Science.gov

Sample records for abnormal binocular vision

  1. Binocular combination in abnormal binocular vision

    PubMed Central

    Ding, Jian; Klein, Stanley A.; Levi, Dennis M.

    2013-01-01

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  2. Binocular combination in abnormal binocular vision.

    PubMed

    Ding, Jian; Klein, Stanley A; Levi, Dennis M

    2013-02-08

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  3. Binocular Vision

    PubMed Central

    Blake, Randolph; Wilson, Hugh

    2010-01-01

    This essay reviews major developments –empirical and theoretical –in the field of binocular vision during the last 25 years. We limit our survey primarily to work on human stereopsis, binocular rivalry and binocular contrast summation, with discussion where relevant of single-unit neurophysiology and human brain imaging. We identify several key controversies that have stimulated important work on these problems. In the case of stereopsis those controversies include position versus phase encoding of disparity, dependence of disparity limits on spatial scale, role of occlusion in binocular depth and surface perception, and motion in 3D. In the case of binocular rivalry, controversies include eye versus stimulus rivalry, role of “top-down” influences on rivalry dynamics, and the interaction of binocular rivalry and stereopsis. Concerning binocular contrast summation, the essay focuses on two representative models that highlight the evolving complexity in this field of study. PMID:20951722

  4. Effect of Developmental Binocular Vision Abnormalities on Visual Vertigo Symptoms and Treatment Outcome.

    PubMed

    Pavlou, Marousa; Acheson, James; Nicolaou, Despina; Fraser, Clare L; Bronstein, Adolfo M; Davies, Rosalyn A

    2015-10-01

    Customized vestibular rehabilitation incorporating optokinetic (OK) stimulation improves visual vertigo (VV) symptoms; however, the degree of improvement varies among individuals. Binocular vision abnormalities (misalignment of ocular axis, ie, strabismus) may be a potential risk factor. This study aimed to investigate the influence of binocular vision abnormalities on VV symptoms and treatment outcome. Sixty subjects with refractory peripheral vestibular symptoms underwent an orthoptic assessment after being recruited for participation in an 8-week customized program incorporating OK training via a full-field visual environment rotator or video display, supervised or unsupervised. Treatment response was assessed at baseline and at 8 weeks with dynamic posturography, Functional Gait Assessment (FGA), and questionnaires for symptoms, symptom triggers, and psychological state. As no significant effect of OK training type was noted for any variables, data were combined and new groups identified on the basis of the absence or presence of a binocular vision abnormality. A total of 34 among 60 subjects consented to the orthoptic assessment, of whom 8 of the 34 had binocular vision abnormalities and 30 of the 34 subjects completed both the binocular function assessment and vestibular rehabilitation program. No significant between-group differences were noted at baseline. The only significant between-group difference was observed for pre-/post-VV symptom change (P = 0.01), with significant improvements noted only for the group without binocular vision abnormalities (P < 0.0005). Common vestibular symptoms, posturography, and the FGA improved significantly for both groups (P < 0.05). Binocular vision abnormalities may affect VV symptom improvement. These findings may have important implications for the management of subjects with refractory vestibular symptoms.Video Abstract available for insights from the authors regarding clinical implication of the study findings (see

  5. Amblyopia and Binocular Vision

    PubMed Central

    Birch, Eileen E.

    2012-01-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436

  6. Amblyopia and binocular vision.

    PubMed

    Birch, Eileen E

    2013-03-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Rebalancing binocular vision in amblyopia.

    PubMed

    Ding, Jian; Levi, Dennis M

    2014-03-01

    Humans with amblyopia have an asymmetry in binocular vision: neural signals from the amblyopic eye are suppressed in the cortex by the fellow eye. The purpose of this study was to develop new models and methods for rebalancing this asymmetric binocular vision by manipulating the contrast and luminance in the two eyes. We measured the perceived phase of a cyclopean sinewave by asking normal and amblyopic observers to indicate the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We varied both the relative contrast and luminance of the two eyes' inputs, in order to rebalance the asymmetric binocular vision. Amblyopic binocular vision becomes more and more asymmetric the higher the stimulus contrast or spatial frequency. Reanalysing our previous data, we found that, at a given spatial frequency, the binocular asymmetry could be described by a log-linear formula with two parameters, one for the maximum asymmetry and one for the rate at which the binocular system becomes asymmetric as the contrast increases. Our new data demonstrates that reducing the dominant eye's mean luminance reduces its suppression of the non-dominant eye, and therefore rebalances the asymmetric binocular vision. While the binocular asymmetry in amblyopic vision can be rebalanced by manipulating the relative contrast or luminance of the two eyes at a given spatial frequency and contrast, it is very difficult or even impossible to rebalance the asymmetry for all visual conditions. Nonetheless, wearing a neutral density filter before the dominant eye (or increasing the mean luminance in the non-dominant eye) may be more beneficial than the traditional method of patching the dominant eye for treating amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The

  8. Assessing Binocular Advantage in Aided Vision

    DTIC Science & Technology

    2014-06-01

    2005; 5800:55-64 18. Hayhoe M, Gillam B, Chajka K, Vecellio E. The role of binocular vision in walking. Vis Neurosci 2009 Jan-Feb; 26(1):73-80 19...grains model. Cogn Psychol 2003 Mar; 46(2):101-51 30. Minucci P, Connors M. Reaction time under three viewing conditions: binocular, dominant eye

  9. Neuroimaging of amblyopia and binocular vision: a review

    PubMed Central

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511

  10. Neuroimaging of amblyopia and binocular vision: a review.

    PubMed

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  11. Restoration of binocular vision in amblyopia.

    PubMed

    Hess, R F; Mansouri, B; Thompson, B

    2011-09-01

    To develop a treatment for amblyopia based on re-establishing binocular vision. A novel procedure is outlined for measuring and reducing the extent to which the fixing eye suppresses the fellow amblyopic eye in adults with amblyopia. We hypothesize that suppression renders a structurally binocular system, functionally monocular. We demonstrate that strabismic amblyopes can combine information normally between their eyes under viewing conditions where suppression is reduced by presenting stimuli of different contrast to each eye. Furthermore we show that prolonged periods of binocular combination leads to a strengthening of binocular vision in strabismic amblyopes and eventual combination of binocular information under natural viewing conditions (stimuli of the same contrast in each eye). Concomitant improvement in monocular acuity of the amblyopic eye occurs with this reduction in suppression and strengthening of binocular fusion. Additionally, stereoscopic function was established in the majority of patients tested. We have implemented this approach on a headmounted device as well as on a handheld iPod. This provides the basis for a new treatment of amblyopia, one that is purely binocular and aimed at reducing suppression as a first step.

  12. Experience-driven plasticity in binocular vision

    PubMed Central

    Klink, P. Christiaan; Brascamp, Jan W.; Blake, Randolph; van Wezel, Richard J.A.

    2010-01-01

    Summary Experience-driven neuronal plasticity allows the brain to adapt its functional connectivity to recent sensory input. Here we use binocular rivalry [1], an experimental paradigm where conflicting images are presented to the individual eyes, to demonstrate plasticity in the neuronal mechanisms that convert visual information from two separated retinas into single perceptual experiences. Perception during binocular rivalry tended to initially consist of alternations between exclusive representations of monocularly defined images, but upon prolonged exposure, mixture percepts became more prevalent. The completeness of suppression, reflected in the incidence of mixture percepts, plausibly reflects the strength of inhibition that likely plays a role in binocular rivalry [2]. Recovery of exclusivity was possible, but required highly specific binocular stimulation. Documenting the prerequisites for these observed changes in perceptual exclusivity, our experiments suggest experience-driven plasticity at interocular inhibitory synapses, driven by the (lack of) correlated activity of neurons representing the conflicting stimuli. This form of plasticity is consistent with a previously proposed, but largely untested, anti-Hebbian learning mechanism for inhibitory synapses in vision [3, 4]. Our results implicate experience-driven plasticity as one governing principle in the neuronal organization of binocular vision. PMID:20674360

  13. Night myopia is reduced in binocular vision.

    PubMed

    Chirre, Emmanuel; Prieto, Pedro M; Schwarz, Christina; Artal, Pablo

    2016-06-01

    Night myopia, which is a shift in refraction with light level, has been widely studied but still lacks a complete understanding. We used a new infrared open-view binocular Hartmann-Shack wave front sensor to quantify night myopia under monocular and natural binocular viewing conditions. Both eyes' accommodative response, aberrations, pupil diameter, and convergence were simultaneously measured at light levels ranging from photopic to scotopic conditions to total darkness. For monocular vision, reducing the stimulus luminance resulted in a progression of the accommodative state that tends toward the subject's dark focus or tonic accommodation and a change in convergence following the induced accommodative error. Most subjects presented a myopic shift of accommodation that was mitigated in binocular vision. The impact of spherical aberration on the focus shift was relatively small. Our results in monocular conditions support the hypothesis that night myopia has an accommodative origin as the eye progressively changes its accommodation state with decreasing luminance toward its resting state in total darkness. On the other hand, binocularity restrains night myopia, possibly by using fusional convergence as an additional accommodative cue, thus reducing the potential impact of night myopia on vision at low light levels.

  14. Binocular Vision in Chronic Fatigue Syndrome.

    PubMed

    Godts, Daisy; Moorkens, Greta; Mathysen, Danny G P

    2016-01-01

    To compare binocular vision measurements between Chronic Fatigue Syndrome (CFS) patients and healthy controls. Forty-one CFS patients referred by the Reference Centre for Chronic Fatigue Syndrome of the Antwerp University Hospital and forty-one healthy volunteers, matched for age and gender, underwent a complete orthoptic examination. Data of visual acuity, eye position, fusion amplitude, stereopsis, ocular motility, convergence, and accommodation were compared between both groups. Patients with CFS showed highly significant smaller fusion amplitudes (P < 0.001), reduced convergence capacity (P < 0.001), and a smaller accommodation range (P < 0.001) compared to the control group. In patients with CFS binocular vision, convergence and accommodation should be routinely examined. CFS patients will benefit from reading glasses either with or without prism correction in an earlier stage compared to their healthy peers. Convergence exercises may be beneficial for CFS patients, despite the fact that they might be very tiring. Further research will be necessary to draw conclusions about the efficacy of treatment, especially regarding convergence exercises. To our knowledge, this is the first prospective study evaluating binocular vision in CFS patients. © 2016 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 66, 2016, ISSN 0065-955X, E-ISSN 1553-4448.

  15. The dependence of binocular contrast sensitivities on binocular single vision in normal and amblyopic human subjects

    PubMed Central

    Hood, A S; Morrison, J D

    2002-01-01

    We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347

  16. Miniaturized haploscope for testing binocular vision

    NASA Technical Reports Server (NTRS)

    Decker, T. A.

    1973-01-01

    Device can reproduce virtually all binocular stimulus conditions (target configuration, vergence angle, and accommodative distance) used to test binocular performance. All subsystems of electronic controls are open-loop and solid-state-controlled and, with the exception of vergence angle drive, utilize dc stepping motors as prime movers. Arrangement is also made for readouts of each variable.

  17. Relating binocular and monocular vision in strabismic and anisometropic amblyopia.

    PubMed

    Agrawal, Ritwick; Conner, Ian P; Odom, J V; Schwartz, Terry L; Mendola, Janine D

    2006-06-01

    To examine deficits in monocular and binocular vision in adults with amblyopia and to test the following 2 hypotheses: (1) Regardless of clinical subtype, the degree of impairment in binocular integration predicts the pattern of monocular acuity deficits. (2) Subjects who lack binocular integration exhibit the most severe interocular suppression. Seven subjects with anisometropia, 6 subjects with strabismus, and 7 control subjects were tested. Monocular tests included Snellen acuity, grating acuity, Vernier acuity, and contrast sensitivity. Binocular tests included Titmus stereo test, binocular motion integration, and dichoptic contrast masking. As expected, both groups showed deficits in monocular acuity, with subjects with strabismus showing greater deficits in Vernier acuity. Both amblyopic groups were then characterized according to the degree of residual stereoacuity and binocular motion integration ability, and 67% of subjects with strabismus compared with 29% of subjects with anisometropia were classified as having "nonbinocular" vision according to our criterion. For this nonbinocular group, Vernier acuity is most impaired. In addition, the nonbinocular group showed the most dichoptic contrast masking of the amblyopic eye and the least dichoptic contrast masking of the fellow eye. The degree of residual binocularity and interocular suppression predicts monocular acuity and may be a significant etiological mechanism of vision loss.

  18. Origins of strabismus and loss of binocular vision

    PubMed Central

    Bui Quoc, Emmanuel; Milleret, Chantal

    2014-01-01

    Strabismus is a frequent ocular disorder that develops early in life in humans. As a general rule, it is characterized by a misalignment of the visual axes which most often appears during the critical period of visual development. However other characteristics of strabismus may vary greatly among subjects, for example, being convergent or divergent, horizontal or vertical, with variable angles of deviation. Binocular vision may also vary greatly. Our main goal here is to develop the idea that such “polymorphy” reflects a wide variety in the possible origins of strabismus. We propose that strabismus must be considered as possibly resulting from abnormal genetic and/or acquired factors, anatomical and/or functional abnormalities, in the sensory and/or the motor systems, both peripherally and/or in the brain itself. We shall particularly develop the possible “central” origins of strabismus. Indeed, we are convinced that it is time now to open this “black box” in order to move forward. All of this will be developed on the basis of both presently available data in literature (including most recent data) and our own experience. Both data in biology and medicine will be referred to. Our conclusions will hopefully help ophthalmologists to better understand strabismus and to develop new therapeutic strategies in the future. Presently, physicians eliminate or limit the negative effects of such pathology both on the development of the visual system and visual perception through the use of optical correction and, in some cases, extraocular muscle surgery. To better circumscribe the problem of the origins of strabismus, including at a cerebral level, may improve its management, in particular with respect to binocular vision, through innovating tools by treating the pathology at the source. PMID:25309358

  19. Binocular vision in amblyopia: structure, suppression and plasticity.

    PubMed

    Hess, Robert F; Thompson, Benjamin; Baker, Daniel H

    2014-03-01

    The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  20. Attention in dichoptic and binocular vision

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Rubin, Yifat; Gopher, Daniel; Raij, David

    1989-01-01

    The ability of human subjected to mobilize attention and cope with task requirements under dichoptic and binocular viewing was investigated in an experiment employing a target search task. Subjects were required to search for a target at either the global level, the local level, or at both levels of a compound stimulus. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye/field (under dichoptic and binocular viewings, respectively) and to ignore the stimulus presented to the irrelevant eye/field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes/fields. Subjects' performance was affected mainly by attention conditions which interacted with task requirements, rather than by viewing situation. An interesting effect of viewing was found for the local-directed search task in which the cost of dividing attention was higher under binocular than under dichoptic viewing.

  1. Three-dimensional ocular kinematics underlying binocular single vision

    PubMed Central

    Misslisch, H.

    2016-01-01

    We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969

  2. A note on image degradation, disability glare, and binocular vision

    NASA Astrophysics Data System (ADS)

    Rajaram, Vandana; Lakshminarayanan, Vasudevan

    2013-08-01

    Disability glare due to scattering of light causes a reduction in visual performance due to a luminous veil over the scene. This causes problem such as contrast detection. In this note, we report a study of the effect of this veiling luminance on human stereoscopic vision. We measured the effect of glare on the horopter measured using the apparent fronto-parallel plane (AFPP) criterion. The empirical longitudinal horopter measured using the AFPP criterion was analyzed using the so-called analytic plot. The analytic plot parameters were used for quantitative measurement of binocular vision. Image degradation plays a major effect on binocular vision as measured by the horopter. Under the conditions tested, it appears that if vision is sufficiently degraded then the addition of disability glare does not seem to significantly cause any further compromise in depth perception as measured by the horopter.

  3. A trunk ranging system based on binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhao, Xixuan; Kan, Jiangming

    2017-07-01

    Trunk ranging is an essential function for autonomous forestry robots. Traditional trunk ranging systems based on personal computers are not convenient in practical application. This paper examines the implementation of a trunk ranging system based on the binocular vision theory via TI's DaVinc DM37x system. The system is smaller and more reliable than that implemented using a personal computer. It calculates the three-dimensional information from the images acquired by binocular cameras, producing the targeting and ranging results. The experimental results show that the measurement error is small and the system design is feasible for autonomous forestry robots.

  4. Linear and nonlinear transparencies in binocular vision.

    PubMed Central

    Langley, K; Fleet, D J; Hibbard, P B

    1998-01-01

    When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations. PMID:9802240

  5. Symptomatology associated with accommodative and binocular vision anomalies.

    PubMed

    García-Muñoz, Ángel; Carbonell-Bonete, Stela; Cacho-Martínez, Pilar

    2014-01-01

    To determine the symptoms associated with accommodative and non-strabismic binocular dysfunctions and to assess the methods used to obtain the subjects' symptoms. We conducted a scoping review of articles published between 1988 and 2012 that analysed any aspect of the symptomatology associated with accommodative and non-strabismic binocular dysfunctions. The literature search was performed in Medline (PubMed), CINAHL, PsycINFO and FRANCIS. A total of 657 articles were identified, and 56 met the inclusion criteria. We found 267 different ways of naming the symptoms related to these anomalies, which we grouped into 34 symptom categories. Of the 56 studies, 35 employed questionnaires and 21 obtained the symptoms from clinical histories. We found 11 questionnaires, of which only 3 had been validated: the convergence insufficiency symptom survey (CISS V-15) and CIRS parent version, both specific for convergence insufficiency, and the Conlon survey, developed for visual anomalies in general. The most widely used questionnaire (21 studies) was the CISS V-15. Of the 34 categories of symptoms, the most frequently mentioned were: headache, blurred vision, diplopia, visual fatigue, and movement or flicker of words at near vision, which were fundamentally related to near vision and binocular anomalies. There is a wide disparity of symptoms related to accommodative and binocular dysfunctions in the scientific literature, most of which are associated with near vision and binocular dysfunctions. The only psychometrically validated questionnaires that we found (n=3) were related to convergence insufficiency and to visual dysfunctions in general and there no specific questionnaires for other anomalies. Copyright © 2014. Published by Elsevier Espana.

  6. The disparate histories of binocular vision and binaural hearing.

    PubMed

    Wade, Nicholas J

    2018-01-01

    Vision and hearing are dependent on disparities of spatial patterns received by two eyes and on time and intensity differences to two ears. However, the experiences of a single world have masked attention to these disparities. While eyes and ears are paired, there has not been parity in the attention directed to their functioning. Phenomena involving binocular vision were commented upon since antiquity whereas those about binaural hearing are much more recent. This history is compared with respect to the experimental manipulations of dichoptic and dichotic stimuli and the instruments used to stimulate the paired organs. Binocular color mixing led to studies of binaural hearing and direction and distance in visual localization were analyzed before those for auditory localization. Experimental investigations began in the nineteenth century with the invention of instruments like the stereoscope and pseudoscope, soon to be followed by their binaural equivalents, the stethophone and pseudophone.

  7. Efficacy of vision therapy in children with learning disability and associated binocular vision anomalies.

    PubMed

    Hussaindeen, Jameel Rizwana; Shah, Prerana; Ramani, Krishna Kumar; Ramanujan, Lalitha

    To report the frequency of binocular vision (BV) anomalies in children with specific learning disorders (SLD) and to assess the efficacy of vision therapy (VT) in children with a non-strabismic binocular vision anomaly (NSBVA). The study was carried out at a centre for learning disability (LD). Comprehensive eye examination and binocular vision assessment was carried out for 94 children (mean (SD) age: 15 (2.2) years) diagnosed with specific learning disorder. BV assessment was done for children with best corrected visual acuity of ≥6/9 - N6, cooperative for examination and free from any ocular pathology. For children with a diagnosis of NSBVA (n=46), 24 children were randomized to VT and no intervention was provided to the other 22 children who served as experimental controls. At the end of 10 sessions of vision therapy, BV assessment was performed for both the intervention and non-intervention groups. Binocular vision anomalies were found in 59 children (62.8%) among which 22% (n=13) had strabismic binocular vision anomalies (SBVA) and 78% (n=46) had a NSBVA. Accommodative infacility (AIF) was the commonest of the NSBVA and found in 67%, followed by convergence insufficiency (CI) in 25%. Post-vision therapy, the intervention group showed significant improvement in all the BV parameters (Wilcoxon signed rank test, p<0.05) except negative fusional vergence. Children with specific learning disorders have a high frequency of binocular vision disorders and vision therapy plays a significant role in improving the BV parameters. Children with SLD should be screened for BV anomalies as it could potentially be an added hindrance to the reading difficulty in this special population. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. Binocular vision and eye movement disorders in older adults.

    PubMed

    Leat, Susan J; Chan, Lisa Li-Li; Maharaj, Priya-Devi; Hrynchak, Patricia K; Mittelstaedt, Andrea; Machan, Carolyn M; Irving, Elizabeth L

    2013-05-31

    To determine the prevalence of binocular vision (BV) and eye movement disorders in a clinic population of older adults. Retrospective clinic data were abstracted from files of 500 older patients seen at the University of Waterloo Optometry Clinic over a 1-year period. Stratified sampling gave equal numbers of patients in the 60 to 69, 70 to 79, and 80+ age groups. Data included age, general and ocular history and symptoms, use of antidepressants, a habit of smoking, refraction, visual acuity, BV and eye movement status for the most recent full oculo-visual assessment, and an assessment 10 years prior. The prevalence of any BV or eye movement abnormal test (AT) result, defined as a test result outside the normal range, was determined. This included strabismus (any) or phoria; incomitancy; poor pursuits; and remote near point of convergence (NPC). The prevalence of significant BV disorders (diagnostic entities, i.e., a clinical condition that may need treatment and may have functional implications) was also determined. The prevalence of any BV or eye movement at was 41%, 44%, and 51% in the 60 to 69, 70 to 79, and 80+ age groups, respectively. These figures were lower for 10 years earlier: 31%, 36%, and 40% for ages 50 to 59, 60 to 69, and 70+, respectively. The prevalence of any BV or eye movement disorder was 27%, 30%, and 38% for the three age groups and 17%, 19%, and 24% for 10 years prior. Age and use of antidepressants most commonly predicted BV or eye movement AT or disorder. BV disorders are common among older adults.

  9. Modeling the convergence accommodation of stereo vision for binocular endoscopy.

    PubMed

    Gao, Yuanqian; Li, Jinhua; Li, Jianmin; Wang, Shuxin

    2018-02-01

    The stereo laparoscope is an important tool for achieving depth perception in robot-assisted minimally invasive surgery (MIS). A dynamic convergence accommodation algorithm is proposed to improve the viewing experience and achieve accurate depth perception. Based on the principle of the human vision system, a positional kinematic model of the binocular view system is established. The imaging plane pair is rectified to ensure that the two rectified virtual optical axes intersect at the fixation target to provide immersive depth perception. Stereo disparity was simulated with the roll and pitch movements of the binocular system. The chessboard test and the endoscopic peg transfer task were performed, and the results demonstrated the improved disparity distribution and robustness of the proposed convergence accommodation method with respect to the position of the fixation target. This method offers a new solution for effective depth perception with the stereo laparoscopes used in robot-assisted MIS. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The biomechanical significance of pulley on binocular vision.

    PubMed

    Guo, Hongmei; Gao, Zhipeng; Chen, Weiyi

    2016-12-28

    Pulleys have been reported as the functional origins of the rectus extraocular muscles (EOMs). However, biomechanical significance of pulleys on binocular vision has not been reported. Three eye movement models, i.e., non-pulley model, passive-pulley model, and active-pulley model, are used to simulate the horizontal movement of the eyes from the primary position to the left direction in the range of 1°-30°. The resultant forces of six EOMs along both orthogonal directions (i.e., the x-axis and y-axis defined in this paper) in the horizontal plane are calculated using the three models. The resultant force along the y-axis of the left eye for non-pulley model are significantly larger than that of the other two pulley models. The difference of the force, between the left eye and the right eye in non-pulley model, is larger than those in the other two pulley models along x-axis and y-axis. The pulley models present more biomechanical advantage on the horizontally binocular vision than the non-pulley model. Combining with the previous imaging evidences of pulleys, the results show that pulley model coincides well with the real physiological conditions.

  11. Bilateral symmetry in vision and influence of ocular surgical procedures on binocular vision: A topical review.

    PubMed

    Arba Mosquera, Samuel; Verma, Shwetabh

    2016-01-01

    We analyze the role of bilateral symmetry in enhancing binocular visual ability in human eyes, and further explore how efficiently bilateral symmetry is preserved in different ocular surgical procedures. The inclusion criterion for this review was strict relevance to the clinical questions under research. Enantiomorphism has been reported in lower order aberrations, higher order aberrations and cone directionality. When contrast differs in the two eyes, binocular acuity is better than monocular acuity of the eye that receives higher contrast. Anisometropia has an uncommon occurrence in large populations. Anisometropia seen in infancy and childhood is transitory and of little consequence for the visual acuity. Binocular summation of contrast signals declines with age, independent of inter-ocular differences. The symmetric associations between the right and left eye could be explained by the symmetry in pupil offset and visual axis which is always nasal in both eyes. Binocular summation mitigates poor visual performance under low luminance conditions and strong inter-ocular disparity detrimentally affects binocular summation. Considerable symmetry of response exists in fellow eyes of patients undergoing myopic PRK and LASIK, however the method to determine whether or not symmetry is maintained consist of comparing individual terms in a variety of ad hoc ways both before and after the refractive surgery, ignoring the fact that retinal image quality for any individual is based on the sum of all terms. The analysis of bilateral symmetry should be related to the patients' binocular vision status. The role of aberrations in monocular and binocular vision needs further investigation. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  12. Railway clearance intrusion detection method with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  13. Relationship between binocular vision, visual acuity, and fine motor skills.

    PubMed

    O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley

    2010-12-01

    The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.

  14. An ancient explanation of presbyopia based on binocular vision.

    PubMed

    Barbero, Sergio

    2014-06-01

    Presbyopia, understood as the age-related loss of ability to clearly see near objects, was known to ancient Greeks. However, few references to it can be found in ancient manuscripts. A relevant discussion on presbyopia appears in a book called Symposiacs written by Lucius Mestrius Plutarchus around 100 A.C. In this work, Plutarch provided four explanations of presbyopia, associated with different theories of vision. One of the explanations is particularly interesting as it is based on a binocular theory of vision. In this theory, vision is produced when visual rays, emanating from the eyes, form visual cones that impinge on the objects to be seen. Visual rays coming from old people's eyes, it was supposed, are weaker than those from younger people's eyes; so the theory, to be logically coherent, implies that this effect is compensated by the increase in light intensity due to the overlapping, at a certain distance, of the visual cones coming from both eyes. Thus, it benefits the reader to move the reading text further away from the eyes in order to increase the fusion area of both visual cones. The historical hypothesis taking into consideration that the astronomer Hipparchus of Nicaea was the source of Plutarch's explanation of the theory is discussed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. The research of binocular vision ranging system based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Shikuan; Yang, Xu

    2017-10-01

    Based on the study of the principle of binocular parallax ranging, a binocular vision ranging system is designed and built. The stereo matching algorithm is realized by LabVIEW software. The camera calibration and distance measurement are completed. The error analysis shows that the system fast, effective, can be used in the corresponding industrial occasions.

  16. [Clinical observation on the relation between laser in situ keratomileusis treating myopic anisometropia and binocular vision].

    PubMed

    Huang, Jing; Lu, Wei

    2009-09-29

    To analyze the effect of LASIK on visual quality of anisometropia, and evaluate its clinical value in the view of visual quality. Prospective observational case series. Assayed the naked vision, glasses-corrected vision and binocular vision of 45 cases with anisometropia >or= 2.25D before and after the operation of LASIK. 91.57% of the eyes after the operation reached the vision >or= 0.8, which says a significant improvement for binocular vision after the operation (P < 0.05). There was a significant difference on diopter between the pre-operation and post-operation (P < 0.05). As for anisometropia, there was no significant difference between simultaneous binocular visions (P = 0.431), but there was of great significance among combined, short and long distance stereopsis visions (P = 0.000). Binocular vision deteriorated as anisometropia increased (P < 0.05). The short distance stereopsis visions of LASIK-treated myopic anisometropia were better than that of glasses-corrected patients (P < 0.05). The operation of LASIK can improve the visual quality and resume the binocular vision. LASIK can correct anisometropia and its therapeutic efficacy deserves to confirm.

  17. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  18. Viewing geometry determines the contribution of binocular vision to the online control of grasping.

    PubMed

    Keefe, Bruce D; Watt, Simon J

    2017-12-01

    Binocular vision is often assumed to make a specific, critical contribution to online visual control of grasping by providing precise information about the separation between digits and object. This account overlooks the 'viewing geometry' typically encountered in grasping, however. Separation of hand and object is rarely aligned precisely with the line of sight (the visual depth dimension), and analysis of the raw signals suggests that, for most other viewing angles, binocular feedback is less precise than monocular feedback. Thus, online grasp control relying selectively on binocular feedback would not be robust to natural changes in viewing geometry. Alternatively, sensory integration theory suggests that different signals contribute according to their relative precision, in which case the role of binocular feedback should depend on viewing geometry, rather than being 'hard-wired'. We manipulated viewing geometry, and assessed the role of binocular feedback by measuring the effects on grasping of occluding one eye at movement onset. Loss of binocular feedback resulted in a significantly less extended final slow-movement phase when hand and object were separated primarily in the frontoparallel plane (where binocular information is relatively imprecise), compared to when they were separated primarily along the line of sight (where binocular information is relatively precise). Consistent with sensory integration theory, this suggests the role of binocular (and monocular) vision in online grasp control is not a fixed, 'architectural' property of the visuo-motor system, but arises instead from the interaction of viewer and situation, allowing robust online control across natural variations in viewing geometry.

  19. 3D morphology reconstruction using linear array CCD binocular stereo vision imaging system

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Wang, Jinjiang

    2018-01-01

    Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.

  20. Bubble behavior characteristics based on virtual binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  1. Pediatric vision screening using binocular retinal birefringencr scanning

    NASA Astrophysics Data System (ADS)

    Nassif, Deborah S.; Gramatikov, Boris; Guyton, David L.; Hunter, David G.

    2003-07-01

    Amblyopia, a leading cause of vision loss in childhood, is responsive to treatment if detected early in life. Risk factors for amblyopia, such as refractive error and strabismus, may be difficult to identify clinically in young children. Our laboratory has developed retinal birefringence scanning (RBS), in which a small spot of polarized light is scanned in a circle on the retina, and the returning light is measured for changes in polarization caused by the pattern of birefringent fibers that comprise the fovea. Binocular RBS (BRBS) detects the fixation of both eyes simultaneously and thus screens for strabismus, one of the risk factors of amblyopia. We have also developed a technique to automatically detect when the eye is in focus without measuring refractive error. This focus detection system utilizes a bull's eye photodetector optically conjugate to a point fixation source. Reflected light is focused back to the point source by the optical system of the eye, and if the subject focuses on the fixation source, the returning light will be focused on the detector. We have constructed a hand-held prototype combining BRBS and focus detection measurements in one quick (< 0.5 second) and accurate (theoretically detecting +/-1 of misalignment) measurement. This approach has the potential to reliably identify children at risk for amblyopia.

  2. Research on three-dimensional reconstruction method based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlin; Wang, Zhihui; Wang, Minjun

    2018-03-01

    As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.

  3. An assembly system based on industrial robot with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Xiao, Nanfeng

    2017-01-01

    This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.

  4. Prevalence of non-strabismic anomalies of binocular vision in Tamil Nadu: report 2 of BAND study.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; George, Ronnie; Swaminathan, Meenakshi; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2017-11-01

    Population-based studies on the prevalence of non-strabismic anomalies of binocular vision in ethnic Indians are more than two decades old. Based on indigenous normative data, the BAND (Binocular Vision Anomalies and Normative Data) study aims to report the prevalence of non-strabismic anomalies of binocular vision among school children in rural and urban Tamil Nadu. This population-based, cross-sectional study was designed to estimate the prevalence of non-strabismic anomalies of binocular vision in the rural and urban population of Tamil Nadu. In four schools, two each in rural and urban arms, 920 children in the age range of seven to 17 years were included in the study. Comprehensive binocular vision assessment was done for all children including evaluation of vergence and accommodative systems. In the first phase of the study, normative data of parameters of binocular vision were assessed followed by prevalence estimates of non-strabismic anomalies of binocular vision. The mean and standard deviation of the age of the sample were 12.7 ± 2.7 years. The prevalence of non-strabismic anomalies of binocular vision in the urban and rural arms was found to be 31.5 and 29.6 per cent, respectively. Convergence insufficiency was the most prevalent (16.5 and 17.6 per cent in the urban and rural arms, respectively) among all the types of non-strabismic anomalies of binocular vision. There was no gender predilection and no statistically significant differences were observed between the rural and urban arms in the prevalence of non-strabismic anomalies of binocular vision (Z-test, p > 0.05). The prevalence of non-strabismic anomalies of binocular vision was found to be higher in the 13 to 17 years age group (36.2 per cent) compared to seven to 12 years (25.1 per cent) (Z-test, p < 0.05). Non-strabismic binocular vision anomalies are highly prevalent among school children and the prevalence increases with age. With increasing near visual demands in the higher

  5. Camera calibration method of binocular stereo vision based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhong, Wanzhen; Dong, Xiaona

    2015-10-01

    Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.

  6. From dichoptic to dichotic: historical contrasts between binocular vision and binaural hearing.

    PubMed

    Wade, Nicholas J; Ono, Hiroshi

    2005-01-01

    Phenomena involving vision with two eyes have been commented upon for several thousand years whereas those concerned with hearing with two ears have a much more recent history. Studies of binocular vision and binaural hearing are contrasted with respect to the singleness of the percept, experimental manipulations of dichoptic and dichotic stimuli, eye and ear dominance, spatial localisation, and the instruments used to stimulate the paired organs. One of the principal phenomena that led to studies of dichotic hearing was dichoptic colour mixing. There was similar disagreement regarding whether colours or sounds could be combined when presented to different paired organs. Direction and distance in visual localisation were analysed before those for auditory localisation, partly due to difficulties in controlling the stimuli. Instruments for investigating binocular vision, like the stereoscope and pseudoscope, were invented before those for binaural hearing, like the stethophone and pseudophone.

  7. Research on detection method of UAV obstruction based on binocular vision

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Lei, Xusheng; Sui, Zhehao

    2018-04-01

    For the autonomous obstacle positioning and ranging in the process of UAV (unmanned aerial vehicle) flight, a system based on binocular vision is constructed. A three-stage image preprocessing method is proposed to solve the problem of the noise and brightness difference in the actual captured image. The distance of the nearest obstacle is calculated by using the disparity map that generated by binocular vision. Then the contour of the obstacle is extracted by post-processing of the disparity map, and a color-based adaptive parameter adjustment algorithm is designed to extract contours of obstacle automatically. Finally, the safety distance measurement and obstacle positioning during the UAV flight process are achieved. Based on a series of tests, the error of distance measurement can keep within 2.24% of the measuring range from 5 m to 20 m.

  8. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    NASA Astrophysics Data System (ADS)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.

  9. Relationship Between Rates of Binocular Visual Field Loss and Vision-Related Quality of Life in Glaucoma

    PubMed Central

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M.; Weinreb, Robert N.; Rosen, Peter N.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Medeiros, Felipe A.

    2013-01-01

    Objective To evaluate the relationship between binocular rates of visual field change and vision-related quality of life (VRQOL) in glaucoma. Methods The study included 796 eyes of 398 participants that had diagnosed or suspected glaucoma followed for an average of 7.3 ± 2.0 years. Subjects were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). VRQOL was evaluated using the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. Integrated binocular visual fields (BVF) were calculated from the monocular fields of each patient. Linear regression of mean deviation (MD) values was used to evaluate rates of visual field change during the follow-up period. Logistic regression models were used to investigate the relationship between abnormal VRQOL and rates of visual field change, while adjusting for potentially confounding socio-economic and demographic variables. Results Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25 questionnaire. Subjects with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (−0.18 db/year vs. −0.06 dB/year, respectively; P < 0.001). Rates of BVF change were significantly associated with abnormality in VRQOL (OR = 1.31 per 0.1dB/year faster; P = 0.038), after adjustment for confounding variables. Conclusions Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma. PMID:23450425

  10. Avian binocular vision: It's not just about what birds can see, it's also about what they can't.

    PubMed

    Tyrrell, Luke P; Fernández-Juricic, Esteban

    2017-01-01

    With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to avian binocularity

  11. Binocular vision anomalies and normative data (BAND) in Tamil Nadu: report 1.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2017-05-01

    This population-based, cross-sectional study was designed to determine normative data for binocular vision and accommodative testing in rural and urban populations of Tamil Nadu. A sample of 936 was determined, based on a previous pilot study. The epidemiological field work included a comprehensive eye examination and a binocular vision and accommodative assessment carried out in a total of four public schools, two each in the rural and urban arms of Chennai. An overall sample of 3,024 children between seven and 17 years of age was screened in the four schools and 920 children were included in the study. We found significant differences in expected values from the current clinical criteria for near point of convergence (NPC) with penlight, distance and near horizontal phorias, vergence facility, accommodation convergence/accommodation (AC/A) ratio, accommodative amplitudes, monocular and binocular accommodative facility (t-test: p < 0.001). The mean and standard deviation break/recovery values for NPC (in centimetres) with an accommodative target and penlight with red filter was 3 ± 3/4 ± 4 and 7 ± 5/10 ± 7, respectively. The mean accommodative amplitudes for the population could be estimated from the linear regression equation 16 - 0.3 × (age). The vergence facility was 12 ± 4 cycles/minute and 14 ± 4 cycles/minute in the seven to 10 and 11 to 17 age groups, respectively. Monocular accommodative facility was 11 ± 4 cycles/minute and 14 ± 5 cycles/minute and binocular accommodative facility was 10 ± 4 cycles/minute and 14 ± 5 cycles/minute in the seven to 12 and 13 to 17 age groups, respectively. The mean calculated AC/A ratio was 5.4 ± 0.6/1. The normative data for vergence and accommodative parameters for the Indian children between seven and 17 years of age are reported. The developmental trend of accommodation and vergence differences and significant differences in cut-off between the current data and available literature are reported. These

  12. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  13. Optoelectronic stereoscopic device for diagnostics, treatment, and developing of binocular vision

    NASA Astrophysics Data System (ADS)

    Pautova, Larisa; Elkhov, Victor A.; Ovechkis, Yuri N.

    2003-08-01

    Operation of the device is based on alternative generation of pictures for left and right eyes on the monitor screen. Controller gives pulses on LCG so that shutter for left or right eye opens synchronously with pictures. The device provides frequency of switching more than 100 Hz, and that is why the flickering is absent. Thus, a separate demonstration of images to the left eye or to the right one in turn is obtained for patients being unaware and creates the conditions of binocular perception clsoe to natural ones without any additional separation of vision fields. LC-cell transfer characteristic coodination with time parameters of monitor screen has enabled to improve stereo image quality. Complicated problem of computer stereo images with LC-glasses is so called 'ghosts' - noise images that come to blocked eye. We reduced its influence by adapting stereo images to phosphor and LC-cells characteristics. The device is intended for diagnostics and treatment of stabismus, amblyopia and other binocular and stereoscopic vision impairments, for cultivating, training and developing of stereoscopic vision, for measurements of horizontal and vertical phoria, phusion reserves, the stereovision acuity and some else, for fixing central scotoma borders, as well as suppression scotoma in strabismus too.

  14. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals.

    PubMed

    Heesy, Christopher P

    2008-01-01

    Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.

  15. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.

    PubMed

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M; Weinreb, Robert N; Rosen, Peter N; Liebmann, Jeffrey M; Girkin, Christopher A; Medeiros, Felipe A

    2013-04-01

    It is reasonable to hypothesize that for 2 patients with similar degrees of integrated binocular visual field (BVF) loss, the patient with a history of faster disease progression will report worse vision-related quality of life (VRQOL) than the patient with slowly progressing damage. However, to our knowledge, this hypothesis has not been investigated in the literature. To evaluate the association between binocular rates of visual field change and VRQOL in patients with glaucoma. DESIGN Observational cohort study. Patients were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. The study included 796 eyes of 398 patients with diagnosed or suspected glaucoma followed up from October 1, 1998, until January 31, 2012, for a mean (SD) of 7.3 (2.0) years. The VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. The NEI VFQ-25 was completed for all patients during the period extending from December 1, 2009, through January 31, 2012. Integrated BVFs were calculated from the monocular fields of each patient. Linear regression of mean deviation values was used to evaluate rates of BVF change during the follow-up period. Logistic regression models were used to investigate the association between abnormal VRQOL and rates of BVF change, while adjusting for potentially confounding socioeconomic and demographic variables. Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25. Patients with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (-0.18 vs -0.06 dB/y; P < .001). Rates of BVF change were significantly associated with abnormality in VRQOL (odds ratio = 1.31 per 0.1 dB/y faster; P = .04), after adjustment for confounding variables. Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change

  16. The handicap of abnormal colour vision.

    PubMed

    Cole, Barry L

    2004-07-01

    All people with abnormal colour vision, except for a few mildly affected deuteranomals, report that they experience problems with colour in everyday life and at work. Contemporary society presents them with increasing problems because colour is now so widely used in printed materials and in computer displays. Equal opportunity law gives them protection against unfair discrimination in employment, so a decision to exclude a person from employment on the grounds of abnormal colour vision must now be well supported by good evidence and sound argument. This paper reviews the investigations that have contributed to understanding the nature and consequences of the problems they have. All those with abnormal colour vision are at a disadvantage with comparative colour tasks that involve precise matching of colours or discrimination of fine colour differences either because of their loss of colour discrimination or anomalous perception of metamers. The majority have problems when colour is used to code information, in man-made colour codes and in naturally occurring colour codes that signal ripeness of fruit, freshness of meat or illness. They can be denied the benefit of colour to mark out objects and organise complex visual displays. They may be unreliable when a colour name is used as an identifier. They are slower and less successful in search when colour is an attribute of the target object or is used to organise the visual display. Because those with the more severe forms of abnormal colour vision perceive a very limited gamut of colours, they are at a disadvantage in the pursuit and appreciation of those forms of art that use colour.

  17. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility (< 10 cycles per minute), and the difference between near and distance phoria (> 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of

  18. Research and Development of Target Recognition and Location Crawling Platform based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Lei, Zhu; Yuan, Zhang; Gao, Zhenqing

    2018-03-01

    The application of visual recognition technology in industrial robot crawling and placing operation is one of the key tasks in the field of robot research. In order to improve the efficiency and intelligence of the material sorting in the production line, especially to realize the sorting of the scattered items, the robot target recognition and positioning crawling platform based on binocular vision is researched and developed. The images were collected by binocular camera, and the images were pretreated. Harris operator was used to identify the corners of the images. The Canny operator was used to identify the images. Hough-chain code recognition was used to identify the images. The target image in the image, obtain the coordinates of each vertex of the image, calculate the spatial position and posture of the target item, and determine the information needed to capture the movement and transmit it to the robot control crawling operation. Finally, In this paper, we use this method to experiment the wrapping problem in the express sorting process The experimental results show that the platform can effectively solve the problem of sorting of loose parts, so as to achieve the purpose of efficient and intelligent sorting.

  19. Deficiency of adaptive control of the binocular coordination of saccades in strabismus.

    PubMed

    Bucci, M P; Kapoula, Z; Eggert, T; Garraud, L

    1997-10-01

    Disconjugate (different in the two eyes) oculomotor adaptation is driven by the need to maintain binocular vision. Since binocular vision is deficient in strabismus, we wondered whether oculomotor disconjugate adaptive capabilities are deficient in such subjects. We studied eight adult subjects with constant, long-standing convergent strabismus of variable angles (4-30 prism D). No subject had severe amblyopia. Binocular vision was evaluated with stereoacuity tests. Two subjects had peripheral binocular vision and gross stereopsis; two other subjects had abnormal retinal correspondence and abnormal or pseudo gross stereopsis. In the other subjects binocular vision and stereopsis were absent. To stimulate disconjugate changes of saccades, subjects viewed for 20 min an image that was magnified in one eye (aniseikonia). Subjects with residual peripheral binocular vision and even subjects with pseudo or abnormal binocular vision showed disconjugate changes of the binocular coordination of their saccades; these changes reduced the disparity resulting from the aniseikonia. In contrast, for subjects without binocular vision the changes were not correlated with the disparity induced by the aniseikonia. Rather, these changes served to improve fixation of one or the other eye individually.

  20. Precise positioning method for multi-process connecting based on binocular vision

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan

    2016-01-01

    With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.

  1. The implementation of depth measurement and related algorithms based on binocular vision in embedded AM5728

    NASA Astrophysics Data System (ADS)

    Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan

    2018-01-01

    Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.

  2. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    NASA Astrophysics Data System (ADS)

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  3. Landing performance by low-time private pilots after the sudden loss of binocular vision - Cyclops II

    NASA Technical Reports Server (NTRS)

    Lewis, C. E., Jr.; Swaroop, R.; Mcmurty, T. C.; Blakeley, W. R.; Masters, R. L.

    1973-01-01

    Study of low-time general aviation pilots, who, in a series of spot landings, were suddenly deprived of binocular vision by patching either eye on the downwind leg of a standard, closed traffic pattern. Data collected during these landings were compared with control data from landings flown with normal vision during the same flight. The sequence of patching and the mix of control and monocular landings were randomized to minimize the effect of learning. No decrease in performance was observed during landings with vision restricted to one eye, in fact, performance improved. This observation is reported at a high level of confidence (p less than 0.001). These findings confirm the previous work of Lewis and Krier and have important implications with regard to aeromedical certification standards.

  4. A verification and errors analysis of the model for object positioning based on binocular stereo vision for airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Wang, Huan-huan; Wang, Jian; Liu, Feng; Cao, Hai-juan; Wang, Xiang-jun

    2014-12-01

    A test environment is established to obtain experimental data for verifying the positioning model which was derived previously based on the pinhole imaging model and the theory of binocular stereo vision measurement. The model requires that the optical axes of the two cameras meet at one point which is defined as the origin of the world coordinate system, thus simplifying and optimizing the positioning model. The experimental data are processed and tables and charts are given for comparing the positions of objects measured with DGPS with a measurement accuracy of 10 centimeters as the reference and those measured with the positioning model. Sources of visual measurement model are analyzed, and the effects of the errors of camera and system parameters on the accuracy of positioning model were probed, based on the error transfer and synthesis rules. A conclusion is made that measurement accuracy of surface surveillances based on binocular stereo vision measurement is better than surface movement radars, ADS-B (Automatic Dependent Surveillance-Broadcast) and MLAT (Multilateration).

  5. Age- and Stereovision-Dependent Eye–Hand Coordination Deficits in Children With Amblyopia and Abnormal Binocularity

    PubMed Central

    Grant, Simon; Suttle, Catherine; Melmoth, Dean R.; Conway, Miriam L.; Sloper, John J.

    2014-01-01

    Purpose. To examine factors contributing to eye–hand coordination deficits in children with amblyopia and impaired stereovision. Methods. Participants were 55 anisometropic or strabismic children aged 5.0 to 9.25 years with different degrees of amblyopia and abnormal binocularity, along with 28 age-matched visually-normal controls. Pilot data were obtained from four additional patients studied longitudinally at different treatment stages. Movements of the preferred hand were recorded using a 3D motion-capture system while subjects reached-to-precision grasp objects (two sizes, three locations) under binocular, dominant eye, and amblyopic/nonsighting eye conditions. Kinematic and “error” performance measures were quantified and compared by viewing condition and subject group using ANOVA, stepwise regression, and correlation analyses. Results. Movements of the younger amblyopes (age 5–6 years; n = 30) were much slower, particularly in the final approach to the objects, and contained more spatial errors in reaching (∼×1.25–1.75) and grasping (∼×1.75–2.25) under all three views (P < 0.05) than their age-matched controls (n = 13). Amblyopia severity was the main contributor to their slower movements with absent stereovision a secondary factor and the unique determinant of their increased error-rates. Older amblyopes (age 7–9 years; n = 25) spent longer contacting the objects before lifting them (P = 0.015) compared with their matched controls (n = 15), with absence of stereovision still solely related to increases in reach and grasp errors, although these occurred less frequently than in younger patients. Pilot prospective data supported these findings by showing positive treatment-related associations between improved stereovision and reach-to-grasp performance. Conclusions. Strategies that children with amblyopia and abnormal binocularity use for reach-to-precision grasping change with age, from emphasis on visual feedback during the

  6. Binocular Therapy for Childhood Amblyopia Improves Vision Without Breaking Interocular Suppression.

    PubMed

    Bossi, Manuela; Tailor, Vijay K; Anderson, Elaine J; Bex, Peter J; Greenwood, John A; Dahlmann-Noor, Annegret; Dakin, Steven C

    2017-06-01

    Amblyopia is a common developmental visual impairment characterized by a substantial difference in acuity between the two eyes. Current monocular treatments, which promote use of the affected eye by occluding or blurring the fellow eye, improve acuity, but are hindered by poor compliance. Recently developed binocular treatments can produce rapid gains in visual function, thought to be as a result of reduced interocular suppression. We set out to develop an effective home-based binocular treatment system for amblyopia that would engage high levels of compliance but that would also allow us to assess the role of suppression in children's response to binocular treatment. Balanced binocular viewing therapy (BBV) involves daily viewing of dichoptic movies (with "visibility" matched across the two eyes) and gameplay (to monitor compliance and suppression). Twenty-two children (3-11 years) with anisometropic (n = 7; group 1) and strabismic or combined mechanism amblyopia (group 2; n = 6 and 9, respectively) completed the study. Groups 1 and 2 were treated for a maximum of 8 or 24 weeks, respectively. The treatment elicited high levels of compliance (on average, 89.4% ± 24.2% of daily dose in 68.23% ± 12.2% of days on treatment) and led to a mean improvement in acuity of 0.27 logMAR (SD 0.22) for the amblyopic eye. Importantly, acuity gains were not correlated with a reduction in suppression. BBV is a binocular treatment for amblyopia that can be self-administered at home (with remote monitoring), producing rapid and substantial benefits that cannot be solely mediated by a reduction in interocular suppression.

  7. Does partial occlusion promote normal binocular function?

    PubMed

    Li, Jingrong; Thompson, Benjamin; Ding, Zhaofeng; Chan, Lily Y L; Chen, Xiang; Yu, Minbin; Deng, Daming; Hess, Robert F

    2012-10-03

    There is growing evidence that abnormal binocular interactions play a key role in the amblyopia syndrome and represent a viable target for treatment interventions. In this context the use of partial occlusion using optical devices such as Bangerter filters as an alternative to complete occlusion is of particular interest. The aims of this study were to understand why Bangerter filters do not result in improved binocular outcomes compared to complete occlusion, and to compare the effects of Bangerter filters, optical blur and neutral density (ND) filters on normal binocular function. The effects of four strengths of Bangerter filters (0.8, 0.6, 0.4, 0.2) on letter and vernier acuity, contrast sensitivity, stereoacuity, and interocular suppression were measured in 21 observers with normal vision. In a subset of 14 observers, the partial occlusion effects of Bangerter filters, ND filters and plus lenses on stereopsis and interocular suppression were compared. Bangerter filters did not have graded effect on vision and induced significant disruption to binocular function. This disruption was greater than that of monocular defocus but weaker than that of ND filters. The effect of the Bangerter filters on stereopsis was more pronounced than their effect on monocular acuity, and the induced monocular acuity deficits did not predict the induced deficits in stereopsis. Bangerter filters appear to be particularly disruptive to binocular function. Other interventions, such as optical defocus and those employing computer generated dichoptic stimulus presentation, may be more appropriate than partial occlusion for targeting binocular function during amblyopia treatment.

  8. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum

    PubMed Central

    Vega-Zuniga, T.; Medina, F. S.; Marín, G.; Letelier, J. C.; Palacios, A. G.; Němec, P.; Schleich, C. E.; Mpodozis, J.

    2017-01-01

    To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles. PMID:28150809

  9. Binocular visual training to promote recovery from monocular deprivation.

    PubMed

    Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G

    2015-01-08

    Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.

  10. Incidence of vertical phoria on postural control during binocular vision: what perspective for prevention to nonspecific chronic pain management?

    PubMed

    Matheron, Eric; Kapoula, Zoï

    2015-01-01

    Vertical heterophoria (VH) is the latent vertical misalignment of the eyes when the retinal images are dissociated, vertical orthophoria (VO) when there is no misalignment. Studies on postural control, during binocular vision in upright stance, reported that healthy subjects with small VH vs. VO are less stable, but the experimental cancellation of VH with an appropriate prism improves postural stability. The same behavior was recorded in nonspecific chronic back pain subjects, all with VH. It was hypothesized that, without refraction problems, VH indicates a perturbation of the somaesthetic cues required in the sensorimotor loops involved in postural control and the capacity of the CNS to optimally integrate these cues, suggesting prevention possibilities. Sensorimotor conflict can induce pain and modify sensory perception in some healthy subjects; some nonspecific pain or chronic pain could result from such prolonged conflict in which VH could be a sign, with new theoretical and clinical implications.

  11. On-line bolt-loosening detection method of key components of running trains using binocular vision

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Sun, Junhua

    2017-11-01

    Bolt loosening, as one of hidden faults, affects the running quality of trains and even causes serious safety accidents. However, the developed fault detection approaches based on two-dimensional images cannot detect bolt-loosening due to lack of depth information. Therefore, we propose a novel online bolt-loosening detection method using binocular vision. Firstly, the target detection model based on convolutional neural network (CNN) is used to locate the target regions. And then, stereo matching and three-dimensional reconstruction are performed to detect bolt-loosening faults. The experimental results show that the looseness of multiple bolts can be characterized by the method simultaneously. The measurement repeatability and precision are less than 0.03mm, 0.09mm respectively, and its relative error is controlled within 1.09%.

  12. Two-dimensional (2D) displacement measurement of moving objects using a new MEMS binocular vision system

    NASA Astrophysics Data System (ADS)

    Di, Si; Lin, Hui; Du, Ruxu

    2011-05-01

    Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.

  13. Assessing Binocular Interaction in Amblyopia and Its Clinical Feasibility

    PubMed Central

    Kwon, MiYoung; Lu, Zhong-Lin; Miller, Alexandra; Kazlas, Melanie; Hunter, David G.; Bex, Peter J.

    2014-01-01

    Purpose To measure binocular interaction in amblyopes using a rapid and patient-friendly computer-based method, and to test the feasibility of the assessment in the clinic. Methods Binocular interaction was assessed in subjects with strabismic amblyopia (n = 7), anisometropic amblyopia (n = 6), strabismus without amblyopia (n = 15) and normal vision (n = 40). Binocular interaction was measured with a dichoptic phase matching task in which subjects matched the position of a binocular probe to the cyclopean perceived phase of a dichoptic pair of gratings whose contrast ratios were systematically varied. The resulting effective contrast ratio of the weak eye was taken as an indicator of interocular imbalance. Testing was performed in an ophthalmology clinic under 8 mins. We examined the relationships between our binocular interaction measure and standard clinical measures indicating abnormal binocularity such as interocular acuity difference and stereoacuity. The test-retest reliability of the testing method was also evaluated. Results Compared to normally-sighted controls, amblyopes exhibited significantly reduced effective contrast (∼20%) of the weak eye, suggesting a higher contrast requirement for the amblyopic eye compared to the fellow eye. We found that the effective contrast ratio of the weak eye covaried with standard clincal measures of binocular vision. Our results showed that there was a high correlation between the 1st and 2nd measurements (r = 0.94, p<0.001) but without any significant bias between the two. Conclusions Our findings demonstrate that abnormal binocular interaction can be reliably captured by measuring the effective contrast ratio of the weak eye and quantitative assessment of binocular interaction is a quick and simple test that can be performed in the clinic. We believe that reliable and timely assessment of deficits in a binocular interaction may improve detection and treatment of amblyopia. PMID:24959842

  14. Amblyopia and the binocular approach to its therapy.

    PubMed

    Hess, Robert F; Thompson, Benjamin

    2015-09-01

    There is growing evidence that abnormal binocular interactions play a key role in amblyopia. In particular, stronger suppression of the amblyopic eye has been associated with poorer amblyopic eye visual acuity and a new therapy has been described that directly targets binocular function and has been found to improve both monocular and binocular vision in adults and children with amblyopia. Furthermore, non-invasive brain stimulation techniques that alter excitation and inhibition within the visual cortex have been shown to improve vision in the amblyopic eye. The aim of this review is to summarize this previous work and interpret the therapeutic effects of binocular therapy and non-invasive brain stimulation in the context of three potential neural mechanisms; active inhibition of signals from the amblyopic eye, attenuation of information from the amblyopic eye and metaplasticity of synaptic long term potentiation and long term depression. Copyright © 2015. Published by Elsevier Ltd.

  15. [Use of liquid crystal eyeglasses for examination and recovery of binocular vision].

    PubMed

    Grigorian, A Iu; Avetisov, E S; Kashchenko, T P; Iachmeneva, E I

    1999-01-01

    A new method for diploptic treatment of strabismus is proposed, based on phase division of visual fields using liquid crystal eyeglasses --computer complex. The method is based on stereovision training (allowing stereothreshold measurements up to 150 ang. sec.). The method was tried in examinations of two groups of children: 10 controls and 74 patients with strabismus. Examinations of normal controls gave new criteria for measuring fusion reserves and stereovisual acuity by the proposed method. The therapeutic method was tried in 2 groups of patients. Time course of visual function improvement was followed up by several criteria: changes in binocular status by the color test and improvement of in-depth and stereoscopic visual acuity. The method is recommended for practice. The authors discuss the problem of small angle strabismus.

  16. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Visual acuity, refractive error, and binocular status were determined in 43 autosomal recessive (AR) and 15 X-linked (XL) congenital achromats. The achromats were classified by color matching and spectral sensitivity data. Large interindividual variation in refractive error and visual acuity was present within each achromat group (complete AR, incomplete AR, and XL). However, the number of individuals with significant interocular acuity differences is very small. Most XLs are myopic; ARs show a wide range of refractive error from high myopia to high hyperopia. Acuity of the AR and XL groups was very similar. With-the-rule astigmatism of large amount is very common in achromats, particularly ARs. There is a close association between strabismus and interocular acuity differences in the ARs, with the fixating eye having better than average acuity. The large overlap of acuity and refractive error of XL and AR achromats suggests that these measures are less useful for differential diagnosis than generally indicated by the clinical literature.

  17. Pilot vision considerations : the effect of age on binocular fusion time.

    DOT National Transportation Integrated Search

    1966-10-01

    The study provides data regarding the relationship between vision performance and age of the individual. It has direct application to pilot visual tasks with respect to instrument panel displays, and to controller visual tasks in association with rad...

  18. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  19. Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?

    NASA Astrophysics Data System (ADS)

    Harris, Julie M.

    2010-02-01

    When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.

  20. Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision.

    PubMed

    Tu, Junchao; Zhang, Liyan

    2018-01-12

    A new solution to the problem of galvanometric laser scanning (GLS) system calibration is presented. Under the machine learning framework, we build a single-hidden layer feedforward neural network (SLFN)to represent the GLS system, which takes the digital control signal at the drives of the GLS system as input and the space vector of the corresponding outgoing laser beam as output. The training data set is obtained with the aid of a moving mechanism and a binocular stereo system. The parameters of the SLFN are efficiently solved in a closed form by using extreme learning machine (ELM). By quantitatively analyzing the regression precision with respective to the number of hidden neurons in the SLFN, we demonstrate that the proper number of hidden neurons can be safely chosen from a broad interval to guarantee good generalization performance. Compared to the traditional model-driven calibration, the proposed calibration method does not need a complex modeling process and is more accurate and stable. As the output of the network is the space vectors of the outgoing laser beams, it costs much less training time and can provide a uniform solution to both laser projection and 3D-reconstruction, in contrast with the existing data-driven calibration method which only works for the laser triangulation problem. Calibration experiment, projection experiment and 3D reconstruction experiment are respectively conducted to test the proposed method, and good results are obtained.

  1. Device for diagnosis and treatment of impairments on binocular vision and stereopsis

    NASA Astrophysics Data System (ADS)

    Bahn, Jieun; Choi, Yong-Jin; Son, Jung-Young; Kodratiev, N. V.; Elkhov, Victor A.; Ovechkis, Yuri N.; Chung, Chan-sup

    2001-06-01

    Strabismus and amblyopia are two main impairments of our visual system, which are responsible for the loss of stereovision. A device is developed for diagnosis and treatment of strabismus and amblyopia, and for training and developing stereopsis. This device is composed of a liquid crystal glasses (LCG), electronics for driving LCG and synchronizing with an IBM PC, and a special software. The software contains specially designed patterns and graphics for enabling to train and develop stereopsis, and do objective measurement of some stereoscopic vision parameters such as horizontal and vertical phoria, fusion, fixation disparity, and stereoscopic visual threshold.

  2. Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation

    NASA Astrophysics Data System (ADS)

    Bugayong, Albert; Ramos, Manuel, Jr.

    2018-02-01

    Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.

  3. A binocular iPad treatment for amblyopic children.

    PubMed

    Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E

    2014-10-01

    Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Children (4-12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment.

  4. A binocular iPad treatment for amblyopic children

    PubMed Central

    Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E

    2014-01-01

    Purpose Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Methods Children (4–12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Results Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Conclusions Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment. PMID:25060850

  5. Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display.

    PubMed

    Mon-Williams, M; Wann, J P; Rushton, S

    1993-10-01

    The short-term effects on binocular stability of wearing a conventional head-mounted display (HMD) to explore a virtual reality environment were examined. Twenty adult subjects (aged 19-29 years) wore a commercially available HMD for 10 min while cycling around a computer generated 3-D world. The twin screen presentations were set to suit the average interpupillary distance of our subject population, to mimic the conditions of public access virtual reality systems. Subjects were examined before and after exposure to the HMD and there were clear signs of induced binocular stress for a number of the subjects. The implications of introducing such HMDs into the workplace and entertainment environments are discussed.

  6. Correcting intermittent central suppression improves binocular marksmanship.

    PubMed

    Hussey, Eric S

    2007-04-01

    Intermittent central suppression (ICS) is a defect in normal binocular (two-eyed) vision that causes confusion in visual detail. ICS is a repetitive intermittent loss of visual sensation in the central area of vision. As the central vision of either eye "turns on and off", aiming errors in sight can occur that must be corrected when both eyes are seeing again. Any aiming errors in sight might be expected to interfere with marksmanship during two-eyed seeing. We compared monocular (one-eyed, patched) and binocular (two-eyed) marksmanship with pistol shooting with an Army ROTC cadet before and after successful therapy for diagnosed ICS. Pretreatment, monocular marksmanship was significantly better than binocular marksmanship, suggesting defective binocularity reduced accuracy. After treatment for ICS, binocular and monocular marksmanship were essentially the same. Results confirmed predictions that with increased visual stability from correcting the suppression, binocular and monocular marksmanship accuracies should merge.

  7. Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia

    PubMed Central

    Kelly, Krista R.; Jost, Reed M.; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L.; Leffler, Joel N.; Birch, Eileen E.

    2018-01-01

    Purpose Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Methods Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4–10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9–10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Results Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). Conclusions After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia. PMID:29625442

  8. Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia.

    PubMed

    Kelly, Krista R; Jost, Reed M; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L; Leffler, Joel N; Birch, Eileen E

    2018-03-01

    Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4-10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9-10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia.

  9. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  10. Capturing age-related changes in functional contrast sensitivity with decreasing light levels in monocular and binocular vision.

    PubMed

    Gillespie-Gallery, Hanna; Konstantakopoulou, Evgenia; Harlow, Jonathan A; Barbur, John L

    2013-09-09

    It is challenging to separate the effects of normal aging of the retina and visual pathways independently from optical factors, decreased retinal illuminance, and early stage disease. This study determined limits to describe the effect of light level on normal, age-related changes in monocular and binocular functional contrast sensitivity. We recruited 95 participants aged 20 to 85 years. Contrast thresholds for correct orientation discrimination of the gap in a Landolt C optotype were measured using a 4-alternative, forced-choice (4AFC) procedure at screen luminances from 34 to 0.12 cd/m(2) at the fovea and parafovea (0° and ±4°). Pupil size was measured continuously. The Health of the Retina index (HRindex) was computed to capture the loss of contrast sensitivity with decreasing light level. Participants were excluded if they exhibited performance outside the normal limits of interocular differences or HRindex values, or signs of ocular disease. Parafoveal contrast thresholds showed a steeper decline and higher correlation with age at the parafovea than the fovea. Of participants with clinical signs of ocular disease, 83% had HRindex values outside the normal limits. Binocular summation of contrast signals declined with age, independent of interocular differences. The HRindex worsens more rapidly with age at the parafovea, consistent with histologic findings of rod loss and its link to age-related degenerative disease of the retina. The HRindex and interocular differences could be used to screen for and separate the earliest stages of subclinical disease from changes caused by normal aging.

  11. Federal regulation of vision enhancement devices for normal and abnormal vision

    NASA Astrophysics Data System (ADS)

    Drum, Bruce

    2006-09-01

    The Food and Drug Administration (FDA) evaluates the safety and effectiveness of medical devices and biological products as well as food and drugs. The FDA defines a device as a product that is intended, by physical means, to diagnose, treat, or prevent disease, or to affect the structure or function of the body. All vision enhancement devices fulfill this definition because they are intended to affect a function (vision) of the body. In practice, however, FDA historically has drawn a distinction between devices that are intended to enhance low vision as opposed to normal vision. Most low vision aids are therapeutic devices intended to compensate for visual impairment, and are actively regulated according to their level of risk to the patient. The risk level is usually low (e.g. Class I, exempt from 510(k) submission requirements for magnifiers that do not touch the eye), but can be as high as Class III (requiring a clinical trial and Premarket Approval (PMA) application) for certain implanted and prosthetic devices (e.g. intraocular telescopes and prosthetic retinal implants). In contrast, the FDA usually does not actively enforce its regulations for devices that are intended to enhance normal vision, are low risk, and do not have a medical intended use. However, if an implanted or prosthetic device were developed for enhancing normal vision, the FDA would likely decide to regulate it actively, because its intended use would entail a substantial medical risk to the user. Companies developing such devices should contact the FDA at an early stage to clarify their regulatory status.

  12. Molecular basis of abnormal red-green color vision: a family with three types of color vision defects.

    PubMed Central

    Drummond-Borg, M; Deeb, S; Motulsky, A G

    1988-01-01

    The molecular nature of three different types of X-linked color-vision defects, protanomaly, deuteranomaly, and protanopia, in a large 3-generation family was determined. In the protanomalous and protanopic males the normal red pigment gene was replaced by a 5' red-3' green fusion gene. The protanomalous male had more red pigment DNA in his fusion gene than did the more severely affected protanopic individual. The deuteranomalous individual had four green pigment genes and one 5' green-3' red fusion gene. These results extend those of Nathans et al., who proposed that most red-green color-vision defects arise as a result of unequal crossing-over between the red and green pigment genes. The various data suggest that differences in severity of color-vision defects associated with fusion genes are caused by differences in crossover sites between the red and green pigment genes. Currently used molecular methodology is not sufficiently sensitive to define these fusion points accurately, and the specific color-vision defect within the deutan or protan class cannot be predicted. The DNA patterns for color-vision genes of female heterozygotes have not previously been described. Patterns of heterozygotes may not be distinguishable from those of normals. However, a definite assignment of the various color pigment gene arrays could be carried out by family study. Two compound heterozygotes for color-vision defects who tested as normal by anomaloscopy were found to carry abnormal fusion genes. In addition, a normal red pigment gene was present on one chromosome and at least one normal green pigment gene was present on the other.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 3 PMID:2847528

  13. Color vision abnormality as an initial presentation of the complete type of congenital stationary night blindness.

    PubMed

    Tan, Xue; Aoki, Aya; Yanagi, Yasuo

    2013-01-01

    Patients with the complete form of congenital stationary night blindness (CSNB) often have reduced visual acuity, myopia, impaired night vision, and sometimes nystagmus and strabismus, however, they seldom complain of color vision abnormality. A 17-year-old male who was at technical school showed abnormalities in the color perception test for employment, and was referred to our hospital for a detailed examination. He had no family history of color vision deficiency and no other symptoms. During the initial examination, his best-corrected visual acuity was 1.2 in both eyes. His fundus showed no abnormalities except for somewhat yellowish reflex in the fovea of both eyes. Electroretinogram (ERG) showed a good response in cone ERG and 30 Hz flicker ERG, however, the bright flash, mixed rod and cone ERG showed a negative type with a reduced b-wave (positive deflection). There was no response in the rod ERG, either. From the findings of the typical ERG, the patient was diagnosed with complete congenital stationary night blindness. This case underscores the importance of ERG in order to diagnose the cause of a color vision anomaly.

  14. The case from animal studies for balanced binocular treatment strategies for human amblyopia.

    PubMed

    Mitchell, Donald E; Duffy, Kevin R

    2014-03-01

    Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  15. Experience-dependent central vision deficits: Neurobiology and visual acuity.

    PubMed

    Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M

    2015-09-01

    Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Interactions between binocular rivalry and Gestalt formation.

    PubMed

    de Weert, Charles M M; Snoeren, Peter R; Koning, Arno

    2005-09-01

    A question raised a long time ago in binocular rivalry research is whether the phenomenon of binocular rivalry is purely determined by local stimulus properties or that global stimulus properties also play a role. More specifically: do coherent features in a stimulus influence rivalrous behavior? After decades of underexposure of the subject, recently this question seemed to be answered in the affirmative. This paper presents additional evidence for an influence of coherent features. In an experiment in which eye movements cannot bias conclusions it is demonstrated that Gestalt formation influences binocular rivalry positively, i.e., stronger Gestalts have longer total dominance times. Gestalt formation appears to intervene in the states of dominance ("what"), not directly in the dominance durations ("how long"). This generates questions about the nature of interactions between binocular rivalry and Gestalt formation. Gestalt formation seems to be fed by signals that are generated after binocular convergence and only leaves its mark on binocular rivalry by feedback to monocular channels, a conclusion which has been drawn before by Alais and Blake [Alais, D., & Blake, R. (1998). Interaction between global motion and local binocular rivalry. Vision research 38, 637-644].

  17. Binocular combination of luminance profiles

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2017-01-01

    Levelt (1965) and binocular combination of second-order contrast-modulated gratings (Experiment 3). We used the model obtained in Experiment 1 to predict the results of Experiments 2 and 3 and the results of our previous studies. Model simulations further refined the contrast space weight and contrast sensitivity functions that are installed in the model, and provide a reasonable account for rebalancing of imbalanced binocular vision by reducing the mean luminance in the dominant eye. PMID:29098293

  18. Binocular interactions in random chromatic changes at isoluminance

    NASA Astrophysics Data System (ADS)

    Medina, José M.

    2006-02-01

    To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.

  19. Diagnosis of Normal and Abnormal Color Vision with Cone-Specific VEPs.

    PubMed

    Rabin, Jeff C; Kryder, Andrew C; Lam, Dan

    2016-05-01

    Normal color vision depends on normal long wavelength (L), middle wavelength (M), and short wavelength sensitive (S) cones. Hereditary "red-green" color vision deficiency (CVD) is due to a shift in peak sensitivity or lack of L or M cones. Hereditary S cone CVD is rare but can be acquired as an early sign of disease. Current tests detect CVD but few diagnose type or severity, critical for linking performance to real-world demands. The anomaloscope and newer subjective tests quantify CVD but are not applicable to infants or cognitively impaired patients. Our purpose was to develop an objective test of CVD with sensitivity and specificity comparable to current tests. A calibrated visual-evoked potential (VEP) display and Food and Drug Administration-approved system was used to record L, M, and S cone-specific pattern-onset VEPs from 18 color vision normals (CVNs) and 13 hereditary CVDs. VEP amplitudes and latencies were compared between groups to establish VEP sensitivity and specificity. Cone VEPs show 100% sensitivity for diagnosis of CVD and 94% specificity for confirming CVN. L cone (protan) CVDs showed a significant increase in L cone latency (53.1 msec, P < 0.003) and decreased amplitude (10.8 uV, P < 0.0000005) but normal M and S cone VEPs ( P > 0.31). M cone (deutan) CVDs showed a significant increase in M cone latency (31.0 msec, P < 0.000004) and decreased amplitude (8.4 uV, P < 0.006) but normal L and S cone VEPs ( P > 0.29). Cone-specific VEPs offer a rapid, objective test to diagnose hereditary CVD and show potential for detecting acquired CVD in various diseases. This paper describes the efficacy of cone-specific color VEPs for quantification of normal and abnormal color vision. The rapid, objective nature of this approach makes it suitable for detecting color sensitivity loss in infants and the cognitively impaired.

  20. Cone Photoreceptor Abnormalities Correlate with Vision Loss in Patients with Stargardt Disease

    PubMed Central

    Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. Harini; Roorda, Austin

    2011-01-01

    Purpose. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). Methods. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. Results. Patients were 15 to 55 years old, and visual acuity ranged from 20/25–20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. Conclusions. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death. (ClinicalTrials.gov number, NCT00254605.) PMID:21296825

  1. Visual and binocular status in elementary school children with a reading problem.

    PubMed

    Christian, Lisa W; Nandakumar, Krithika; Hrynchak, Patricia K; Irving, Elizabeth L

    2017-11-21

    This descriptive study provides a summary of the binocular anomalies seen in elementary school children identified with reading problems. A retrospective chart review of all children identified with reading problems and seen by the University of Waterloo, Optometry Clinic, from September 2012 to June 2013. Files of 121 children (mean age 8.6 years, range 6-14 years) were reviewed. No significant refractive error was found in 81% of children. Five and 8 children were identified as strabismic at distance and near respectively. Phoria test revealed 90% and 65% of patients had normal distance and near phoria. Near point of convergencia (NPC) was <5cm in 68% of children, and 77% had stereoacuity of ≤40seconds of arc. More than 50% of the children had normal fusional vergence ranges except for near positive fusional vergencce (base out) break (46%). Tests for accommodation showed 91% of children were normal for binocular facility, and approximately 70% of children had an expected accuracy of accommodation. Findings indicate that some children with an identified reading problem also present with abnormal binocular test results compared to published normal values. Further investigation should be performed to investigate the relationship between binocular vision function and reading performance. Crown Copyright © 2017. Published by Elsevier España, S.L.U. All rights reserved.

  2. Deficient Binocular Combination Reveals Mechanisms of Anisometropic Amblyopia: Signal Attenuation and Interocular Inhibition

    PubMed Central

    Huang, Chang-Bing; Zhou, Jiawei; Lu, Zhong-Lin; Zhou, Yifeng

    2012-01-01

    Amblyopia is a developmental disorder that results in deficits of monocular and binocular vision. It's presently unclear whether these deficits result from attenuation of signals in the amblyopic eye, inhibition by signals in the fellow eye, or both. In this study, we characterize the mechanisms underlying anisometropic amblyopia using a binocular phase and contrast combination paradigm and a contrast-gain control model. Subjects dichoptically viewed two slightly different images and reported the perceived contrast and phase of the resulting cyclopean percept. We found that the properties of binocular combination were abnormal in many aspects, which is explained by a combination of (1) attenuated monocular signal in the amblyopic eye, (2) stronger interocular contrast-gain control from the fellow eye to the signal in amblyopic eye (direct interocular inhibition), and (3) stronger interocular contrast-gain control from the fellow eye to the contrast gain control signal from the amblyopic eye (indirect interocular inhibition). We conclude that anisometropic amblyopia led to both monocular and interocular deficits. A complete understanding of the mechanisms underlying amblyopia requires studies of both monocular deficits and binocular interactions. PMID:21546609

  3. Vision in Children and Adolescents with Autistic Spectrum Disorder: Evidence for Reduced Convergence

    ERIC Educational Resources Information Center

    Milne, Elizabeth; Griffiths, Helen; Buckley, David; Scope, Alison

    2009-01-01

    Evidence of atypical perception in individuals with ASD is mainly based on self report, parental questionnaires or psychophysical/cognitive paradigms. There have been relatively few attempts to establish whether binocular vision is enhanced, intact or abnormal in those with ASD. To address this, we screened visual function in 51 individuals with…

  4. Spatial-frequency dependent binocular imbalance in amblyopia.

    PubMed

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-11-25

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy.

  5. Spatial-frequency dependent binocular imbalance in amblyopia

    PubMed Central

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  6. Colour helps to solve the binocular matching problem

    PubMed Central

    den Ouden, HEM; van Ee, R; de Haan, EHF

    2005-01-01

    The spatial differences between the two retinal images, called binocular disparities, can be used to recover the three-dimensional (3D) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this binocular matching problem is an important issue in research on stereoscopic vision. The role of colour in binocular vision is controversial and it has been argued that colour is ineffective in achieving binocular vision. In the current experiment subjects were required to indicate the amount of perceived depth. The stimulus consisted of an array of fronto-parallel bars uniformly distributed in a constant sized volume. We studied the perceived depth in those 3D stimuli by manipulating both colour (monochrome, trichrome) and luminance (congruent, incongruent). Our results demonstrate that the amount of perceived depth was influenced by colour, indicating that the visual system uses colour to achieve binocular matching. Physiological data have revealed cortical cells in macaque V2 that are tuned both to binocular disparity and to colour. We suggest that one of the functional roles of these cells may be to help solve the binocular matching problem. PMID:15975983

  7. Colour helps to solve the binocular matching problem.

    PubMed

    den Ouden, H E M; van Ee, R; de Haan, E H F

    2005-09-01

    The spatial differences between the two retinal images, called binocular disparities, can be used to recover the three-dimensional (3D) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this binocular matching problem is an important issue in research on stereoscopic vision. The role of colour in binocular vision is controversial and it has been argued that colour is ineffective in achieving binocular vision. In the current experiment subjects were required to indicate the amount of perceived depth. The stimulus consisted of an array of fronto-parallel bars uniformly distributed in a constant sized volume. We studied the perceived depth in those 3D stimuli by manipulating both colour (monochrome, trichrome) and luminance (congruent, incongruent). Our results demonstrate that the amount of perceived depth was influenced by colour, indicating that the visual system uses colour to achieve binocular matching. Physiological data have revealed cortical cells in macaque V2 that are tuned both to binocular disparity and to colour. We suggest that one of the functional roles of these cells may be to help solve the binocular matching problem.

  8. Binocularity and Reading

    ERIC Educational Resources Information Center

    Brod, Nathan; Hamilton, David

    1973-01-01

    A sample of 162 fifth grade students were grouped as good, average, and poor readers on the basis of a standardized reading test to determine whether a relationship existed between binocularity and reading performance. (Author/MC)

  9. Validity of the Worth 4 Dot Test in Patients with Red-Green Color Vision Defect.

    PubMed

    Bak, Eunoo; Yang, Hee Kyung; Hwang, Jeong-Min

    2017-05-01

    The Worth four dot test uses red and green glasses for binocular dissociation, and although it has been believed that patients with red-green color vision defects cannot accurately perform the Worth four dot test, this has not been validated. Therefore, the purpose of this study was to demonstrate the validity of the Worth four dot test in patients with congenital red-green color vision defects who have normal or abnormal binocular vision. A retrospective review of medical records was performed on 30 consecutive congenital red-green color vision defect patients who underwent the Worth four dot test. The type of color vision anomaly was determined by the Hardy Rand and Rittler (HRR) pseudoisochromatic plate test, Ishihara color test, anomaloscope, and/or the 100 hue test. All patients underwent a complete ophthalmologic examination. Binocular sensory status was evaluated with the Worth four dot test and Randot stereotest. The results were interpreted according to the presence of strabismus or amblyopia. Among the 30 patients, 24 had normal visual acuity without strabismus nor amblyopia and 6 patients had strabismus and/or amblyopia. The 24 patients without strabismus nor amblyopia all showed binocular fusional responses by seeing four dots of the Worth four dot test. Meanwhile, the six patients with strabismus or amblyopia showed various results of fusion, suppression, and diplopia. Congenital red-green color vision defect patients of different types and variable degree of binocularity could successfully perform the Worth four dot test. They showed reliable results that were in accordance with their estimated binocular sensory status.

  10. Association Between Retinal Nerve Fiber Layer Thickness and Abnormalities of Vision in People With Human Immunodeficiency Virus Infection

    PubMed Central

    Kalyani, Partho S.; Holland, Gary N.; Fawzi, Amani A.; Arantes, Tiago E.F.; Yu, Fei; Sadun, Alfredo A.

    2014-01-01

    Purpose To investigate relationships between contrast sensitivity (CS), color vision, and retinal nerve fiber layer (RNFL) among people with human immunodeficiency virus (HIV) infection; to evaluate the effect of time since diagnosis of HIV infection on RNFL thickness. Design Noninterventional cross-sectional study. Methods We evaluated 102 eyes of 57 HIV-infected individuals without ocular opportunistic infections. Peripapillary RNFL thickness was determined with spectraldomain optical coherence tomography in 4 quadrants. CS was measured with the Pelli-Robson technique (expressed as logCS); color vision was measured with the Lanthony desaturated 15-hue technique (expressed as color confusion index [C-index], with higher scores indicating worse color vision). Correlations between values were assessed using Spearman correlation coefficients. Results Median RNFL thickness (average of 4 quadrants) was 102.9 μm (range, 75.0–134.7 μm). Median logCS was 1.90 (range, 1.25–1.95). Median C-index was 1.58 (range, 0.96–4.07). Temporal RNFL thickness was correlated with logCS (r = 0.295, P = .003) and C-index (r = −0.338, P = .0005). Time since diagnosis of HIV infection was shorter for those with thick average RNFL than for those with thin average RNFL (P = .18). Conclusions Both worse CS and worse color vision are correlated with thinning of the temporal RNFL, with possible threshold effects. Increased prevalences of abnormal CS and abnormal color vision in this population are therefore likely attributable to neuroretinal compromise. This pattern of structural and functional losses may reflect preferential damage to small-caliber axons in the maculopapillary bundle, possibly associated with mitochondrial dysfunction, providing a potential disease mechanism for HIV-associated “neuroretinal disorder.” PMID:22245459

  11. Evaluation and development of a novel binocular treatment (I-BiT™) system using video clips and interactive games to improve vision in children with amblyopia ('lazy eye'): study protocol for a randomised controlled trial.

    PubMed

    Foss, Alexander J; Gregson, Richard M; MacKeith, Daisy; Herbison, Nicola; Ash, Isabel M; Cobb, Sue V; Eastgate, Richard M; Hepburn, Trish; Vivian, Anthony; Moore, Diane; Haworth, Stephen M

    2013-05-20

    Amblyopia (lazy eye) affects the vision of approximately 2% of all children. Traditional treatment consists of wearing a patch over their 'good' eye for a number of hours daily, over several months. This treatment is unpopular and compliance is often low. Therefore results can be poor. A novel binocular treatment which uses 3D technology to present specially developed computer games and video footage (I-BiT™) has been studied in a small group of patients and has shown positive results over a short period of time. The system is therefore now being examined in a randomised clinical trial. Seventy-five patients aged between 4 and 8 years with a diagnosis of amblyopia will be randomised to one of three treatments with a ratio of 1:1:1 - I-BiT™ game, non-I-BiT™ game, and I-BiT™ DVD. They will be treated for 30 minutes once weekly for 6 weeks. Their visual acuity will be assessed independently at baseline, mid-treatment (week 3), at the end of treatment (week 6) and 4 weeks after completing treatment (week 10). The primary endpoint will be the change in visual acuity from baseline to the end of treatment. Secondary endpoints will be additional visual acuity measures, patient acceptability, compliance and the incidence of adverse events. This is the first randomised controlled trial using the I-BiT™ system. The results will determine if the I-BiT™ system is effective in the treatment of amblyopia and will also determine the optimal treatment for future development. ClinicalTrials.gov identifier: NCT01702727.

  12. First Peruvian binoculars

    NASA Astrophysics Data System (ADS)

    Baldwin, Guillermo; Gonzales, Franco; Pérez S., Carlos

    2017-11-01

    In Peru, as in almost all Latin America, precision optical industry is almost null. One reason is the scarcity of human and technological resources. But, a few years ago, a masters and diploma university program in optical engineering was started in our university: Pontificia Universidad Católica del Perú1 (PUCP) in Lima. Also, an optical shop on precision optics was implemented. Some students were trained at CIO in Leon, Mexico. In order to motivate optical business startups in Peru we planned to show some possibilities of optical devices fabrication trough doing prototypes. So, we started doing a small reflective telescope for moon observation2, 3, where mirror and ocular polishing and opto-mechanics had priority. Aluminum evaporation was included. Now, we do a new step developing a binocular, as we know, it never was made before in Peru. This work includes the binocular geometric optics and opto-mechanical designs, the ocular manufacturing, and the binocular characterization of an 8x35 binocular for amateur observation.

  13. Color vision abnormality as the sole manifestation of posterior reversible encephalopathy due to post-partum HELLP syndrome.

    PubMed

    Takahashi, Hironori; Matsubara, Teppei; Makino, Shinji; Horie, Kenji; Matsubara, Shigeki

    2017-03-01

    Posterior reversible encephalopathy syndrome (PRES) is associated with several symptoms; of those, visual acuity loss, light oversensitivity (photophobia), and light flashes (photopsia) are known as PRES-related eye symptoms. We report a post-partum woman with PRES associated with hemolysis, elevated liver enzymes, and low platelets syndrome (HELLP), in whom color vision abnormality (achromatopsia) was the sole manifestation. Cesarean section was performed at 28 weeks due to headache, epigastralgia, and severe hypertension. HELLP became evident after delivery. On post-partum day 1, she complained of achromatopsia, stating: "all things look brownish-gray". Ophthalmologic examination was normal, but brain magnetic resonance imaging showed occipital lobe lesions, indicative of PRES, and, interestingly, also color vision center (area V4) lesions, suggesting that the achromatopsia had been caused by brain damage. It may be prudent to question HELLP patients concerning achromatopsia. © 2017 Japan Society of Obstetrics and Gynecology.

  14. A rapid quantification of binocular misalignment without recording eye movements: Vertical and torsional alignment nulling.

    PubMed

    Beaton, Kara H; Shelhamer, Mark J; Roberts, Dale C; Schubert, Michael C

    2017-05-01

    Small, innate asymmetries between the left and right otolith organs can cause ocular misalignment with symptoms that include double vision and motion sickness. Additionally, ocular misalignment affects nearly 5% of the US population. We have developed a portable, non-invasive technology that uses subjective perception of binocular visual signals to estimate relative binocular alignment. The Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN) tests ask subjects to view one red and one blue line on a tablet computer while looking through color-matched red and blue filters so that each eye sees only one of the lines. Subjects align the red and blue lines, which are initially vertically offset from one another during VAN or rotated relative to one another during TAN, until they perceive a single continuous line. Ocular misalignments are inferred from actual offsets in the final line positions. During testing, all binocular visual cues are eliminated by employing active-matrix organic light-emitting diode (AMOLED) technology and testing in darkness. VAN and TAN can accurately account for visual offsets induced by prisms, and test-retest reliability is excellent, with resolution better than many current standard clinical tests. VAN and TAN tests are similar to the clinical Lancaster red-green test. However, VAN and TAN employ inexpensive, hand-held hardware that can be self-administered with results that are quickly quantifiable. VAN and TAN provide simple, sensitive, and quantitative measures of binocular positioning alignment that may be useful for detecting subtle abnormalities in ocular positioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Color vision abnormalities in type II diabetes: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study II report no 2

    PubMed Central

    Gella, Laxmi; Raman, Rajiv; Kulothungan, Vaitheeswaran; Pal, Swakshyar Saumya; Ganesan, Suganeswari; Srinivasan, Sangeetha; Sharma, Tarun

    2017-01-01

    Purpose: The purpose of this study is to assess color vision abnormalities in a cohort of subjects with type II diabetes and elucidate associated risk factors. Methods: Subjects were recruited from follow-up cohort of Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study I. Six hundred and seventy-three eyes of 343 subjects were included from this population-based study. All subjects underwent detailed ophthalmic evaluation, including the Farnsworth-Munsell 100 hue test. Results: The prevalence of impaired color vision (ICV) was 43% (CI: 39.2–46.7). Risk factors for ICV were higher heart rate (odds ratio [OR]: 1.043, [1.023–1.064]) and a higher intraocular pressure (IOP) (OR: 1.086, [1.012–1.165]). Subjects with clinically significant macular edema (CSME) had three times higher chance of having ICV. C1, C2, and C3 are the commonly found Early Treatment Diabetic Retinopathy Study (ETDRS) patterns. The moment of inertia method showed that the angle did not reveal any specific pattern of color vision defect. Although the major and minor radii were high in those with ICV, we did not observe polarity. Confusion index was high in subjects with ICV, indicating a severe color vision defect. Conclusions: The prevalence of ICV was 43% among subjects with type II diabetes. The most commonly observed patterns were increasing severities of the blue–yellow defect on ETDRS patterns, but no specific pattern was observed at the moment of inertia analysis. The presence of CSME, a higher heart rate, and IOP was significant risk factors for ICV. This functional impairment in color vision could significantly contribute to morbidity among subjects with diabetes. PMID:29044066

  16. Color vision abnormalities in type II diabetes: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study II report no 2.

    PubMed

    Gella, Laxmi; Raman, Rajiv; Kulothungan, Vaitheeswaran; Pal, Swakshyar Saumya; Ganesan, Suganeswari; Srinivasan, Sangeetha; Sharma, Tarun

    2017-10-01

    The purpose of this study is to assess color vision abnormalities in a cohort of subjects with type II diabetes and elucidate associated risk factors. Subjects were recruited from follow-up cohort of Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study I. Six hundred and seventy-three eyes of 343 subjects were included from this population-based study. All subjects underwent detailed ophthalmic evaluation, including the Farnsworth-Munsell 100 hue test. The prevalence of impaired color vision (ICV) was 43% (CI: 39.2-46.7). Risk factors for ICV were higher heart rate (odds ratio [OR]: 1.043, [1.023-1.064]) and a higher intraocular pressure (IOP) (OR: 1.086, [1.012-1.165]). Subjects with clinically significant macular edema (CSME) had three times higher chance of having ICV. C1, C2, and C3 are the commonly found Early Treatment Diabetic Retinopathy Study (ETDRS) patterns. The moment of inertia method showed that the angle did not reveal any specific pattern of color vision defect. Although the major and minor radii were high in those with ICV, we did not observe polarity. Confusion index was high in subjects with ICV, indicating a severe color vision defect. The prevalence of ICV was 43% among subjects with type II diabetes. The most commonly observed patterns were increasing severities of the blue-yellow defect on ETDRS patterns, but no specific pattern was observed at the moment of inertia analysis. The presence of CSME, a higher heart rate, and IOP was significant risk factors for ICV. This functional impairment in color vision could significantly contribute to morbidity among subjects with diabetes.

  17. Colour vision abnormality as the only manifestation of normal pressure hydrocephalus.

    PubMed

    Asensio-Sánchez, V M; Martín-Prieto, A

    2018-01-01

    The case is presented of a 73-year-old male patient who referred to having black and white vision. Computed tomography showed normal pressure hydrocephalus (NPH). Magnetic resonance imaging was not performed because the patient refused to undergo further examinations. Achromatopsia may be the first or only NPH symptom. It may be prudent to ask patients with NPH regarding colour vision. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Vision

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.

    1973-01-01

    Some data on human vision, important in present and projected space activities, are presented. Visual environment and performance and structure of the visual system are also considered. Visual perception during stress is included.

  19. Binocular fusion time in sleep-deprived subjects.

    DOT National Transportation Integrated Search

    1969-01-01

    The attainment of binocular single vision when the distance of gaze is changed is a component of total reaction time and may be critical in flight when the gaze is changed from the instrument panel to the outside or from the outside to the instrument...

  20. Retinal detachment in hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome: Color vision abnormality as the first and predominant manifestation.

    PubMed

    Morisawa, Hiroyuki; Makino, Shinji; Takahashi, Hironori; Sorita, Mari; Matsubara, Shigeki

    2015-11-01

    Serous retinal detachment is sometimes caused by hypertensive disorders in pregnancy and its associated conditions, in which the predominant eye symptoms are blurred vision, distorted vision, and reduced visual acuity. To our best knowledge, this is the first report of a puerperal woman with hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome in whom color vision abnormality was the first and predominant manifestation of serous retinal detachment. At 32 weeks of gestation, the 34-year-old Japanese woman underwent cesarean section due to HELLP syndrome. She complained of color vision abnormality on day 1 post-partum and ophthalmological examination revealed serous retinal detachment of both eyes. The visual acuity was preserved. With supportive therapy, her color vision abnormality gradually ameliorated and retinal detachment completely resolved on day 34 post-partum without any sequelae. Obstetricians should be aware that color vision abnormality can be the first and predominant symptom of HELLP-related serous retinal detachment. © 2015 Japan Society of Obstetrics and Gynecology.

  1. A new form of rapid binocular plasticity in adult with amblyopia

    PubMed Central

    Zhou, Jiawei; Thompson, Benjamin; Hess, Robert F.

    2013-01-01

    Amblyopia is a neurological disorder of binocular vision affecting up to 3% of the population resulting from a disrupted period of early visual development. Recently, it has been shown that vision can be partially restored by intensive monocular or dichoptic training (4–6 weeks). This can occur even in adults owing to a residual degree of brain plasticity initiated by repetitive and successive sensory stimulation. Here we show that the binocular imbalance that characterizes amblyopia can be reduced by occluding the amblyopic eye with a translucent patch for as little as 2.5 hours, suggesting a degree of rapid binocular plasticity in adults resulting from a lack of sensory stimulation. The integrated binocular benefit is larger in our amblyopic group than in our normal control group. We propose that this rapid improvement in function, as a result of reduced sensory stimulation, represents a new form of plasticity operating at a binocular site. PMID:24026421

  2. A new form of rapid binocular plasticity in adult with amblyopia.

    PubMed

    Zhou, Jiawei; Thompson, Benjamin; Hess, Robert F

    2013-01-01

    Amblyopia is a neurological disorder of binocular vision affecting up to 3% of the population resulting from a disrupted period of early visual development. Recently, it has been shown that vision can be partially restored by intensive monocular or dichoptic training (4-6 weeks). This can occur even in adults owing to a residual degree of brain plasticity initiated by repetitive and successive sensory stimulation. Here we show that the binocular imbalance that characterizes amblyopia can be reduced by occluding the amblyopic eye with a translucent patch for as little as 2.5 hours, suggesting a degree of rapid binocular plasticity in adults resulting from a lack of sensory stimulation. The integrated binocular benefit is larger in our amblyopic group than in our normal control group. We propose that this rapid improvement in function, as a result of reduced sensory stimulation, represents a new form of plasticity operating at a binocular site.

  3. The description of physical signs of illness in photographs by physicians with abnormal colour vision.

    PubMed

    Campbell, John L; Spalding, J Anthony B; Mir, Fraz A

    2004-07-01

    Physicians with congenital colour vision deficiency (CCVD) have reported difficulties recognising certain physical signs of illness, for example, jaundice, red rashes and pallor, and interpreting coloured charts, diagrams and slide projections. However, there has been little study of the effects of CCVD on the performance of medical practitioners. The aim of this study was to look for evidence of the effect of CCVD on the ability of physicians to recognise and describe physical signs of illness that have colour as either the main or an important feature. Twenty-three general practitioners with CCVD were shown 11 colour photographs depicting colour signs of illness and were asked to describe the signs they saw and rate their confidence in making their descriptions. Their responses were compared to those of 23 age-matched general practitioners with normal colour vision. General practitioners with CCVD compared to those with normal colour vision had less ability and confidence in detecting physical signs in the photographs and naming the colours. The results of this study support other evidence that physicians with CCVD have difficulties detecting some colour signs of illness and naming the colours. Because of the use of photographs the extent of the problem in clinical practice is unknown but medical practitioners with CCVD should be aware of the possibility of failing to detect or correctly assess physical signs that are characterised by colour.

  4. A binocular approach to treating amblyopia: antisuppression therapy.

    PubMed

    Hess, Robert F; Mansouri, Behzad; Thompson, Benjamin

    2010-09-01

    We developed a binocular treatment for amblyopia based on antisuppression therapy. A novel procedure is outlined for measuring the extent to which the fixing eye suppresses the fellow amblyopic eye. We hypothesize that suppression renders a structurally binocular system, functionally monocular. We demonstrate using three strabismic amblyopes that information can be combined normally between their eyes under viewing conditions where suppression is reduced. Also, we show that prolonged periods of viewing (under the artificial conditions of stimuli of different contrast in each eye) during which information from the two eyes is combined leads to a strengthening of binocular vision in such cases and eventual combination of binocular information under natural viewing conditions (stimuli of the same contrast in each eye). Concomitant improvement in monocular acuity of the amblyopic eye occurs with this reduction in suppression and strengthening of binocular fusion. Furthermore, in each of the three cases, stereoscopic function is established. This provides the basis for a new treatment of amblyopia, one that is purely binocular and aimed at reducing suppression as a first step.

  5. [Binocular functions in amblyopia and strabismus].

    PubMed

    Awaya, S; Sato, M; Tsuzuki, K; Takara, T; Hiraiwa, S; Ota, K; Arai, M; Yoshida, M; Miyake, Y; Terasaki, H; Horiguchi, M; Hirano, K; Hirose, H; Uno, Y; Suzuki, Y; Iwata, M; Takai, Y; Maeda, M; Hisano, S; Kawakita, T; Omura, T; Ota, Y; Kondo, N; Takashi, A; Kawakami, O

    1997-12-01

    Regarding the changing trends in the concept, definition, etiological classification, and criteria for diagnosis of amblyopia, we reviewed a total of 4,693 cases of amblyopia seen during the past 37 years. The amblyopia was divided into four types: strabismic, anisometropic, ametropic, and form vision deprivative. There was a definite trend for the incidence to decrease and for the diagnosis to be made during earlier age in recent years. Although favorable recovery of visual acuity is obtained after treatment of amblyopia and strabismus, there are difficulties in obtaining good binocular functions in early-onset amblyopia and strabismus. This feature was evaluated in regard to motion perception asymmetry (MPA) and binocular depth from motion (DFM). Many cases of early-onset amblyopia and strabismus showed no disparity stereopsis, or position stereopsis, in spite of the presence of DFM. The MPA appeared to be closely related to early-onset esotropia regardless of age, while it disappeared and motion perception became symmetric 4 to 5 months after birth in normal infants. The DFM seemed to play an important role in maintaining good motor alignment for several years after surgery. I developed a checkerboard pattern stimulator in 1978. This method proved to be useful in developing binocular functions and motor alignment by applying simultaneous bifoveolar stimulation and anti-suppression. Extensive exposure to the stimulation was essential for therapeutic success.

  6. The perception of depth from binocular disparity.

    DOT National Transportation Integrated Search

    1963-05-01

    This study was concerned with the factors involved in the perception of depth from a binocular disparity. A binocularly observed configuration of constant convergences, constant visual size, and having constant binocular disparities was made to appea...

  7. Aerial Reconnaissance Binoculars

    DTIC Science & Technology

    1974-06-01

    199212 Z= 8,51005 L= 0 M= 204139-4 N= . Table 1.2 Marginal ray height for zero degroos Ineldont rayo YO= .6 X ) Y= .60795 Z= 3-96631E-p X 0 Y= .6143...in high vibration environments where standard military binoculars (7 x 50) are only marginally helpful to the naked eye in the detection of targets...of-view 17.8 degrees Exit Pupil 9.65 mm Eye Relief 274 mm Size 4.5 x 8.75 x 3.5 inches Weight 4.3 lbs 3 2. Computer Design - Ray Tracing of Original

  8. New insights into amblyopia: binocular therapy and noninvasive brain stimulation.

    PubMed

    Hess, Robert F; Thompson, Benjamin

    2013-02-01

    The current approach to the treatment of amblyopia is problematic for a number of reasons. First, it promotes recovery of monocular vision but because it is not designed to promote binocularity, its binocular outcomes often are disappointing. Second, compliance is poor and variable. Third, the effectiveness of the treatment is thought to decrease with increasing age. We discuss 2 new approaches aimed at recovering visual function in adults with amblyopia. The first is a binocular approach to amblyopia treatment that is showing promise in initial clinical studies. The second is still in development and involves the use of well-established noninvasive brain stimulation techniques to temporarily alter the balance of excitation and inhibition in the visual cortex. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  9. An automated miniaturized Haploscope for testing binocular visual function

    NASA Technical Reports Server (NTRS)

    Decker, T. A.; Williams, R. E.; Kuether, C. L.; Wyman-Cornsweet, D.

    1976-01-01

    A computer-controlled binocular vision testing device has been developed as one part of a system designed for NASA to test the vision of astronauts during spaceflight. The device, called the Mark III Haploscope, utilizes semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phorias, fixation disparity and accommodation/convergence relationships. All tests are self-administered, yield quantitative data and may be used repeatedly without subject memorization. Future applications of this programmable, compact device include its use as a clinical instrument to perform routine eye examinations or vision screening, and as a research tool to examine the effects of environment or work-cycle upon visual function.

  10. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  11. Attention model of binocular rivalry

    PubMed Central

    Rankin, James; Rinzel, John; Carrasco, Marisa; Heeger, David J.

    2017-01-01

    When the corresponding retinal locations in the two eyes are presented with incompatible images, a stable percept gives way to perceptual alternations in which the two images compete for perceptual dominance. As perceptual experience evolves dynamically under constant external inputs, binocular rivalry has been used for studying intrinsic cortical computations and for understanding how the brain regulates competing inputs. Converging behavioral and EEG results have shown that binocular rivalry and attention are intertwined: binocular rivalry ceases when attention is diverted away from the rivalry stimuli. In addition, the competing image in one eye suppresses the target in the other eye through a pattern of gain changes similar to those induced by attention. These results require a revision of the current computational theories of binocular rivalry, in which the role of attention is ignored. Here, we provide a computational model of binocular rivalry. In the model, competition between two images in rivalry is driven by both attentional modulation and mutual inhibition, which have distinct selectivity (feature vs. eye of origin) and dynamics (relatively slow vs. relatively fast). The proposed model explains a wide range of phenomena reported in rivalry, including the three hallmarks: (i) binocular rivalry requires attention; (ii) various perceptual states emerge when the two images are swapped between the eyes multiple times per second; (iii) the dominance duration as a function of input strength follows Levelt’s propositions. With a bifurcation analysis, we identified the parameter space in which the model’s behavior was consistent with experimental results. PMID:28696323

  12. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2003-02-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The first of two 8.4-meter borosilicate honeycomb primary mirrors for LBT is being polished at the Steward Observatory Mirror Lab this year. The second of the two 8.4-meter mirror blanks waits its turn in the polishing queue. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4-arcminute diameter field-of-view. These adaptive secondary mirrors with 672 voice-coil actuators are now in the early stages of fabrication. The interferometric focus combining the light from the two 8.4-meter primaries will reimage the two folded Gregorian focal planes to three central locations for phased array imaging. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure was fabricated and pre-assembled in Italy by Ansaldo-Camozzi in Milan. The structure was disassembled, packed and shipped to Arizona. The enclosure was built on Mt. Graham and is ready for telescope installation.

  13. Association between fine motor skills and binocular visual function in children with reading difficulties.

    PubMed

    Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W

    2017-12-01

    Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  15. Natural images dominate in binocular rivalry

    PubMed Central

    Baker, Daniel H.; Graf, Erich W.

    2009-01-01

    Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance. PMID:19289828

  16. The effect of abnormal colour vision on the ability to identify and outline coloured clinical signs and to count stained bacilli in sputum.

    PubMed

    Campbell, John L; Griffin, Lewis; Spalding, J Anthony B; Mir, Fraz A

    2005-11-01

    To determine if medical practitioners with congenital colour vision deficiencies (CCVD) are less able to identify and delineate the extent of coloured abnormal signs than those with normal colour vision. Twenty-two medical practitioners with CCVD and 17 with normal colour vision, matched for age and gender, were shown 10 photographs. They were asked to identify and outline the extent of the clinical sign in eight that were of vomit or stool (six of these showing fresh blood), one of a skin rash and for one to mark the position of bacilli in sputum stained by the Ziehl-Neelsen method. There were statistically significant differences between the CCVD practitioners and those with normal colour vision in their ability to outline abnormalities in five of the six photographs that showed fresh blood, in the photograph of a rash and in marking the position of bacilli in the photograph of a stained slide. Medical practitioners with CCVD are handicapped in their evaluation of the presence and extent of coloured clinical signs. Medical schools should ensure that students with CCVD are aware of their deficiency and know its severity, so they can take special care in clinical practice.

  17. Latent binocular function in amblyopia.

    PubMed

    Chadnova, Eva; Reynaud, Alexandre; Clavagnier, Simon; Hess, Robert F

    2017-11-01

    Recently, psychophysical studies have shown that humans with amblyopia do have binocular function that is not normally revealed due to dominant suppressive interactions under normal viewing conditions. Here we use magnetoencephalography (MEG) combined with dichoptic visual stimulation to investigate the underlying binocular function in humans with amblyopia for stimuli that, because of their temporal properties, would be expected to bypass suppressive effects and to reveal any underlying binocular function. We recorded contrast response functions in visual cortical area V1 of amblyopes and normal observers using a steady state visually evoked responses (SSVER) protocol. We used stimuli that were frequency-tagged at 4Hz and 6Hz that allowed identification of the responses from each eye and were of a sufficiently high temporal frequency (>3Hz) to bypass suppression. To characterize binocular function, we compared dichoptic masking between the two eyes in normal and amblyopic participants as well as interocular phase differences in the two groups. We observed that the primary visual cortex responds less to the stimulation of the amblyopic eye compared to the fellow eye. The pattern of interaction in the amblyopic visual system however was not significantly different between the amblyopic and fellow eyes. However, the amblyopic suppressive interactions were lower than those observed in the binocular system of our normal observers. Furthermore, we identified an interocular processing delay of approximately 20ms in our amblyopic group. To conclude, when suppression is greatly reduced, such as the case with our stimulation above 3Hz, the amblyopic visual system exhibits a lack of binocular interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  19. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  20. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  1. Effects of cortical damage on binocular depth perception

    PubMed Central

    2016-01-01

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269597

  2. The evaluation of partial binocular overlap on car maneuverability: A pilot study

    NASA Technical Reports Server (NTRS)

    Tsou, Brian H.; Rogers-Adams, Beth M.; Goodyear, Charles D.

    1992-01-01

    An engineering approach to enlarge the helmet mounted display (HMD) field of view (FOV) and maintain resolution and weight by partially overlapping the binocular FOV has received renewed interest among human factors scientists. It is evident, based on the brief literature review, that any panoramic display with a binocular overlap, less than a minimum amount, annoys the viewer, degrades performance, and elicits undesirable behavior. The major finding is that across the 60 deg conditions, subjects moved their heads a greater distance (by about 5 degs on each side) than in the 180 deg condition, presumably to compensate for the lack of FOV. It is quite clear that the study, based on simple car maneuverability and two subjects, reveals differences in FOV, but nothing significant between binocular overlap levels and configurations. This tentatively indicates that some tradeoffs of binocular vision for a larger overall display FOV are acceptable.

  3. Binocular combination of stimulus orientation.

    PubMed

    Yehezkel, O; Ding, J; Sterkin, A; Polat, U; Levi, D M

    2016-11-01

    When two sine waves that differ slightly in orientation are presented to the two eyes separately, a single cyclopean sine wave is perceived. However, it is unclear how the brain calculates its orientation. Here, we used a signal detection rating method to estimate the perceived orientation when the two eyes were presented with Gabor patches that differed in both orientation and contrast. We found a nearly linear combination of orientation when both targets had the same contrast. However, the binocular percept shifted away from the linear prediction towards the orientation with the higher contrast, depending on both the base contrast and the contrast ratio. We found that stimuli that differ slightly in orientation are combined into a single percept, similarly for monocular and binocular presentation, with a bias that depends on the interocular contrast ratio. Our results are well fitted by gain-control models, and are consistent with a previous study that favoured the DSKL model that successfully predicts binocular phase and contrast combination and binocular contrast discrimination. In this model, the departures from linearity may be explained on the basis of mutual suppression and mutual enhancement, both of which are stronger under dichoptic than monocular conditions.

  4. A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development.

    PubMed

    Hess, R F; Mansouri, B; Thompson, B

    2010-01-01

    The present treatments for amblyopia are predominantly monocular aiming to improve the vision in the amblyopic eye through either patching of the fellow fixing eye or visual training of the amblyopic eye. This approach is problematic, not least of which because it rarely results in establishment of binocular function. Recently it has shown that amblyopes possess binocular cortical mechanisms for both threshold and suprathreshold stimuli. We outline a novel procedure for measuring the extent to which the fixing eye suppresses the fellow amblyopic eye, rendering what is a structurally binocular system, functionally monocular. Here we show that prolonged periods of viewing (under the artificial conditions of stimuli of different contrast in each eye) during which information from the two eyes is combined leads to a strengthening of binocular vision in strabismic amblyopes and eventual combination of binocular information under natural viewing conditions (stimuli of the same contrast in each eye). Concomitant improvement in monocular acuity of the amblyopic eye occurs with this reduction in suppression and strengthening of binocular fusion. Furthermore, in a majority of patients tested, stereoscopic function is established. This provides the basis for a new treatment of amblyopia, one that is purely binocular and aimed at reducing suppression as a first step.

  5. Development and matching of binocular orientation preference in mouse V1

    PubMed Central

    Bhaumik, Basabi; Shah, Nishal P.

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927

  6. Development and matching of binocular orientation preference in mouse V1.

    PubMed

    Bhaumik, Basabi; Shah, Nishal P

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  7. A special role for binocular visual input during development and as a component of occlusion therapy for treatment of amblyopia.

    PubMed

    Mitchell, Donald E

    2008-01-01

    To review work on animal models of deprivation amblyopia that points to a special role for binocular visual input in the development of spatial vision and as a component of occlusion (patching) therapy for amblyopia. The studies reviewed employ behavioural methods to measure the effects of various early experiential manipulations on the development of the visual acuity of the two eyes. Short periods of concordant binocular input, if continuous, can offset much longer daily periods of monocular deprivation to allow the development of normal visual acuity in both eyes. It appears that the visual system does not weigh all visual input equally in terms of its ability to impact on the development of vision but instead places greater weight on concordant binocular exposure. Experimental models of patching therapy for amblyopia imposed on animals in which amblyopia had been induced by a prior period of early monocular deprivation, indicate that the benefits of patching therapy may be only temporary and decline rapidly after patching is discontinued. However, when combined with critical amounts of binocular visual input each day, the benefits of patching can be both heightened and made permanent. Taken together with demonstrations of retained binocular connections in the visual cortex of monocularly deprived animals, a strong argument is made for inclusion of specific training of stereoscopic vision for part of the daily periods of binocular exposure that should be incorporated as part of any patching protocol for amblyopia.

  8. Stereo vision and strabismus

    PubMed Central

    Read, J C A

    2015-01-01

    Binocular stereopsis, or stereo vision, is the ability to derive information about how far away objects are, based solely on the relative positions of the object in the two eyes. It depends on both sensory and motor abilities. In this review, I briefly outline some of the neuronal mechanisms supporting stereo vision, and discuss how these are disrupted in strabismus. I explain, in some detail, current methods of assessing stereo vision and their pros and cons. Finally, I review the evidence supporting the clinical importance of such measurements. PMID:25475234

  9. Binocular rivalry from invisible patterns

    PubMed Central

    Zou, Jinyou; He, Sheng; Zhang, Peng

    2016-01-01

    Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535

  10. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  11. Binocular Combination of Second-Order Stimuli

    PubMed Central

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  12. Binocular function to increase visual outcome in patients implanted with a diffractive trifocal intraocular lens.

    PubMed

    Kretz, Florian T A; Müller, Matthias; Gerl, Matthias; Gerl, Ralf H; Auffarth, Gerd U

    2015-08-21

    To evaluate binocular visual outcome for near, intermediate and distance compared to monocular visual outcome at the same distances in patients implanted with a diffractive trifocal intraocular lens (IOL). The study comprised of 100 eyes of 50 patients that underwent bilateral refractive lens exchange or cataract surgery with implantation of a multifocal diffractive IOL (AT LISA tri 839MP, Carl Zeiss Meditech, Germany). A complete ophthalmological examination was performed preoperatively and 3 month postoperatively. The main outcome measures were monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), uncorrected intermediate (UIVA), and uncorrected near visual acuities (UNVA), keratometry, and manifest refraction. The mean age was 59.28 years ± 9.6 [SD] (range 44-79 years), repectively. There was significant improvement in UDVA, UIVA, UNVA and CDVA. Comparing the monocular results to the binocular results there was a statistical significant better binocular outcome in all distances (UDVA p = 0.036; UIVA p < 0.0001; UNVA p = 0.001). The postoperative manifest refraction was in 86 % of patients within ± 0.50 [D]. The trifocal IOL improved near, intermediate, and distance vision compared to preoperatively. In addition a statistical significant increase for binocular visual function in all distances could be found. German Clinical Trials Register (DRKS) DRKS00007837.

  13. Fresnel prisms and their effects on visual acuity and binocularity.

    PubMed Central

    Véronneau-Troutman, S

    1978-01-01

    1. The visual acuity with the Fresnel membrane prism is significantly less than that with the conventional prism of the same power for all prism powers from 12 delta through 30 delata at distance and from 15 delta through 30 delta at near. 2. The difference in the visual acuity between base up and base down, and between base in and base out, is not significantly different for either the Fresnel membrane prism or for the conventional prism. 3. For both Fresnel membrane prism and the conventional prism, the visual acuity when looking straight ahead. 4. Using Fresnel membrane prisms of the same power from different lots, the visual acuity varied significantly. The 30 delta prism caused the widest range in visual acuity. 5. When normal subjects are fitted with the higher powers of the Fresnel membrane prism, fusion and stereopsis are disrupted to such an extent that the use of this device to restore or to improve binocular vision in cases with large-angle deviations is seriously questioned. 6. Moreover, the disruption of fusion and stereopsis is abrupt and severe and does not parallel the decrease in visual acuity. The severely reduced ability to maintain fusion may be related to the optical aberrations, which, in turn, may be due to the molding process and the polyvinyl chloride molding material. 7. Through the flexibility of the membrane prism is a definite advantage, because of its proclivity to reduce visual acuity and increase aberrations its prescription for adults often must be limited to only one eye. 8. For the same reasons in the young child with binocular vision problems, the membrane prism presently available should be prescribed over both eyes only in powers less than 20 delta. When the membrane prism is to be used as a partial occluder (over one eye only), any power can be used. 9. The new Fresnel "hard" prism reduces visual acuity minimally and rarely disrupts binocularity, thus increasing the potential for prismotherapy to establish binocularity. This

  14. Contrast masking in strabismic amblyopia: attenuation, noise, interocular suppression and binocular summation.

    PubMed

    Baker, Daniel H; Meese, Tim S; Hess, Robert F

    2008-07-01

    To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrast discrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224-1243.] was 'lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.

  15. Exploring the Night Sky with Binoculars

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    On a clear, starry night, the jewelled beauty and unimaginable immensity of our Universe is awe-inspiring. Star-gazing with binoculars is rewarding and may begin a lifelong hobby! Patrick Moore has painstakingly researched Exploring the Night Sky with Binoculars to describe how to use binoculars for astronomical observation. He explains basic astronomy and the selection of binoculars, then discusses the stars, clusters, nebulae and galaxies that await the observer. The sky seen from northern and southern hemispheres is charted season by season, with detailed maps of all the constellations. The reader can also observe the Sun, Moon, planets, comets and meteors. With many beautiful illustrations, this handbook will be helpful and encouraging to casual observers and those cultivating a more serious interest. The enjoyment of amateur astronomy is now available to everybody.

  16. Binocular summation and peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Gilliland, K.; Haines, R. F.

    1975-01-01

    Six males were administered a peripheral visual response time test to the onset of brief small stimuli imaged in 10-deg arc separation intervals across the dark adapted horizontal retinal meridian under both binocular and monocular viewing conditions. This was done in an attempt to verify the existence of peripheral binocular summation using a response time measure. The results indicated that from 50-deg arc right to 50-deg arc left of the line of sight binocular summation is a reasonable explanation for the significantly faster binocular data. The stimulus position by viewing eye interaction was also significant. A discussion of these and other analyses is presented along with a review of related literature.

  17. Binocular summation for reflexive eye movements

    PubMed Central

    Quaia, Christian; Optican, Lance M.; Cumming, Bruce G.

    2018-01-01

    Psychophysical studies and our own subjective experience suggest that, in natural viewing conditions (i.e., at medium to high contrasts), monocularly and binocularly viewed scenes appear very similar, with the exception of the improved depth perception provided by stereopsis. This phenomenon is usually described as a lack of binocular summation. We show here that there is an exception to this rule: Ocular following eye movements induced by the sudden motion of a large stimulus, which we recorded from three human subjects, are much larger when both eyes see the moving stimulus, than when only one eye does. We further discovered that this binocular advantage is a function of the interocular correlation between the two monocular images: It is maximal when they are identical, and reduced when the two eyes are presented with different images. This is possible only if the neurons that underlie ocular following are sensitive to binocular disparity. PMID:29621384

  18. Binocular contrast discrimination needs monocular multiplicative noise.

    PubMed

    Ding, Jian; Levi, Dennis M

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.

  19. Binocular contrast discrimination needs monocular multiplicative noise

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370

  20. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.

    PubMed

    Walton, Mark M G; Mustari, Michael J

    2015-08-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.

  1. Measurement of suprathreshold binocular interactions in amblyopia.

    PubMed

    Mansouri, B; Thompson, B; Hess, R F

    2008-12-01

    It has been established that in amblyopia, information from the amblyopic eye (AME) is not combined with that from the fellow fixing eye (FFE) under conditions of binocular viewing. However, recent evidence suggests that mechanisms that combine information between the eyes are intact in amblyopia. The lack of binocular function is most likely due to the imbalanced inputs from the two eyes under binocular conditions [Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007b). Binocular summation of contrast remains intact in strabismic amblyopia. Investigative Ophthalmology & Visual Science, 48(11), 5332-5338]. We have measured the extent to which the information presented to each eye needs to differ for binocular combination to occur and in doing so we quantify the influence of interocular suppression. We quantify these suppressive effects for suprathreshold processing of global stimuli for both motion and spatial tasks. The results confirm the general importance of these suppressive effects in rendering the structurally binocular visual system of a strabismic amblyope, functionally monocular.

  2. Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.

    PubMed

    Rowe, Fiona J; Hanif, Sahira

    2011-06-01

    To compare the range of ocular rotations measured by Octopus versus Goldmann perimetry. Forty subjects (20 controls and 20 patients with impaired ocular movements) were prospectively recruited, age range 21-83 years. Range of uniocular rotations was measured in six vectors corresponding to extraocular muscle actions: 0°, 67°, 141°, 180°, 216°, 293°. Fields of binocular single vision were assessed at 30° intervals. Vector measurements were utilised to calculate an area score for the field of uniocular rotations or binocular field of single vision. Two test speeds were used for Octopus testing: 3°/ and 10°/second. Test duration was two thirds quicker for Octopus 10°/second than for 3°/second stimulus speed, and slightly quicker for Goldmann. Mean area for control subjects for uniocular field was 7910.45 degrees(2) for Goldmann, 7032.14 for Octopus 3°/second and 7840.66 for Octopus 10°/second. Mean area for patient subjects of right uniocular field was 8567.21 degrees(2) for Goldmann, 5906.72 for Octopus 3°/second and 8806.44 for Octopus 10°/second. Mean area for left uniocular field was 8137.49 degrees(2) for Goldmann, 8127.9 for Octopus 3°/second and 8950.54 for Octopus 10°/second. Range of measured rotation was significantly larger for Octopus 10°/second speed. Our results suggest that the Octopus perimeter is an acceptable alternative method of assessment for uniocular ductions and binocular field of single vision. Speed of stimulus significantly alters test duration for Octopus perimetry. Comparisons of results from both perimeters show that quantitative measurements differ, although qualitatively the results are similar. Differences per mean vectors were less than 5° (within clinically accepted variances) for both controls and patients when comparing Goldmann to Octopus 10°/second speed. However, differences were almost 10° for the patient group when comparing Goldmann to Octopus 3°/second speed. Thus, speed of stimulus must be considered

  3. Impairment of acquired color vision in multiple sclerosis: an early diagnostic sign linked to the greatness of disease.

    PubMed

    Piro, Anna; Tagarelli, Antonio; Nicoletti, Giuseppe; Scannapieco, Sara; Polidoro, Serena; Valentino, Paola; Quattrone, Aldo

    2018-02-01

    To assess the type and degree of both red-green and blue-yellow color vision deficiencies of Calabrian males affected by multiple sclerosis. Eighty Calabrian male patients were enrolled (age range 18-70 years; mean age 40.6 ± 12.4 years) showing a disease duration mean of 10.6 ± 8.2 years (range = 0.5-46 years) coming from the Institute of Neurology, Magna Graecia University, Catanzaro. Optic neuritis present in the medical histories of the 21 patients does not influence color vision. Excluding seven colorblind subjects and one affected by a bilateral maculopathy, the analyzed sample group was 72. Seventy controls were matched for age and sex. An ophthalmologist examined all patients and controls in order to rule out diabetic retinopathy, cataracts, senile maculopathy, or ocular fundus' anomalies. The Ishihara test identified the colorblind patients. The City University Test screened for people with abnormal color vision by grading the severity of color vision deficiency. The second part of the City University Test as well as the Farnsworth Test confirmed both the color vision deficiency type and degree. Fifty-one percentage (37/72) of the patients showing a color vision deficiency were subdivided into two subgroups: subgroup one showed red-green deficiency (57%, 21/37); subgroup two showed a coupled red-green and blue-yellow deficiency (43%, 16/37). Furthermore, we found two distinct curves showing a groove within the first 10 years of the disease. Both monocular and binocular analyses allowed us to identify the patients showing the monocular color vision deficiency, but they were well compensated by binocular vision. We think that the majority of the patients with the red-green deficiency will develop the coupled red-green and blue-yellow deficiency in the latter years of multiple sclerosis.

  4. A novel apparatus for testing binocular function using the 'CyberDome' three-dimensional hemispherical visual display system.

    PubMed

    Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K

    2009-11-01

    Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.

  5. The effect of Bangerter filters on binocular function in observers with amblyopia.

    PubMed

    Chen, Zidong; Li, Jinrong; Thompson, Benjamin; Deng, Daming; Yuan, Junpeng; Chan, Lily; Hess, Robert F; Yu, Minbin

    2014-10-28

    We assessed whether partial occlusion of the nonamblyopic eye with Bangerter filters can immediately reduce suppression and promote binocular summation of contrast in observers with amblyopia. In Experiment 1, suppression was measured for 22 observers (mean age, 20 years; range, 14-32 years; 10 females) with strabismic or anisometropic amblyopia and 10 controls using our previously established "balance point" protocol. Measurements were made at baseline and with 0.6-, 0.4-, and 0.2-strength Bangerter filters placed over the nonamblyopic/dominant eye. In Experiment 2, psychophysical measurements of contrast sensitivity were made under binocular and monocular viewing conditions for 25 observers with anisometropic amblyopia (mean age, 17 years; range, 11-28 years; 14 females) and 22 controls (mean age, 24 years; range, 22-27; 12 female). Measurements were made at baseline, and with 0.4- and 0.2-strength Bangerter filters placed over the nonamblyopic/dominant eye. Binocular summation ratios (BSRs) were calculated at baseline and with Bangerter filters in place. Experiment 1: Bangerter filters reduced suppression in observers with amblyopia and induced suppression in controls (P = 0.025). The 0.2-strength filter eliminated suppression in observers with amblyopia and this was not a visual acuity effect. Experiment 2: Bangerter filters were able to induce normal levels of binocular contrast summation in the group of observers with anisometropic amblyopia for a stimulus with a spatial frequency of 3 cycles per degree (cpd, P = 0.006). The filters reduced binocular summation in controls. Bangerter filters can immediately reduce suppression and promote binocular summation for mid/low spatial frequencies in observers with amblyopia. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Symptomatic accommodative and binocular dysfunctions from the use of flat-panel displays

    PubMed Central

    Porcar, Esteban; Montalt, Juan Carlos; Pons, Álvaro M.; España-Gregori, Enrique

    2018-01-01

    AIM To determine the presence of symptomatic accommodative and non-strabismic binocular dysfunctions (ANSBD) in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. METHODS One hundred and one VDU users, aged between 20 to 34y, initially participated in the study. This study excluded contact-lens wearers and subjects who had undergone refractive surgery or had any systemic or ocular disease. First, subjects were asked about the type and nature of eye symptoms they experienced during VDU use. Then, a thorough eye examination excluded those subjects with a significant uncorrected refractive error or other problem, such as ocular motility disorders, vertical deviation, strabismus and eye diseases. Finally, the remaining participants underwent an exhaustive assessment of their accommodative and binocular vision status. RESULTS Eighty-nine VDU users (46 females and 43 males) were included in this study. They used flat-panel displays for an average of 5±1.9h a day. Twenty subjects presented ANSBD (22.5%). Convergence excess was the most frequent non-strabismic binocular dysfunction (9 subjects), followed by fusional vergence dysfunction (3 subjects) and convergence insufficiency (2 subjects). Within the accommodative dysfunctions, accommodative excess was the most common (4 subjects), followed by accommodative insufficiency (2 subjects). Moderate to severe eye symptoms were found in 13 subjects with ANSBD. CONCLUSION Significant eye symptoms in VDU users with accommodative and/or non-strabismic binocular dysfunctions often occur and should not be underestimated; therefore, an appropriate evaluation of accommodative and binocular vision status is more important for this population. PMID:29600186

  7. Real-Time Gaze Holding in Binocular Robot Vision

    DTIC Science & Technology

    1992-06-01

    could have strong implications for visual perception for locomotion. Some results [Bandopadhay, 1986; Aloimonos et al., 1988; Raviv and Herman, 1991...34 In SPIE v. 119, Applications of Digital Image Processing, pages 197-205, San Diego, 1977. [ Raviv and Herman, 1991] Daniel Raviv and Martin Herman...ohlps ft~eshv dqaehg rqec cw te, utte erodcý- d s ii.vc t fle iach ,. oth rio tal van eric lIN (b)IsOw am Imgoaflr pidcalm JOwfile Ths mag iI otlr

  8. [Binocular fusion method for prevention of myopia].

    PubMed

    Xu, G D

    1989-03-01

    When looking at a far object with two eyes, relaxation of convergence and accommodation occurred and accompanied by binocular fusion. Using this phenomenon a method of binocular fusion of targets was designed, that is the distance between two targets are just the same as the distance between two visual lines, while looking at a far object. During the images of the targets are fused, the accommodation and convergence are relaxed concomitantly; thus a result of correction of pseudomyopia and prevention of myopia is achieved. By means of binocular fusion, the eye muscle exercises were conducted and resulted in not only the far point further but also the near point closer. The skiascopic examination carried out at the same time of binocular fusion showed that the degrees of relaxed accommodation was 97.9% that of looking at an object in far distance. The above results indicated that the binocular fusion method had excellent effect on the prevention of myopia. This method is simple and feasible, conforms to the visual physiology, and thus can be widely adopted.

  9. What is Grouping during Binocular Rivalry?

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2011-01-01

    During binocular rivalry, perception alternates between dissimilar images presented dichoptically. Although perception during rivalry is believed to originate from competition at a local level, different rivalry zones are not independent: rival targets that are spaced apart but have similar features tend to be dominant at the same time. We investigated grouping of spatially separated rival targets presented to the same or to different eyes and presented in the same or in different hemifields. We found eye-of-origin to be the strongest cue for grouping during binocular rivalry. Grouping was additionally affected by orientation: identical orientations were grouped longer than dissimilar orientations, even when presented to different eyes. Our results suggest that eye-based and orientation-based grouping is independent and additive in nature. Grouping effects were further modulated by the distribution of the targets across the visual field. That is, grouping within the same hemifield can be stronger or weaker than between hemifields, depending on the eye-of-origin of the grouped targets. We also quantified the contribution of the previous cues to grouping of two images during binocular rivalry. These quantifications can be successfully used to predict the dominance durations of different studies. Incorporating the relative contribution of different cues to grouping, and the dependency on hemifield, into future models of binocular rivalry will prove useful in our understanding of the functional and anatomical basis of the phenomenon of binocular rivalry. PMID:22022312

  10. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    PubMed

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Binocular iPad Game vs Patching for Treatment of Amblyopia in Children: A Randomized Clinical Trial.

    PubMed

    Kelly, Krista R; Jost, Reed M; Dao, Lori; Beauchamp, Cynthia L; Leffler, Joel N; Birch, Eileen E

    2016-12-01

    Fellow eye patching has long been the standard treatment for amblyopia, but it does not always restore 20/20 vision or teach the eyes to work together. Amblyopia can be treated with binocular games that rebalance contrast between the eyes so that a child may overcome suppression. However, it is unclear whether binocular treatment is comparable to patching in treating amblyopia. To assess the effectiveness of a binocular iPad (Apple Inc) adventure game as amblyopia treatment and compare this binocular treatment with patching, the current standard of care. This investigation was a randomized clinical trial with a crossover design at a nonprofit eye research institute. Between February 20, 2015, and January 4, 2016, a total of 28 patients were enrolled in the study, with 14 randomized to binocular game treatment and 14 to patching treatment. Binocular game and patching as amblyopia treatments. The primary outcome was change in amblyopic eye best-corrected visual acuity (BCVA) at the 2-week visit. Secondary outcomes were change in stereoacuity and suppression at the 2-week visit and change in BCVA at the 4-week visit. Among 28 children, the mean (SD) age at baseline was 6.7 (1.4) years (age range, 4.6-9.5 years), and 7 (25%) were female. At baseline, the mean (SD) amblyopic eye BCVA was 0.48 (0.14) logMAR (approximately 20/63; range, 0.3-0.8 logMAR [20/40 to 20/125]), with 14 children randomized to the binocular game and 14 to patching for 2 weeks. At the 2-week visit, improvement in amblyopic eye BCVA was greater with the binocular game compared with patching, with a mean (SD) improvement of 0.15 (0.08) logMAR (mean [SD], 1.5 [0.8] lines) vs 0.07 (0.08) logMAR (mean [SD], 0.7 [0.8] line; P = .02) after 2 weeks of treatment. These improvements from baseline were significant for the binocular game (mean [SD] improvement, 1.5 [0.8] lines; P < .001) and for patching (mean [SD] improvement, 0.7 [0.8] line; P = .006). Depth of suppression improved from baseline

  12. Neural architectures for stereo vision.

    PubMed

    Parker, Andrew J; Smith, Jackson E T; Krug, Kristine

    2016-06-19

    Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  13. 21 CFR 886.5120 - Low-power binocular loupe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-power binocular loupe. 886.5120 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5120 Low-power binocular loupe. (a) Identification. A low-power binocular loupe is a device that consists of two eyepieces, each with a lens or lens...

  14. Slower Rate of Binocular Rivalry in Autism

    PubMed Central

    Kravitz, Dwight J.; Freyberg, Jan; Baron-Cohen, Simon; Baker, Chris I.

    2013-01-01

    An imbalance between cortical excitation and inhibition is a central component of many models of autistic neurobiology. We tested a potential behavioral footprint of this proposed imbalance using binocular rivalry, a visual phenomenon in which perceptual experience is thought to mirror the push and pull of excitatory and inhibitory cortical dynamics. In binocular rivalry, two monocularly presented images compete, leading to a percept that alternates between them. In a series of trials, we presented separate images of objects (e.g., a baseball and a broccoli) to each eye using a mirror stereoscope and asked human participants with autism and matched control subjects to continuously report which object they perceived, or whether they perceived a mixed percept. Individuals with autism demonstrated a slower rate of binocular rivalry alternations than matched control subjects, with longer durations of mixed percepts and an increased likelihood to revert to the previously perceived object when exiting a mixed percept. Critically, each of these findings was highly predictive of clinical measures of autistic symptomatology. Control “playback” experiments demonstrated that differences in neither response latencies nor response criteria could account for the atypical dynamics of binocular rivalry we observed in autistic spectrum conditions. Overall, these results may provide an index of atypical cortical dynamics that may underlie both the social and nonsocial symptoms of autism. PMID:24155303

  15. Fine Motor Skills of Children With Amblyopia Improve Following Binocular Treatment.

    PubMed

    Webber, Ann L; Wood, Joanne M; Thompson, Benjamin

    2016-09-01

    The purpose of this study was to determine whether reduced fine motor skills in children with amblyopia improve after binocular treatment and whether improvements are sustained once treatment has ceased. Fine motor skills (FMS [Bruininks-Oseretsky Test of Motor Proficiency]), visual acuity (VA [Early Treatment of Diabetic Retinopathy Study chart]) and level of binocular function (BF [Randot preschool stereoacuity and Worth 4 Dot]) were measured in children with amblyopia (n = 20; age: 8.5 ± 1.3 years; 11 anisometropic; 5 strabismic; 4 mixed) and in a group of visually normal children (n = 10; age: 9.63 ± 1.6 years). Eighteen children with amblyopia subsequently completed 5 weeks of binocular treatment provided by home-based dichoptic iPod game play. FMS, VA, and BF were retested at the end of treatment and 12 weeks after treatment cessation. All visually normal children also completed FMS measurements at baseline and 5 weeks later to assess test-retest variability of the FMS scores. Prior to treatment, FMS scores in children with amblyopia were poorer than those in children with normal vision (P < 0.05). In the children with amblyopia, binocular treatment significantly improved FMS scores (P < 0.05). Better baseline amblyopic eye VA and BF were associated with greater improvements in FMS score. Improvements were still evident at 12 weeks post treatment. In the visually normal children, FMS scores remained stable across the two test sessions. Binocular treatment provided by dichoptic iPod game play improved FMS performance in children with amblyopia, particularly in those with less severe amblyopia. Improvements were maintained at 3 months following cessation of treatment.

  16. Discrimination of binocular color mixtures in dichromacy: evaluation of the Maxwell-Cornsweet conjecture

    NASA Astrophysics Data System (ADS)

    Knoblauch, Kenneth; McMahon, Matthew J.

    1995-10-01

    We tested the Maxwell-Cornsweet conjecture that differential spectral filtering of the two eyes can increase the dimensionality of a dichromat's color vision. Sex-linked dichromats wore filters that differentially passed long- and middle-wavelength regions of the spectrum to each eye. Monocularly, temporal modulation thresholds (1.5 Hz) for color mixtures from the Rayleigh region of the spectrum were accounted for by a single, univariant mechanism. Binocularly, univariance was rejected because, as in monocular viewing by trichromats, in no color direction could silent substitution of the color mixtures be obtained. Despite the filter-aided increase in dimension, estimated wavelength discrimination was quite poor in this spectral region, suggesting a limit to the effectiveness of this technique. binocular summation.

  17. Use of a Binocular Optical Coherence Tomography System to Evaluate Strabismus in Primary Position.

    PubMed

    Chopra, Reena; Mulholland, Pádraig J; Tailor, Vijay K; Anderson, Roger S; Keane, Pearse A

    2018-05-31

    deviation was visible in 1 participant (6.7%). These findings suggest that binocular anterior segment OCT imaging can provide clinicians with a precise measurement of strabismus. The prototype can potentially incorporate several binocular vision tests that will provide quantitative data for the assessment, diagnosis, and monitoring of ocular misalignments.

  18. Brief Daily Periods of Unrestricted Vision Can Prevent Form-Deprivation Amblyopia

    PubMed Central

    Wensveen, Janice M.; Harwerth, Ronald S.; Hung, Li-Fang; Ramamirtham, Ramkumar; Kee, Chea-su; Smith, Earl L.

    2006-01-01

    PURPOSE To characterize how the mechanisms that produce unilateral form-deprivation amblyopia integrate the effects of normal and abnormal vision over time, the effects of brief daily periods of unrestricted vision on the spatial vision losses produced by monocular form deprivation were investigated in infant monkeys. METHODS Beginning at 3 weeks of age, unilateral form deprivation was initiated in 18 infant monkeys by securing a diffuser spectacle lens in front of one eye and a clear plano lens in front of the fellow eye. During the treatment period (18 weeks), three infants wore the diffusers continuously. For the other experimental infants, the diffusers were removed daily and replaced with clear, zero-powered lenses for 1 (n = 5), 2 (n = 6), or 4 (n = 4) hours. Four infants reared with binocular zero-powered lenses and four normally reared monkeys provided control data. RESULTS The degree of amblyopia varied significantly with the daily duration of unrestricted vision. Continuous form deprivation caused severe amblyopia. However, 1 hour of unrestricted vision reduced the degree of amblyopia by 65%, 2 hours reduced the deficits by 90%, and 4 hours preserved near-normal spatial contrast sensitivity. CONCLUSIONS The severely amblyogenic effects of form deprivation in infant primates are substantially reduced by relatively short daily periods of unrestricted vision. The manner in which the mechanisms responsible for amblyopia integrate the effects of normal and abnormal vision over time promotes normal visual development and has important implications for the management of human infants with conditions that potentially cause amblyopia. PMID:16723458

  19. Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception.

    PubMed

    Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne

    2017-02-20

    Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Binocular Rivalry and Head Worn Displays

    DTIC Science & Technology

    2007-12-01

    symbology did not alter the occurrence of the rivalry. A phenomenon labeled “ luning ” within the applied literature on HWDs (e.g., Velger, 1998, p. 56...which a contour in one eye continuously suppresses a corresponding back- ground area in the other eye. For both luning and rivalry, the same suppression...processes are prob- ably operative. Grigsby and Tsou (1994) noted that 1086 December 2007 – Human Factors binocular rivalry and luning are probably

  1. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  2. Your Child's Vision

    MedlinePlus

    ... 3½, kids should have eye health screenings and visual acuity tests (tests that measure sharpness of vision) ... eye rubbing extreme light sensitivity poor focusing poor visual tracking (following an object) abnormal alignment or movement ...

  3. Binocular treatment of amblyopia using videogames (BRAVO): study protocol for a randomised controlled trial.

    PubMed

    Guo, Cindy X; Babu, Raiju J; Black, Joanna M; Bobier, William R; Lam, Carly S Y; Dai, Shuan; Gao, Tina Y; Hess, Robert F; Jenkins, Michelle; Jiang, Yannan; Kowal, Lionel; Parag, Varsha; South, Jayshree; Staffieri, Sandra Elfride; Walker, Natalie; Wadham, Angela; Thompson, Benjamin

    2016-10-18

    Amblyopia is a common neurodevelopmental disorder of vision that is characterised by visual impairment in one eye and compromised binocular visual function. Existing evidence-based treatments for children include patching the nonamblyopic eye to encourage use of the amblyopic eye. Currently there are no widely accepted treatments available for adults with amblyopia. The aim of this trial is to assess the efficacy of a new binocular, videogame-based treatment for amblyopia in older children and adults. We hypothesise that binocular treatment will significantly improve amblyopic eye visual acuity relative to placebo treatment. The BRAVO study is a double-blind, randomised, placebo-controlled multicentre trial to assess the effectiveness of a novel videogame-based binocular treatment for amblyopia. One hundred and eight participants aged 7 years or older with anisometropic and/or strabismic amblyopia (defined as ≥0.2 LogMAR interocular visual acuity difference, ≥0.3 LogMAR amblyopic eye visual acuity and no ocular disease) will be recruited via ophthalmologists, optometrists, clinical record searches and public advertisements at five sites in New Zealand, Canada, Hong Kong and Australia. Eligible participants will be randomised by computer in a 1:1 ratio, with stratification by age group: 7-12, 13-17 and 18 years and older. Participants will be randomised to receive 6 weeks of active or placebo home-based binocular treatment. Treatment will be in the form of a modified interactive falling-blocks game, implemented on a 5th generation iPod touch device viewed through red/green anaglyphic glasses. Participants and those assessing outcomes will be blinded to group assignment. The primary outcome is the change in best-corrected distance visual acuity in the amblyopic eye from baseline to 6 weeks post randomisation. Secondary outcomes include distance and near visual acuity, stereopsis, interocular suppression, angle of strabismus (where applicable) measured at

  4. Binocular depth processing in the ventral visual pathway

    PubMed Central

    Vogels, Rufin

    2016-01-01

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269602

  5. Binocular depth processing in the ventral visual pathway.

    PubMed

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-06-19

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  6. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry.

    PubMed

    Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J

    2018-01-01

    Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Binocular coordination in response to stereoscopic stimuli

    NASA Astrophysics Data System (ADS)

    Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.

    2009-02-01

    Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

  8. Binocular Coordination during Reading and Non-Reading Tasks

    ERIC Educational Resources Information Center

    Kirkby, Julie A.; Webster, Lisa A. D.; Blythe, Hazel I.; Liversedge, Simon P.

    2008-01-01

    The goal of this review is to evaluate the literature on binocular coordination during reading and non-reading tasks in adult, child, and dyslexic populations. The review begins with a description of the basic characteristics of eye movements during reading. Then, reading and non-reading studies investigating binocular coordination are evaluated.…

  9. Binoculars: A Long-Ignored Aid for the Partially Sighted.

    ERIC Educational Resources Information Center

    Genesky, S. M.

    Defined in the booklet is the visually handicapped population that could benefit from use of binoculars, and described with photographs are uses of binoculars and additional equipment. Categories of the visually handicapped and concomitant population sizes are examined to stress the point that approximately 1.64 million Americans are partially…

  10. 21 CFR 886.5120 - Low-power binocular loupe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-power binocular loupe. 886.5120 Section 886.5120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5120 Low-power binocular loupe. (a...

  11. Predictive Coding Explains Binocular Rivalry: An Epistemological Review

    ERIC Educational Resources Information Center

    Hohwy, Jakob; Roepstorff, Andreas; Friston, Karl

    2008-01-01

    Binocular rivalry occurs when the eyes are presented with different stimuli and subjective perception alternates between them. Though recent years have seen a number of models of this phenomenon, the mechanisms behind binocular rivalry are still debated and we still lack a principled understanding of why a cognitive system such as the brain should…

  12. Emergence of binocular functional properties in a monocular neural circuit

    PubMed Central

    Ramdya, Pavan; Engert, Florian

    2010-01-01

    Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507

  13. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    NASA Astrophysics Data System (ADS)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  14. Assessing Attention Deficit by Binocular Rivalry.

    PubMed

    Amador-Campos, Juan Antonio; Aznar-Casanova, J Antonio; Ortiz-Guerra, Juan Jairo; Moreno-Sánchez, Manuel; Medina-Peña, Antonio

    2015-12-01

    To determine whether the frequency and duration of the periods of suppression of a percept in a binocular rivalry (BR) task can be used to distinguish between participants with ADHD and controls. A total of 122 participants (6-15 years) were assigned to three groups: ADHD-Combined (ADHD-C), ADHD-Predominantly Inattentive (ADHD-I), and controls. They each performed a BR task and two measures were recorded: alternation rate and duration of exclusive dominance periods. ADHD-C group presented fewer alternations and showed greater variability than did the control group; results for the ADHD-I group being intermediate between the two. The duration of dominance periods showed a differential profile: In control group, it remained stable over time, whereas in the clinical groups, it decreased logarithmically as the task progressed. The differences between groups in relation to the BR indicators can be attributed to the activity of involuntary inhibition. © The Author(s) 2013.

  15. Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration.

    PubMed

    Aslam, Tariq M; Zaki, Haider R; Mahmood, Sajjad; Ali, Zaria C; Ahmad, Nur A; Thorell, Mariana R; Balaskas, Konstantinos

    2018-01-01

    To develop a neural network for the estimation of visual acuity from optical coherence tomography (OCT) images of patients with neovascular age-related macular degeneration (AMD) and to demonstrate its use to model the impact of specific controlled OCT changes on vision. Artificial intelligence (neural network) study. We assessed 1400 OCT scans of patients with neovascular AMD. Fifteen physical features for each eligible OCT, as well as patient age, were used as input data and corresponding recorded visual acuity as the target data to train, validate, and test a supervised neural network. We then applied this network to model the impact on acuity of defined OCT changes in subretinal fluid, subretinal hyperreflective material, and loss of external limiting membrane (ELM) integrity. A total of 1210 eligible OCT scans were analyzed, resulting in 1210 data points, which were each 16-dimensional. A 10-layer feed-forward neural network with 1 hidden layer of 10 neurons was trained to predict acuity and demonstrated a root mean square error of 8.2 letters for predicted compared to actual visual acuity and a mean regression coefficient of 0.85. A virtual model using this network demonstrated the relationship of visual acuity to specific, programmed changes in OCT characteristics. When ELM is intact, there is a shallow decline in acuity with increasing subretinal fluid but a much steeper decline with equivalent increasing subretinal hyperreflective material. When ELM is not intact, all visual acuities are reduced. Increasing subretinal hyperreflective material or subretinal fluid in this circumstance reduces vision further still, but with a smaller gradient than when ELM is intact. The supervised machine learning neural network developed is able to generate an estimated visual acuity value from OCT images in a population of patients with AMD. These findings should be of clinical and research interest in macular degeneration, for example in estimating visual prognosis or

  16. Binocular device for displaying numerical information in field of view

    NASA Technical Reports Server (NTRS)

    Fuller, H. V. (Inventor)

    1977-01-01

    An apparatus is described for superimposing numerical information on the field of view of binoculars. The invention has application in the flying of radio-controlled model airplanes. Information such as airspeed and angle of attack are sensed on a model airplane and transmitted back to earth where this information is changed into numerical form. Optical means are attached to the binoculars that a pilot is using to track the model air plane for displaying the numerical information in the field of view of the binoculars. The device includes means for focusing the numerical information at infinity whereby the user of the binoculars can see both the field of view and the numerical information without refocusing his eyes.

  17. Clinical case of the month. A 29-year-old man with acute onset blurry vision, weakness, and gait abnormality. Stroke.

    PubMed

    Thoppil, Deepu; Ali, Murtuza J; Jain, Neeraj; Kamboj, Sanjay; Subramaniam, Pramilla; Lopez, Fred A

    2009-01-01

    A 29-year-old man, with no significant past medical history, was in his usual state of health until the afternoon of admission. The patient was seated at work eating lunch when he suddenly noticed that his vision became blurry. He covered his right eye and had no visual difficulty but noted blurry vision upon covering his left eye. At this point, the patient tried to stand up, but had difficulty walking and noticed he was "falling toward his left." Facial asymmetry when smiling was also appreciated. The patient denied any alteration in mental status, confusion, antecedent or current headaches, aura, chest pains, or shortness of breath. He was not taking any prescribed medications and had no known allergies. The patient denied any prior hospitalization or surgery. He denied use of tobacco, alcohol, or illicit drugs, and worked as a maintenance worker in a hotel. His family history is remarkable for his father who died of pancreatic cancer in his 50s and his mother who died of an unknown heart condition in her late 40s. Vital signs on presentation to the emergency department included temperature of 97.6 degrees F; respiratory rate of 18 per minute; pulse of 68 per minute; blood pressure of 124/84 mmHg; pulse oximetry of 99% on ambient air. His body mass index was 24 and he was complaining of no pain. The patient had no carotid bruits and no significant jugular venous distention. Cardiovascular exam revealed a regular rate and rhythm with no murmurs. Neurological exam revealed left-sided facial weakness, dysarthria, and preserved visual fields. He was able to furrow his brow. Gait deviation to the left was present, and Romberg sign was negative. Deep tendon reflexes were 2+ throughout, and no other focal neurological deficit was present. The patient was admitted to the hospital with a diagnosis of stroke. Electrocardiogram, fasting lipid profile, computed tomography (CT) scan of head, magnetic resonance imaging (MRI) of head and neck, and transthoracic echo with

  18. The iPod binocular home-based treatment for amblyopia in adults: efficacy and compliance.

    PubMed

    Hess, Robert F; Babu, Raiju Jacob; Clavagnier, Simon; Black, Joanna; Bobier, William; Thompson, Benjamin

    2014-09-01

    Occlusion therapy for amblyopia is predicated on the idea that amblyopia is primarily a disorder of monocular vision; however, there is growing evidence that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression. Furthermore, we have found that a dichoptic treatment intervention designed to directly target suppression can result in clinically significant improvement in both binocular and monocular visual function in adult patients with amblyopia. The fact that monocular improvement occurs in the absence of any fellow eye occlusion suggests that amblyopia is, in part, due to chronic suppression. Previously the treatment has been administered as a psychophysical task and more recently as a video game that can be played on video goggles or an iPod device equipped with a lenticular screen. The aim of this case-series study of 14 amblyopes (six strabismics, six anisometropes and two mixed) ages 13 to 50 years was to investigate: 1. whether the portable video game treatment is suitable for at-home use and 2. whether an anaglyphic version of the iPod-based video game, which is more convenient for at-home use, has comparable effects to the lenticular version. The dichoptic video game treatment was conducted at home and visual functions assessed before and after treatment. We found that at-home use for 10 to 30 hours restored simultaneous binocular perception in 13 of 14 cases along with significant improvements in acuity (0.11 ± 0.08 logMAR) and stereopsis (0.6 ± 0.5 log units). Furthermore, the anaglyph and lenticular platforms were equally effective. In addition, the iPod devices were able to record a complete and accurate picture of treatment compliance. The home-based dichoptic iPod approach represents a viable treatment for adults with amblyopia. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  19. Progression of Near Vision Loss and Incidence of Near Vision Impairment in an Adult Chinese Population.

    PubMed

    Han, Xiaotong; Ellwein, Leon B; Guo, Xinxing; Hu, Yin; Yan, William; He, Mingguang

    2017-05-01

    To investigate the progression of near vision loss and the cumulative incidence of near vision impairment (NVI) 6 years after initial examination of an urban Chinese cohort. Population-based, prospective cohort study. People aged ≥35 years examined at baseline in the Yuexiu District of Guangzhou, China. Participants examined at baseline were invited for 2-year and 6-year follow-up examinations in 2010 and 2014, respectively. Examinations included noncycloplegic autorefraction and binocular near visual acuity (NVA) with and without current near correction measured at 40 cm using a LogMAR ETDRS near vision tumbling E chart. Those with uncorrected binocular NVA (UCNVA) ≤20/40 underwent subjective refraction to obtain best-corrected binocular NVA (BCNVA). Change in UCNVA between baseline and 2014 follow-up examinations and the 6-year cumulative incidence of vision impairment based on 3 definitions: NVA ≤20/40, ≤20/50, and ≤20/63. Among the 1817 baseline participants, 1595 (87.8%) were reexamined in 2010 and 1427 (78.5%) in 2014. Mean vision loss between baseline and the 2014 follow-up was 1.54 (±1.74) lines of UCNVA. Vision loss was associated with age 80 years or older, less education, and better baseline UCNVA. The 6-year cumulative incidence of uncorrected binocular NVI (UCNVI) across the 3 vision impairment definitions was 55.2% (95% confidence interval [CI], 46.1%-64.3%), 51.3% (95% CI, 44.0%-58.7%), and 42.4% (95% CI, 35.5%-49.3%), respectively. With best-corrected binocular NVI (BCNVI), incidence was 6.89% (95% CI, 4.28%-9.50%), 5.17% (95% CI, 2.89%-7.44%), and 2.62% (95% CI, 1.11%-4.12%), respectively. A higher incidence of UCNVI was associated with worse baseline UCNVA for all 3 impairment definitions. Similarly, incidence of BCNVI was associated with worse baseline BCNVA, but also with older age and education at the primary level or less. Gender was not significant for either UCNVI or BCNVI. Approximately half of those aged 35 years or older

  20. Reward modulates perception in binocular rivalry.

    PubMed

    Marx, Svenja; Einhäuser, Wolfgang

    2015-01-14

    Our perception does not provide us with an exact imprint of the outside world, but is continuously adapted to our internal expectations, task sets, and behavioral goals. Although effects of reward-or value in general-on perception therefore seem likely, how valuation modulates perception and how such modulation relates to attention is largely unknown. We probed effects of reward on perception by using a binocular-rivalry paradigm. Distinct gratings drifting in opposite directions were presented to each observer's eyes. To objectify their subjective perceptual experience, the optokinetic nystagmus was used as measure of current perceptual dominance. In a first experiment, one of the percepts was either rewarded or attended. We found that reward and attention similarly biased perception. In a second experiment, observers performed an attentionally demanding task either on the rewarded stimulus, the other stimulus, or both. We found that-on top of an attentional effect on perception-at each level of attentional load, reward still modulated perception by increasing the dominance of the rewarded percept. Similarly, penalizing one percept increased dominance of the other at each level of attentional load. In turn, rewarding-and similarly nonpunishing-a percept yielded performance benefits that are typically associated with selective attention. In conclusion, our data show that value modulates perception in a similar way as the volitional deployment of attention, even though the relative effect of value is largely unaffected by an attention task. © 2015 ARVO.

  1. Maximum saliency bias in binocular fusion

    NASA Astrophysics Data System (ADS)

    Lu, Yuhao; Stafford, Tom; Fox, Charles

    2016-07-01

    Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.

  2. Rapid Vision Correction by Special Operations Forces.

    PubMed

    Reynolds, Mark E

    This report describes a rapid method of vision correction used by Special Operations Medics in multiple operational engagements. Between 2011 and 2015, Special Operations Medics used an algorithm- driven refraction technique. A standard block of instruction was provided to the medics, along with a packaged kit. The technique was used in multiple operational engagements with host nation military and civilians. Data collected for program evaluation were later analyzed to assess the utility of the technique. Glasses were distributed to 230 patients with complaints of either decreased distance or near (reading). Most patients (84%) with distance complaints achieved corrected binocular vision of 20/40 or better, and 97% of patients with near-vision complaints achieved corrected near-binocular vision of 20/40 or better. There was no statistically significant difference between the percentages of patients achieving 20/40 when medics used the technique under direct supervision versus independent use. A basic refraction technique using a designed kit allows for meaningful improvement in distance and/or near vision at austere locations. Special Operations Medics can leverage this approach after specific training with minimal time commitment. It can serve as a rapid, effective intervention with multiple applications in diverse operational environments. 2017.

  3. Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Monkeys

    PubMed Central

    Smith, Earl L.; Kee, Chea-su; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang

    2006-01-01

    PURPOSE Given the prominence of central vision in humans, it has been assumed that visual signals from the fovea dominate emmetropization. The purpose of this study was to examine the impact of peripheral vision on emmetropization. METHODS Bilateral, peripheral form deprivation was produced in 12 infant monkeys by rearing them with diffusers that had either 4- or 8-mm apertures centered on the pupils of each eye, to allow 24° or 37° of unrestricted central vision, respectively. At the end of the lens-rearing period, an argon laser was used to ablate the fovea in one eye of each of seven monkeys. Subsequently, all the animals were allowed unrestricted vision. Refractive error and axial dimensions were measured along the pupillary axis by retinoscopy and A-scan ultrasonography, respectively. Control data were obtained from 21 normal monkeys and 3 infants reared with binocular plano lenses. RESULTS Nine of the 12 treated monkeys had refractive errors that fell outside the 10th- and 90th-percentile limits for the age-matched control subjects, and the average refractive error for the treated animals was more variable and significantly less hyperopic/more myopic (+0.03 ± 2.39 D vs. +2.39 ± 0.92 D). The refractive changes were symmetric in the two eyes of a given animal and axial in nature. After lens removal, all the treated monkeys recovered from the induced refractive errors. No interocular differences in the recovery process were observed in the animals with monocular foveal lesions. CONCLUSIONS On the one hand, the peripheral retina can contribute to emmetropizing responses and to ametropias produced by an abnormal visual experience. On the other hand, unrestricted central vision is not sufficient to ensure normal refractive development, and the fovea is not essential for emmetropizing responses. PMID:16249469

  4. Binocular iPad treatment for amblyopia in preschool children

    PubMed Central

    Birch, Eileen E.; Li, Simone L.; Jost, Reed M.; Morale, Sarah E.; De La Cruz, Angie; Stager, David; Dao, Lori; Stager, David R.

    2014-01-01

    Background Recent experimental evidence supports a role for binocular visual experience in the treatment of amblyopia. The purpose of this study was to determine whether repeated binocular visual experience with dichoptic iPad games could effectively treat amblyopia in preschool children. Methods A total of 50 consecutive amblyopic preschool children 3–6.9 years of age were assigned to play sham iPad games (first 5 children) or binocular iPad games (n = 45) for at least 4 hours per week for 4 weeks. Thirty (67%) children in the binocular iPad group and 4 (80%) in the sham iPad group were also treated with patching at a different time of day. Visual acuity and stereoacuity were assessed at baseline, at 4 weeks, and at 3 months after the cessation of game play. Results The sham iPad group had no significant improvement in visual acuity (t4 = 0.34, P = 0.75). In the binocular iPad group, mean visual acuity (plus or minus standard error) improved from 0.43 ± 0.03 at baseline to 0.34 ± 0.03 logMAR at 4 weeks (n = 45; paired t44 = 4.93; P < 0.0001). Stereoacuity did not significantly improve (t44 = 1.35, P = 0.18). Children who played the binocular iPad games for ≥8 hours (≥50% compliance) had significantly more visual acuity improvement than children who played 0–4 hours (t43 = 4.21, P = 0.0001). Conclusions Repeated binocular experience, provided by dichoptic iPad game play, was more effective than sham iPad game play as a treatment for amblyopia in preschool children. PMID:25727578

  5. Monocular and binocular visual impairment in the UK Biobank study: prevalence, associations and diagnoses.

    PubMed

    McKibbin, Martin; Farragher, Tracey M; Shickle, Darren

    2018-01-01

    To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. For the 65 033 UK Biobank participants, aged 40-69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population.

  6. Monocular and binocular visual impairment in the UK Biobank study: prevalence, associations and diagnoses

    PubMed Central

    Farragher, Tracey M; Shickle, Darren

    2018-01-01

    Objective To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Methods and analysis Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. Results For the 65 033 UK Biobank participants, aged 40–69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. Conclusions The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population. PMID:29657974

  7. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    PubMed Central

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  8. Evaluation of visual acuity with Gen 3 night vision goggles

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Kaiser, Mary K.

    1994-01-01

    Using laboratory simulations, visual performance was measured at luminance and night vision imaging system (NVIS) radiance levels typically encountered in the natural nocturnal environment. Comparisons were made between visual performance with unaided vision and that observed with subjects using image intensification. An Amplified Night Vision Imaging System (ANVIS6) binocular image intensifier was used. Light levels available in the experiments (using video display technology and filters) were matched to those of reflecting objects illuminated by representative night-sky conditions (e.g., full moon, starlight). Results show that as expected, the precipitous decline in foveal acuity experienced with decreasing mesopic luminance levels is effectively shifted to much lower light levels by use of an image intensification system. The benefits of intensification are most pronounced foveally, but still observable at 20 deg eccentricity. Binocularity provides a small improvement in visual acuity under both intensified and unintensified conditions.

  9. Binocular function in patients with pseudophakic monovision.

    PubMed

    Ito, Misae; Shimizu, Kimiya; Niida, Takahiro; Amano, Rie; Ishikawa, Hitoshi

    2014-08-01

    To evaluate the relationship between ocular deviation and stereopsis and fusion in patients who had pseudophakic monovision surgery. Department of Ophthalmology, Kitasato University Hospital, Kanagawa, Japan. Retrospective comparative case series. Patients had surgical monovision correction with monofocal intraocular lens placement followed by routine postoperative examinations. The alternate prism cover test was used to measure motor alignment. Sensory tests for binocularity included sensory fusion determinations using the Worth 4-dot test, near stereopsis test, and fusion amplitude measured with a prism bar. Patients with monovision were categorized as having small-angle exophoria (≤10.0 prism diopters [Δ]) or moderate-angle exophoria (>10.0 Δ). This study comprised 60 patients with a mean age of 70.2 years ± 7.7 (SD). The difference in the mean stereopsis values between patients with small-angle exophoria and patients with moderate-angle exophoria was statistically significant (P<.001). In the moderate-angle exophoria group, 10 patients (62.5%) developed intermittent exotropia after surgery; however, no serious ocular deviation problems were observed. The fusion amplitudes in patients with pseudophakic monovision were approximately similar to normal values. Patients with moderate-angle exophoria were more likely to fail the Worth 4-dot test than those with small-angle exophoria. In patients with pseudophakic monovision having a near exophoria angle of more than 10.0 Δ, the possibility of changes in ocular deviation and stereopsis after surgery is a concern. Moreover, the application of monovision in patients with a previous moderate-angle exophoria should be carefully considered. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. High-Level Binocular Rivalry Effects

    PubMed Central

    Wolf, Michal; Hochstein, Shaul

    2011-01-01

    Binocular rivalry (BR) occurs when the brain cannot fuse percepts from the two eyes because they are different. We review results relating to an ongoing controversy regarding the cortical site of the BR mechanism. Some BR qualities suggest it is low-level: (1) BR, as its name implies, is usually between eyes and only low-levels have access to utrocular information. (2) All input to one eye is suppressed: blurring doesn’t stimulate accommodation; pupilary constrictions are reduced; probe detection is reduced. (3) Rivalry is affected by low-level attributes, contrast, spatial frequency, brightness, motion. (4) There is limited priming due to suppressed words or pictures. On the other hand, recent studies favor a high-level mechanism: (1) Rivalry occurs between patterns, not eyes, as in patchwork rivalry or a swapping paradigm. (2) Attention affects alternations. (3) Context affects dominance. There is conflicting evidence from physiological studies (single cell and fMRI) regarding cortical level(s) of conscious perception. We discuss the possibility of multiple BR sites and theoretical considerations that rule out this solution. We present new data regarding the locus of the BR switch by manipulating stimulus semantic content or high-level characteristics. Since these variations are represented at higher cortical levels, their affecting rivalry supports high-level BR intervention. In Experiment I, we measure rivalry when one eye views words and the other non-words and find significantly longer dominance durations for non-words. In Experiment II, we find longer dominance times for line drawings of simple, structurally impossible figures than for similar, possible objects. In Experiment III, we test the influence of idiomatic context on rivalry between words. Results show that generally words within their idiomatic context have longer mean dominance durations. We conclude that BR has high-level cortical influences, and may be controlled by a high-level mechanism

  11. Individual Objective and Subjective Fixation Disparity in Near Vision

    PubMed Central

    Jaschinski, Wolfgang

    2017-01-01

    Binocular vision refers to the integration of images in the two eyes for improved visual performance and depth perception. One aspect of binocular vision is the fixation disparity, which is a suboptimal condition in individuals with respect to binocular eye movement control and subsequent neural processing. The objective fixation disparity refers to the vergence angle between the visual axes, which is measured with eye trackers. Subjective fixation disparity is tested with two monocular nonius lines which indicate the physical nonius separation required for perceived alignment. Subjective and objective fixation disparity represent the different physiological mechanisms of motor and sensory fusion, but the precise relation between these two is still unclear. This study measures both types of fixation disparity at viewing distances of 40, 30, and 24 cm while observers fixated a central stationary fusion target. 20 young adult subjects with normal binocular vision were tested repeatedly to investigate individual differences. For heterophoria and subjective fixation disparity, this study replicated that the binocular system does not properly adjust to near targets: outward (exo) deviations typically increase as the viewing distance is shortened. This exo proximity effect—however—was not found for objective fixation disparity, which–on the average–was zero. But individuals can have reliable outward (exo) or inward (eso) vergence errors. Cases with eso objective fixation disparity tend to have less exo states of subjective fixation disparity and heterophoria. In summary, the two types of fixation disparity seem to respond in a different way when the viewing distance is shortened. Motor and sensory fusion–as reflected by objective and subjective fixation disparity–exhibit complex interactions that may differ between individuals (eso versus exo) and vary with viewing distance (far versus near vision). PMID:28135308

  12. Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)

    NASA Astrophysics Data System (ADS)

    Ashcraft, Todd W.; Atac, Robert

    2012-06-01

    Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.

  13. Infant Face Preferences after Binocular Visual Deprivation

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Lewis, Terri L.; Levin, Alex V.; Maurer, Daphne

    2013-01-01

    Early visual deprivation impairs some, but not all, aspects of face perception. We investigated the possible developmental roots of later abnormalities by using a face detection task to test infants treated for bilateral congenital cataract within 1 hour of their first focused visual input. The seven patients were between 5 and 12 weeks old…

  14. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.

    PubMed

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi

    2018-03-01

    In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R 2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). These results suggest that BFM can be used as an indicator for evaluating visual fatigue. BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively.

  15. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance

    PubMed Central

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto

    2018-01-01

    Purpose In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Methods Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack–Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. Results BFM was significantly reduced after the visual task (P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). Conclusions These results suggest that BFM can be used as an indicator for evaluating visual fatigue. Translational Relevance BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively. PMID:29600117

  16. Predicting Vision-Related Disability in Glaucoma.

    PubMed

    Abe, Ricardo Y; Diniz-Filho, Alberto; Costa, Vital P; Wu, Zhichao; Medeiros, Felipe A

    2018-01-01

    To present a new methodology for investigating predictive factors associated with development of vision-related disability in glaucoma. Prospective, observational cohort study. Two hundred thirty-six patients with glaucoma followed up for an average of 4.3±1.5 years. Vision-related disability was assessed by the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at baseline and at the end of follow-up. A latent transition analysis model was used to categorize NEI VFQ-25 results and to estimate the probability of developing vision-related disability during follow-up. Patients were tested with standard automated perimetry (SAP) at 6-month intervals, and evaluation of rates of visual field change was performed using mean sensitivity (MS) of the integrated binocular visual field. Baseline disease severity, rate of visual field loss, and duration of follow-up were investigated as predictive factors for development of disability during follow-up. The relationship between baseline and rates of visual field deterioration and the probability of vision-related disability developing during follow-up. At baseline, 67 of 236 (28%) glaucoma patients were classified as disabled based on NEI VFQ-25 results, whereas 169 (72%) were classified as nondisabled. Patients classified as nondisabled at baseline had 14.2% probability of disability developing during follow-up. Rates of visual field loss as estimated by integrated binocular MS were almost 4 times faster for those in whom disability developed versus those in whom it did not (-0.78±1.00 dB/year vs. -0.20±0.47 dB/year, respectively; P < 0.001). In the multivariate model, each 1-dB lower baseline binocular MS was associated with 34% higher odds of disability developing over time (odds ratio [OR], 1.34; 95% confidence interval [CI], 1.06-1.70; P = 0.013). In addition, each 0.5-dB/year faster rate of loss of binocular MS during follow-up was associated with a more than 3.5 times increase in the risk of

  17. Relationship Between Binocular Summation and Stereoacuity After Strabismus Surgery

    PubMed Central

    KATTAN, Jaffer M.; VELEZ, Federico G.; DEMER, Joseph L.

    2016-01-01

    Purpose To describe the relationship between binocular summation and stereoacuity after strabismus surgery. Design Prospective Case Series Methods Setting Stein Eye institute, University of California Los Angeles Patient Population Pediatric strabismic patients who underwent strabismus surgery between 2010 and 2015. Observation Procedures Early Treatment Diabetic Retinopathy Study visual acuity, Sloan low-contrast acuity (LCA, 2.5% and 1.25%) and Randot stereoacuity 2 months following surgical correction of strabismus. Main Outcome Measures The relationship between binocular summation, calculated as the difference between the binocular visual acuity score and that of the better eye, and stereoacuity. Results A total of 130 post-operative strabismic patients were studied. The relationship between binocular summation and stereoacuity was studied by Spearman correlation. There were significant correlations between BiS for 2.5% LCA with near and distance stereoacuity (p=0.006 and 0.009). BiS for 1.25% LCA was also significantly correlated with near stereoacuity (p=0.04). Near stereoacuity and BiS for 2.5% and 1.25% LCA were significantly dependent (Pearson Chi Squared, p=0.006 and p=0.026). Patients with stereoacuity demonstrated significantly more BiS in 2.5% LCA of 2.7 (p=0.022) and 3.1 (p=0.014) letters than did those without near or distance stereoacuity, respectively. Conclusions These findings demonstrate that stereopsis and binocular summation are significantly correlated in patients who have undergone surgical correction of strabismus. PMID:26921805

  18. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia.

    PubMed

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-02-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.

  19. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia

    PubMed Central

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-01-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898

  20. [Binocular status of dyslexics--are there differences to a healthy comparison group?].

    PubMed

    Riebeling, P; Brunner, E; Grossjohann, R; Clemens, S

    2009-10-01

    Despite numerous studies dealing with the question of a possible relation of visual problems and dyslexia, which is negated by most ophthalmologists, some opticians still favour the treatment of dyslexia by correction of the "Winkelfehlsichtigkeit" following MCH. Our aim was by also including the Pola test to check the usefulness of this treatment. In a 2-year prospective study we examined the 4th grade elementary school students in our city who had dyslexia as an assured diagnosis (n = 21). The results were compared to those of an age-matched group without pathological findings regarding their reading and spelling ability (n = 21). Examinations included visual acuity, eye position by cover test, Maddox cylinder and Pola test for near distance, binocular vision (Bagolini and Worth test, Lang test I and II, Titmus test, amplitude of fusion), amplitude of accommodation, refraction in cycloplegia and organic status. A significant difference was found between the two groups regarding the amplitude of divergence in near (p = 0.009) and far distance (p = 0.019) which were both smaller for the dyslexia group, as well as the binocular near visual acuity (p = 0.04). Using the SAS procedure STEPDISC we discriminated the normal and dyslexia group by amplitude of divergence, near visual acuity and alternating near prism cover test with a sensitivity of 81 % and a specifity of 75 %. The results of the Pola test did not show any significant difference between the groups. No differences were found between the groups regarding the eye position. Therefore a treatment of dyslexia using prisms does not appear reasonable. However because of the group sizes the significance of the results is limited. Georg Thieme Verlag KG Stuttgart.New York.

  1. VISION AND COLLEGE READING - A REVIEW OF THE LITERATURE AND REPORT OF A SURVEY.

    ERIC Educational Resources Information Center

    MAXWELL, MARTHA J.

    THE AMERICAN OPTICAL (AO) COMPANY'S SIGHT SCREENER, A PORTABLE BINOCULAR INSTRUMENT DESIGNED FOR MASS VISION TESTING, WAS EVALUATED AT THE UNIVERSITY OF MARYLAND READING AND STUDY SKILLS LABORATORY TO DETERMINE ITS CAPACITY TO IDENTIFY STUDENTS NEEDING PROFESSIONAL EYE EXAMINATIONS PRIOR TO READING INSTRUCTION. DATA FROM 106 PROBATIONARY FRESHMEN,…

  2. The Relationship Between Fusion, Suppression, and Diplopia in Normal and Amblyopic Vision.

    PubMed

    Spiegel, Daniel P; Baldwin, Alex S; Hess, Robert F

    2016-10-01

    Single vision occurs through a combination of fusion and suppression. When neither mechanism takes place, we experience diplopia. Under normal viewing conditions, the perceptual state depends on the spatial scale and interocular disparity. The purpose of this study was to examine the three perceptual states in human participants with normal and amblyopic vision. Participants viewed two dichoptically separated horizontal blurred edges with an opposite tilt (2.35°) and indicated their binocular percept: "one flat edge," "one tilted edge," or "two edges." The edges varied with scale (fine 4 min arc and coarse 32 min arc), disparity, and interocular contrast. We investigated how the binocular interactions vary in amblyopic (visual acuity [VA] > 0.2 logMAR, n = 4) and normal vision (VA ≤ 0 logMAR, n = 4) under interocular variations in stimulus contrast and luminance. In amblyopia, despite the established sensory dominance of the fellow eye, fusion prevails at the coarse scale and small disparities (75%). We also show that increasing the relative contrast to the amblyopic eye enhances the probability of fusion at the fine scale (from 18% to 38%), and leads to a reversal of the sensory dominance at coarse scale. In normal vision we found that interocular luminance imbalances disturbed binocular combination only at the fine scale in a way similar to that seen in amblyopia. Our results build upon the growing evidence that the amblyopic visual system is binocular and further show that the suppressive mechanisms rendering the amblyopic system functionally monocular are scale dependent.

  3. Meiotic abnormalities

    SciTech Connect

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  4. Composition of a Vision Screen for Servicemembers With Traumatic Brain Injury: Consensus Using a Modified Nominal Group Technique

    PubMed Central

    Finkelstein, Marsha; Llanos, Imelda; Scheiman, Mitchell; Wagener, Sharon Gowdy

    2014-01-01

    Vision impairment is common in the first year after traumatic brain injury (TBI), including among service members whose brain injuries occurred during deployment in Iraq and Afghanistan. Occupational therapy practitioners provide routine vision screening to inform treatment planning and referral to vision specialists, but existing methods are lacking because many tests were developed for children and do not screen for vision dysfunction typical of TBI. An expert panel was charged with specifying the composition of a vision screening protocol for servicemembers with TBI. A modified nominal group technique fostered discussion and objective determinations of consensus. After considering 29 vision tests, the panel recommended a nine-test vision screening that examines functional performance, self-reported problems, far–near acuity, reading, accommodation, convergence, eye alignment and binocular vision, saccades, pursuits, and visual fields. Research is needed to develop reliable, valid, and clinically feasible vision screening protocols to identify TBI-related vision disorders in adults. PMID:25005505

  5. Aging and the depth of binocular rivalry suppression.

    PubMed

    Norman, J Farley; Norman, Hideko F; Pattison, Kristina; Taylor, M Jett; Goforth, Katherine E

    2007-09-01

    Two experiments were designed to examine the effect of aging on the strength of binocular rivalry suppression. To produce rivalry, orthogonally oriented sine-wave luminance gratings were presented dichoptically. The observers were then required either to discriminate the spatial location of a probe spot presented to the dominant or suppressed eye's view or to detect the presence or absence of the probe. The observers in the younger and older age groups exhibited typical rivalry suppression for both tasks (i.e., the probe was more difficult to detect or discriminate when presented to the suppressed eye), but the magnitude of the suppression was significantly larger in the older observers. This increased suppression that accompanies aging can be explained by a reduction in the inhibition produced by the binocular matching circuitry of S. R. Lehky and R. Blake's (1991) model. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  6. Binocular rivalry in children on the autism spectrum

    PubMed Central

    Lunghi, Claudia; Neil, Louise; Burr, David; Pellicano, Elizabeth

    2017-01-01

    When different images are presented to the eyes, the brain is faced with ambiguity, causing perceptual bistability: visual perception continuously alternates between the monocular images, a phenomenon called binocular rivalry. Many models of rivalry suggest that its temporal dynamics depend on mutual inhibition among neurons representing competing images. These models predict that rivalry should be different in autism, which has been proposed to present an atypical ratio of excitation and inhibition [the E/I imbalance hypothesis; Rubenstein & Merzenich, 2003]. In line with this prediction, some recent studies have provided evidence for atypical binocular rivalry dynamics in autistic adults. In this study, we examined if these findings generalize to autistic children. We developed a child‐friendly binocular rivalry paradigm, which included two types of stimuli, low‐ and high‐complexity, and compared rivalry dynamics in groups of autistic and age‐ and intellectual ability‐matched typical children. Unexpectedly, the two groups of children presented the same number of perceptual transitions and the same mean phase durations (times perceiving one of the two stimuli). Yet autistic children reported mixed percepts for a shorter proportion of time (a difference which was in the opposite direction to previous adult studies), while elevated autistic symptomatology was associated with shorter mixed perception periods. Rivalry in the two groups was affected similarly by stimulus type, and consistent with previous findings. Our results suggest that rivalry dynamics are differentially affected in adults and developing autistic children and could be accounted for by hierarchical models of binocular rivalry, including both inhibition and top‐down influences. Autism Res 2017. ©2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research Autism Res 2017, 10: 1096–1106. © 2017 International Society for

  7. Binocular stereo matching method based on structure tensor

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei

    2016-10-01

    In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.

  8. Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies

    PubMed Central

    Duistermars, Brian J.; Care, Rachel A.; Frye, Mark A.

    2012-01-01

    In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108

  9. Simulated disparity and peripheral blur interact during binocular fusion.

    PubMed

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2014-07-17

    We have developed a low-cost, practical gaze-contingent display in which natural images are presented to the observer with dioptric blur and stereoscopic disparity that are dependent on the three-dimensional structure of natural scenes. Our system simulates a distribution of retinal blur and depth similar to that experienced in real-world viewing conditions by emmetropic observers. We implemented the system using light-field photographs taken with a plenoptic camera which supports digital refocusing anywhere in the images. We coupled this capability with an eye-tracking system and stereoscopic rendering. With this display, we examine how the time course of binocular fusion depends on depth cues from blur and stereoscopic disparity in naturalistic images. Our results show that disparity and peripheral blur interact to modify eye-movement behavior and facilitate binocular fusion, and the greatest benefit was gained by observers who struggled most to achieve fusion. Even though plenoptic images do not replicate an individual’s aberrations, the results demonstrate that a naturalistic distribution of depth-dependent blur may improve 3-D virtual reality, and that interruptions of this pattern (e.g., with intraocular lenses) which flatten the distribution of retinal blur may adversely affect binocular fusion. © 2014 ARVO.

  10. Simulated disparity and peripheral blur interact during binocular fusion

    PubMed Central

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2014-01-01

    We have developed a low-cost, practical gaze-contingent display in which natural images are presented to the observer with dioptric blur and stereoscopic disparity that are dependent on the three-dimensional structure of natural scenes. Our system simulates a distribution of retinal blur and depth similar to that experienced in real-world viewing conditions by emmetropic observers. We implemented the system using light-field photographs taken with a plenoptic camera which supports digital refocusing anywhere in the images. We coupled this capability with an eye-tracking system and stereoscopic rendering. With this display, we examine how the time course of binocular fusion depends on depth cues from blur and stereoscopic disparity in naturalistic images. Our results show that disparity and peripheral blur interact to modify eye-movement behavior and facilitate binocular fusion, and the greatest benefit was gained by observers who struggled most to achieve fusion. Even though plenoptic images do not replicate an individual's aberrations, the results demonstrate that a naturalistic distribution of depth-dependent blur may improve 3-D virtual reality, and that interruptions of this pattern (e.g., with intraocular lenses) which flatten the distribution of retinal blur may adversely affect binocular fusion. PMID:25034260

  11. Focus information is used to interpret binocular images

    PubMed Central

    Hoffman, David M.; Banks, Martin S.

    2011-01-01

    Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139

  12. Visual function in anterior ischemic optic neuropathy: effect of Vision Restoration Therapy--a pilot study.

    PubMed

    Jung, Cecilia S; Bruce, Beau; Newman, Nancy J; Biousse, Valérie

    2008-05-15

    To evaluate the effects of Vision Restoration Therapy (VRT) on the visual function of patients with anterior ischemic optic neuropathy. Randomized controlled double-blind pilot trial. 10 patients with stable anterior ischemic optic neuropathy (AION). All patients were evaluated before VRT and after 3 and 6 months of treatment by Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, contrast sensitivity, reading speed, 24-2 SITA-standard Humphrey visual field (HVF), High Resolution Perimetry (HRP) (perimetry obtained during VRT), and vision-based quality of life questionnaire. Patients were randomized between two VRT strategies (5 in each group): I) VRT in which stimulation was performed in the seeing VF of the affected eye ("seeing field-VRT"); II) VRT in which stimulation was performed along the area of central fixation and in the ARV (areas of residual vision) of the affected eye ("ARV-VRT"). The results of the HRP, HVF, and clinical assessment of visual function were compared for each patient and between the two groups at each evaluation. Visual acuity qualitatively improved in the ARV-VRT group, however the change was not statistically significant (p=0.28). Binocular reading speed significantly improved in the ARV-VRT group (p=0.03). HVF foveal sensitivity increased mildly in both groups (p=0.059). HRP analysis showed a similar increase in stimulus accuracy in both groups (mean improvement of about 15%). All patients reported functional improvement after VRT. Despite a small sample, the study showed a trend toward improvement of visual function in the ARV-VRT group. Improvement of HRP in both groups may reflect diffusely increased visual attention (neuronal activation), or improvement of an underlying sub-clinical abnormality in the "seeing" visual field of patients with optic neuropathies.

  13. Preliminary results from the use of the novel Interactive binocular treatment (I-BiT) system, in the treatment of strabismic and anisometropic amblyopia.

    PubMed

    Waddingham, P E; Butler, T K H; Cobb, S V; Moody, A D R; Comaish, I F; Haworth, S M; Gregson, R M; Ash, I M; Brown, S M; Eastgate, R M; Griffiths, G D

    2006-03-01

    We have developed a novel application of adapted virtual reality (VR) technology, for the binocular treatment of amblyopia. We describe the use of the system in six children. Subjects consisted of three conventional treatment 'failures' and three conventional treatment 'refusers', with a mean age of 6.25 years (5.42-7.75 years). Treatment consisted of watching video clips and playing interactive games with specifically designed software to allow streamed binocular image presentation. Initial vision in the amblyopic eye ranged from 6/12 to 6/120 and post-treatment 6/7.5 to 6/24-1. Total treatment time was a mean of 4.4 h. Five out of six children have shown an improvement in their vision (average increase of 10 letters), including those who had previously failed to comply with conventional occlusion. Improvements in vision were demonstrable within a short period of time, in some children after 1 h of treatment. This system is an exciting and promising application of VR technology as a new treatment for amblyopia.

  14. Leading Vision

    ERIC Educational Resources Information Center

    Fawcett, Gay

    2004-01-01

    The current educational landscape makes it imperative that a vision statement become more than a fine-sounding statement that is laminated, hung on the wall, and quickly forgotten. If educators do not have a clear image of the future they wish to create, then someone will be ready to create it for them. But with a clear vision of the future, a…

  15. Binocular eye movement control and motion perception: what is being tracked?

    PubMed

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  16. Binocular Eye Movement Control and Motion Perception: What Is Being Tracked?

    PubMed Central

    van der Steen, Johannes; Dits, Joyce

    2012-01-01

    Purpose. We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. Methods. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Results. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. Conclusions. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking. PMID:22997286

  17. Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs.

    PubMed

    Gundersen, Kjell G; Potvin, Rick

    2017-01-01

    To compare two different diffractive trifocal intraocular lens (IOL) designs, evaluating longer-term refractive outcomes, visual acuity (VA) at various distances, low contrast VA and quality of vision. Patients with binocularly implanted trifocal IOLs of two different designs (FineVision [FV] and Panoptix [PX]) were evaluated 6 months to 2 years after surgery. Best distance-corrected and uncorrected VA were tested at distance (4 m), intermediate (80 and 60 cm) and near (40 cm). A binocular defocus curve was collected with the subject's best distance correction in place. The preferred reading distance was determined along with the VA at that distance. Low contrast VA at distance was also measured. Quality of vision was measured with the National Eye Institute Visual Function Questionnaire near subset and the Quality of Vision questionnaire. Thirty subjects in each group were successfully recruited. The binocular defocus curves differed only at vergences of -1.0 D (FV better, P =0.02), -1.5 and -2.00 D (PX better, P <0.01 for both). Best distance-corrected and uncorrected binocular vision were significantly better for the PX lens at 60 cm ( P <0.01) with no significant differences at other distances. The preferred reading distance was between 42 and 43 cm for both lenses, with the VA at the preferred reading distance slightly better with the PX lens ( P =0.04). There were no statistically significant differences by lens for low contrast VA ( P =0.1) or for quality of vision measures ( P >0.3). Both trifocal lenses provided excellent distance, intermediate and near vision, but several measures indicated that the PX lens provided better intermediate vision at 60 cm. This may be important to users of tablets and other handheld devices. Quality of vision appeared similar between the two lens designs.

  18. Computer vision

    NASA Technical Reports Server (NTRS)

    Gennery, D.; Cunningham, R.; Saund, E.; High, J.; Ruoff, C.

    1981-01-01

    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed.

  19. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  20. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth

    PubMed Central

    2016-01-01

    Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269600

  1. Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth.

    PubMed

    Fujita, Ichiro; Doi, Takahiro

    2016-06-19

    Binocular disparity is detected in the primary visual cortex by a process similar to calculation of local cross-correlation between left and right retinal images. As a consequence, correlation-based neural signals convey information about false disparities as well as the true disparity. The false responses in the initial disparity detectors are eliminated at later stages in order to encode only disparities of the features correctly matched between the two eyes. For a simple stimulus configuration, a feed-forward nonlinear process can transform the correlation signal into the match signal. For human observers, depth judgement is determined by a weighted sum of the correlation and match signals rather than depending solely on the latter. The relative weight changes with spatial and temporal parameters of the stimuli, allowing adaptive recruitment of the two computations under different visual circumstances. A full transformation from correlation-based to match-based representation occurs at the neuronal population level in cortical area V4 and manifests in single-neuron responses of inferior temporal and posterior parietal cortices. Neurons in area V5/MT represent disparity in a manner intermediate between the correlation and match signals. We propose that the correlation and match signals in these areas contribute to depth perception in a weighted, parallel manner.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  2. AI And Early Vision - Part II

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1989-08-01

    A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)

  3. Looking above the prairie: localized and upward acute vision in a native grassland bird.

    PubMed

    Tyrrell, Luke P; Moore, Bret A; Loftis, Christopher; Fernández-Juricic, Esteban

    2013-12-02

    Visual systems of open habitat vertebrates are predicted to have a band of acute vision across the retina (visual streak) and wide visual coverage to gather information along the horizon. We tested whether the eastern meadowlark (Sturnella magna) had this visual configuration given that it inhabits open grasslands. Contrary to our expectations, the meadowlark retina has a localized spot of acute vision (fovea) and relatively narrow visual coverage. The fovea projects above rather than towards the horizon with the head at rest, and individuals modify their body posture in tall grass to maintain a similar foveal projection. Meadowlarks have relatively large binocular fields and can see their bill tips, which may help with their probe-foraging technique. Overall, meadowlark vision does not fit the profile of vertebrates living in open habitats. The binocular field may control foraging while the fovea may be used for detecting and tracking aerial stimuli (predators, conspecifics).

  4. Congenital Abnormalities

    MedlinePlus

    ... tube defects. However, there is also a genetic influence to this type of congenital anomaly. Unknown Causes The vast majority of congenital abnormalities have no known cause. This is particularly troubling for parents who plan to have more children, because there is no way to predict if ...

  5. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  6. Improving Vision

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many people are familiar with the popular science fiction series Star Trek: The Next Generation, a show featuring a blind character named Geordi La Forge, whose visor-like glasses enable him to see. What many people do not know is that a product very similar to Geordi's glasses is available to assist people with vision conditions, and a NASA engineer's expertise contributed to its development. The JORDY(trademark) (Joint Optical Reflective Display) device, designed and manufactured by a privately-held medical device company known as Enhanced Vision, enables people with low vision to read, write, and watch television. Low vision, which includes macular degeneration, diabetic retinopathy, and glaucoma, describes eyesight that is 20/70 or worse, and cannot be fully corrected with conventional glasses.

  7. Recent developments for the Large Binocular Telescope Guiding Control Subsystem

    NASA Astrophysics Data System (ADS)

    Golota, T.; De La Peña, M. D.; Biddick, C.; Lesser, M.; Leibold, T.; Miller, D.; Meeks, R.; Hahn, T.; Storm, J.; Sargent, T.; Summers, D.; Hill, J.; Kraus, J.; Hooper, S.; Fisher, D.

    2014-07-01

    The Large Binocular Telescope (LBT) has eight Acquisition, Guiding, and wavefront Sensing Units (AGw units). They provide guiding and wavefront sensing capability at eight different locations at both direct and bent Gregorian focal stations. Recent additions of focal stations for PEPSI and MODS instruments doubled the number of focal stations in use including respective motion, camera controller server computers, and software infrastructure communicating with Guiding Control Subsystem (GCS). This paper describes the improvements made to the LBT GCS and explains how these changes have led to better maintainability and contributed to increased reliability. This paper also discusses the current GCS status and reviews potential upgrades to further improve its performance.

  8. Disparity channels in early vision

    PubMed Central

    Roe, AW; Parker, AJ; Born, RT; DeAngelis, GC

    2008-01-01

    The last decade has seen a dramatic increase in our knowledge of the neural basis of stereopsis. New cortical areas have been found to represent binocular disparities, new representations of disparity information (e.g., relative disparity signals) have been uncovered, the first topographic maps of disparity have been measured, and the first causal links between neural activity and depth perception have been established. Equally exciting is the finding that training and experience affects how signals are channeled through different brain areas, a flexibility that may be crucial for learning, plasticity, and recovery of function. The collective efforts of several laboratories have established stereo vision as one of the most productive model systems for elucidating the neural basis of perception. Much remains to be learned about how the disparity signals that are initially encoded in primary visual cortex are routed to and processed by extrastriate areas to mediate the diverse capacities of 3D vision that enhance our daily experience of the world. PMID:17978018

  9. Resource Letter CCV-1: Color and Color Vision.

    ERIC Educational Resources Information Center

    Stuewer, Roger H., Ed.; Pease, Paul L.

    1980-01-01

    Listed are selected resource materials on color vision and the measurement and specification of the stimulus for vision, photometry, and colorimetry. The author's purpose is to equip teachers and students with an understanding of normal and abnormal color vision. References are categorized relative to content level. (Author/DS)

  10. Color vision defects in adrenomyeloneuropathy.

    PubMed Central

    Sack, G H; Raven, M B; Moser, H W

    1989-01-01

    The relationship between abnormal color vision and adrenomyeloneuropathy (AMN) was investigated in 27 AMN patients and 31 age-matched controls by using the Farnsworth-Munsell 100 Hue test. Twelve (44%) of 27 patients showed test scores significantly above normal. The axes of bipolarity determined by the testing differed widely between the patients with abnormal scores, compatible with the notion that different alterations in visual pigment genes occur in different AMN kindreds. These observations confirm our earlier impression that the frequency of abnormal color vision is increased in these kindreds, and it supports our contentions that (1) AMN (and its companion, adrenoleukodystrophy) are very closely linked to the visual pigment loci at Xq28 and (2) this proximity might provide the opportunity to observe contiguous gene defects. PMID:2729274

  11. Depth of Monocular Elements in a Binocular Scene: The Conditions for da Vinci Stereopsis

    ERIC Educational Resources Information Center

    Cook, Michael; Gillam, Barbara

    2004-01-01

    Quantitative depth based on binocular resolution of visibility constraints is demonstrated in a novel stereogram representing an object, visible to 1 eye only, and seen through an aperture or camouflaged against a background. The monocular region in the display is attached to the binocular region, so that the stereogram represents an object which…

  12. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  13. Binocular stereo-navigation for three-dimensional thoracoscopic lung resection.

    PubMed

    Kanzaki, Masato; Isaka, Tamami; Kikkawa, Takuma; Sakamoto, Kei; Yoshiya, Takehito; Mitsuboshi, Shota; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa

    2015-05-08

    This study investigated the efficacy of binocular stereo-navigation during three-dimensional (3-D) thoracoscopic sublobar resection (TSLR). From July 2001, the authors' department began to use a virtual 3-D pulmonary model on a personal computer (PC) for preoperative simulation before thoracoscopic lung resection and for intraoperative navigation during operation. From 120 of 1-mm thin-sliced high-resolution computed tomography (HRCT)-scan images of tumor and hilum, homemade software CTTRY allowed sugeons to mark pulmonary arteries, veins, bronchi, and tumor on the HRCT images manually. The location and thickness of pulmonary vessels and bronchi were rendered as diverse size cylinders. With the resulting numerical data, a 3-D image was reconstructed by Metasequoia shareware. Subsequently, the data of reconstructed 3-D images were converted to Autodesk data, which appeared on a stereoscopic-vision display. Surgeons wearing 3-D polarized glasses performed 3-D TSLR. The patients consisted of 5 men and 5 women, ranging in age from 65 to 84 years. The clinical diagnoses were a primary lung cancer in 6 cases and a solitary metastatic lung tumor in 4 cases. Eight single segmentectomies, one bi-segmentectomy, and one bi-subsegmentectomy were performed. Hilar lymphadenectomy with mediastinal lymph node sampling has been performed in 6 primary lung cancers, but four patients with metastatic lung tumors were performed without lymphadenectomy. The operation time and estimated blood loss ranged from 125 to 333 min and from 5 to 187 g, respectively. There were no intraoperative complications and no conversion to open thoracotomy and lobectomy. Postoperative courses of eight patients were uneventful, and another two patients had a prolonged lung air leak. The drainage duration and hospital stay ranged from 2 to 13 days and from 8 to 19 days, respectively. The tumor histology of primary lung cancer showed 5 adenocarcinoma and 1 squamous cell carcinoma. All primary lung

  14. A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex

    PubMed Central

    Ferster, David

    1981-01-01

    1. The retinal disparity sensitivity of neurones in areas 17 and 18 of the cat visual cortex was examined. The response of each cell to an optimally oriented slit was measured as disparity was varied orthogonally to the receptive field orientation. Eye movements were monitored with a binocular reference cell simultaneously recorded in area 17 (Hubel & Wiesel, 1970). 2. Two types of disparity-sensitive cells were found, similar to those observed in the monkey by Poggio & Fischer (1977). The first type, tuned excitatory cells, were usually binocular and had a sharp peak in their disparity—response curve. They responded maximally at the disparity that brought their receptive fields into superposition on the tangent screen. This disparity closely coincided with the disparity at which the reference cell's receptive fields were also superimposed. By analogy with the monkey this point was taken to be the fixation point, or 0°. The second type, near and far cells, were most often monocular. They gave their weakest response (which was usually no response at all) at 0°. On one side of 0° the response grew linearly for up to 4° and then remained at the maximum. On the other side of zero, it remained at the minimum for up to several degrees before rising towards the maximum. 3. The receptive field organization of several disparity-sensitive cells was examined using the activity profile method of Henry, Bishop & Coombs (1969). The size and strength of the discrete excitatory and inhibitory regions of the receptive fields of a cell could quantitatively account for the shape of its disparity—response curve. 4. The laminar distribution of disparity sensitivity as well as of several other receptive field properties in areas 17 and 18 was studied. The organization of the two areas was remarkably similar in many respects. There was a difference, however, in the proportions of the two types of disparity-sensitive cells in the two areas. Area 17 contained many more tuned

  15. Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.

    PubMed

    D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K

    2014-04-17

    When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).

  16. Moving toward queue operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  17. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  18. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  19. A wearable infrared video pupillography with multi-stimulation of consistent illumination for binocular pupil response

    NASA Astrophysics Data System (ADS)

    Mang, Ou-Yang; Ko, Mei Lan; Tsai, Yi-Chun; Chiou, Jin-Chern; Huang, Ting-Wei

    2016-03-01

    The pupil response to light can reflect various kinds of diseases which are related to physiological health. Pupillary abnormalities may be influenced on people by autonomic neuropathy, glaucoma, diabetes, genetic diseases, and high myopia. In the early stage of neuropathy, it is often asymptomatic and difficulty detectable by ophthalmologists. In addition, the position of injured nerve can lead to unsynchronized pupil response for human eyes. In our study, we design the pupilometer to measure the binocular pupil response simultaneously. It uses the different wavelength of LEDs such as white, red, green and blue light to stimulate the pupil and record the process. Therefore, the pupilometer mainly contains two systems. One is the image acquisition system, it use the two cameras modules with the same external triggered signal to capture the images of the pupil simultaneously. The other one is the illumination system. It use the boost converter ICs and LED driver ICs to supply the constant current for LED to maintain the consistent luminance in each experiments for reduced experimental error. Furthermore, the four infrared LEDs are arranged nearby the stimulating LEDs to illuminate eyes and increase contrast of image for image processing. In our design, we success to implement the function of synchronized image acquisition with the sample speed in 30 fps and the stable illumination system for precise measurement of experiment.

  20. Change in vision, visual disability, and health after cataract surgery.

    PubMed

    Helbostad, Jorunn L; Oedegaard, Maria; Lamb, Sarah E; Delbaere, Kim; Lord, Stephen R; Sletvold, Olav

    2013-04-01

    Cataract surgery improves vision and visual functioning; the effect on general health is not established. We investigated if vision, visual functioning, and general health follow the same trajectory of change the year after cataract surgery and if changes in vision explain changes in visual disability and general health. One-hundred forty-eight persons, with a mean (SD) age of 78.9 (5.0) years (70% bilateral surgery), were assessed before and 6 weeks and 12 months after surgery. Visual disability and general health were assessed by the CatQuest-9SF and the Short Formular-36. Corrected binocular visual acuity, visual field, stereo acuity, and contrast vision improved (P < 0.001) from before to 6 weeks after surgery, with further improvements of visual acuity evident up to 12 months (P = 0.034). Cataract surgery had an effect on visual disability 1 year later (P < 0.001). Physical and mental health improved after surgery (P < 0.01) but had returned to presurgery level after 12 months. Vision changes did not explain visual disability and general health 6 weeks after surgery. Vision improved and visual disability decreased in the year after surgery, whereas changes in general health and visual functioning were short-term effects. Lack of associations between changes in vision and self-reported disability and general health suggests that the degree of vision changes and self-reported health do not have a linear relationship.

  1. Abnormal placentation.

    PubMed

    Bauer, Samuel T; Bonanno, Clarissa

    2009-04-01

    Abnormal placentation poses a diagnostic and treatment challenge for all providers caring for pregnant women. As one of the leading causes of postpartum hemorrhage, abnormal placentation involves the attachment of placental villi directly to the myometrium with potentially deeper invasion into the uterine wall or surrounding organs. Surgical procedures that disrupt the integrity of uterus, including cesarean section, dilatation and curettage, and myomectomy, have been implicated as key risk factors for placenta accreta. The diagnosis is typically made by gray-scale ultrasound and confirmed with magnetic resonance imaging, which may better delineate the extent of placental invasion. It is critical to make the diagnosis before delivery because preoperative planning can significantly decrease blood loss and avoid substantial morbidity associated with placenta accreta. Aggressive management of hemorrhage through the use of uterotonics, fluid resuscitation, blood products, planned hysterectomy, and surgical hemostatic agents can be life-saving for these patients. Conservative management, including the use of uterine and placental preservation and subsequent methotrexate therapy or pelvic artery embolization, may be considered when a focal accreta is suspected; however, surgical management remains the current standard of care.

  2. Contrast-balanced binocular treatment in children with deprivation amblyopia.

    PubMed

    Hamm, Lisa M; Chen, Zidong; Li, Jinrong; Dai, Shuan; Black, Joanna; Yuan, Junpeng; Yu, Minbin; Thompson, Benjamin

    2017-11-28

    Children with deprivation amblyopia due to childhood cataract have been excluded from much of the emerging research into amblyopia treatment. An investigation was conducted to determine whether contrast-balanced binocular treatment - a strategy currently being explored for children with anisometropic and strabismic amblyopia - may be effective in children with deprivation amblyopia. An unmasked, case-series design intended to assess proof of principle was employed. Eighteen children with deprivation amblyopia due to childhood cataracts (early bilateral n = 7, early unilateral n = 7, developmental n = 4), as well as 10 children with anisometropic (n = 8) or mixed anisometropic and strabismic amblyopia (n = 2) were prescribed one hour a day of treatment over a six-week period. Supervised treatment was available. Visual acuity, contrast sensitivity, global motion perception and interocular suppression were measured pre- and post-treatment. Visual acuity improvements occurred in the anisometropic/strabismic group (0.15 ± 0.05 logMAR, p = 0.014), but contrast sensitivity did not change. As a group, children with deprivation amblyopia had a smaller but statistically significant improvement in weaker eye visual acuity (0.09 ± 0.03 logMAR, p = 0.004), as well a significant improvement in weaker eye contrast sensitivity (p = 0.004). Subgroup analysis suggested that the children with early bilateral deprivation had the largest improvements, while children with early unilateral cataract did not improve. Interestingly, binocular contrast sensitivity also improved in children with early bilateral deprivation. Global motion perception improved for both subgroups with early visual deprivation, as well as children with anisometropic or mixed anisometropic/strabismic amblyopia. Interocular suppression improved for all subgroups except children with early unilateral deprivation. These data suggest that supervised contrast-balanced binocular

  3. Presidential Visions.

    ERIC Educational Resources Information Center

    Gallin, Alice, Ed.

    1992-01-01

    This journal issue is devoted to the theme of university presidents and their visions of the future. It presents the inaugural addresses and speeches of 16 Catholic college and university presidents focusing on their goals, ambitions, and reasons for choosing to become higher education leaders at this particular time in the history of education in…

  4. Agrarian Visions.

    ERIC Educational Resources Information Center

    Theobald, Paul

    A new feature in "Country Teacher,""Agrarian Visions" reminds rural teachers that they can do something about rural decline. Like to populism of the 1890s, the "new populism" advocates rural living. Current attempts to address rural decline are contrary to agrarianism because: (1) telecommunications experts seek to…

  5. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-07-28

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.

  6. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects

    PubMed Central

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-01-01

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R2 = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions. PMID:26218972

  7. A complete investigation of monocular and binocular functions in clinically treated amblyopia.

    PubMed

    Zhao, Wuxiao; Jia, Wu-Li; Chen, Ge; Luo, Yan; Lin, Borong; He, Qing; Lu, Zhong-Lin; Li, Min; Huang, Chang-Bing

    2017-09-06

    The gold standard of a successful amblyopia treatment is full recovery of visual acuity (VA) in the amblyopic eye, but there has been no systematic study on both monocular and binocular visual functions. In this research, we aimed to quantify visual qualities with a variety of perceptual tasks in subjects with treated amblyopia. We found near stereoacuity and pAE dominance in binocular rivalry in "treated" amblyopia were largely comparable to those of normal subjects. CSF of the pAE remained deficient in high spatial frequencies. The binocular contrast summation ratio is significantly lower than normal standard. The interocular balance point is 34%, indicating that contrast in pAE is much less effective as the same contrast in pFE in binocular phase combination. Although VA, stereoacuity and binocular rivalry at low spatial frequency in treated amblyopes were normal or nearly normal, the pAE remained "lazy" in high frequency domain, binocular contrast summation, and interocular phase combination. Our results suggest that structured monocular and binocular training are necessary to fully recover deficient functions in amblyopia.

  8. Natural Tendency towards Beauty in Humans: Evidence from Binocular Rivalry.

    PubMed

    Mo, Ce; Xia, Tiansheng; Qin, Kaixin; Mo, Lei

    2016-01-01

    Although human preference for beauty is common and compelling in daily life, it remains unknown whether such preference is essentially subserved by social cognitive demands or natural tendency towards beauty encoded in the human mind intrinsically. Here we demonstrate experimentally that humans automatically exhibit preference for visual and moral beauty without explicit cognitive efforts. Using a binocular rivalry paradigm, we identified enhanced gender-independent perceptual dominance for physically attractive persons, and the results suggested universal preference for visual beauty based on perceivable forms. Moreover, we also identified perceptual dominance enhancement for characters associated with virtuous descriptions after controlling for facial attractiveness and vigilance-related attention effects, which suggested a similar implicit preference for moral beauty conveyed in prosocial behaviours. Our findings show that behavioural preference for beauty is driven by an inherent natural tendency towards beauty in humans rather than explicit social cognitive processes.

  9. Natural Tendency towards Beauty in Humans: Evidence from Binocular Rivalry

    PubMed Central

    Mo, Lei

    2016-01-01

    Although human preference for beauty is common and compelling in daily life, it remains unknown whether such preference is essentially subserved by social cognitive demands or natural tendency towards beauty encoded in the human mind intrinsically. Here we demonstrate experimentally that humans automatically exhibit preference for visual and moral beauty without explicit cognitive efforts. Using a binocular rivalry paradigm, we identified enhanced gender-independent perceptual dominance for physically attractive persons, and the results suggested universal preference for visual beauty based on perceivable forms. Moreover, we also identified perceptual dominance enhancement for characters associated with virtuous descriptions after controlling for facial attractiveness and vigilance-related attention effects, which suggested a similar implicit preference for moral beauty conveyed in prosocial behaviours. Our findings show that behavioural preference for beauty is driven by an inherent natural tendency towards beauty in humans rather than explicit social cognitive processes. PMID:26930202

  10. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity

    PubMed Central

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available. PMID:28912739

  11. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity.

    PubMed

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-Jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available.

  12. The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter.

    PubMed

    Donnelly, William

    2008-11-01

    To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.

  13. Unstable Binocular Fixation Affects Reaction Times But Not Implicit Motor Learning in Dyslexia.

    PubMed

    Przekoracka-Krawczyk, Anna; Brenk-Krakowska, Alicja; Nawrot, Pawel; Rusiak, Patrycja; Naskrecki, Ryszard

    2017-12-01

    Individuals with developmental dyslexia suffer not only from reading problems as more general motor deficits can also be observed in this patient group. Both psychometric clinical tests and objective eyetracking methods suggest that unstable binocular fixation may contribute to reading problems. Because binocular instability may cause poor eye-hand coordination and impair motor control, the primary aim of this study was to explore in dyslexic subjects the influence of unstable binocular fixation on reaction times (RTs) and implicit motor learning (IML), which is one of the fundamental cerebellar functions. Fixation disparity (FD) and instability of FD were assessed subjectively using the Wesson card and a modified Mallett test. A modified version of the Serial Reaction Time Task (SRTT) was used to measure the RTs and IML skills. The results for the dyslexic group (DG), which included 29 adult subjects (15 were tested binocularly, DGbin; 14 were tested monocularly, DGmono), were compared with data from the control group (CG), which consisted of 30 age-matched nondyslexic subjects (15 tested binocularly, CGbin; and the other 15 tested monocularly, CGmono). The results indicated that the DG showed poorer binocular stability and longer RTs in the groups tested binocularly (RTs: 534 vs. 411 ms for DGbin and CGbin, respectively; P < 0.001) as compared with the groups examined monocularly (RTs: 431 vs. 424 ms for DGmono and CGmono, respectively; P = 0.996). The DG also exhibited impaired IML when compared with the CG (EFIML: 25 vs. 50 ms for DG and CG, respectively; P = 0.012). Unstable binocularity in dyslexia may affect RTs but was not related to poor IML skills. Impaired IML in dyslexia was independent of the viewing conditions (monocular versus binocular) and may be related to cerebellar deficits.

  14. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  15. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  16. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  17. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  18. Binocular diplopia in a tertiary hospital: Aetiology, diagnosis and treatment.

    PubMed

    Merino, P; Fuentes, D; Gómez de Liaño, P; Ordóñez, M A

    2017-12-01

    To study the causes, diagnosis and treatment in a case series of binocular diplopia. A retrospective chart review was performed on patients seen in the Diplopia Unit of a tertiary centre during a one-year period. Diplopia was classified as: acute≤1 month since onset; subacute (1-6 months); and chronic (>6 months). Resolution of diplopia was classified as: spontaneous if it disappeared without treatment, partial if the course was intermittent, and non-spontaneous if treatment was required. It was considered a good outcome when diplopia disappeared completely (with or without treatment), or when diplopia was intermittent without significantly affecting the quality of life. A total of 60 cases were included. The mean age was 58.65 years (60% female). An acute or subacute presentation was observed in 60% of the patients. The mean onset of diplopia was 82.97 weeks. The most frequent aetiology was ischaemic (45%). The most frequent diagnosis was sixth nerve palsy (38.3%), followed by decompensated strabismus (30%). Neuroimaging showed structural lesions in 17.7% of the patients. There was a spontaneous resolution in 28.3% of the cases, and there was a good outcome with disappearance of the diplopia in 53.3% at the end of the study. The most frequent causes of binocular diplopia were cranial nerve palsies, especially the sixth cranial nerve, followed by decompensated strabismus. Structural lesions in imaging tests were more than expected. Only one third of patients had a spontaneous resolution, and half of them did not have a good outcome despite of treatment. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Blindness and vision loss

    MedlinePlus

    ... eye ( chemical burns or sports injuries) Diabetes Glaucoma Macular degeneration The type of partial vision loss may differ, ... tunnel vision and missing areas of vision With macular degeneration, the side vision is normal but the central ...

  20. Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements

    PubMed Central

    Grossberg, Stephen; Srinivasan, Karthik; Yazdanbakhsh, Arash

    2015-01-01

    How does the brain maintain stable fusion of 3D scenes when the eyes move? Every eye movement causes each retinal position to process a different set of scenic features, and thus the brain needs to binocularly fuse new combinations of features at each position after an eye movement. Despite these breaks in retinotopic fusion due to each movement, previously fused representations of a scene in depth often appear stable. The 3D ARTSCAN neural model proposes how the brain does this by unifying concepts about how multiple cortical areas in the What and Where cortical streams interact to coordinate processes of 3D boundary and surface perception, spatial attention, invariant object category learning, predictive remapping, eye movement control, and learned coordinate transformations. The model explains data from single neuron and psychophysical studies of covert visual attention shifts prior to eye movements. The model further clarifies how perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part of the process whereby view-invariant object categories are learned. These results build upon earlier neural models of 3D vision and figure-ground separation and the learning of invariant object categories as the eyes freely scan a scene. A key process concerns how an object's surface representation generates a form-fitting distribution of spatial attention, or attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual and cognitive processes. Predictive eye movement signals maintain the stability of the shroud, as well as of binocularly fused perceptual boundaries and surface representations. PMID:25642198

  1. Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements.

    PubMed

    Grossberg, Stephen; Srinivasan, Karthik; Yazdanbakhsh, Arash

    2014-01-01

    How does the brain maintain stable fusion of 3D scenes when the eyes move? Every eye movement causes each retinal position to process a different set of scenic features, and thus the brain needs to binocularly fuse new combinations of features at each position after an eye movement. Despite these breaks in retinotopic fusion due to each movement, previously fused representations of a scene in depth often appear stable. The 3D ARTSCAN neural model proposes how the brain does this by unifying concepts about how multiple cortical areas in the What and Where cortical streams interact to coordinate processes of 3D boundary and surface perception, spatial attention, invariant object category learning, predictive remapping, eye movement control, and learned coordinate transformations. The model explains data from single neuron and psychophysical studies of covert visual attention shifts prior to eye movements. The model further clarifies how perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part of the process whereby view-invariant object categories are learned. These results build upon earlier neural models of 3D vision and figure-ground separation and the learning of invariant object categories as the eyes freely scan a scene. A key process concerns how an object's surface representation generates a form-fitting distribution of spatial attention, or attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual and cognitive processes. Predictive eye movement signals maintain the stability of the shroud, as well as of binocularly fused perceptual boundaries and surface representations.

  2. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  3. Computer vision syndrome: a review.

    PubMed

    Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W

    2005-01-01

    As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.

  4. Present Vision--Future Vision.

    ERIC Educational Resources Information Center

    Fitterman, L. Jeffrey

    This paper addresses issues of current and future technology use for and by individuals with visual impairments and blindness in Florida. Present technology applications used in vision programs in Florida are individually described, including video enlarging, speech output, large inkprint, braille print, paperless braille, and tactual output…

  5. High-precision method of binocular camera calibration with a distortion model.

    PubMed

    Li, Weimin; Shan, Siyu; Liu, Hui

    2017-03-10

    A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.

  6. New advances in amblyopia therapy I: binocular therapies and pharmacologic augmentation.

    PubMed

    Kraus, Courtney L; Culican, Susan M

    2018-05-18

    Amblyopia therapy options have traditionally been limited to penalisation of the non-amblyopic eye with either patching or pharmaceutical penalisation. Solid evidence, mostly from the Pediatric Eye Disease Investigator Group, has validated both number of hours a day of patching and days per week of atropine use. The use of glasses alone has also been established as a good first-line therapy for both anisometropic and strabismic amblyopia. Unfortunately, visual acuity equalisation or even improvement is not always attainable with these methods. Additionally, non-compliance with prescribed therapies contributes to treatment failures, with data supporting difficulty adhering to full treatment sessions. Interest in alternative therapies for amblyopia treatment has long been a topic of interest among researchers and clinicians alike. Incorporating new technology with an understanding of the biological basis of amblyopia has led to enthusiasm for binocular treatment of amblyopia. Early work on perceptual learning as well as more recent enthusiasm for iPad-based dichoptic training have each generated interesting and promising data for vision improvement in amblyopes. Use of pharmaceutical augmentation of traditional therapies has also been investigated. Several different drugs with unique mechanisms of action are thought to be able to neurosensitise the brain and enhance responsiveness to amblyopia therapy. No new treatment has emerged from currently available evidence as superior to the traditional therapies in common practice today. But ongoing investigation into the use of both new technology and the understanding of the neural basis of amblyopia promises alternate or perhaps better cures in the future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Optoelectronic vision

    NASA Astrophysics Data System (ADS)

    Ren, Chunye; Parel, Jean-Marie A.

    1993-06-01

    Scientists have searched every discipline to find effective methods of treating blindness, such as using aids based on conversion of the optical image, to auditory or tactile stimuli. However, the limited performance of such equipment and difficulties in training patients have seriously hampered practical applications. A great edification has been given by the discovery of Foerster (1929) and Krause & Schum (1931), who found that the electrical stimulation of the visual cortex evokes the perception of a small spot of light called `phosphene' in both blind and sighted subjects. According to this principle, it is possible to invite artificial vision by using stimulation with electrodes placed on the vision neural system, thereby developing a prosthesis for the blind that might be of value in reading and mobility. In fact, a number of investigators have already exploited this phenomena to produce a functional visual prosthesis, bringing about great advances in this area.

  8. Pleiades Visions

    NASA Astrophysics Data System (ADS)

    Whitehouse, M.

    2016-01-01

    Pleiades Visions (2012) is my new musical composition for organ that takes inspiration from traditional lore and music associated with the Pleiades (Seven Sisters) star cluster from Australian Aboriginal, Native American, and Native Hawaiian cultures. It is based on my doctoral dissertation research incorporating techniques from the fields of ethnomusicology and cultural astronomy; this research likely represents a new area of inquiry for both fields. This large-scale work employs the organ's vast sonic resources to evoke the majesty of the night sky and the expansive landscapes of the homelands of the above-mentioned peoples. Other important themes in Pleiades Visions are those of place, origins, cosmology, and the creation of the world.

  9. Identification and location of catenary insulator in complex background based on machine vision

    NASA Astrophysics Data System (ADS)

    Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao

    2018-04-01

    It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.

  10. Cartesian visions.

    PubMed

    Fara, Patricia

    2008-12-01

    Few original portraits exist of René Descartes, yet his theories of vision were central to Enlightenment thought. French philosophers combined his emphasis on sight with the English approach of insisting that ideas are not innate, but must be built up from experience. In particular, Denis Diderot criticised Descartes's views by describing how Nicholas Saunderson--a blind physics professor at Cambridge--relied on touch. Diderot also made Saunderson the mouthpiece for some heretical arguments against the existence of God.

  11. Vector disparity sensor with vergence control for active vision systems.

    PubMed

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  12. Vector Disparity Sensor with Vergence Control for Active Vision Systems

    PubMed Central

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737

  13. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  14. Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Herrmann, Molly; Thompson, Sarah R; Shular, Cassandra F; Clayton, Anna Marie

    2006-01-01

    In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.

  15. Design of a CGH corrected calibration objective for the AO system at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Rakich, Andrew; Peter, Diethard; Aigner, Simon

    2010-08-01

    We describe the optical design of a calibration unit for the off-axis laser guide stars at the Large Binocular Telescope's ARGOS facility. Artificial stars with the desired wavefront are created using a computer generated hologram.

  16. Depth interval estimates from motion parallax and binocular disparity beyond interaction space.

    PubMed

    Gillam, Barbara; Palmisano, Stephen A; Govan, Donovan G

    2011-01-01

    Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the greatest (ie most veridical) estimates of depth magnitude, followed next by static binocular viewing, and then by dynamic monocular viewing. (No significant depth was seen with static monocular viewing.) We found evidence that both binocular and monocular dynamic estimates of depth were scaled for the observation distance when the ground plane and walls of the tunnel were visible up to the nearest LED. We conclude that both motion parallax and stereopsis provide useful long-distance depth information and that motion-parallax information can enhance the degree of stereoscopic depth seen.

  17. Objective and automated measurement of dynamic vision functions

    NASA Technical Reports Server (NTRS)

    Flom, M. C.; Adams, A. J.

    1976-01-01

    A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.

  18. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements.

    PubMed

    Apfelbaum, Henry; Peli, Eli

    2015-12-01

    No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here.

  19. Differential processing of binocular and monocular gloss cues in human visual cortex.

    PubMed

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.

  20. Differential processing of binocular and monocular gloss cues in human visual cortex

    PubMed Central

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  1. Vision Examination Protocol for Archery Athletes Along With an Introduction to Sports Vision

    PubMed Central

    Mohammadi, Seyed Farzad; Aghazade Amiri, Mohammad; Naderifar, Homa; Rakhshi, Elham; Vakilian, Banafsheh; Ashrafi, Elham; Behesht-Nejad, Amir-Houshang

    2016-01-01

    Introduction: Visual skills are one of the main pillars of intangible faculties of athletes that can influence their performance. Great number of vision tests used to assess the visual skills and it will be irrational to perform all vision tests for every sport. Objectives: The purpose of this protocol article is to present a relatively comprehensive battery of tests and assessments on static and dynamic aspects of sight which seems relevant to sports vision and introduce the most useful ones for archery. Materials and Methods: Through extensive review of the literature, visual skills and respective tests were listed; such as ‘visual acuity, ‘contrast sensitivity’, ‘stereo-acuity’, ‘ocular alignment’, and ‘eye dominance’. Athletes were defined as “elite” and “non-elite” category based on their past performance. Dominance was considered for eye and hand; binocular or monocular aiming was planned to be recorded. Illumination condition was defined as to simulate the real archery condition to the extent possible. The full cycle of examinations and their order for each athlete was sketched (and estimated to take 40 minutes). Protocol was piloted in an eye hospital. Female and male archers aged 18 - 38 years who practiced compound and recurve archery with a history of more than 6 months were included. Conclusions: We managed to select and design a customized examination protocol for archery (a sight-intensive and aiming type of sports), serving skill assessment and research purposes. Our definition for elite and non-elite athletes can help to define sports talent and devise skill development methods as we compare the performance of these two groups. In our pilot, we identified 8 “archery figures” (by hand dominance, eye dominance and binocularity) and highlighted the concept “congruence” (dominant hand and eye in the same side) in archery performance. PMID:27217923

  2. The role of binocular viewing in a spacing illusion arising in a darkened surround.

    PubMed

    Suzuki, K

    1998-01-01

    A study is reported of the binocular-oculomotor hypothesis of the moon illusion. In a dark hall, a pair of light points was presented straight ahead horizontally, and another pair was presented at the same distance but 50 degrees upward. Twenty subjects compared the spacings of these two pairs. Half of the subjects viewed the stimuli first monocularly and then binocularly, and the other half viewed them in the reverse order. Eye position was also systematically varied, either level or elevated. A spacing illusion was consistently obtained during binocular viewing (with the upper spacing seen as smaller), but no illusion arose during monocular viewing unless it was preceded by binocular viewing. Furthermore, an enhancement of the illusion due to eye elevation was found only during binocular viewing. These findings replicate the report of Taylor and Boring (1942 American Journal of Psychology 55 189-201), in which the moon was used as the stimulus, and support the binocular-oculomotor hypothesis as a partial explanation for the moon illusion.

  3. The Role of Binocular Disparity in Stereoscopic Images of Objects in the Macaque Anterior Intraparietal Area

    PubMed Central

    Romero, Maria C.; Van Dromme, Ilse C. L.; Janssen, Peter

    2013-01-01

    Neurons in the macaque Anterior Intraparietal area (AIP) encode depth structure in random-dot stimuli defined by gradients of binocular disparity, but the importance of binocular disparity in real-world objects for AIP neurons is unknown. We investigated the effect of binocular disparity on the responses of AIP neurons to images of real-world objects during passive fixation. We presented stereoscopic images of natural and man-made objects in which the disparity information was congruent or incongruent with disparity gradients present in the real-world objects, and images of the same objects where such gradients were absent. Although more than half of the AIP neurons were significantly affected by binocular disparity, the great majority of AIP neurons remained image selective even in the absence of binocular disparity. AIP neurons tended to prefer stimuli in which the depth information derived from binocular disparity was congruent with the depth information signaled by monocular depth cues, indicating that these monocular depth cues have an influence upon AIP neurons. Finally, in contrast to neurons in the inferior temporal cortex, AIP neurons do not represent images of objects in terms of categories such as animate-inanimate, but utilize representations based upon simple shape features including aspect ratio. PMID:23408970

  4. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans.

    PubMed

    Carter, Olivia L; Hasler, Felix; Pettigrew, John D; Wallis, Guy M; Liu, Guang B; Vollenweider, Franz X

    2007-12-01

    Binocular rivalry occurs when different images are simultaneously presented to each eye. During continual viewing of this stimulus, the observer will experience repeated switches between visual awareness of the two images. Previous studies have suggested that a slow rate of perceptual switching may be associated with clinical and drug-induced psychosis. The objective of the study was to explore the proposed relationship between binocular rivalry switch rate and subjective changes in psychological state associated with 5-HT2A receptor activation. This study used psilocybin, the hallucinogen found naturally in Psilocybe mushrooms that had previously been found to induce psychosis-like symptoms via the 5-HT2A receptor. The effects of psilocybin (215 microg/kg) were considered alone and after pretreatment with the selective 5-HT2A antagonist ketanserin (50 mg) in ten healthy human subjects. Psilocybin significantly reduced the rate of binocular rivalry switching and increased the proportion of transitional/mixed percept experience. Pretreatment with ketanserin blocked the majority of psilocybin's "positive" psychosis-like hallucinogenic symptoms. However, ketanserin had no influence on either the psilocybin-induced slowing of binocular rivalry or the drug's "negative-type symptoms" associated with reduced arousal and vigilance. Together, these findings link changes in binocular rivalry switching rate to subjective levels of arousal and attention. In addition, it suggests that psilocybin's effect on binocular rivalry is unlikely to be mediated by the 5-HT2A receptor.

  5. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  6. Eyesight quality and Computer Vision Syndrome.

    PubMed

    Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea

    2017-01-01

    The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 - 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 - 30 patients evaluated in the Ophthalmology Clinic, "Sf. Spiridon" Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer's test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget's impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight.

  7. Eyesight quality and Computer Vision Syndrome

    PubMed Central

    Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea

    2017-01-01

    The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 – 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 – 30 patients evaluated in the Ophthalmology Clinic, “Sf. Spiridon” Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer’s test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget’s impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight. PMID:29450383

  8. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years.

    PubMed

    Tailor, Vijay; Bossi, Manuela; Bunce, Catey; Greenwood, John A; Dahlmann-Noor, Annegret

    2015-08-11

    Current treatments for amblyopia in children, occlusion and pharmacological blurring, have had limited success, with less than two-thirds of children achieving good visual acuity of at least 0.20 logMAR in the amblyopic eye, limited improvement of stereopsis, and poor compliance. A new treatment approach, based on the dichoptic presentation of movies or computer games (images presented separately to each eye), may yield better results, as it aims to balance the input of visual information from each eye to the brain. Compliance may also improve with these more child-friendly treatment procedures. To determine whether binocular treatments in children aged three to eight years with unilateral amblyopia result in better visual outcomes than conventional occlusion or pharmacological blurring treatment. We searched the Cochrane Eyes and Vision Group Trials Register (last date of searches: 14 April 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to April 2015), EMBASE (January 1980 to April 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. Two review authors independently screened the results of the search in order to identify studies that met the inclusion criteria of the review: randomised controlled trials (RCTs) that enrolled participants between the ages of three and eight years old with unilateral amblyopia, defined as best-corrected visual acuity (BCVA) worse than 0.200 logMAR in the amblyopic eye, and BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor such as anisometropia, strabismus, or both. Prior

  9. Design of optical system for binocular fundus camera.

    PubMed

    Wu, Jun; Lou, Shiliang; Xiao, Zhitao; Geng, Lei; Zhang, Fang; Wang, Wen; Liu, Mengjia

    2017-12-01

    A non-mydriasis optical system for binocular fundus camera has been designed in this paper. It can capture two images of the same fundus retinal region from different angles at the same time, and can be used to achieve three-dimensional reconstruction of fundus. It is composed of imaging system and illumination system. In imaging system, Gullstrand Le Grand eye model is used to simulate normal human eye, and Schematic eye model is used to test the influence of ametropia in human eye on imaging quality. Annular aperture and black dot board are added into illumination system, so that the illumination system can eliminate stray light produced by corneal-reflected light and omentoscopic lens. Simulation results show that MTF of each visual field at the cut-off frequency of 90lp/mm is greater than 0.2, system distortion value is -2.7%, field curvature is less than 0.1 mm, radius of Airy disc is 3.25um. This system has a strong ability of chromatic aberration correction and focusing, and can image clearly for human fundus in which the range of diopters is from -10 D to +6 D(1 D = 1 m -1 ).

  10. Binocular rivalry transitions predict inattention symptom severity in adult ADHD.

    PubMed

    Jusyte, Aiste; Zaretskaya, Natalia; Höhnle, Nina Maria; Bartels, Andreas; Schönenberg, Michael

    2018-06-01

    Attention deficit and hyperactivity disorder (ADHD) is a prevalent childhood disorder that is often maintained throughout the development and persists into adulthood. Established etiology models suggest that deficient inhibition underlies the core ADHD symptoms. While experimental evidence for impaired motor inhibition is overwhelming, little is known about the sensory inhibition processes, their changes throughout the development, and the relationship to ADHD symptoms. Here, we used the well-established binocular rivalry (BR) paradigm to investigate for the very first time the inhibitory processes related to visual perception in adults with ADHD. In BR, perception alternates between two dichoptically presented images throughout the viewing period, with shorter dominant percept durations and longer transition periods indicating poorer suppression/inhibition. Healthy controls (N = 28) and patients with ADHD (N = 32) were presented with two dissimilar images (orthogonal gratings) separately to each eye through a mirror stereoscope and asked to report their perceptual experiences. There were no differences between groups in any of the BR markers. However, an association between transition durations and symptom severity emerged in the ADHD group. Importantly, an exploratory multiple regression analysis revealed that inattention symptoms were the sole predictor for the duration of transition periods. The lack of impairments to sensory inhibition in adult, but not pediatric ADHD may reflect compensatory changes associated with development, while a correlation between inhibition and inattention symptoms may reveal an invariant core of the disorder.

  11. Early laser operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rahmer, Gustavo; Lefebvre, Michael; Christou, Julian; Raab, Walfried; Rabien, Sebastian; Ziegleder, Julian; Borelli, José L.; Gässler, Wolfgang

    2014-08-01

    ARGOS is the GLAO (Ground-Layer Adaptive Optics) Rayleigh-based LGS (Laser Guide Star) facility for the Large Binocular Telescope Observatory (LBTO). It is dedicated for observations with LUCI1 and LUCI2, LBTO's pair of NIR imagers and multi-object spectrographs. The system projects three laser beams from the back of each of the two secondary mirror units, which create two constellations circumscribed on circles of 2 arcmin radius with 120 degree spacing. Each of the six Nd:YAG lasers provides a beam of green (532nm) pulses at a rate of 10kHz with a power of 14W to 18W. We achieved first on-sky propagation on the night of November 5, 2013, and commissioning of the full system will take place during 2014. We present the initial results of laser operations at the observatory, including safety procedures and the required coordination with external agencies (FAA, Space Command, and Military Airspace Manager). We also describe our operational procedures and report on our experiences with aircraft spotters. Future plans for safer and more efficient aircraft monitoring and detection are discussed.

  12. Vision Therapy News Backgrounder.

    ERIC Educational Resources Information Center

    American Optometric Association, St. Louis, MO.

    The booklet provides an overview on vision therapy to aid writers, editors, and broadcasters help parents, teachers, older adults, and all consumers learn more about vision therapy. Following a description of vision therapy or vision training, information is provided on how and why vision therapy works. Additional sections address providers of…

  13. Obstacles encountered in the development of the low vision enhancement system.

    PubMed

    Massof, R W; Rickman, D L

    1992-01-01

    The Johns Hopkins Wilmer Eye Institute and the NASA Stennis Space Center are collaborating on the development of a new high technology low vision aid called the Low Vision Enhancement System (LVES). The LVES consists of a binocular head-mounted video display system, video cameras mounted on the head-mounted display, and real-time video image processing in a system package that is battery powered and portable. Through a phased development approach, several generations of the LVES can be made available to the patient in a timely fashion. This paper describes the LVES project with major emphasis on technical problems encountered or anticipated during the development process.

  14. The processing of linear perspective and binocular information for action and perception.

    PubMed

    Bruggeman, Hugo; Yonas, Albert; Konczak, Jürgen

    2007-04-08

    To investigate the processing of linear perspective and binocular information for action and for the perceptual judgment of depth, we presented viewers with an actual Ames trapezoidal window. The display, when presented perpendicular to the line of sight, provided perspective information for a rectangular window slanted in depth, while binocular information specified a planar surface in the fronto-parallel plane. We compared pointing towards the display-edges with perceptual judgment of their positions in depth as the display orientation was varied under monocular and binocular view. On monocular trials, pointing and depth judgment were based on the perspective information and failed to respond accurately to changes in display orientation because pictorial information did not vary sufficiently to specify the small differences in orientation. For binocular trials, pointing was based on binocular information and precisely matched the changes in display orientation whereas depth judgment was short of such adjustment and based upon both binocular and perspective-specified slant information. The finding, that on binocular trials pointing was considerably less responsive to the illusion than perceptual judgment, supports an account of two separate processing streams in the human visual system, a ventral pathway involved in object recognition and a dorsal pathway that produces visual information for the control of actions. Previously, similar differences between perception and action were explained by an alternate explanation, that is, viewers selectively attend to different parts of a display in the two tasks. The finding that under monocular view participants responded to perspective information in both the action and the perception task rules out the attention-based argument.

  15. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  16. Robot Vision

    NASA Technical Reports Server (NTRS)

    Sutro, L. L.; Lerman, J. B.

    1973-01-01

    The operation of a system is described that is built both to model the vision of primate animals, including man, and serve as a pre-prototype of possible object recognition system. It was employed in a series of experiments to determine the practicability of matching left and right images of a scene to determine the range and form of objects. The experiments started with computer generated random-dot stereograms as inputs and progressed through random square stereograms to a real scene. The major problems were the elimination of spurious matches, between the left and right views, and the interpretation of ambiguous regions, on the left side of an object that can be viewed only by the left camera, and on the right side of an object that can be viewed only by the right camera.

  17. Color vision test

    MedlinePlus

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  18. Comparison of visual outcomes after bilateral implantation of extended range of vision and trifocal intraocular lenses.

    PubMed

    Ruiz-Mesa, Ramón; Abengózar-Vela, Antonio; Aramburu, Ana; Ruiz-Santos, María

    2017-06-26

    To compare visual outcomes after cataract surgery with bilateral implantation of 2 intraocular lenses (IOLs): extended range of vision and trifocal. Each group of this prospective study comprised 40 eyes (20 patients). Phacoemulsification followed by bilateral implantation of a FineVision IOL (group 1) or a Symfony IOL (group 2) was performed. The following outcomes were assessed up to 1 year postoperatively: binocular uncorrected distance visual acuity (UDVA), binocular uncorrected intermediate visual acuity (UIVA) at 60 cm, binocular uncorrected near visual acuity (UNVA) at 40 cm, spherical equivalent (SE) refraction, defocus curves, mesopic and photopic contrast sensitivity, halometry, posterior capsule opacification (PCO), and responses to a patient questionnaire. The mean binocular values in group 1 and group 2, respectively, were SE -0.15 ± 0.25 D and -0.19 ± 0.18 D; UDVA 0.01 ± 0.03 logMAR and 0.01 ± 0.02 logMAR; UIVA 0.11 ± 0.08 logMAR and 0.09 ± 0.08 logMAR; UNVA 0.06 ± 0.07 logMAR and 0.17 ± 0.06 logMAR. Difference in UNVA between IOLs (p<0.05) was statistically significant. There were no significant differences in contrast sensitivity, halometry, or PCO between groups. Defocus curves were similar between groups from 0 D to -2 D, but showed significant differences from -2.50 D to -4.00 D (p<0.05). Both IOLs provided excellent distance and intermediate visual outcomes. The FineVision IOL showed better near visual acuity. Predictability of the refractive results and optical performance were excellent; all patients achieved spectacle independence. The 2 IOLs gave similar and good contrast sensitivity in photopic and mesopic conditions and low perception of halos by patients.

  19. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  20. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  1. Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry

    PubMed Central

    O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte

    2013-01-01

    Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536

  2. The Large Binocular Telescope's ARGOS ground-layer AO system

    NASA Astrophysics Data System (ADS)

    Hart, M.; Rabien, S.; Busoni, L.; Barl, L.; Bechmann, U.; Bonaglia, M.; Boose, Y.; Borelli, J.; Bluemchen, T.; Carbonaro, L.; Connot, C.; Deysenroth, M.; Davies, R.; Durney, O.; Elberich, M.; Ertl, T.; Esposito, S.; Gaessler, W.; Gasho, V.; Gemperlein, H.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Newman, K.; Noenickx, J.; Orban de Xivry, G.; Qirrenback, A.; Rademacher, M.; Schwab, C.; Storm, J.; Vaitheeswaran, V.; Weigelt, G.; Ziegleder, J.

    2011-09-01

    ARGOS, the laser-guided adaptive optics system for the Large Binocular Telescope (LBT), is now under construction at the telescope. By correcting atmospheric turbulence close to the telescope, the system is designed to deliver high resolution near infrared images over a field of 4 arc minute diameter. ARGOS is motivated by a successful prototype multi-laser guide star system on the 6.5 m MMT telescope, results from which are presented in this paper. At the LBT, each side of the twin 8.4 m aperture is being equipped with three Rayleigh laser guide stars derived from six 18 W pulsed green lasers and projected into two triangular constellations matching the size of the corrected field. The returning light is to be detected by wavefront sensors that are range gated within the seeinglimited depth of focus of the telescope. Wavefront correction will be introduced by the telescope’s deformable secondary mirrors driven on the basis of the average wavefront errors computed from the respective guide star constellation. Measured atmospheric turbulence profiles from the site lead us to expect that by compensating the ground-layer turbulence, ARGOS will deliver median image quality of about 0.2 arc sec in the near infrared bands. This will be exploited by a pair of multi-object near-IR spectrographs, LUCI1 and LUCI2, each with 4 arc minute field already operating on the telescope. In future, ARGOS will also feed two interferometric imaging instruments, the LBT Interferometer operating in the thermal infrared, and LINC-NIRVANA, operating at visible and near infrared wavelengths. Together, these instruments will offer very broad spectral coverage at the diffraction limit of the LBT’s combined aperture, 23 m in size.

  3. Ideas for Teaching Vision and Visioning

    ERIC Educational Resources Information Center

    Quijada, Maria Alejandra

    2017-01-01

    In teaching leadership, a key element to include should be a discussion about vision: what it is, how to communicate it, and how to ensure that it is effective and shared. This article describes a series of exercises that rely on videos to illustrate different aspects of vision and visioning, both in the positive and in the negative. The article…

  4. Enhancement of vision by monocular deprivation in adult mice.

    PubMed

    Prusky, Glen T; Alam, Nazia M; Douglas, Robert M

    2006-11-08

    Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.

  5. Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness.

    PubMed

    Mustari, Michael J

    2017-12-01

    Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the National Academy of Sciences. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Functional vision loss: a diagnosis of exclusion.

    PubMed

    Villegas, Rex B; Ilsen, Pauline F

    2007-10-01

    Most cases of visual acuity or visual field loss can be attributed to ocular pathology or ocular manifestations of systemic pathology. They can also occasionally be attributed to nonpathologic processes or malingering. Functional vision loss is any decrease in vision the origin of which cannot be attributed to a pathologic or structural abnormality. Two cases of functional vision loss are described. In the first, a 58-year-old man presented for a baseline eye examination for enrollment in a vision rehabilitation program. He reported bilateral blindness since a motor vehicle accident with head trauma 4 years prior. Entering visual acuity was "no light perception" in each eye. Ocular health examination was normal and the patient made frequent eye contact with the examiners. He was referred for neuroimaging and electrophysiologic testing. The second case was a 49-year-old man who presented with a long history of intermittent monocular diplopia. His medical history was significant for psycho-medical evaluations and a diagnosis of factitious disorder. Entering uncorrected visual acuities were 20/20 in each eye, but visual field testing found constriction. No abnormalities were found that could account for the monocular diplopia or visual field deficit. A diagnosis of functional vision loss secondary to factitious disorder was made. Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before making the diagnosis of functional vision loss. Evaluation must include auxiliary ophthalmologic testing, neuroimaging of the visual pathway, review of the medical history and lifestyle, and psychiatric evaluation. Comanagement with a psychiatrist is essential for patients with functional vision loss.

  7. Visually induced self-motion sensation adapts rapidly to left-right reversal of vision

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.

    1981-01-01

    Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.

  8. LINC-NIRVANA for the large binocular telescope: setting up the world's largest near infrared binoculars for astronomy

    NASA Astrophysics Data System (ADS)

    Hofferbert, Ralph; Baumeister, Harald; Bertram, Thomas; Berwein, Jürgen; Bizenberger, Peter; Böhm, Armin; Böhm, Michael; Borelli, José Luis; Brangier, Matthieu; Briegel, Florian; Conrad, Albert; De Bonis, Fulvio; Follert, Roman; Herbst, Tom; Huber, Armin; Kittmann, Frank; Kürster, Martin; Laun, Werner; Mall, Ulrich; Meschke, Daniel; Mohr, Lars; Naranjo, Vianak; Pavlov, Aleksei; Pott, Jörg-Uwe; Rix, Hans-Walter; Rohloff, Ralf-Rainer; Schinnerer, Eva; Storz, Clemens; Trowitzsch, Jan; Yan, Zhaojun; Zhang, Xianyu; Eckart, Andreas; Horrobin, Matthew; Rost, Steffen; Straubmeier, Christian; Wank, Imke; Zuther, Jens; Beckmann, Udo; Connot, Claus; Heininger, Matthias; Hofmann, Karl-Heinz; Kröner, Tim; Nussbaum, Eddy; Schertl, Dieter; Weigelt, Gerd; Bergomi, Maria; Brunelli, Alessandro; Dima, Marco; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Ragazzoni, Roberto; Viotto, Valentina; Arcidiacono, Carmelo; Bregoli, Giovanni; Ciliegi, Paolo; Cosentino, Guiseppe; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Schreiber, Laura; D'Alessio, Francesco; Li Causi, Gianluca; Lorenzetti, Dario; Vitali, Fabrizio; Bertero, Mario; Boccacci, Patrizia; La Camera, Andrea

    2013-08-01

    LINC-NIRVANA (LN) is the near-infrared, Fizeau-type imaging interferometer for the large binocular telescope (LBT) on Mt. Graham, Arizona (elevation of 3267 m). The instrument is currently being built by a consortium of German and Italian institutes under the leadership of the Max Planck Institute for Astronomy in Heidelberg, Germany. It will combine the radiation from both 8.4 m primary mirrors of LBT in such a way that the sensitivity of a 11.9 m telescope and the spatial resolution of a 22.8 m telescope will be obtained within a 10.5×10.5 arcsec scientific field of view. Interferometric fringes of the combined beams are tracked in an oval field with diameters of 1 and 1.5 arcmin. In addition, both incoming beams are individually corrected by LN's multiconjugate adaptive optics system to reduce atmospheric image distortion over a circular field of up to 6 arcmin in diameter. A comprehensive technical overview of the instrument is presented, comprising the detailed design of LN's four major systems for interferometric imaging and fringe tracking, both in the near infrared range of 1 to 2.4 μm, as well as atmospheric turbulence correction at two altitudes, both in the visible range of 0.6 to 0.9 μm. The resulting performance capabilities and a short outlook of some of the major science goals will be presented. In addition, the roadmap for the related assembly, integration, and verification process are discussed. To avoid late interface-related risks, strategies for early hardware as well as software interactions with the telescope have been elaborated. The goal is to ship LN to the LBT in 2014.

  9. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

    PubMed Central

    Wang, Bor-Shuen; Feng, Liang; Liu, Mingna; Liu, Xiaorong; Cang, Jianhua

    2013-01-01

    SUMMARY Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neurons, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms. PMID:24012279

  10. Method used to test the imaging consistency of binocular camera's left-right optical system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

    2016-09-01

    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  11. DLP™-based dichoptic vision test system

    NASA Astrophysics Data System (ADS)

    Woods, Russell L.; Apfelbaum, Henry L.; Peli, Eli

    2010-01-01

    It can be useful to present a different image to each of the two eyes while they cooperatively view the world. Such dichoptic presentation can occur in investigations of stereoscopic and binocular vision (e.g., strabismus, amblyopia) and vision rehabilitation in clinical and research settings. Various techniques have been used to construct dichoptic displays. The most common and most flexible modern technique uses liquid-crystal (LC) shutters. When used in combination with cathode ray tube (CRT) displays, there is often leakage of light from the image intended for one eye into the view of the other eye. Such interocular crosstalk is 14% even in our state of the art CRT-based dichoptic system. While such crosstalk may have minimal impact on stereo movie or video game experiences, it can defeat clinical and research investigations. We use micromirror digital light processing (DLP™) technology to create a novel dichoptic visual display system with substantially lower interocular crosstalk (0.3% remaining crosstalk comes from the LC shutters). The DLP system normally uses a color wheel to display color images. Our approach is to disable the color wheel, synchronize the display directly to the computer's sync signal, allocate each of the three (former) color presentations to one or both eyes, and open and close the LC shutters in synchrony with those color events.

  12. Visual response time to colored stimuli in peripheral retina - Evidence for binocular summation

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1977-01-01

    Simple onset response time (RT) experiments, previously shown to exhibit binocular summation effects for white stimuli along the horizontal meridian, were performed for red and green stimuli along 5 oblique meridians. Binocular RT was significantly shorter than monocular RT for a 45-min-diameter spot of red, green, or white light within eccentricities of about 50 deg from the fovea. Relatively large meridian differences were noted that appear to be due to the degree to which the images fall on corresponding retinal areas.

  13. Demographic and clinical characteristics of a paediatric low vision population in a low vision clinic in China.

    PubMed

    Gao, Guohong; Yu, Manrong; Dai, Jinhui; Xue, Feng; Wang, Xiaoying; Zou, Leilei; Chen, Minjie; Ma, Fei

    2016-05-01

    The aim was to describe the characteristics of the paediatric population attending the low vision clinic of the Eye and ENT Hospital, located in Shanghai, China. The clinical records of all the children attending the low vision clinic of Eye and ENT Hospital affiliated to Fudan University between January 1, 2009 and May 31, 2014 were retrospectively reviewed. The main data analysed were age, gender, education, visual demand, diagnosis, visual acuity and prescription of low vision aids. Of the 162 patients, 104 (64.20 per cent) were male. The age range of the study population was three to 20 years, with a mean of 10.73 ± 5.08 years. There were 43.21 per cent with moderate visual impairment, 26.54 per cent had severe visual impairment and 19.75 per cent were blind. The leading causes of visual impairment were congenital cataract (21.61 per cent), optic atrophy (14.20 per cent), macular dystrophy (11.73 per cent), nystagmus (9.88 per cent) and congenital glaucoma (9.26 per cent). The most frequently prescribed low vision devices for distant and near vision were binocular telescopes (23.57 per cent) and stand magnifiers (22.93 per cent), respectively. Young age (up to six years, 37.93 per cent), high cost (24.14 per cent), cosmetic reasons (17.24 per cent) and inconvenience (13.79 per cent) were the main reasons that children or parents refused to accept useful low vision aids. Congenital and hereditary diseases constituted the major causes of low vision in the study population. Strategies that make good-quality rehabilitation services available, affordable and accessible, especially in developing countries, will have the greatest impact on visual impairment. In China, both urban and rural, the coverage of low vision services should be strengthened. © 2016 The Authors. Clinical and Experimental Optometry © 2016 Optometry Australia.

  14. Environmental Recognition and Guidance Control for Autonomous Vehicles using Dual Vision Sensor and Applications

    NASA Astrophysics Data System (ADS)

    Moriwaki, Katsumi; Koike, Issei; Sano, Tsuyoshi; Fukunaga, Tetsuya; Tanaka, Katsuyuki

    We propose a new method of environmental recognition around an autonomous vehicle using dual vision sensor and navigation control based on binocular images. We consider to develop a guide robot that can play the role of a guide dog as the aid to people such as the visually impaired or the aged, as an application of above-mentioned techniques. This paper presents a recognition algorithm, which finds out the line of a series of Braille blocks and the boundary line between a sidewalk and a roadway where a difference in level exists by binocular images obtained from a pair of parallelarrayed CCD cameras. This paper also presents a tracking algorithm, with which the guide robot traces along a series of Braille blocks and avoids obstacles and unsafe areas which exist in the way of a person with the guide robot.

  15. Extending the Stabilized Supralinear Network model for binocular image processing.

    PubMed

    Selby, Ben; Tripp, Bryan

    2017-06-01

    The visual cortex is both extensive and intricate. Computational models are needed to clarify the relationships between its local mechanisms and high-level functions. The Stabilized Supralinear Network (SSN) model was recently shown to account for many receptive field phenomena in V1, and also to predict subtle receptive field properties that were subsequently confirmed in vivo. In this study, we performed a preliminary exploration of whether the SSN is suitable for incorporation into large, functional models of the visual cortex, considering both its extensibility and computational tractability. First, whereas the SSN receives abstract orientation signals as input, we extended it to receive images (through a linear-nonlinear stage), and found that the extended version behaved similarly. Secondly, whereas the SSN had previously been studied in a monocular context, we found that it could also reproduce data on interocular transfer of surround suppression. Finally, we reformulated the SSN as a convolutional neural network, and found that it scaled well on parallel hardware. These results provide additional support for the plausibility of the SSN as a model of lateral interactions in V1, and suggest that the SSN is well suited as a component of complex vision models. Future work will use the SSN to explore relationships between local network interactions and sophisticated vision processes in large networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Three-dimensional vision enhances task performance independently of the surgical method.

    PubMed

    Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A

    2012-10-01

    Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.

  17. Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement

    PubMed Central

    Hu, Bo; Knill, David C.

    2012-01-01

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567

  18. The Influence of Anxiety on the Initial Selection of Emotional Faces Presented in Binocular Rivalry

    ERIC Educational Resources Information Center

    Gray, Katie L. H.; Adams, Wendy J.; Garner, Matthew

    2009-01-01

    Neurocognitive theories of anxiety predict that threat-related information can be evaluated before attentional selection, and can influence behaviour differentially in high anxious compared to low anxious individuals. We investigate this further by presenting emotional and neutral faces in an adapted binocular rivalry paradigm. We show that the…

  19. Aging and the discrimination of 3-D shape from motion and binocular disparity.

    PubMed

    Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L

    2012-10-01

    Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.

  20. Vision Based Localization in Urban Environments

    NASA Technical Reports Server (NTRS)

    McHenry, Michael; Cheng, Yang; Matthies, Larry

    2005-01-01

    As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system for localization in urban environments that requires neither GPS nor active sensors. System hardware consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the software system consist of: 1) a crude grid-based map describing the positions of buildings, 2) an initial estimate of robot location and 3) the video streams produced by each camera. At each step during the traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a building, computes the range to those features, determines an estimate of the robot's motion since the previous step and combines that data with the map to update a probabilistic representation of the robot's location. This probabilistic representation allows the system to simultaneously represent multiple possible locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead imagery, although this process could be automated. The software system consists of two primary components. The first is the vision system which uses binocular stereo ranging together with a set of heuristics to identify features likely to be part of building exteriors and to compute an estimate of the robot's motion since the previous step. The resulting visual features and the associated range measurements are software component, a particle-filter based localization system. This system uses the map and the then fed to the second primary most recent results from the vision system to update the estimate of the robot's location. This report summarizes the design of both the hardware and software and will include the results of applying the system to the global localization of a robot over an approximately half-kilometer traverse across JPL'S Pasadena campus.

  1. PixonVision real-time video processor

    NASA Astrophysics Data System (ADS)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  2. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  3. On the functional order of binocular rivalry and blind spot filling-in.

    PubMed

    Qian, Cheng S; Brascamp, Jan W; Liu, Taosheng

    2017-07-01

    Binocular rivalry is an important phenomenon for understanding the mechanisms of visual awareness. Here we assessed the functional locus of binocular rivalry relative to blind spot filling-in, which is thought to transpire in V1, thus providing a reference point for assessing the locus of rivalry. We conducted two experiments to explore the functional order of binocular rivalry and blind spot filling-in. Experiment 1 examined if the information filled-in at the blind spot can engage in rivalry with a physical stimulus at the corresponding location in the fellow eye. Participants' perceptual reports showed no difference between this condition and a condition where filling-in was precluded by presenting the same stimuli away from the blind spot, suggesting that the rivalry process is not influenced by any filling-in that might occur. In Experiment 2, we presented the fellow eye's stimulus directly in rivalry with the 'inducer' stimulus that surrounds the blind spot, and compared it with two control conditions away from the blind spot: one involving a ring physically identical to the inducer, and one involving a disc that resembled the filled-in percept. Perceptual reports in the blind spot condition resembled those in the 'ring' condition, more than those in the latter, 'disc' condition, indicating that a perceptually suppressed inducer does not engender filling-in. Thus, our behavioral data suggest binocular rivalry functionally precedes blind spot filling-in. We conjecture that the neural substrate of binocular rivalry suppression includes processing stages at or before V1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements

    PubMed Central

    Apfelbaum, Henry; Peli, Eli

    2015-01-01

    Purpose No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Methods Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Results Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Conclusions Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Translational Relevance Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here. PMID:26740910

  5. Vision Impairment and Blindness

    MedlinePlus

    ... books can make life easier. There are also devices to help those with no vision, like text-reading software and braille books. The sooner vision loss or eye disease is found and treated, the greater your ...

  6. Low Vision Tips

    MedlinePlus

    ... this page: https://medlineplus.gov/lowvision.html MedlinePlus: Low Vision Tips We are sorry. MedlinePlus no longer maintains the For Low Vision Users page. You will still find health resources ...

  7. Age-Related Psychophysical Changes and Low Vision

    PubMed Central

    Dagnelie, Gislin

    2013-01-01

    When considering the burden of visual impairment on aging individuals and society at large, it is important to bear in mind that vision changes are a natural aspect of aging. In this article, we consider vision changes that are part of normal aging, the prevalence of abnormal vision changes caused by disorders of the visual system, and the anticipated incidence and impact of visual impairment as the US population ages. We then discuss the services available to reduce the impact of vision loss, and the extent to which those services can and should be improved, not only to be better prepared for the anticipated increase in low vision over the coming decades, but also to increase the awareness of interactions between visual impairment and comorbidities that are common among the elderly. Finally, we consider how to promote improved quality, availability, and acceptance of low vision care to lessen the impact of visual impairment on individuals, and its burden on society. PMID:24335074

  8. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  9. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  11. Neurological abnormalities associated with CDMA exposure.

    PubMed

    Hocking, B; Westerman, R

    2001-09-01

    Dysaesthesiae of the scalp and neurological abnormality after mobile phone use have been reported previously, but the roles of the phone per se or the radiations in causing these findings have been questioned. We report finding a neurological abnormality in a patient after accidental exposure of the left side of the face to mobile phone radiation [code division multiple access (CDMA)] from a down-powered mobile phone base station antenna. He had headaches, unilateral left blurred vision and pupil constriction, unilateral altered sensation on the forehead, and abnormalities of current perception thresholds on testing the left trigeminal ophthalmic nerve. His nerve function recovered during 6 months follow-up. His exposure was 0.015-0.06 mW/cm(2) over 1-2 h. The implications regarding health effects of radiofrequency radiation are discussed.

  12. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  13. Effects of brief daily periods of unrestricted vision during early monocular form deprivation on development of visual area 2.

    PubMed

    Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Harwerth, Ronald S; Smith, Earl L; Chino, Yuzo M

    2011-09-14

    Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision.

  14. Effects of Brief Daily Periods of Unrestricted Vision during Early Monocular Form Deprivation on Development of Visual Area 2

    PubMed Central

    Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M.; Harwerth, Ronald S.; Smith, Earl L.

    2011-01-01

    Purpose. Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Methods. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. Results. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. Conclusions. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision. PMID:21849427

  15. The economic value added (EVA) resulting from medical care of functional amblyopia, strabismus, (pathologies of binocular vision) and asthma.

    PubMed

    Beauchamp, Cynthia L; Felius, Joost; Beauchamp, George R

    2010-01-01

    Value analysis in health care calculates the economic value added (EVA) that results from improvements in health and health care. Our purpose was to develop an EVA model and to apply the model to typical and hypothetical (instantaneous and perfect) cures for amblyopia, surgical strabismus and asthma, as another, but non-ophthalmological disease standard for comparison, in the United States. The model is based on changes in utility and longevity, the associated incremental costs, and an estimate of the value of life. Univariate sensitivity analyses were performed to arrive at a plausible range of outcomes. For the United States, the EVA for current practice amblyopia care is 12.9B dollars (billion) per year, corresponding to a return on investment (ROI) of 10.4% per yr. With substantial increases in investment aimed at maximal improvement ("perfect cure"), the EVA is 32.7B per yr, with ROI of 5.3% per yr. The EVA for typical surgical strabismus care is 10.3B per yr. A perfect cure may yield EVA of 9.6B per yr. The EVA for asthma is 1317B per yr (ROI 20.4% per yr.., while a perfect cure may yield EVA of 110 B per yr. Sensitivity analysis demonstrated the relatively large effects of incidence, utility, and longevity, while incremental costs have a relatively minor effect on the EVA. The economic value added by improvements in patient-centered outcomes is very large. Failing to make the necessary investments in research, prevention, detection, prompt treatment and rehabilitation of these diseases, at virtually any conceivable cost, appears economically, medically, morally and ethically deficient and consequently wasteful at very least economically for our society.

  16. Disparity-driven vs blur-driven models of accommodation and convergence in binocular vision and intermittent strabismus

    PubMed Central

    Horwood, Anna M.; Riddell, Patricia M.

    2014-01-01

    Purpose To propose an alternative and practical model to conceptualize clinical patterns of concomitant intermittent strabismus, heterophoria, and convergence and accommodation anomalies. Methods Despite identical ratios, there can be a disparity- or blur-biased “style” in three hypothetical scenarios: normal; high ratio of accommodative convergence to accommodation (AC/A) and low ratio of convergence accommodation to convergence (CA/C); low AC/A and high CA/C. We calculated disparity bias indices (DBI) to reflect these biases and provide early objective data from small illustrative clinical groups that fit these styles. Results Normal adults (n = 56) and children (n = 24) showed disparity bias (adult DBI 0.43 [95% CI, 0.50-0.36], child DBI 0.20 [95% CI, 0.31-0.07]; P = 0.001). Accommodative esotropia (n = 3) showed less disparity-bias (DBI 0.03). In the high AC/A–low CA/C scenario, early presbyopia (n = 22) showed mean DBI of 0.17 (95% CI, 0.28-0.06), compared to DBI of −0.31 in convergence excess esotropia (n=8). In the low AC/A–high CA/C scenario near exotropia (n = 17) showed mean DBI of 0.27. DBI ranged between 1.25 and −1.67. Conclusions Establishing disparity or blur bias adds to AC/A and CA/C ratios to explain clinical patterns. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. PMID:25498466

  17. Disparity-driven vs blur-driven models of accommodation and convergence in binocular vision and intermittent strabismus.

    PubMed

    Horwood, Anna M; Riddell, Patricia M

    2014-12-01

    To propose an alternative and practical model to conceptualize clinical patterns of concomitant intermittent strabismus, heterophoria, and convergence and accommodation anomalies. Despite identical ratios, there can be a disparity- or blur-biased "style" in three hypothetical scenarios: normal; high ratio of accommodative convergence to accommodation (AC/A) and low ratio of convergence accommodation to convergence (CA/C); low AC/A and high CA/C. We calculated disparity bias indices (DBI) to reflect these biases and provide early objective data from small illustrative clinical groups that fit these styles. Normal adults (n = 56) and children (n = 24) showed disparity bias (adult DBI 0.43 [95% CI, 0.50-0.36], child DBI 0.20 [95% CI, 0.31-0.07]; P = 0.001). Accommodative esotropia (n = 3) showed less disparity-bias (DBI 0.03). In the high AC/A-low CA/C scenario, early presbyopia (n = 22) showed mean DBI of 0.17 (95% CI, 0.28-0.06), compared to DBI of -0.31 in convergence excess esotropia (n=8). In the low AC/A-high CA/C scenario near exotropia (n = 17) showed mean DBI of 0.27. DBI ranged between 1.25 and -1.67. Establishing disparity or blur bias adds to AC/A and CA/C ratios to explain clinical patterns. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Generalization of Figure-Ground Segmentation from Binocular to Monocular Vision in an Embodied Biological Brain Model

    DTIC Science & Technology

    2011-08-01

    Intelligence (AGI). For example, it promises to unlock vast sets of training data , such as Google Images, which have previously been inaccessible to...development of this skill holds great promise for e orts, like Emer, that aim to create an Artifcial General Intelligence (AGI). For example, it promises to...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

  19. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  20. Computational approaches to vision

    NASA Technical Reports Server (NTRS)

    Barrow, H. G.; Tenenbaum, J. M.

    1986-01-01

    Vision is examined in terms of a computational process, and the competence, structure, and control of computer vision systems are analyzed. Theoretical and experimental data on the formation of a computer vision system are discussed. Consideration is given to early vision, the recovery of intrinsic surface characteristics, higher levels of interpretation, and system integration and control. A computational visual processing model is proposed and its architecture and operation are described. Examples of state-of-the-art vision systems, which include some of the levels of representation and processing mechanisms, are presented.

  1. Is vision function related to physical functional ability in older adults?

    PubMed

    West, Catherine G; Gildengorin, Ginny; Haegerstrom-Portnoy, Gunilla; Schneck, Marilyn E; Lott, Lori; Brabyn, John A

    2002-01-01

    To assess the relationship between a broad range of vision functions and measures of physical performance in older adults. Cross-sectional study. Population-based cohort of community-dwelling older adults, subset of an on-going longitudinal study. Seven hundred eighty-two adults aged 55 and older (65% of living eligible subjects) had subjective health measures and objective physical performance evaluated in 1989/91 and again in 1993/95 and a battery of vision functions tested in 1993/95. Comprehensive battery of vision tests (visual acuity, contrast sensitivity, effects of illumination level, contrast and glare on acuity, visual fields with and without attentional load, color vision, temporal sensitivity, and the impact of dimming light on walking ability) and physical function measures (self-reported mobility limitations and observed measures of walking, rising from a chair and tandem balance). The failure rate for all vision functions and physical performance measures increased exponentially with age. Standard high-contrast visual acuity and standard visual fields showed the lowest failure rates. Nonstandard vision tests showed much higher failure rates. Poor performance on many individual vision functions was significantly associated with particular individual measures of physical performance. Using constructed combination vision variables, significant associations were found between spatial vision, field integrity, binocularity and/or adaptation, and each of the functional outcomes. Vision functions other than standard visual acuity may affect day-to-day functioning of older adults. Additional studies of these other aspects of vision and how they can be treated or rehabilitated are needed to determine whether these aspects play a role in strategies for reducing disability in older adults.

  2. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  3. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Contrast normalization in colour vision: the effect of luminance contrast on colour contrast detection

    PubMed Central

    Mullen, Kathy T.; Kim, Yeon Jin; Gheiratmand, Mina

    2014-01-01

    While contrast normalization is well known to occur in luminance vision between overlaid achromatic contrasts, and in colour vision between overlaid colour contrasts, it is unknown whether it transfers between colour and luminance contrast. Here we investigate whether contrast detection in colour vision can be normalized by achromatic contrast, or whether this is a selective process driven only by colour contrast. We use a method of cross-orientation masking, in which colour detection is masked by cross-oriented achromatic contrast, over a range of spatio-temporal frequencies (0.375–1.5 cpd, 2–8 Hz). We find that there is virtually no cross-masking of colour by achromatic contrast under monocular or binocular conditions for any of the spatio-temporal frequencies tested, although we find significant facilitation at low spatio-temporal conditions (0.375 cpd, 2 Hz). These results indicate that the process of contrast nornalization is colour selective and independent of achromatic contrast, and imply segregated chromatic signals in early visual processing. Under dichoptic conditions, however, we find a strikingly different result with significant masking of colour by achromatic contrast. This indicates that the dichoptic site of suppression is unselective, responding similarly to colour and luminance contrast, and suggests that dichoptic suppression has a different origin from monocular or binocular suppression. PMID:25491564

  5. Night Vision Manual for the Flight Surgeon.

    DTIC Science & Technology

    1985-08-01

    by optic nerve and pathways to Brodmann’s occipital areas 17 and 18). Perception occurs - vision Sensitive material ( retinal pigment) must be...clearly may be defined as glare. Glare becomes a problem in patients with opacities of the ocular media or with retinal diseases. 3 FME tN [I.I Sl IN FM...reduction of pupillary area caused by the drug. 3. Retinal causes of abnormal dark adaptation. a. Congenital stationary night blindness. b. etinitis

  6. Suprathreshold Contrast Sensitivity Vision Test Chart

    DTIC Science & Technology

    1991-07-14

    with data collected on patients having amblyopia , glaucoma and macular degeneration showed that the SCTS may be effectively used as an initial...dramatically in certain cases of abnormal vision, such as amblyopia (Ginsburg, 1978, 1981; Hess, Bradley and Piotrowski, 1983; Loshin and Levi, 1983). The...combination of frequencies. Amblyopia results in marked losses of contrast sensitivity particularly at high spatial frequencies, but may also result in

  7. The influence of chromatic context on binocular color rivalry: Perception and neural representation

    PubMed Central

    Hong, Sang Wook; Shevell, Steven K.

    2008-01-01

    The predominance of rivalrous targets is affected by surrounding context when stimuli rival in orientation, motion or color. This study investigated the influence of chromatic context on binocular color rivalry. The predominance of rivalrous chromatic targets was measured in various surrounding contexts. The first experiment showed that a chromatic surround's influence was stronger when the surround was uniform or a grating with luminance contrast (chromatic/black grating) compared to an equiluminant grating (chromatic/white). The second experiment revealed virtually no effect of the orientation of the surrounding chromatic context, using chromatically rivalrous vertical gratings. These results are consistent with a chromatic representation of the context by a non-oriented, chromatically selective and spatially antagonistic receptive field. Neither a double-opponent receptive field nor a receptive field without spatial antagonism accounts for the influence of context on binocular color rivalry. PMID:18331750

  8. An iPod treatment of amblyopia: an updated binocular approach.

    PubMed

    Hess, Robert F; Thompson, B; Black, J M; Machara, G; Zhang, P; Bobier, W R; Cooperstock, J

    2012-02-15

    We describe the successful translation of computerized and space-consuming laboratory equipment for the treatment of suppression to a small handheld iPod device (Apple iPod; Apple Inc., Cupertino, California). A portable and easily obtainable Apple iPod display, using current video technology offers an ideal solution for the clinical treatment of suppression. The following is a description of the iPod device and illustrates how a video game has been adapted to provide the appropriate stimulation to implement our recent antisuppression treatment protocol. One to 2 hours per day of video game playing under controlled conditions for 1 to 3 weeks can improve acuity and restore binocular function, including stereopsis in adults, well beyond the age at which traditional patching is used. This handheld platform provides a convenient and effective platform for implementing the newly proposed binocular treatment of amblyopia in the clinic, home, or elsewhere. American Optometric Association.

  9. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis

    2015-11-01

    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  10. GPU-based real-time trinocular stereo vision

    NASA Astrophysics Data System (ADS)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  11. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously.

  12. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously.

  13. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  14. How to assess vision.

    PubMed

    Marsden, Janet

    2016-09-21

    Rationale and key points An objective assessment of the patient's vision is important to assess variation from 'normal' vision in acute and community settings, to establish a baseline before examination and treatment in the emergency department, and to assess any changes during ophthalmic outpatient appointments. » Vision is one of the essential senses that permits people to make sense of the world. » Visual assessment does not only involve measuring central visual acuity, it also involves assessing the consequences of reduced vision. » Assessment of vision in children is crucial to identify issues that might affect vision and visual development, and to optimise lifelong vision. » Untreatable loss of vision is not an inevitable consequence of ageing. » Timely and repeated assessment of vision over life can reduce the incidence of falls, prevent injury and optimise independence. Reflective activity 'How to' articles can help update you practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when assessing people holistically. 2. How you could use this article to educate your colleagues in the assessment of vision.

  15. Novel use of video glasses during binocular microscopy in the otolaryngology clinic.

    PubMed

    Fastenberg, Judd H; Fang, Christina H; Akbar, Nadeem A; Abuzeid, Waleed M; Moskowitz, Howard S

    2018-06-06

    The development of portable, high resolution video displays such as video glasses allows clinicians the opportunity to offer patients an increased ability to visualize aspects of their physical examination in an ergonomic and cost-effective manner. The objective of this pilot study is to trial the use of video glasses for patients undergoing binocular microscopy as well as to better understand some of the potential benefits of the enhanced display option. This study was comprised of a single treatment group. Patients seen in the otolaryngology clinic who required binocular microscopy for diagnosis and treatment were recruited. All patients wore video glasses during their otoscopic examination. An additional cohort of patients who required binocular microscopy were also recruited, but did not use the video glasses during their examination. Patients subsequently completed a 10-point Likert scale survey that assessed their comfort, anxiety, and satisfaction with the examination as well as their general understanding of their otologic condition. A total of 29 patients who used the video glasses were recruited, including those with normal examinations, cerumen impaction, or chronic ear disease. Based on the survey results, patients reported a high level of satisfaction and comfort during their exam with video glasses. Patients who used the video glasses did not exhibit any increased anxiety with their examination. Patients reported that video glasses improved their understanding and they expressed a desire to wear the glasses again during repeat exams. This pilot study demonstrates that video glasses may represent a viable alternative display option in the otolaryngology clinic. The results show that the use of video glasses is associated with high patient comfort and satisfaction during binocular microscopy. Further investigation is warranted to determine the potential for this display option in other facets of patient care as well as in expanding patient understanding

  16. Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study

    PubMed Central

    Ana, Banc; Cristina, Stan; Dorin, Chiselita

    2016-01-01

    Objective: The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. Methods: We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24° monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. Results: The areas of frame-induced artefacts were determined (over 50° in each temporal field, 24° superiorly and 45° inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage - groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. Conclusions: This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma. Abbreviations: CBVF = central binocular visual field, PBVF = peripheral binocular visual field, MD = mean deviation PMID:27220228

  17. Image-Based Grouping during Binocular Rivalry Is Dictated by Eye-Of-Origin

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2014-01-01

    Prolonged viewing of dichoptically presented images with different content results in perceptual alternations known as binocular rivalry. This phenomenon is thought to be the result of competition at a local level, where local rivalry zones interact to give rise to a single, global dominant percept. Certain perceived combinations that result from this local competition are known to last longer than others, which is referred to as grouping during binocular rivalry. In recent years, the phenomenon has been suggested to be the result of competition at both eye- and image-based processing levels, although the exact contribution from each level remains elusive. Here we use a paradigm designed specifically to quantify the contribution of eye- and image-based processing to grouping during rivalry. In this paradigm we used sine-wave gratings as well as upright and inverted faces, with and without binocular disparity-based occlusion. These stimuli and conditions were used because they are known to result in processing at different stages throughout the visual processing hierarchy. Specifically, more complex images were included in order to maximize the potential contribution of image-based grouping. In spite of this, our results show that increasing image complexity did not lead to an increase in the contribution of image-based processing to grouping during rivalry. In fact, the results show that grouping was primarily affected by the eye-of-origin of the image parts, irrespective of stimulus type. We suggest that image content affects grouping during binocular rivalry at low-level processing stages, where it is intertwined with eye-of-origin information. PMID:24987847

  18. A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system

    NASA Astrophysics Data System (ADS)

    Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan

    2018-01-01

    This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.

  19. Performance under dichoptic versus binocular viewing conditions - Effects of attention and task requirements

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David

    1993-01-01

    Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.

  20. Clinical Outcomes after Binocular Implantation of a New Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian T. A.; Breyer, Detlev; Diakonis, Vasilios F.; Klabe, Karsten; Henke, Franziska; Auffarth, Gerd U.; Kaymak, Hakan

    2015-01-01

    Purpose. To evaluate visual, refractive, and contrast sensitivity outcomes, as well as the incidence of pseudophakic photic phenomena and patient satisfaction after bilateral diffractive trifocal intraocular lens (IOL) implantation. Methods. This prospective nonrandomized study included consecutive patients undergoing cataract surgery with bilateral implantation of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec). Distance, intermediate, and near visual outcomes were evaluated as well as the defocus curve and the refractive outcomes 3 months after surgery. Photopic and mesopic contrast sensitivity, patient satisfaction, and halo perception were also evaluated. Results. Seventy-six eyes of 38 patients were included; 90% of eyes showed a spherical equivalent within ±0.50 diopters 3 months after surgery. All patients had a binocular uncorrected distance visual acuity of 0.00 LogMAR or better and a binocular uncorrected intermediate visual acuity of 0.10 LogMAR or better, 3 months after surgery. Furthermore, 85% of patients achieved a binocular uncorrected near visual acuity of 0.10 LogMAR or better. Conclusions. Trifocal diffractive IOL implantation seems to provide an effective restoration of visual function for far, intermediate, and near distances, providing high levels of visual quality and patient satisfaction. PMID:26301104

  1. Quantitative measurement of binocular color fusion limit for non-spectral colors.

    PubMed

    Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook

    2011-04-11

    Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram. © 2011 Optical Society of America

  2. Mathematical leadership vision.

    PubMed

    Hamburger, Y A

    2000-11-01

    This article is an analysis of a new type of leadership vision, the kind of vision that is becoming increasingly pervasive among leaders in the modern world. This vision appears to offer a new horizon, whereas, in fact it delivers to its target audience a finely tuned version of the already existing ambitions and aspirations of the target audience. The leader, with advisors, has examined the target audience and has used the results of extensive research and statistical methods concerning the group to form a picture of its members' lifestyles and values. On the basis of this information, the leader has built a "vision." The vision is intended to create an impression of a charismatic and transformational leader when, in fact, it is merely a response. The systemic, arithmetic, and statistical methods employed in this operation have led to the coining of the terms mathematical leader and mathematical vision.

  3. Improvement of Vergence Movements by Vision Therapy Decreases K-ARS Scores of Symptomatic ADHD Children.

    PubMed

    Lee, Sun Haeng; Moon, Byeong-Yeon; Cho, Hyun Gug

    2014-02-01

    [Purpose] To determine whether the improvement of vergence movements by vision therapy can decrease the K-ARS scores of symptomatic ADHD children. [Methods] Eighty-one out of 1,123 children surveyed using the K-ARS, a parents'-reported questionnaire, led to 16 of these 81 children being showed scores of ≥19, and measurement of binocular function diagnosed as having convergence insufficiency. The 16 children were divided equally into a control group and a vision therapy group. [Results] After vision therapy for 12 weeks, near point convergence (4.38±0.69 cm) significantly neared compared to the near point convergence before vision therapy (11.50±2.28 cm), and both the break point (32.38±2.53 Δ) and recovery point (19.75±2.11 Δ) of near positive fusional vergence significantly improved compared to their values before vision therapy (15.88±2.64 Δ, 6.38±6.70 Δ, respectively). Near exophoria after vision therapy (7.81±2.00 Δ BI) significantly decreased compared to its value before vision therapy (12.00±1.16 Δ BI). The K-ARS scores referring to symptomatic ADHD significantly decreased after vision therapy (17.13±2.84) compared to before vision therapy (23.25±1.49). [Conclusions] Convergence insufficiency symptoms are closely related to symptoms screened for ADHD, and vision therapy to improve vergence movements is an effective method of decreasing the K-ARS scores.

  4. Dynamic Vision for Control

    DTIC Science & Technology

    2006-07-27

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop analytical and computational tools to make vision a Viable sensor for...vision.ucla. edu July 27, 2006 Abstract The goal of this project was to develop analytical and computational tools to make vision a viable sensor for the ... sensors . We have proposed the framework of stereoscopic segmentation where multiple images of the same obejcts were jointly processed to extract geometry

  5. FPGA Vision Data Architecture

    NASA Technical Reports Server (NTRS)

    Morfopoulos, Arin C.; Pham, Thang D.

    2013-01-01

    JPL has produced a series of FPGA (field programmable gate array) vision algorithms that were written with custom interfaces to get data in and out of each vision module. Each module has unique requirements on the data interface, and further vision modules are continually being developed, each with their own custom interfaces. Each memory module had also been designed for direct access to memory or to another memory module.

  6. Stereo Vision Inside Tire

    DTIC Science & Technology

    2015-08-21

    using the Open Computer Vision ( OpenCV ) libraries [6] for computer vision and the Qt library [7] for the user interface. The software has the...depth. The software application calibrates the cameras using the plane based calibration model from the OpenCV calib3D module and allows the...6] OpenCV . 2015. OpenCV Open Source Computer Vision. [Online]. Available at: opencv.org [Accessed]: 09/01/2015. [7] Qt. 2015. Qt Project home

  7. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.

    PubMed

    Tay, Su Ann; Sanjay, Srinivasan

    2012-07-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  8. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    PubMed Central

    Tay, Su Ann; Sanjay, Srinivasan

    2012-01-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia. PMID:22824610

  9. A simple infrared-augmented digital photography technique for detection of pupillary abnormalities.

    PubMed

    Shazly, Tarek A; Bonhomme, G R

    2015-03-01

    The purpose of the study was to describe a simple infrared photography technique to aid in the diagnosis and documentation of pupillary abnormalities. An unmodified 12-megapixel "point and shoot" digital camera was used to obtain binocular still photos and videos under different light conditions with near-infrared illuminating frames. The near-infrared light of 850 nm allows the capture of clear pupil images in both dim and bright light conditions. It also allows easy visualization of the pupil despite pigmented irides by augmenting the contrast between the iris and the pupil. The photos and videos obtained illustrated a variety of pupillary abnormalities using the aforementioned technique. This infrared-augmented photography technique supplements medical education, and aids in the more rapid detection, diagnosis, and documentation of a wide spectrum of pupillary abnormalities. Its portability and ease of use with minimal training complements the education of trainees and facilitates the establishment of difficult diagnoses.

  10. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  11. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  12. Vision and vision-related outcome measures in multiple sclerosis

    PubMed Central

    Balcer, Laura J.; Miller, David H.; Reingold, Stephen C.

    2015-01-01

    Visual impairment is a key manifestation of multiple sclerosis. Acute optic neuritis is a common, often presenting manifestation, but visual deficits and structural loss of retinal axonal and neuronal integrity can occur even without a history of optic neuritis. Interest in vision in multiple sclerosis is growing, partially in response to the development of sensitive visual function tests, structural markers such as optical coherence tomography and magnetic resonance imaging, and quality of life measures that give clinical meaning to the structure-function correlations that are unique to the afferent visual pathway. Abnormal eye movements also are common in multiple sclerosis, but quantitative assessment methods that can be applied in practice and clinical trials are not readily available. We summarize here a comprehensive literature search and the discussion at a recent international meeting of investigators involved in the development and study of visual outcomes in multiple sclerosis, which had, as its overriding goals, to review the state of the field and identify areas for future research. We review data and principles to help us understand the importance of vision as a model for outcomes assessment in clinical practice and therapeutic trials in multiple sclerosis. PMID:25433914

  13. Aging and Vision

    PubMed Central

    Owsley, Cynthia

    2010-01-01

    Given the increasing size of the older adult population in many countries, there is a pressing need to identify the nature of aging-related vision impairments, their underlying mechanisms, and how they impact older adults’ performance of everyday visual tasks. The results of this research can then be used to develop and evaluate interventions to slow or reverse aging-related declines in vision, thereby improving quality of life. Here we summarize salient developments in research on aging and vision over the past 25 years, focusing on spatial contrast sensitivity, vision under low luminance, temporal sensitivity and motion perception, and visual processing speed. PMID:20974168

  14. Biomimetic machine vision system.

    PubMed

    Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael

    2005-01-01

    Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.

  15. SOURCES OF BINOCULAR SUPRATHRESHOLD VISUAL FIELD LOSS IN A COHORT OF OLDER WOMEN BEING FOLLOWED FOR RISK OF FALLS (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Coleman, Anne Louise

    2007-01-01

    Purpose To determine the sources of binocular visual field loss most strongly associated with falls in a cohort of older women. Methods In the Study of Osteoporotic Fractures, women with severe binocular visual field loss had an increased risk of two or more falls during the 12 months following the eye examination. The lens and fundus photographs of the 422 women with severe binocular visual field loss, plus a random sample of 141 white women with no, mild, or moderate binocular visual field loss—47 white women with no binocular visual field loss, 46 white women with mild binocular visual field loss, and 48 white women with moderate binocular visual field loss —were evaluated for lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, and diabetic retinopathy. Results Eighty-four percent of the women with severe binocular visual field loss had ocular disease in one or both eyes. Bilateral cataracts and glaucomatous optic nerve damage were the most common sources of this severe binocular visual field loss. Approximately 15.2% of women had no evidence of lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, or diabetic retinopathy. Conclusion Severe binocular visual field loss due primarily to cataracts, glaucoma, and age-related macular degeneration explains 33.3% of the falls among women who fell frequently. Because binocular visual field loss may be treatable and/or preventable, screening programs for binocular visual field loss and subsequent referral for intervention and treatment are recommended as a strategy for preventing falls among the elderly. PMID:18427619

  16. Distance vision after bilateral implantation of AcrySof toric intraocular lenses: a randomized, controlled, prospective trial

    PubMed Central

    Zhang, Jin-Song; Zhao, Jiang-Yue; Sun, Qi; Ma, Li-Wei

    2011-01-01

    AIM To evaluate the distance vision of Chinese patients with cataracts and corneal astigmatism after implantation of bilateral AcrySof toric intraocular lens (IOL) versus bilateral AcrySof spherical IOL. METHODS This study randomized 60 patients into equal groups to receive toric IOL or spherical IOL. IOL powers targeting emmetropia were selected for 93% of toric IOL patients and for 90% of spherical IOL patients. Assessments included monocular and binocular distance vision, with and without best correction. Patients also completed surveys about their distance vision. RESULTS Preoperatively, the two study groups were similar in age, in distance visual acuity, and in the magnitude of corneal astigmatism. At 6 months postoperative, binocular uncorrected distance vision was 0.06±0.14 logMAR in the AcrySof toric IOL group, significantly better than the 0.14±0.11 logMAR in the spherical IOL group (P<0.05). For eyes with emmetropia as a target, the equivalent of 20/20 uncorrected vision was more likely (P<0.001) in the toric IOL group (36% of eyes) than in the spherical IOL group (4% of eyes). No patients in the emmetropia/toric IOL group used distance glasses, as compared to 52% of patients in the emmetropia/spherical IOL group. All patients were satisfied or highly satisfied. Quality of distance vision was rated higher by toric IOL patients than by spherical IOL patients (P<0.05). CONCLUSION Bilateral AcrySof toric IOL is superior to bilateral spherical IOL in providing uncorrected distance vision to cataract patients with corneal astigmatism. PMID:22553636

  17. Does functional vision behave differently in low-vision patients with diabetic retinopathy?--A case-matched study.

    PubMed

    Ahmadian, Lohrasb; Massof, Robert

    2008-09-01

    A retrospective case-matched study designed to compare patients with diabetic retinopathy (DR) and other ocular diseases, managed in a low-vision clinic, in four different types of functional vision. Reading, mobility, visual motor, and visual information processing were measured in the patients (n = 114) and compared with those in patients with other ocular diseases (n = 114) matched in sex, visual acuity (VA), general health status, and age, using the Activity Inventory as a Rasch-scaled measurement tool. Binocular distance visual acuity was categorized as normal (20/12.5-20/25), near normal (20/32-20/63), moderate (20/80-20/160), severe (20/200-20/400), profound (20/500-20/1000), and total blindness (20/1250 to no light perception). Both Wilcoxon matched pairs signed rank test and the sign test of matched pairs were used to compare estimated functional vision measures between DR cases and controls. Cases ranged in age from 19 to 90 years (mean age, 67.5), and 59% were women. The mean visual acuity (logMar scale) was 0.7. Based on the Wilcoxon signed rank test analyses and after adjusting the probability for multiple comparisons, there was no statistically significant difference (P > 0.05) between patients with DR and control subjects in any of four functional visions. Furthermore, diabetic retinopathy patients did not differ (P > 0.05) from their matched counterparts in goal-level vision-related functional ability and total visual ability. Visual impairment in patients with DR appears to be a generic and non-disease-specific outcome that can be explained mainly by the end impact of the disease in the patients' daily lives and not by the unique disease process that results in the visual impairment.

  18. Computer vision syndrome: A review.

    PubMed

    Gowrisankaran, Sowjanya; Sheedy, James E

    2015-01-01

    Computer vision syndrome (CVS) is a collection of symptoms related to prolonged work at a computer display. This article reviews the current knowledge about the symptoms, related factors and treatment modalities for CVS. Relevant literature on CVS published during the past 65 years was analyzed. Symptoms reported by computer users are classified into internal ocular symptoms (strain and ache), external ocular symptoms (dryness, irritation, burning), visual symptoms (blur, double vision) and musculoskeletal symptoms (neck and shoulder pain). The major factors associated with CVS are either environmental (improper lighting, display position and viewing distance) and/or dependent on the user's visual abilities (uncorrected refractive error, oculomotor disorders and tear film abnormalities). Although the factors associated with CVS have been identified the physiological mechanisms that underlie CVS are not completely understood. Additionally, advances in technology have led to the increased use of hand-held devices, which might impose somewhat different visual challenges compared to desktop displays. Further research is required to better understand the physiological mechanisms underlying CVS and symptoms associated with the use of hand-held and stereoscopic displays.

  19. Progress in computer vision.

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  20. New Term, New Vision?

    ERIC Educational Resources Information Center

    Ravenhall, Mark

    2011-01-01

    During the affluent noughties it was sometimes said of government that it had "more visions than Mystic Meg and more pilots than British Airways". In 2011, the pilots, the pathfinders, the new initiatives are largely gone--implementation is the name of the game--but the visions remain. The latest one, as it affects adult learners, is in…

  1. Why Vision 2020?

    ERIC Educational Resources Information Center

    Hinckley, June

    2000-01-01

    Discusses changes in technology, information, and people and the impact on music programs. The Vision 2020 project focuses on the future of music education. Addresses the events that created Vision 2020. Includes "The Housewright Declaration," a summarization of agreements from the Housewright Symposium on the Future of Music Education. (CMK)

  2. Degas: Vision and Perception.

    ERIC Educational Resources Information Center

    Kendall, Richard

    1988-01-01

    The art of Edgar Degas is discussed in relation to his impaired vision, including amblyopia, later blindness in one eye, corneal scarring, and photophobia. Examined are ways in which Degas compensated for vision problems, and dominant themes of his art such as the process of perception and spots of brilliant light. (Author/JDD)

  3. INSIGHT: Vision & Leadership, 2002.

    ERIC Educational Resources Information Center

    McGraw, Tammy, Ed.

    2002-01-01

    This publication focuses on promising new and emerging technologies and what they might mean to the future of K-12 schools. Half of the volume contains articles devoted in some way to "Vision," and articles in the other half are under the heading of "Leadership." Contents in the "Vision" section include: "The…

  4. Developing Administrative Vision.

    ERIC Educational Resources Information Center

    Chance, Edward W.

    Visionary leadership has emerged as a significant characteristic of high performing school administrators. Vision provides a sense of direction for the school and facilitates accomplishment. Administrators must move from authoritarian and managerial modes of operation to proactive leadership, and maintain a focus on the vision through turmoil and…

  5. Retrospective analysis of refractive errors in children with vision impairment.

    PubMed

    Du, Jojo W; Schmid, Katrina L; Bevan, Jennifer D; Frater, Karen M; Ollett, Rhondelle; Hein, Bronwyn

    2005-09-01

    Emmetropization is the reduction in neonatal refractive errors that occurs after birth. Ocular disease may affect this process. We aimed to determine the relative frequency of ocular conditions causing vision impairment in the pediatric population and characterize the refractive anomalies present. We also compared the causes of vision impairment in children today to those between 1974 and 1981. Causes of vision impairment and refractive data of 872 children attending a pediatric low-vision clinic from 1985 to 2002 were retrospectively collated. As a result of associated impairments, refractive data were not available for 59 children. An analysis was made of the causes of vision impairment, the distribution of refractive errors in children with vision impairment, and the average type of refractive error for the most commonly seen conditions. We found that cortical or cerebral vision impairment (CVI) was the most common condition causing vision impairment, accounting for 27.6% of cases. This was followed by albinism (10.6%), retinopathy of prematurity (ROP; 7.0%), optic atrophy (6.2%), and optic nerve hypoplasia (5.3%). Vision impairment was associated with ametropia; fewer than 25% of the children had refractive errors < or = +/-1 D. The refractive error frequency plots (for 0 to 2-, 6 to 8-, and 12 to 14-year age bands) had a Gaussian distribution indicating that the emmetropization process was abnormal. The mean spherical equivalent refractive error of the children (n = 813) was +0.78 +/- 6.00 D with 0.94 +/- 1.24 D of astigmatism and 0.92 +/- 2.15 D of anisometropia. Most conditions causing vision impairment such as albinism were associated with low amounts of hyperopia. Moderate myopia was observed in children with ROP. The relative frequency of ocular conditions causing vision impairment in children has changed since the 1970s. Children with vision impairment often have an associated ametropia suggesting that the emmetropization system is also impaired.

  6. Comparing the Impact of Refractive and Non-Refractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation

    PubMed Central

    Zebardast, Nazlee; Swenor, Bonnielin K.; van Landingham, Suzanne W.; Massof, Robert W.; Munoz, Beatriz; West, Sheila K.; Ramulu, Pradeep Y.

    2015-01-01

    Purpose To compare the effects of uncorrected refractive error (URE) and non-refractive visual impairment (VI) on performance and disability measures. Design Cross-sectional population-based study. Participants 2469 individuals with binocular presenting visual acuity (PVA) of 20/80 or better who participated in the first round of the Salisbury Eye Evaluation study. Methods URE was defined as binocular PVA of 20/30 or worse, improving to better than 20/30 with subjective refraction. VI was defined as post-refraction binocular best corrected visual acuity (BCVA) of 20/30 or worse. The visual acuity decrement attributable to VI was calculated as the difference between BCVA and 20/30 while that due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of 1) vision status (VI, URE, or normal vision) using the group with normal vision as reference, and 2) a one-line decrement in acuity due to VI or URE. Main Outcome Measures Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. ADV responses were analyzed using Rasch analysis to determine visual ability. Results Compared to individuals with normal vision, subjects with VI (n=191) had significantly poorer objective and subjective visual functioning in all metrics examined (p<0.05) while subjects with URE (n=132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation and lower ADV scores (p<0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a one-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared to a one-line VA decrement due to URE

  7. Comparing the Impact of Refractive and Nonrefractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation.

    PubMed

    Zebardast, Nazlee; Swenor, Bonnielin K; van Landingham, Suzanne W; Massof, Robert W; Munoz, Beatriz; West, Sheila K; Ramulu, Pradeep Y

    2015-06-01

    To compare the effects of uncorrected refractive error (URE) and nonrefractive visual impairment (VI) on performance and disability measures. Cross-sectional, population-based study. A total of 2469 individuals with binocular presenting visual acuity (PVA) of ≥ 20/80 who participated in the first round of the Salisbury Eye Evaluation study. The URE was defined as binocular PVA of ≤ 20/30, improving to >20/30 with subjective refraction. The VI was defined as post-refraction binocular best-corrected visual acuity (BCVA) of ≤ 20/30. The visual acuity decrement due to VI was calculated as the difference between BCVA and 20/30, whereas visual acuity due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of (1) vision status (VI, URE, or normal vision) using the group with normal vision as reference and (2) a 1-line decrement in acuity due to VI or URE. Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. The ADV responses were analyzed using Rasch analysis to determine visual ability. Compared with individuals with normal vision, subjects with VI (n = 191) had significantly poorer objective and subjective visual functioning in all metrics examined (P < 0.05), whereas subjects with URE (n = 132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation, and lower ADV scores (P < 0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a 1-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared with a 1-line VA decrement due to URE. Visual impairment is associated with greater

  8. (Computer) Vision without Sight

    PubMed Central

    Manduchi, Roberto; Coughlan, James

    2012-01-01

    Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563

  9. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  10. Light Vision Color

    NASA Astrophysics Data System (ADS)

    Valberg, Arne

    2005-04-01

    Light Vision Color takes a well-balanced, interdisciplinary approach to our most important sensory system. The book successfully combines basics in vision sciences with recent developments from different areas such as neuroscience, biophysics, sensory psychology and philosophy. Originally published in 1998 this edition has been extensively revised and updated to include new chapters on clinical problems and eye diseases, low vision rehabilitation and the basic molecular biology and genetics of colour vision. Takes a broad interdisciplinary approach combining basics in vision sciences with the most recent developments in the area Includes an extensive list of technical terms and explanations to encourage student understanding Successfully brings together the most important areas of the subject in to one volume

  11. Cross-orientation masking in human color vision: application of a two-stage model to assess dichoptic and monocular sources of suppression.

    PubMed

    Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T

    2013-05-28

    Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.

  12. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  13. Binocular Summation and Other Forms of Non-Dominant Eye Contribution in Individuals with Strabismic Amblyopia during Habitual Viewing

    PubMed Central

    Barrett, Brendan T.; Panesar, Gurvinder K.; Scally, Andrew J.; Pacey, Ian E.

    2013-01-01

    Background Adults with amblyopia (‘lazy eye’), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. Methodology/Results The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes’ field locations compared to 8.8% of normals’. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Conclusions Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic

  14. Design and control of active vision based mechanisms for intelligent robots

    NASA Technical Reports Server (NTRS)

    Wu, Liwei; Marefat, Michael M.

    1994-01-01

    In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.

  15. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  16. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  17. Binocular Glaucomatous Visual Field Loss and Its Impact on Visual Exploration - A Supermarket Study

    PubMed Central

    Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as “passed” or “failed” with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p<0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p<0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a “time-effective” compensatory mechanism during the present supermarket task. PMID:25162522

  18. Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study.

    PubMed

    Sippel, Katrin; Kasneci, Enkelejda; Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as "passed" or "failed" with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p < 0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p < 0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a "time-effective" compensatory mechanism during the present supermarket task.

  19. A Neural Network Approach to fMRI Binocular Visual Rivalry Task Analysis

    PubMed Central

    Bertolino, Nicola; Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Ghielmetti, Francesco; Leonardi, Matilde; Agostino Parati, Eugenio; Grazia Bruzzone, Maria; Franceschetti, Silvana; Caldiroli, Dario; Sattin, Davide; Giovannetti, Ambra; Pagani, Marco; Covelli, Venusia; Ciaraffa, Francesca; Vela Gomez, Jesus; Reggiori, Barbara; Ferraro, Stefania; Nigri, Anna; D'Incerti, Ludovico; Minati, Ludovico; Andronache, Adrian; Rosazza, Cristina; Fazio, Patrik; Rossi, Davide; Varotto, Giulia; Panzica, Ferruccio; Benti, Riccardo; Marotta, Giorgio; Molteni, Franco

    2014-01-01

    The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’ conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR) and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a ‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05) were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients. PMID:25121595

  20. Human Factor and Usability Testing of a Binocular Optical Coherence Tomography System

    PubMed Central

    Chopra, Reena; Mulholland, Pádraig J.; Dubis, Adam M.; Anderson, Roger S.; Keane, Pearse A.

    2017-01-01

    Purpose To perform usability testing of a binocular optical coherence tomography (OCT) prototype to predict its function in a clinical setting, and to identify any potential user errors, especially in an elderly and visually impaired population. Methods Forty-five participants with chronic eye disease (mean age 62.7 years) and 15 healthy controls (mean age 53 years) underwent automated eye examination using the prototype. Examination included ‘whole-eye' OCT, ocular motility, visual acuity measurement, perimetry, and pupillometry. Interviews were conducted to assess the subjective appeal and ease of use for this cohort of first-time users. Results All participants completed the full suite of tests. Eighty-one percent of the chronic eye disease group, and 79% of healthy controls, found the prototype easier to use than common technologies, such as smartphones. Overall, 86% described the device to be appealing for use in a clinical setting. There was no statistically significant difference in the total time taken to complete the examination between participants with chronic eye disease (median 702 seconds) and healthy volunteers (median 637 seconds) (P = 0.81). Conclusion On their first use, elderly and visually impaired users completed the automated examination without assistance. Binocular OCT has the potential to perform a comprehensive eye examination in an automated manner, and thus improve the efficiency and quality of eye care. Translational Relevance A usable binocular OCT system has been developed that can be administered in an automated manner. We have identified areas that would benefit from further development to guide the translation of this technology into clinical practice. PMID:28824827

  1. Recovering stereo vision by squashing virtual bugs in a virtual reality environment.

    PubMed

    Vedamurthy, Indu; Knill, David C; Huang, Samuel J; Yung, Amanda; Ding, Jian; Kwon, Oh-Sang; Bavelier, Daphne; Levi, Dennis M

    2016-06-19

    Stereopsis is the rich impression of three-dimensionality, based on binocular disparity-the differences between the two retinal images of the same world. However, a substantial proportion of the population is stereo-deficient, and relies mostly on monocular cues to judge the relative depth or distance of objects in the environment. Here we trained adults who were stereo blind or stereo-deficient owing to strabismus and/or amblyopia in a natural visuomotor task-a 'bug squashing' game-in a virtual reality environment. The subjects' task was to squash a virtual dichoptic bug on a slanted surface, by hitting it with a physical cylinder they held in their hand. The perceived surface slant was determined by monocular texture and stereoscopic cues, with these cues being either consistent or in conflict, allowing us to track the relative weighting of monocular versus stereoscopic cues as training in the task progressed. Following training most participants showed greater reliance on stereoscopic cues, reduced suppression and improved stereoacuity. Importantly, the training-induced changes in relative stereo weights were significant predictors of the improvements in stereoacuity. We conclude that some adults deprived of normal binocular vision and insensitive to the disparity information can, with appropriate experience, recover access to more reliable stereoscopic information.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  2. Recovering stereo vision by squashing virtual bugs in a virtual reality environment

    PubMed Central

    Vedamurthy, Indu; Knill, David C.; Huang, Samuel J.; Yung, Amanda; Ding, Jian; Kwon, Oh-Sang; Bavelier, Daphne

    2016-01-01

    Stereopsis is the rich impression of three-dimensionality, based on binocular disparity—the differences between the two retinal images of the same world. However, a substantial proportion of the population is stereo-deficient, and relies mostly on monocular cues to judge the relative depth or distance of objects in the environment. Here we trained adults who were stereo blind or stereo-deficient owing to strabismus and/or amblyopia in a natural visuomotor task—a ‘bug squashing’ game—in a virtual reality environment. The subjects' task was to squash a virtual dichoptic bug on a slanted surface, by hitting it with a physical cylinder they held in their hand. The perceived surface slant was determined by monocular texture and stereoscopic cues, with these cues being either consistent or in conflict, allowing us to track the relative weighting of monocular versus stereoscopic cues as training in the task progressed. Following training most participants showed greater reliance on stereoscopic cues, reduced suppression and improved stereoacuity. Importantly, the training-induced changes in relative stereo weights were significant predictors of the improvements in stereoacuity. We conclude that some adults deprived of normal binocular vision and insensitive to the disparity information can, with appropriate experience, recover access to more reliable stereoscopic information. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269607

  3. Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis.

    PubMed

    Fischmeister, Florian Ph S; Bauer, Herbert

    2006-10-01

    Functional imaging studies investigating perception of depth rely solely on one type of depth cue based on non-natural stimulus material. To overcome these limitations and to provide a more realistic and complete set of depth cues natural stereoscopic images were used in this study. Using slow cortical potentials and source localization we aimed to identify the neural correlates of monocular and binocular depth cues. This study confirms and extends functional imaging studies, showing that natural images provide a good, reliable, and more realistic alternative to artificial stimuli, and demonstrates the possibility to separate the processing of different depth cues.

  4. Binocular optical axis parallelism detection precision analysis based on Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ying, Jiaju; Liu, Bingqi

    2018-02-01

    According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.

  5. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  6. Clinical colour vision tests.

    PubMed

    Dain, Stephen J

    2004-07-01

    The structure and function of the available and significant clinical colour vision tests are reviewed in the light of the needs in the clinical examination of congenital and acquired colour vision deficiencies. The tests are grouped and described as pseudo-isochromatic plates, arrangement tests, matching tests and vocational tests. The colorimetric constructions of the test types are described and the efficiency of their performance and usefulness discussed. Recommendations are made for basic and extended test batteries, when examining of congenital and acquired colour vision deficiencies in the consulting room.

  7. [The evaluation of color vision and its diagnostic value in predicting the risk of diabetic retinopathy in patients with glucose metabolism disorders].

    PubMed

    Jończyk-Skórka, Katarzyna; Kowalski, Jan

    2017-07-21

    The aim of the study was to evaluate color vision and its diagnostic value in predicting the risk of diabetic retinopathy in patients with glucose metabolism disorders. The study involved 197 people, 92 women and 105 men aged 63.21 ± 8.74 years. In order to assess glucose metabolism disorders, patients were divided into three groups. The first group (DM) consisted of 60 people (16 women and 44 men aged 61.92 ± 8.46 years). These were people with type 2 diabetes. Second group (IFG IGT) consisted of 67 people (35 women and 32 men aged 65 ± 8.5 years). These were people who were diagnosed with impaired fasting glucose or impaired glucose tolerance. The third group, the control one (K) consisted of 70 people (41 women and 29 men aged 62.6 ± 9.06 years). They were healthy individuals. In order to assess diabetic retinopathy study population was divided into two groups. The first group (BZ) consisted of 177 patients (84 women and 93 men aged 62.9 ± 8.78 years) without diabetic retinopathy. The second group (NPDR) consisted of 20 patients (8 women and 12 men aged 65.95 ± 8.17 years) with diabetic retinopathy. Glucose metabolism disorders were diagnosed with glucose tolerance test (OGTT). Evaluation of retinopathy was based on eye examination. All patients underwent binocular Farnsworth-Munsell 100 Hue color vision test (test result is a Total Error Score - TES). In the healthy control group (K) there were less patients with diabetic retinopathy (p = 0,0101), and less patients with abnormal color vision test (p = 0,0001) than in other groups. Majority of patients in K group had generalized abnormalities of color vision while other groups demonstrated tritanomalią (p = 0,0018). It was discovered that sTES value adequately distinguishes group K from group IFG, IGT, DM (AUC = 0,673), group K from group DM (AUC = 0,701), and group K from group IFG IGT (AUC = 0,648) sTES does not differentiate groups IGT, IFG and DM (AUC = 0,563). It was shown that in IGT, IFG group s

  8. Helicopter flights with night-vision goggles: Human factors aspects

    NASA Technical Reports Server (NTRS)

    Brickner, Michael S.

    1989-01-01

    Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques.

  9. The role of vision processing in prosthetic vision.

    PubMed

    Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette

    2012-01-01

    Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.

  10. Kids' Quest: Vision Impairment

    MedlinePlus

    ... most important job. Return to Steps World-Wide Web Search Kids Health: What is Vision Impairment What ... for the Blind (AFB) created the Braille Bug web site to teach sighted children about braille, and ...

  11. Computer Vision Syndrome.

    PubMed

    Randolph, Susan A

    2017-07-01

    With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.

  12. What Is Low Vision?

    MedlinePlus

    ... magnifying reading glasses or loupes for seeing the computer screen , sheet music, or for sewing telescopic glasses ... for the Blind services. The Low Vision Pilot Project The American Foundation for the Blind (AFB) has ...

  13. Home vision tests

    MedlinePlus

    ... testing. AMSLER GRID TEST This test helps detect macular degeneration . This is a disease that causes blurred vision, ... exam. People who are at risk of developing macular degeneration may be told by their ophthalmologist to perform ...

  14. OH Vision Test

    NASA Image and Video Library

    2014-06-03

    ISS040-E-006739 (3 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, uses the Optical Coherence Tomography (OCT) camera during an Ocular Health (OH) vision test in the Harmony node of the International Space Station. The OH experiment observes and seeks to understand vision changes during long-term space missions. NASA astronaut Steve Swanson (left), Expedition 40 commander, assists Gerst.

  15. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  16. [Comparison study between biological vision and computer vision].

    PubMed

    Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R

    2001-08-01

    The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.

  17. Lenticular abnormalities in children.

    PubMed

    Khokhar, Sudarshan; Agarwal, Tushar; Kumar, Gaurav; Kushmesh, Rakhi; Tejwani, Lalit Kumar

    2012-01-01

    To study the lenticular problems in children presenting at an apex institute. Retrospective analysis of records (< 14 years) of new lens clinic cases was done. Of 1,047 children, 687 were males. Mean age at presentation was 6.35 ± 4.13 years. Developmental cataract was seen in 45.6% and posttraumatic cataract in 29.7% of patients. Other abnormalities were cataract with retinal detachment, persistent hyperplastic primary vitreous, subluxated lens, micro/spherophakia, cataract secondary to uveitis, intraocular lens complications, cataract with choroidal coloboma, and visual axis opacification. Developmental and posttraumatic cataracts were the most common abnormalities. Delayed presentation is of concern. Copyright 2012, SLACK Incorporated.

  18. Biofeedback for Better Vision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Biofeedtrac, Inc.'s Accommotrac Vision Trainer, invented by Dr. Joseph Trachtman, is based on vision research performed by Ames Research Center and a special optometer developed for the Ames program by Stanford Research Institute. In the United States, about 150 million people are myopes (nearsighted), who tend to overfocus when they look at distant objects causing blurry distant vision, or hyperopes (farsighted), whose vision blurs when they look at close objects because they tend to underfocus. The Accommotrac system is an optical/electronic system used by a doctor as an aid in teaching a patient how to contract and relax the ciliary body, the focusing muscle. The key is biofeedback, wherein the patient learns to control a bodily process or function he is not normally aware of. Trachtman claims a 90 percent success rate for correcting, improving or stopping focusing problems. The Vision Trainer has also proved effective in treating other eye problems such as eye oscillation, cross eyes, and lazy eye and in professional sports to improve athletes' peripheral vision and reaction time.

  19. Strength and coherence of binocular rivalry depends on shared stimulus complexity.

    PubMed

    Alais, David; Melcher, David

    2007-01-01

    Presenting incompatible images to the eyes results in alternations of conscious perception, a phenomenon known as binocular rivalry. We examined rivalry using either simple stimuli (oriented gratings) or coherent visual objects (faces, houses etc). Two rivalry characteristics were measured: Depth of rivalry suppression and coherence of alternations. Rivalry between coherent visual objects exhibits deep suppression and coherent rivalry, whereas rivalry between gratings exhibits shallow suppression and piecemeal rivalry. Interestingly, rivalry between a simple and a complex stimulus displays the same characteristics (shallow and piecemeal) as rivalry between two simple stimuli. Thus, complex stimuli fail to rival globally unless the fellow stimulus is also global. We also conducted a face adaptation experiment. Adaptation to rivaling faces improved subsequent face discrimination (as expected), but adaptation to a rivaling face/grating pair did not. To explain this, we suggest rivalry must be an early and local process (at least initially), instigated by the failure of binocular fusion, which can then become globally organized by feedback from higher-level areas when both rivalry stimuli are global, so that rivalry tends to oscillate coherently. These globally assembled images then flow through object processing areas, with the dominant image gaining in relative strength in a form of 'biased competition', therefore accounting for the deeper suppression of global images. In contrast, when only one eye receives a global image, local piecemeal suppression from the fellow eye overrides the organizing effects of global feedback to prevent coherent image formation. This indicates the primacy of local over global processes in rivalry.

  20. An exploratory study: prolonged periods of binocular stimulation can provide an effective treatment for childhood amblyopia.

    PubMed

    Knox, Pamela J; Simmers, Anita J; Gray, Lyle S; Cleary, Marie

    2012-02-21

    The purpose of the present study was to explore the potential for treating childhood amblyopia with a binocular stimulus designed to correlate the visual input from both eyes. Eight strabismic, two anisometropic, and four strabismic and anisometropic amblyopes (mean age, 8.5 ± 2.6 years) undertook a dichoptic perceptual learning task for five sessions (each lasting 1 hour) over the course of a week. The training paradigm involved a simple computer game, which required the subject to use both eyes to perform the task. A statistically significant improvement (t(₁₃) = 5.46; P = 0.0001) in the mean visual acuity (VA) of the amblyopic eye (AE) was demonstrated, from 0.51 ± 0.27 logMAR before training to 0.42 ± 0.28 logMAR after training with six subjects gaining 0.1 logMAR or more of improvement. Measurable stereofunction was established for the first time in three subjects with an overall significant mean improvement in stereoacuity after training (t(₁₃) =2.64; P = 0.02). The dichoptic-based perceptual learning therapy employed in the present study improved both the monocular VA of the AE and stereofunction, verifying the feasibility of a binocular approach in the treatment of childhood amblyopia.

  1. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    PubMed

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  2. Research on key technology of yacht positioning based on binocular parallax

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wei, Ping; Liu, Zengzhi

    2016-10-01

    Yacht has become a fashionable way for entertainment. However, to obtain the precise location of a yacht docked at a port has become one of the concerns of a yacht manager. To deal with this issue, we adopt a positioning method based on the principle of binocular parallax and background difference in this paper. Binocular parallax uses cameras to get multi-dimensional perspective of the yacht based on geometric principle of imaging. In order to simplify the yacht localization problem, we install LED light indicator as the key point on a yacht. And let it flash at a certain frequency during day time and night time. After getting the distance between the LED and the cameras, locating the yacht is easy. Compared with other traditional positioning methods, this method is simpler and easier to implement. In this paper, we study the yacht positioning method using the LED indicator. Simulation experiment is done for a yacht model in the distance of 3 meters. The experimental result shows that our method is feasible and easy to implement with a small 15% positioning error.

  3. Sensor assembly method using silicon interposer with trenches for three-dimensional binocular range sensors

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhiro; Yamamoto, Yuji; Arima, Yutaka

    2018-04-01

    To easily assemble a three-dimensional binocular range sensor, we devised an alignment method for two image sensors using a silicon interposer with trenches. The trenches were formed using deep reactive ion etching (RIE) equipment. We produced a three-dimensional (3D) range sensor using the method and experimentally confirmed that sufficient alignment accuracy was realized. It was confirmed that the alignment accuracy of the two image sensors when using the proposed method is more than twice that of the alignment assembly method on a conventional board. In addition, as a result of evaluating the deterioration of the detection performance caused by the alignment accuracy, it was confirmed that the vertical deviation between the corresponding pixels in the two image sensors is substantially proportional to the decrease in detection performance. Therefore, we confirmed that the proposed method can realize more than twice the detection performance of the conventional method. Through these evaluations, the effectiveness of the 3D binocular range sensor aligned by the silicon interposer with the trenches was confirmed.

  4. Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study.

    PubMed

    Ana, Banc; Cristina, Stan; Dorin, Chiselita

    2016-01-01

    The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24 degrees monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. The areas of frame-induced artefacts were determined (over 50 degrees in each temporal field, 24 degrees superiorly and 45 degrees inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage--groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma.

  5. Modulatory effects of binocular disparity and aging upon the perception of speed.

    PubMed

    Norman, J Farley; Burton, Cory L; Best, Leah A

    2010-01-01

    Two experiments investigated modulatory effects of a surround upon the perceived speed of a moving central region. Both the surround's depth and velocity (relative to the center) were manipulated. The abilities of younger observers (mean age was 23.1 years) were evaluated in Experiment 1, while Experiment 2 was devoted to older participants (mean age was 71.3 years). The results of Experiment 1 revealed that changes in the perceived depth of a surround (in this case caused by changes in binocular disparity) significantly influence the perceived speed of a central target. In particular, the center's motion was perceived as fastest when the surround possessed uncrossed binocular disparity relative to the central target. This effect, that targets that are closer than their background are perceived to be faster, only occurred when the center and surround moved in the same directions (and did not occur when center and surround moved in opposite directions). The results of Experiment 2 showed that the perceived speeds of older adults are different: older observers generally perceive nearer targets as faster both when center and surround move in the same direction and when they move in opposite directions. In addition, the older observers' judgments of speed were less precise. These age-related changes in the perception of speed are broadly consistent with the results of recent neurophysiological investigations that find age-related changes in the functionality of cortical area MT.

  6. Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L

    2009-01-01

    The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.

  7. A new computerized diagnostic algorithm for quantitative evaluation of binocular misalignment in patients with strabismus

    NASA Astrophysics Data System (ADS)

    Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi

    2012-10-01

    Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.

  8. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  9. Grouping of optic flow stimuli during binocular rivalry is driven by monocular information.

    PubMed

    Holten, Vivian; Stuit, Sjoerd M; Verstraten, Frans A J; van der Smagt, Maarten J

    2016-10-01

    During binocular rivalry, perception alternates between two dissimilar images, presented dichoptically. Although binocular rivalry is thought to result from competition at a local level, neighboring image parts with similar features tend to be perceived together for longer durations than image parts with dissimilar features. This simultaneous dominance of two image parts is called grouping during rivalry. Previous studies have shown that this grouping depends on a shared eye-of-origin to a much larger extent than on image content, irrespective of the complexity of a static image. In the current study, we examine whether grouping of dynamic optic flow patterns is also primarily driven by monocular (eye-of-origin) information. In addition, we examine whether image parameters, such as optic flow direction, and partial versus full visibility of the optic flow pattern, affect grouping durations during rivalry. The results show that grouping of optic flow is, as is known for static images, primarily affected by its eye-of-origin. Furthermore, global motion can affect grouping durations, but only under specific conditions. Namely, only when the two full optic flow patterns were presented locally. These results suggest that grouping during rivalry is primarily driven by monocular information even for motion stimuli thought to rely on higher-level motion areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Binocular rivalry after right-hemisphere stroke: Effects of attention impairment on perceptual dominance patterns.

    PubMed

    Walle, Kjersti Mæhlum; Kyler, Hillary Lynn; Nordvik, Jan Egil; Becker, Frank; Laeng, Bruno

    2017-10-01

    Binocular rivalry is when perception fluctuates while the stimuli, consisting of different images presented to each eye, remain unchanged. The fluctuation rate and predominance ratio of these images are regarded as information source for understanding properties of consciousness and perception. We administered a binocular rivalry task to 26 right-hemisphere stroke patients and 26 healthy control participants, using stimuli such as simple Gabor anaglyphs. Each single Gabor image was of unequal spatial frequency compared to its counterpart, allowing assessment of the effect of relative spatial frequency on rivalry predominance. Results revealed that patients had significantly decreased alternation rate compared to healthy controls, with severity of patients' attention impairment predicting alternation rates. The patient group had higher predominance ratio for high compared to low relative spatial frequency stimuli consistent with the hypothesis that damage to the right hemisphere may disrupt processing of relatively low spatial frequencies. Degree of attention impairment also predicted the effect of relative spatial frequencies. Lastly, both groups showed increased predominance rates in the right eye compared to the left eye. This right eye dominance was more pronounced in patients than controls, suggesting that right hemisphere stroke may additionally affect eye predominance ratios. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Differential effects of visual attention and working memory on binocular rivalry.

    PubMed

    Scocchia, Lisa; Valsecchi, Matteo; Gegenfurtner, Karl R; Triesch, Jochen

    2014-05-30

    The investigation of cognitive influence on binocular rivalry has a long history. However, the effects of visual WM on rivalry have never been studied so far. We examined top-down modulation of rivalry perception in four experiments to compare the effects of visual WM and sustained selective attention: In the first three experiments we failed to observe any sustained effect of the WM content; only the color of the memory probe was found to prime the initially dominant percept. In Experiment 4 we found a clear effect of sustained attention on rivalry both in terms of the first dominant percept and of the overall dominance when participants were involved in a tracking task. Our results provide an example of dissociation between visual WM and selective attention, two phenomena which otherwise functionally overlap to a large extent. Furthermore, our study highlights the importance of the task employed to engage cognitive resources: The observed perceptual epiphenomena of binocular rivalry are indicative of visual competition at an early stage, which is not affected by WM but is still susceptible to attention influence as long as the observer’s attention is constrained to one of the two rival images via a specific concomitant task. © 2014 ARVO.

  12. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  13. Vision in two cyprinid fish: implications for collective behavior

    PubMed Central

    Moore, Bret A.; Tyrrell, Luke P.; Fernández-Juricic, Esteban

    2015-01-01

    Many species of fish rely on their visual systems to interact with conspecifics and these interactions can lead to collective behavior. Individual-based models have been used to predict collective interactions; however, these models generally make simplistic assumptions about the sensory systems that are applied without proper empirical testing to different species. This could limit our ability to predict (and test empirically) collective behavior in species with very different sensory requirements. In this study, we characterized components of the visual system in two species of cyprinid fish known to engage in visually dependent collective interactions (zebrafish Danio rerio and golden shiner Notemigonus crysoleucas) and derived quantitative predictions about the positioning of individuals within schools. We found that both species had relatively narrow binocular and blind fields and wide visual coverage. However, golden shiners had more visual coverage in the vertical plane (binocular field extending behind the head) and higher visual acuity than zebrafish. The centers of acute vision (areae) of both species projected in the fronto-dorsal region of the visual field, but those of the zebrafish projected more dorsally than those of the golden shiner. Based on this visual sensory information, we predicted that: (a) predator detection time could be increased by >1,000% in zebrafish and >100% in golden shiners with an increase in nearest neighbor distance, (b) zebrafish schools would have a higher roughness value (surface area/volume ratio) than those of golden shiners, (c) and that nearest neighbor distance would vary from 8 to 20 cm to visually resolve conspecific striping patterns in both species. Overall, considering between-species differences in the sensory system of species exhibiting collective behavior could change the predictions about the positioning of individuals in the group as well as the shape of the school, which can have implications for group

  14. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  15. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.

    PubMed

    Martin, Graham R

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection

  16. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    PubMed Central

    Martin, Graham R.

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection

  17. Infantile Nystagmus and Abnormalities of Conjugate Eye Movements in Down Syndrome.

    PubMed

    Weiss, Avery H; Kelly, John P; Phillips, James O

    2016-03-01

    Subjects with Down syndrome (DS) have an anatomical defect within the cerebellum that may impact downstream oculomotor areas. This study characterized gaze holding and gains for smooth pursuit, saccades, and optokinetic nystagmus (OKN) in DS children with infantile nystagmus (IN). Clinical data of 18 DS children with IN were reviewed retrospectively. Subjects with constant strabismus were excluded to remove any contribution of latent nystagmus. Gaze-holding, horizontal and vertical saccades to target steps, horizontal smooth pursuit of drifting targets, OKN in response to vertically or horizontally-oriented square wave gratings drifted at 15°/s, 30°/s, and 45°/s were recorded using binocular video-oculography. Seven subjects had additional optical coherence tomography imaging. Infantile nystagmus was associated with one or more gaze-holding instabilities (GHI) in each subject. The majority of subjects had a combination of conjugate horizontal jerk with constant or exponential slow-phase velocity, asymmetric or symmetric, and either monocular or binocular pendular nystagmus. Six of seven subjects had mild (Grade 0-1) persistence of retinal layers overlying the fovea, similar to that reported in DS children without nystagmus. All subjects had abnormal gains across one or more stimulus conditions (horizontal smooth pursuit, saccades, or OKN). Saccade velocities followed the main sequence. Down syndrome subjects with IN show a wide range of GHI and abnormalities of conjugate eye movements. We propose that these ocular motor abnormalities result from functional abnormalities of the cerebellum and/or downstream oculomotor circuits, perhaps due to extensive miswiring.

  18. Insect vision as model for machine vision

    NASA Astrophysics Data System (ADS)

    Osorio, D.; Sobey, Peter J.

    1992-11-01

    The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.

  19. Colour, vision and ergonomics.

    PubMed

    Pinheiro, Cristina; da Silva, Fernando Moreira

    2012-01-01

    This paper is based on a research project - Visual Communication and Inclusive Design-Colour, Legibility and Aged Vision, developed at the Faculty of Architecture of Lisbon. The research has the aim of determining specific design principles to be applied to visual communication design (printed) objects, in order to be easily read and perceived by all. This study target group was composed by a selection of socially active individuals, between 55 and 80 years, and we used cultural events posters as objects of study and observation. The main objective is to overlap the study of areas such as colour, vision, older people's colour vision, ergonomics, chromatic contrasts, typography and legibility. In the end we will produce a manual with guidelines and information to apply scientific knowledge into the communication design projectual practice. Within the normal aging process, visual functions gradually decline; the quality of vision worsens, colour vision and contrast sensitivity are also affected. As people's needs change along with age, design should help people and communities, and improve life quality in the present. Applying principles of visually accessible design and ergonomics, the printed design objects, (or interior spaces, urban environments, products, signage and all kinds of visually information) will be effective, easier on everyone's eyes not only for visually impaired people but also for all of us as we age.

  20. The visible ground surface as a reference frame for scaling binocular depth of a target in midair

    PubMed Central

    WU, JUN; ZHOU, LIU; SHI, PAN; HE, ZIJIANG J; OOI, TENG LENG

    2014-01-01

    The natural ground surface carries texture information that extends continuously from one’s feet to the horizon, providing a rich depth resource for accurately locating an object resting on it. Here, we showed that the ground surface’s role as a reference frame also aids in locating a target suspended in midair based on relative binocular disparity. Using real world setup in our experiments, we first found that a suspended target is more accurately localized when the ground surface is visible and the observer views the scene binocularly. In addition, the increased accuracy occurs only when the scene is viewed for 5 sec rather than 0.15 sec, suggesting that the binocular depth process takes time. Second, we found that manipulation of the configurations of the texture-gradient and/or linear-perspective cues on the visible ground surface affects the perceived distance of the suspended target in midair. Third, we found that a suspended target is more accurately localized against a ground texture surface than a ceiling texture surface. This suggests that our visual system usesthe ground surface as the preferred reference frame to scale the distance of a suspended target according to its relative binocular disparity. PMID:25384237

  1. A high precision instrument to measure angular and binocular deviation introduced by aircraft windscreens by using a shadow casting technique

    NASA Astrophysics Data System (ADS)

    Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.

    2012-12-01

    Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than ±0.1 mrad (≈0.036 mrad) and has an excellent repeatability with an error of less than 2%.

  2. Maturation of Binocular, Monocular Grating Acuity and of the Visual Interocular Difference in the First 2 Years of Life.

    PubMed

    Costa, Marcelo Fernandes; de Cássia Rodrigues Matos França, Valtenice; Barboni, Mirella Teles Salgueiro; Ventura, Dora Fix

    2018-05-01

    The sweep visual evoked potential method (sVEP) is a powerful tool for measurement of visual acuity in infants. Despite the applicability and reliability of the technique in measuring visual functions the understanding of sVEP acuity maturation and how interocular difference of acuity develops in early infancy, as well as the availability of normality ranges, are rare in the literature. We measured binocular and monocular sVEPS acuities in 481 healthy infants aged from birth to 24 months without ophthalmological diseases. Binocular sVEP acuity was significantly higher than monocular visual acuities for almost all ages. Maturation of monocular sVEP acuity showed 2 longer critical periods while binocular acuity showed three maturation periods in the same age range. We found a systematic variation of the mean interocular acuity difference (IAD) range according to age from 1.45 cpd at birth to 0.31 cpd at 24 months. An additional contribution was the determination of sVEP acuity norms for the entire age range. We conclude that binocular and monocular sVEP acuities have distinct growth curves reflecting different maturation profiles for each function. Differences in IAD range shorten according to age and they should be considered in using the sVEP acuity measurements for clinical diagnosis as amblyopia.

  3. An overview and the current status of instrumentation at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Edwards, Michelle L.; Kuhn, Olga; Thompson, David; Veillet, Christian

    2014-07-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (24' × 24') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectrometer (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front-bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near- infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the LBT utilizing the installed adaptive secondary mirrors in both single-sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2 and MODS2 passed their laboratory

  4. Integrating National Space Visions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2006-01-01

    This paper examines value proposition assumptions for various models nations may use to justify, shape, and guide their space programs. Nations organize major societal investments like space programs to actualize national visions represented by leaders as investments in the public good. The paper defines nine 'vision drivers' that circumscribe the motivations evidently underpinning national space programs. It then describes 19 fundamental space activity objectives (eight extant and eleven prospective) that nations already do or could in the future use to actualize the visions they select. Finally the paper presents four contrasting models of engagement among nations, and compares these models to assess realistic pounds on the pace of human progress in space over the coming decades. The conclusion is that orthogonal engagement, albeit unlikely because it is unprecedented, would yield the most robust and rapid global progress.

  5. Overview of sports vision

    NASA Astrophysics Data System (ADS)

    Moore, Linda A.; Ferreira, Jannie T.

    2003-03-01

    Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).

  6. Abnormality, rationality, and sanity.

    PubMed

    Hertwig, Ralph; Volz, Kirsten G

    2013-11-01

    A growing body of studies suggests that neurological and mental abnormalities foster conformity to norms of rationality that are widely endorsed in economics and psychology, whereas normality stands in the way of rationality thus defined. Here, we outline the main findings of these studies, discuss their implications for experimental design, and consider how 'sane' some benchmarks of rationality really are. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Correlation Between Near-Vision Acuity and the Incidence of Peritoneal Dialysis-Related Infections.

    PubMed

    Kojima, Shigeki; Sakurada, Tsutomu; Koitabashi, Kenichiro; Kojima, Kaori; Watanabe, Shiika; Uchida, Daisuke; Kaneshiro, Nagayuki; Konno, Yusuke; Shibagaki, Yugo

    Peritoneal dialysis (PD)-related infections (PDIs) such as peritonitis, exit-site infection, and tunnel infection are serious complications affecting patients on PD. Because patients with diabetes (DM) and of older age have increased in number in Japan, the number of patients with visual impairment is estimated also to have increased. Near vision is necessary for performing proper PD daily care. However, no studies have reported whether visual impairment is likely to increase the risk of PDIs.Our study included 31 PD patients (16 men, 15 women; mean age: 61.5 ± 11.8 years; mean PD duration: 27.3 ± 20.3 months; 38.7% with DM; 54.8% wearing glasses) who performed their own PD care. At our facility and related facilities, we used a standard near-vision test chart, which classifies vision into 12 grades, from 0.1 (poor) to 1.5 (clear), to assess near-vision binocular visual acuity in those patients between March 2015 and September 2015. In addition, we retrospectively examined the medical records of the patients to determine their history of PDIs. We then evaluated the correlation between near-vision acuity and the incidence of PDIs.Mean measured near-vision acuity was 0.61 ± 0.29, and we observed no significant difference in the visual acuity of patients with and without DM (0.55 ± 0.31 vs. 0.63 ± 0.26 respectively, p = 0.477). In addition, we observed no significant difference in the incidence of PDIs between patients with and without DM (1.298 ± 1.609 per year vs. 1.164 ± 0.908 per year respectively, p = 0.804). We did not find a correlation between near-vision acuity and the incidence of PDIs (r = -0.071, p = 0.795).

  8. Representing vision and blindness.

    PubMed

    Ray, Patrick L; Cox, Alexander P; Jensen, Mark; Allen, Travis; Duncan, William; Diehl, Alexander D

    2016-01-01

    There have been relatively few attempts to represent vision or blindness ontologically. This is unsurprising as the related phenomena of sight and blindness are difficult to represent ontologically for a variety of reasons. Blindness has escaped ontological capture at least in part because: blindness or the employment of the term 'blindness' seems to vary from context to context, blindness can present in a myriad of types and degrees, and there is no precedent for representing complex phenomena such as blindness. We explore current attempts to represent vision or blindness, and show how these attempts fail at representing subtypes of blindness (viz., color blindness, flash blindness, and inattentional blindness). We examine the results found through a review of current attempts and identify where they have failed. By analyzing our test cases of different types of blindness along with the strengths and weaknesses of previous attempts, we have identified the general features of blindness and vision. We propose an ontological solution to represent vision and blindness, which capitalizes on resources afforded to one who utilizes the Basic Formal Ontology as an upper-level ontology. The solution we propose here involves specifying the trigger conditions of a disposition as well as the processes that realize that disposition. Once these are specified we can characterize vision as a function that is realized by certain (in this case) biological processes under a range of triggering conditions. When the range of conditions under which the processes can be realized are reduced beyond a certain threshold, we are able to say that blindness is present. We characterize vision as a function that is realized as a seeing process and blindness as a reduction in the conditions under which the sight function is realized. This solution is desirable because it leverages current features of a major upper-level ontology, accurately captures the phenomenon of blindness, and can be

  9. Color Vision in Aniridia.

    PubMed

    Pedersen, Hilde R; Hagen, Lene A; Landsend, Erlend C S; Gilson, Stuart J; Utheim, Øygunn A; Utheim, Tor P; Neitz, Maureen; Baraas, Rigmor C

    2018-04-01

    To assess color vision and its association with retinal structure in persons with congenital aniridia. We included 36 persons with congenital aniridia (10-66 years), and 52 healthy, normal trichromatic controls (10-74 years) in the study. Color vision was assessed with Hardy-Rand-Rittler (HRR) pseudo-isochromatic plates (4th ed., 2002); Cambridge Color Test and a low-vision version of the Color Assessment and Diagnosis test (CAD-LV). Cone-opsin genes were analyzed to confirm normal versus congenital color vision deficiencies. Visual acuity and ocular media opacities were assessed. The central 30° of both eyes were imaged with the Heidelberg Spectralis OCT2 to grade the severity of foveal hypoplasia (FH, normal to complete: 0-4). Five participants with aniridia had cone opsin genes conferring deutan color vision deficiency and were excluded from further analysis. Of the 31 with aniridia and normal opsin genes, 11 made two or more red-green (RG) errors on HRR, four of whom also made yellow-blue (YB) errors; one made YB errors only. A total of 19 participants had higher CAD-LV RG thresholds, of which eight also had higher CAD-LV YB thresholds, than normal controls. In aniridia, the thresholds were higher along the RG than the YB axis, and those with a complete FH had significantly higher RG thresholds than those with mild FH (P = 0.038). Additional increase in YB threshold was associated with secondary ocular pathology. Arrested foveal formation and associated alterations in retinal processing are likely to be the primary reason for impaired red-green color vision in aniridia.

  10. Color vision and neuroretinal function in diabetes.

    PubMed

    Wolff, B E; Bearse, M A; Schneck, M E; Dhamdhere, K; Harrison, W W; Barez, S; Adams, A J

    2015-04-01

    We investigate how type 2 diabetes (T2DM) and diabetic retinopathy (DR) affect color vision (CV) and mfERG implicit time (IT), whether CV and IT are correlated, and whether CV and IT abnormality classifications agree. Adams desaturated D-15 color test, mfERG, and fundus photographs were examined in 37 controls, 22 T2DM patients without DR (NoRet group), and 25 T2DM patients with DR (Ret group). Color confusion score (CCS) was calculated. ITs were averaged within the central 7 hexagons (central IT; ≤4.5°) and outside this area (peripheral IT; ≥4.5°). DR was within (DRIN) or outside (DROUT) of the central 7 hexagons. Group differences, percentages of abnormalities, correlations, and agreement were determined. CCS was greater in the NoRet (P = 0.002) and Ret (P < 0.0001) groups than in control group. CCS was abnormal in 3, 41, and 48 % of eyes in the control, NoRet, and Ret groups, respectively. Ret group CV abnormalities were more frequent in DRIN than in DROUT subgroups (71 vs. 18 %, respectively; P < 0.0001). CCS and IT were correlated only in the Ret group, in both retinal zones (P ≤ 0.028). Only in the Ret group did CCS and peripheral IT abnormality classifications agree (72 %; P < 0.05). CV is affected in patients with T2DM, even without DR. Central DR increases the likelihood of a CV deficit compared with non-central DR. mfERG IT averaged across central or peripheral retinal locations is less frequently abnormal than CV in the absence of DR, and these two measures are correlated only when DR is present.

  11. Color vision and neuroretinal function in diabetes

    PubMed Central

    Bearse, M. A.; Schneck, M. E.; Dhamdhere, K.; Harrison, W. W.; Barez, S.; Adams, A. J.

    2015-01-01

    Purpose We investigate how type 2 diabetes (T2DM) and diabetic retinopathy (DR) affect color vision (CV) and mfERG implicit time (IT), whether CV and IT are correlated, and whether CV and IT abnormality classifications agree. Methods Adams desaturated D-15 color test, mfERG, and fundus photographs were examined in 37 controls, 22 T2DM patients without DR (NoRet group), and 25 T2DM patients with DR (Ret group). Color confusion score (CCS) was calculated. ITs were averaged within the central 7 hexagons (central IT; ≥4.5°) and outside this area (peripheral IT; ≤4.5°). DR was within (DRIN) or outside (DROUT) of the central 7 hexagons. Group differences, percentages of abnormalities, correlations, and agreement were determined. Results CCS was greater in the NoRet (P = 0.002) and Ret (P < 0.0001) groups than in control group. CCS was abnormal in 3, 41, and 48 % of eyes in the control, NoRet, and Ret groups, respectively. Ret group CV abnormalities were more frequent in DRIN than in DROUT subgroups (71 vs. 18 %, respectively; P < 0.0001). CCS and IT were correlated only in the Ret group, in both retinal zones (P ≥ 0.028). Only in the Ret group did CCS and peripheral IT abnormality classifications agree (72 %; P < 0.05). Conclusion CV is affected in patients with T2DM, even without DR. Central DR increases the likelihood of a CV deficit compared with non-central DR. mfERG IT averaged across central or peripheral retinal locations is less frequently abnormal than CV in the absence of DR, and these two measures are correlated only when DR is present. PMID:25516428

  12. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  13. Creating Strategic Visions

    DTIC Science & Technology

    1990-10-15

    3010 o, AuTOVON 242-3010. - =n~m~m i ma ll lil~ m mm m i mii FOREWORD This futures study presents an analysis and discussion of a program used at the U.S...Operations Research Society, and The Planning Forum . iv CREATING STRATEGIC VISIONS 1 Introduction. The United States Army War College (USAWC) prepares its...consideration and time must be given to a program that attempts to help these potential leaders learn how to create strategic visions. In this paper

  14. Low Vision Enhancement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.

  15. Perceptual adaptation in the use of night vision goggles

    NASA Technical Reports Server (NTRS)

    Durgin, Frank H.; Proffitt, Dennis R.

    1992-01-01

    The image intensification (I sup 2) systems studied for this report were the biocular AN/PVS-7(NVG) and the binocular AN/AVS-6(ANVIS). Both are quite impressive for purposes of revealing the structure of the environment in a fairly straightforward way in extremely low-light conditions. But these systems represent an unusual viewing medium. The perceptual information available through I sup 2 systems is different in a variety of ways from the typical input of everyday vision, and extensive training and practice is required for optimal use. Using this sort of system involves a kind of perceptual skill learning, but is may also involve visual adaptations that are not simply an extension of normal vision. For example, the visual noise evident in the goggles in very low-light conditions results in unusual statistical properties in visual input. Because we had recently discovered a strong and enduring aftereffect of perceived texture density which seemed to be sensitive to precisely the sorts of statistical distortions introduced by I sup 2 systems, it occurred to use that visual noise of this sort might be a very adapting stimulus for texture density and produce an aftereffect that extended into normal vision once the goggles were removed. We have not found any experimental evidence that I sup 2 systems produce texture density aftereffects. The nature of the texture density aftereffect is briefly explained, followed by an accounting of our studies of I sup 2 systems and our most recent work on the texture density aftereffect. A test for spatial frequency adaptation after exposure to NVG's is also reported, as is a study of perceived depth from motion (motion parallax) while wearing the biocular goggles. We conclude with a summary of our findings.

  16. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    PubMed Central

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  17. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; hide

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  18. Perceptual reversals during binocular rivalry: ERP components and their concomitant source differences.

    PubMed

    Britz, Juliane; Pitts, Michael A

    2011-11-01

    We used an intermittent stimulus presentation to investigate event-related potential (ERP) components associated with perceptual reversals during binocular rivalry. The combination of spatiotemporal ERP analysis with source imaging and statistical parametric mapping of the concomitant source differences yielded differences in three time windows: reversals showed increased activity in early visual (∼120 ms) and in inferior frontal and anterior temporal areas (∼400-600 ms) and decreased activity in the ventral stream (∼250-350 ms). The combination of source imaging and statistical parametric mapping suggests that these differences were due to differences in generator strength and not generator configuration, unlike the initiation of reversals in right inferior parietal areas. These results are discussed within the context of the extensive network of brain areas that has been implicated in the initiation, implementation, and appraisal of bistable perceptual reversals. Copyright © 2011 Society for Psychophysiological Research.

  19. Binocular disparities, motion parallax, and geometric perspective in Patrick Hughes's 'reverspectives': theoretical analysis and empirical findings.

    PubMed

    Rogers, Brian; Gyani, Alex

    2010-01-01

    Abstract. Patrick Hughes's 'reverspective' artworks provide a novel way of investigating the effectiveness of different sources of 3-D information for the human visual system. Our empirical findings show that the converging lines of simple linear perspective can be as effective as the rich array of 3-D cues present in natural scenes in determining what we see, even when these cues are in conflict with binocular disparities. Theoretical considerations reveal that, once the information provided by motion parallax transformations is correctly understood, there is no need to invoke higher-level processes or an interpretation based on familiarity or past experience in order to explain either the 'reversed' depth or the apparent, concomitant rotation of a reverspective artwork as the observer moves from side to side. What we see in reverspectives is the most likely real-world scenario (distal stimulus) that could have created the perspective and parallax transformations (proximal stimulus) that stimulate our visual systems.

  20. Optimized stereo matching in binocular three-dimensional measurement system using structured light.

    PubMed

    Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Fan, Xin; Ma, Jianyong

    2014-09-10

    In this paper, we develop an optimized stereo-matching method used in an active binocular three-dimensional measurement system. A traditional dense stereo-matching algorithm is time consuming due to a long search range and the high complexity of a similarity evaluation. We project a binary fringe pattern in combination with a series of N binary band limited patterns. In order to prune the search range, we execute an initial matching before exhaustive matching and evaluate a similarity measure using logical comparison instead of a complicated floating-point operation. Finally, an accurate point cloud can be obtained by triangulation methods and subpixel interpolation. The experiment results verify the computational efficiency and matching accuracy of the method.

  1. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  2. The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data

    NASA Astrophysics Data System (ADS)

    Adams, S. M.; Kochanek, C. S.; Gerke, J. R.; Stanek, K. Z.

    2017-08-01

    We report updated results for the first 7 yr of our programme to monitor 27 galaxies within 10 Mpc using the Large Binocular Telescope to search for failed supernovae (SNe) - core collapses of massive stars that form black holes without luminous SNe. In the new data, we identify no new compelling candidates and confirm the existing candidate. Given the six successful core-collapse SNe in the sample and one likely failed SN, the implied fraction of core collapses that result in failed SNe is f=0.14^{+0.33}_{-0.10} at 90 per cent confidence. If the current candidate is a failed SN, the fraction of failed SN naturally explains the missing high-mass red supergiants SN progenitors and the black hole mass function. If the current candidate is ultimately rejected, the data imply a 90 per cent confidence upper limit on the failed SN fraction of f < 0.35.

  3. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  4. Utility of large spot binocular indirect laser delivery for peripheral photocoagulation therapy in children.

    PubMed

    Balasubramaniam, Saranya C; Mohney, Brian G; Bang, Genie M; Link, Thomas P; Pulido, Jose S

    2012-09-01

    The purpose of this article is to demonstrate the utility of the large spot size (LSS) setting using a binocular laser indirect delivery system for peripheral ablation in children. One patient with bilateral retinopathy of prematurity received photocoagulation with standard spot size burns placed adjacently to LSS burns. Using a pixel analysis program called Image J on the Retcam picture, the areas of each retinal spot size were determined in units of pixels, giving a standard spot range of 805 to 1294 pixels and LSS range of 1699 to 2311 pixels. Additionally, fluence was calculated using theoretical retinal areas produced by each spot size: the standard spot setting was 462 mJ/mm2 and the LSS setting was 104 mJ/mm2. For eyes with retinopathy of prematurity, our study shows that LSS laser indirect delivery halves the number of spots required for treatment and reduces fluence by almost one-quarter, producing more uniform spots.

  5. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  6. [Features of the electronic eikonometer for the study of binocular function].

    PubMed

    Bourdy, C

    2013-05-01

    After presenting the components of this electronic eikonometer (device schematic and organizational chart) for the analysis and measurement of perceptive effects of binocular disparity, we review the specifics (tests with incorporated magnifications seen in polarized light) and the advantages of this device as compared to existing eikonometers (absence of any intermediary optical system). We provide a list of available tests in the test library and their parametric characteristics: Ogle Spatial Test for Aniseikonia, Fixation Disparity Test: binocular nonius, and Linear and Random stereoscopic tests. We develop a methodology adapted to each type of test and the manipulations to be performed by the operators and observers. We then provide some results of examinations performed with this eikonometer for a sample of observers equipped with glasses, contact lenses or implants. We propose an analysis of these various perceptive effects from experimental and theoretical studies: association between Depth, Disparity and Fusion; brief review of theoretical studies by automatic matrix calculus of retinal image size for various types of eyes: emmetropic and isometropic eyes based on various dioptric elements from Gullstrand's eye, axial anisometropia, anisometropia of conformation, aphakia resulting from these various eyes. We demonstrate the role of these studies in the analysis of subjective measurements of aniseikonia and for the choice of best correction: variations in amplitude and sign of the monocular components of the fixation disparity as a function of the viewing distance, Complexity of depth perception, according to the test used. Considering the evolution of the technology used for the realization of this prototype, we propose that this eikonometer be updated, in particular by using high-resolution flat screens, which would allow improvement and enrichment of the test library (definition, contrast and size of the observed images). Copyright © 2013 Elsevier Masson

  7. Refractive errors and binocular dysfunctions in a population of university students.

    PubMed

    Risovic, D J; Misailovic, K R; Eric-Marinkovic, J M; Kosanovic-Jakovic, N G; Milenkovic, S M; Petrovic, L Z

    2008-01-01

    This clinical study was performed to determine the presence of refractive errors and binocular dysfunctions in a population of university students. Refraction and binocular function were evaluated in a young patient population (230 students and 234 nonstudent subjects, aged 18-27 years). Distance visual acuity (DVA) and near visual acuity (NVA), refraction, cover test (CT), ocular motility, near-point of convergence, horizontal phoria measurement by Maddox wing, negative and positive vergence amplitude in prism diopters, fusion amplitude in synoptophore, as well as stereoacuity (Titmus test) were tested. Emmetropia was the most frequent refractive status in our student and nonstudent groups (78.7%). Myopia was the most frequent refractive disorder in the whole population (13.1%). Myopia and hypermetropia were significantly more frequent in the students than in nonstudents (chi-square emp 47.55). Exophoria is significantly more frequent in myopic subjects. Vergence amplitude (t test 0.000) and fusion amplitude (t test 0.005) show significantly lower values in student population. Results of Titmus test in the student group is significantly worse than in the nonstudent group (t test 0.000). Maddox wing resulted in significantly higher degree of heterophoria in the student population (t test 0.000). Myopic subjects, in the student group (t test 0.002) as well as in the nonstudent group (t test 0.001), show significantly better results in Titmus test. High near visual demand could be the most important factor for higher incidence of myopia, worse convergence and fusion amplitude, higher degree of exophoria, and worse results in Titmus test in the student population.

  8. Influence of Socially Used Drugs on Vision and Vision Performance

    DTIC Science & Technology

    1974-07-31

    AD-A012 909 INFLUENCE OF SOCIALLY USED DRUGS ON VISION AND VISION PERFORMANCE OPTICAL SCIENCES GROUP PREPARED FOR ARMY MEDICAL RESEARCH AND...AND ADDRESS 12. REPORT DATE July 11, 1974 U.S. Army Medical Research and D mvelopmenteommand 13. NUMBER OF PAGES Washington, D.C. 203114 14...nreeeoary and identily by block number) vision vision performance alcohol marijuana tetrahydrocannabinol 20. ABSTRACT (Continue on reverae aide It

  9. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  10. Grounding Our Vision: Brain Research and Strategic Vision

    ERIC Educational Resources Information Center

    Walker, Mike

    2011-01-01

    While recognizing the value of "vision," it could be argued that vision alone--at least in schools--is not enough to rally the financial and emotional support required to translate an idea into reality. A compelling vision needs to reflect substantive, research-based knowledge if it is to spark the kind of strategic thinking and insight…

  11. Differential vergence movements in reading Chinese and English: Greater fixation-initial binocular disparity is advantageous in reading the denser orthography.

    PubMed

    Hsiao, Yi-Ting; Shillcock, Richard; Obregón, Mateo; Kreiner, Hamutal; Roberts, Matthew A J; McDonald, Scott

    2017-07-11

    We explore two aspects of exovergence: we test whether smaller binocular fixation disparities accompany the shorter saccades and longer fixations observed in reading Chinese; we test whether potentially advantageous psychophysical effects of exovergence (cf. Arnold & Schindel, 2010; Kersten & Murray, 2010) transfer to text reading. We report differential exovergence in reading Chinese and English: Chinese readers begin fixations with more binocular disparity, but end fixations with a disparity closely similar to that of the English readers. We conclude that greater fixation-initial binocular fixation disparity can be adaptive in the reading of visually and cognitively denser text.

  12. Vision: Essential Scaffolding

    ERIC Educational Resources Information Center

    Murphy, Joseph; Torre, Daniela

    2015-01-01

    Few concepts are more noted in the leadership effects research than vision. It is a cardinal element in the school improvement equation as well. Yet, it remains one of the least well-specified components of that algorithm. Based on a comprehensive review of the research on effective leadership and school improvement from 1995 to 2012, we bring…

  13. Giving Machines the Vision

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amherst Systems manufactures foveal machine vision technology and systems commercially available to end-users and system integrators. This technology was initially developed under NASA contracts NAS9-19335 (Johnson Space Center) and NAS1-20841 (Langley Research Center). This technology is currently being delivered to university research facilities and military sites. More information may be found in www.amherst.com.

  14. Two Visions of America

    ERIC Educational Resources Information Center

    Capaldi, Nicholas

    2012-01-01

    Since the seventeenth century, there have been two narratives about modernity in general and America in particular. The author uses the term "narrative" to include (a) facts, (b) arguments, and most important, (c) a larger vision of how one sees the world and chooses to engage the world. The first and originalist narrative is the Lockean Liberty…

  15. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  16. Parallel computer vision

    SciTech Connect

    Uhr, L.

    1987-01-01

    This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.

  17. Military Vision Research Program

    DTIC Science & Technology

    2011-07-01

    accomplishments emanating from this research . • 3 novel computer-based tasks have been developed that measure visual distortions • These tests are based...10-1-0392 TITLE: Military Vision Research Program PRINCIPAL INVESTIGATOR: Dr. Darlene Dartt...CONTRACTING ORGANIZATION: The Schepens Eye Research

  18. VISION AND READING ABILITY.

    ERIC Educational Resources Information Center

    MANGRUM, CHARLES T.

    SIGNIFICANT RESEARCH ON THE PHYSIOLOGICAL AND FUNCTIONAL ASPECTS OF VISION AND READING DISABILITY IS SURVEYED. CONCLUSIONS BASED ON THE LITERATURE IN THE FIELD ARE DISCUSSED. A BIBLIOGRAPHY OF 70 REFERENCES AND A GLOSSARY OF TERMS ARE APPENDED. A TABLE SUMMARIZING REFRACTIVE ERRORS AND EYE DEFECTS CONTRIBUTING TO READING DISABILITY IS INCLUDED.…

  19. Visions of Mobile Learning

    ERIC Educational Resources Information Center

    T.H.E. Journal, 2011

    2011-01-01

    It is almost a foregone conclusion that the mobile device will become an indispensable tool for learning in the future. That's why "T.H.E. Journal" asked a number of educators to let their imaginations go wild and conjure up visions of the future of the device in the classroom. This paper presents the views of educators who conjure up the mobile…

  20. Dance: Verities, Values, Visions.

    ERIC Educational Resources Information Center

    Boorman, Joyce, Ed.; Harris, Dorothy, Ed.

    The Binational Dance Conference was organized into three focal themes--verities, values, and visions in dance--to emphasize the known and accepted worth and value of dance, and to stimulate through knowledge and idea exchange, imaginative directions for dance in the future of both the United States and Canada. This thematic structure is also the…