8. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  9. Optical Effects on Laser Ablated Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Prabhu, R. D.; Govinthasamy, R.; Murthy, N. S.

    2006-03-01

    Laser ablation of poly (ethylene terephthalate) and polyimide films were investigated using Excimer-UV laser. SEM analyses indicate the presence of rings for a wide range of ablation parameters (fluence, frequency and number of pulses). It is proposed that the particles present in the plasma plume could cause the incident laser light to diffract, similar to the optical effects observed in the femtosecond laser ablation of solids. The polymer surface provides a perfect medium to register the optical signatures as seen in the SEM images. The fringe-spacings observed in the images are compared with the theoretical diffraction patterns and the height of the plasma particles above the surface is estimated using an optimization scheme. The results of the analysis are consistent with experimentally observed dynamics of the plasma plume. It is proposed that such optical effects could be a routine feature in the laser ablation of polymers. The significance of such artifacts for lithography is discussed.

  10. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  11. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  12. Left Atrial Anatomy Relevant to Catheter Ablation

    PubMed Central

    Sánchez-Quintana, Damián; Cabrera, José Angel; Saremi, Farhood

    2014-01-01

    The rapid development of interventional procedures for the treatment of arrhythmias in humans, especially the use of catheter ablation techniques, has renewed interest in cardiac anatomy. Although the substrates of atrial fibrillation (AF), its initiation and maintenance, remain to be fully elucidated, catheter ablation in the left atrium (LA) has become a common therapeutic option for patients with this arrhythmia. Using ablation catheters, various isolation lines and focal targets are created, the majority of which are based on gross anatomical, electroanatomical, and myoarchitectual patterns of the left atrial wall. Our aim was therefore to review the gross morphological and architectural features of the LA and their relations to extracardiac structures. The latter have also become relevant because extracardiac complications of AF ablation can occur, due to injuries to the phrenic and vagal plexus nerves, adjacent coronary arteries, or the esophageal wall causing devastating consequences. PMID:25057427

  13. Laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Durrant, S.F.

    1996-07-01

    Laser ablation for solid sample introduction to inductively coupled plasma mass spectrometry for bulk and spatially-resolved elemental analysis is briefly reviewed. {copyright} {ital 1996 American Institute of Physics.}

  14. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  15. Fabrication of gold and silver nanoparticles with pulsed laser ablation under pressurized CO2

    NASA Astrophysics Data System (ADS)

    Machmudah, Siti; Wahyudiono; Takada, Noriharu; Kanda, Hideki; Sasaki, Koichi; Goto, Motonobu

    2013-12-01

    Pulsed laser ablation (PLA) has become a promising method for the synthesis of nanoclusters for photonics, electronics and medicine. In this work PLA in pressurized CO2 has been applied for fabrication of gold and silver nanoparticles. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures (0.1-20 MPa), temperatures (40-80 °C) of CO2 medium and ablation times (1500-9000 s). On the basis of the experimental result, it follows that structures of gold (Au) and silver (Ag) nanoparticles were significantly affected by the changes in CO2 density. The structures of gold and silver nanoparticles also changed with an increase of ablation time. From a field-emission scanning electron microscopy (FE-SEM) image of the fabricated gold nano-structured particles on silicon wafer, it was seen that a network structure of smaller gold particles was fabricated. A similar morphology of particles fabricated from silver plate was observed. Silver particles contain nanoparticles with large-varied diameter ranging from 5 nm to 1.2 μm. The mechanism of nanoparticles fabrication could be observed as follows. Bigger gold/silver particles melted during the ablation process and then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the molten particles.

  16. Photogrammetric recession measurements of an ablating surface

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T. (Inventor); Heineck, James T. (Inventor)

    2012-01-01

    An instrument and method for measuring the time history of recession of an ablating surface of a test article during testing in a high enthalpy thermal test facility, such as an arcjet. The method advances prior art by providing time-history data over the full ablating surface without targets and without any modifications to the test article. The method is non-intrusive, simple to implement, requires no external light source, and does not interfere with normal operations of the arcjet facility.

  17. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1997-01-01

    We will report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation are presented. {copyright} {ital 1997 American Institute of Physics.}

  18. Catheter Ablation of Arrhythmia During Pregnancy.

    PubMed

    Driver, Kevin; Chisholm, Christian A; Darby, Andrew E; Malhotra, Rohit; Dimarco, John P; Ferguson, John D

    2015-06-01

    Cardiac arrhythmia as a complication of pregnancy can be problematic to maternal health and fetal life and development. Catheter ablation of tachyarrhythmias during pregnancy has been successfully performed in selected patients with limited experience. Techniques to limit maternal and fetal radiation exposure, including intracardiac echo and electroanatomic mapping systems, are particularly important in this setting. Specific accommodations are necessary in the care of the gravid patient during catheter ablation. PMID:25828853

  19. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  20. Percutaneous ablation of colorectal lung metastases

    PubMed Central

    Solomon, Stephen B.

    2015-01-01

    Lung metastasectomy can prolong survival in patients with metastatic colorectal carcinoma. Thermal ablation offers a potential solution with similar reported survival outcomes. It has minimal effect on pulmonary function, or quality of life, can be repeated, and may be considered more acceptable to patients because of the associated shorter hospital stay and recovery. This review describes the indications, technique, reported outcomes, complications and radiologic appearances after thermal ablation of colorectal lung metastases. PMID:26697202

  1. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  2. Laser Ablation for Small Hepatocellular Carcinoma

    PubMed Central

    Pacella, Claudio Maurizio; Francica, Giampiero; Di Costanzo, Giovanni Giuseppe

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is increasingly detected at small size (<5 cm) owing to surveillance programmes in high-risk patients. For these cases, curative therapies such as resection, liver transplantation, or percutaneous ablation have been proposed. When surgical options are precluded, image-guided tumor ablation is recommended as the most appropriate therapeutic choice in terms of tumor local control, safety, and improvement in survival. Laser ablation (LA) represents one of currently available loco-ablative techniques: light is delivered via flexible quartz fibers of diameter from 300 to 600 μm inserted into tumor lesion through either fine needles (21g Chiba needles) or large-bore catheters. The thermal destruction of tissue is achieved through conversion of absorbed light (usually infrared) into heat. A range of different imaging modalities have been used to guide percutaneous laser ablation, but ultrasound and magnetic resonance imaging are most widely employed, according to local experience and resource availability. Available clinical data suggest that LA is highly effective in terms of tumoricidal capability with an excellent safety profile; the best results in terms of long-term survival are obtained in early HCC so that LA can be proposed not only in unresectable cases but, not differently from radiofrequency ablation, also as the first-line treatment. PMID:22191028

  3. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  4. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  5. Lung Cancer Ablation: What Is the Evidence?

    PubMed Central

    de Baere, Thierry; Farouil, Geoffroy; Deschamps, Frederic

    2013-01-01

    Percutaneous ablation of small non-small cell lung cancer (NSCLC) has been demonstrated to be both feasible and safe in nonsurgical candidates. Radiofrequency ablation (RFA), the most commonly used technique for ablation, has a reported rate of complete ablation of ~90%, with best results obtained in tumors <2 to 3 cm in diameter. The best reported 1-, 3-, and 5-year overall survival rates after RFA of NSCLC are 97.7%, 72.9%, and 55.7%, respectively. It is noteworthy that in most studies, cancer-specific survival is greater than overall survival due to severe comorbidities in patients treated with RFA for NSCLC. Aside from tumor size and tumor stage, these comorbidities are predictive of survival. Other ablation techniques such as microwave and irreversible electroporation may in the future prove to overcome some of the limitations of RFA, namely for large tumors or tumors close to large vessels. Stereotactic body radiation therapy has also been demonstrated to be highly efficacious in treating small lung tumors and will need to be compared with percutaneous ablation. This article reviews the current evidence regarding RFA for lung cancer. PMID:24436531

  6. Areal extent of freshwater from an experimental release of Mississippi River Water into Lake Pontchartrain, Louisiana, May 1994

    USGS Publications Warehouse

    McCallum, Brian E.

    1995-01-01

    The effects of the release of freshwater from the Mississippi river into the Lake Pontchartrain was evaluated. The study determined the delineation of the areal extent of the freshwater plume in the lake, intensively sampled lake and river water and bed sediment to determine the effects on water quality in the lake, and performed a dye study to determine the mixing characteristics of the lake. Water temperature and specific conductance data were used to differentiate between zones of freshwater, mixing, and saltwater. The direction of the freshwater plume seemed to be affected by the wind direction. It was observed that the general direction of the plume was limited to the southwestern part of Lake Pontchartrain.

  7. Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder

    NASA Astrophysics Data System (ADS)

    Varzi, Alberto; Passerini, Stefano

    2015-12-01

    Potatoes starch (PS), a natural polymer obtainable from non-edible sources, is for the first time evaluated as alternative water-processable binder for Electrochemical Double-Layer Capacitor (EDLC) electrodes. Morphological and electrochemical properties of activated carbon (AC)-based electrodes are investigated and compared to those achieved with the state-of-the-art aqueous binder (CMC, i.e. Na-carboxymethyl cellulose). The obtained results suggest substantial benefits of PS, in particular regarding the electrode fabrication process. As a matter of fact, owing to its amylopectin content (moderately branched polysaccharide), PS displays only minimal shrinkage upon drying, resulting on rather homogeneous electrodes not presenting the dramatic surface cracking observed with CMC. Furthermore, owing to the smaller volume of water required for the processing, much higher active material loading per area unit can be achieved. This is reflected on improvements of up to 60% in terms of areal capacitance.

  8. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage

    PubMed Central

    Zhang, Yihui; Xu, Sheng; Fu, Haoran; Lee, Juhwan; Su, Jessica; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang

    2014-01-01

    Lithographically defined electrical interconnects with thin, filamentary serpentine layouts have been widely explored for use in stretchable electronics supported by elastomeric substrates. We present a systematic and thorough study of buckling physics in such stretchable serpentine microstructures, and a strategic design of serpentine layout for ultra-stretchable electrode, via analytical models, finite element method (FEM) computations, and quantitative experiments. Both the onset of buckling and the postbuckling behaviors are examined, to determine scaling laws for the critical buckling strain and the limits of elastic behavior. Two buckling modes, namely the symmetric and anti-symmetric modes, are identified and analyzed, with experimental images and numerical results that show remarkable levels of agreement for the associated postbuckling processes. Based on these studies and an optimization in design layout, we demonstrate routes for application of serpentine interconnects in an ultra-stretchable electrode that offer, simultaneously, an areal coverage as high as 81%, and a biaxial stretchability as large as ~170%. PMID:25309616

  9. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  10. Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984-2013

    NASA Astrophysics Data System (ADS)

    Chernos, M.; Koppes, M.; Moore, R. D.

    2016-01-01

    Bridge Glacier is a lake-calving glacier in the Coast Mountains of British Columbia and has retreated over 3.55 km since 1972. The majority of this retreat has occurred since 1991. This retreat is substantially greater than what has been inferred from regional climate indices, suggesting that it has been driven primarily by calving as the glacier retreated across an overdeepened basin. In order to better understand the primary drivers of ablation, surface melt (below the equilibrium line altitude, ELA) and calving were quantified during the 2013 melt season using a distributed energy balance model (DEBM) and time-lapse imagery. Calving, estimated using areal change, velocity measurements, and assuming flotation were responsible for 23 % of the glacier's ablation below the ELA during the 2013 melt season and were limited by modest flow speeds and a small terminus cross-section. Calving and surface melt estimates from 1984 to 2013 suggest that calving was consistently a smaller contributor of ablation. Although calving was estimated to be responsible for up to 49 % of the glacier's ablation for individual seasons, averaged over multiple summers it accounted between 10 and 25 %. Calving was enhanced primarily by buoyancy and water depths, and fluxes were greatest between 2005 and 2010 as the glacier retreated over the deepest part of Bridge Lake. The recent rapid rate of calving is part of a transient stage in the glacier's retreat and is expected to diminish within 10 years as the terminus recedes into shallower water at the proximal end of the lake. These findings are in line with observations from other lake-calving glacier studies across the globe and suggest a common large-scale pattern in calving-induced retreat in lake-terminating alpine glaciers. Despite enhancing glacial retreat, calving remains a relatively small component of ablation and is expected to decrease in importance in the future. Hence, surface melt remains the primary driver of ablation at Bridge

  11. The effects of He on ablation and inductively coupled plasma environment in ultra-violet, nanosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    The effects of helium gas on ablation and ICP processes were investigated. Differences in the size, shape, and abundance of aerosol particles generated in argon and helium atmosphere were studied off-line using SEM imaging of aerosol particles impacted on polycarbonate filter disks. In general, ablation in helium generated fewer large particles, and larger, more densely-packed soft agglomerates. However, corresponding changes in the ion densities in the ICP, observed in high-resolution images obtained using LIF, were not always predictable. In all cases, higher He/Ar ratios led to lower ion densities in the ICP. This effect was attributed to increased rates of off-axis diffusion at higher He/Ar ratios. Differences in the ion densities produced during ablation in argon vs helium were highly dependent on sample type, the axial position of vaporization, and the He/Ar ratio. There was evidence that vaporization efficiencies of soft agglomerates were less affected than micron-sized particles by particle acceleration at higher He/Ar ratios.

  12. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  13. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  14. High areal capacity, micrometer-scale amorphous Si film anode based on nanostructured Cu foil for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Si, Wenping; Sun, Xiaolei; Liu, Xianghong; Xi, Lixia; Jia, Yandong; Yan, Chenglin; Schmidt, Oliver G.

    2014-12-01

    We report a feasible design to fabricate micrometer-scale Si films deposited on nanostructured Cu foil as high areal capacity anodes for Li-ion batteries with excellent cycling performance. Nanostructured copper oxides are prepared by anodic oxidation of Cu foil in alkaline solution. The resultant copper oxide nanofibers function as matrix for thick Si films (1-2 μm) loading. Metallic Cu nanofibers are obtained by in-situ electrochemical reduction at low potentials, which work as electrical highways for fast electron transport and a reliable mechanical matrix to accommodate volume changes during lithium-silicon alloy/dealloy processes. The engineered thick Si film anode exhibit both high areal capacity (0.48 mAh cm-2 for 1 μm Si film and 0.6 mAh cm-2 for 2 μm Si film after 200 cycles at 0.225 mA cm-2) and excellent rate capability (0.52 mAh cm-2 at 1.05 mA cm-2 for 2 μm Si film). The 2 μm silicon film electrode is able to recover to the initial value of 1 mAh cm-2 when the current rate is set back to 0.15 mA cm-2 even after cycling at high current rates. The reported concept can be a general method for high-loading-film electrodes, which is industrial scalable and compatible with current battery manufacturing processes.

  15. Retrieval of areal-averaged spectral surface albedo from transmission data alone: computationally simple and fast approach

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura; Michalsky, Joseph J.; Hodges, Gary

    2014-10-01

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.015) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for "nearby" overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  16. Areal changes of lentic water bodies within an agricultural basin of the Argentinean pampas. Disentangling land management from climatic causes.

    PubMed

    Booman, Gisel Carolina; Calandroni, Mirta; Laterra, Pedro; Cabria, Fabián; Iribarne, Oscar; Vázquez, Pablo

    2012-12-01

    Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed (P < 0.05) due to non-climatic causes. During the evaluated decade, 30 % of the LWB that changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade. PMID:22990683

  17. Quantitative analysis on areal displacement efficiency in a scCO2-water-quartz sands system

    NASA Astrophysics Data System (ADS)

    Wang, Sookyun; Lee, Minhee; Park, Bokyung

    2016-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-quartz sands systems. The micromodel (a transparent pore structure made of quartz sands between two glass plates) in a pressurized chamber provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system with a microscope. Measurement of areal displacement of porewater by scCO2 in a micromodel under various conditions such as pressure, temperature, salinity, flow rate, etc. were conducted to estimate displacement sweep efficiency in a scCO2-water-quartz sands system. The measurement revealed that the porewater (deionized water or NaCl solutions) is a wetting fluid and the surface of quartz sand is water-wet. It is also found that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration process.

  18. Magnetocardiographically-guided catheter ablation.

    PubMed

    Fenici, R R; Covino, M; Cellerino, C; Di Lillo, M; De Filippo, M C; Melillo, G

    1995-12-01

    After more than 30 years since the first magnetocardiographic (MCG) recording was carried out with induction coils, MCG is now approaching the threshold of clinical use. During the last 5 years, in fact, there has been a growing interest of clinicians in this new method which provides an unrivalled accuracy for noninvasive, three-dimensional localization of intracardiac source. An increasing number of laboratories are reporting data validating the use of MCG as an effective method for preoperative localization of arrhythmogenic substrates and for planning the best catheter ablation approach for different arrhythmogenic substrates. In this article, available data from literature have been reviewed. We consider the clinical use of MCG to localize arrhythmogenic substrates in patients with Wolff-Parkinson-White syndrome and in patients with ventricular tachycardia in order to assess the state-of-the-art of the method on a large number of patients. This article also addresses some suggestions for industrial development of more compact, medically oriented MCG equipments at reasonable cost. PMID:10159774

  19. Lip Reconstruction after Tumor Ablation

    PubMed Central

    Ebrahimi, Ali; Kalantar Motamedi, Mohammad Hossein; Ebrahimi, Azin; Kazemi, Mohammad; Shams, Amin; Hashemzadeh, Haleh

    2016-01-01

    Approximately 25% of all oral cavity carcinomas involve the lips, and the primary management of these lesions is complete surgical resection. Loss of tissue in the lips after resection is treated with a variety of techniques, depending on the extension and location of the defect. Here we review highly accepted techniques of lip reconstruction and some of new trials with significant clinical results. Reconstruction choice is primarily depend to size of the defect, localization of defect, elasticity of tissues. But patient’s age, comorbidities, and motivation are also important. According to the defect location and size, different reconstruction methods can be used. For defects involved less than 30% of lips, primary closures are sufficient. In defects with 35–70% lip involvement, the Karapandzic, Abbe, Estlander, McGregor or Gillies’ fan flaps or their modifications can be used. When lip remaining tissues are insufficient, cheek tissue can be used in Webster and Bernard advancement flaps and their various modifications. Deltopectoral or radial forearm free flaps can be options for large defects of the lip extending to the Jaws. To achieve best functional and esthetic results, surgeons should be able to choose most appropriate reconstruction method. Considering defects’ size and location, patients’ expects and surgeon’s ability and knowledge, a variety of flaps are presented in order to reconstruct defects resulted from tumor ablation. It’s necessary for surgeons to trace the recent innovations in lip reconstruction to offer best choices to patients. PMID:27308236

  20. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.